1
|
Hempel M, Warren JD, Liang J, Hughes C, Tu Z. Mosquito sex determination: recent advances and applications. CURRENT OPINION IN INSECT SCIENCE 2025:101385. [PMID: 40368280 DOI: 10.1016/j.cois.2025.101385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/25/2025] [Accepted: 05/06/2025] [Indexed: 05/16/2025]
Abstract
Mosquitoes have evolved divergent sex-determining chromosomes and they employ diverse primary signals for sex-determination. As only females feed on vertebrate blood, manipulating genes involved in sex determination can facilitate genetic control measures for mosquito-borne infectious diseases such as dengue and malaria. We highlight new advances in mosquito sex determination, describe innovative applications, and discuss relevant evolutionary insights and future directions.
Collapse
Affiliation(s)
- Melanie Hempel
- Department of Biochemistry and the Fralin Life Sciences Institute Virginia Tech, Blacksburg, VA 24061.
| | - Joseph D Warren
- Department of Biochemistry and the Fralin Life Sciences Institute Virginia Tech, Blacksburg, VA 24061
| | - Jiangtao Liang
- Department of Biochemistry and the Fralin Life Sciences Institute Virginia Tech, Blacksburg, VA 24061
| | - Christen Hughes
- Department of Biochemistry and the Fralin Life Sciences Institute Virginia Tech, Blacksburg, VA 24061
| | - Zhijian Tu
- Department of Biochemistry and the Fralin Life Sciences Institute Virginia Tech, Blacksburg, VA 24061
| |
Collapse
|
2
|
Han Y, Champer J. A Comparative Assessment of Self-limiting Genetic Control Strategies for Population Suppression. Mol Biol Evol 2025; 42:msaf048. [PMID: 40036822 PMCID: PMC11934067 DOI: 10.1093/molbev/msaf048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 03/06/2025] Open
Abstract
Genetic control strategies are promising solutions for control of pest populations and invasive species. Methods utilizing repeated releases of males such as sterile insect technique (SIT), release of insects carrying a dominant lethal (RIDL), self-limiting gene drives, and gene disruptors are highly controllable methods, ensuring biosafety. Although models of these strategies have been built, detailed comparisons are lacking, particularly for some of the newer strategies. Here, we conducted a thorough comparative assessment of self-limiting genetic control strategies by individual-based simulation models. Specifically, we find that repeated releases greatly enhance suppression power of weak and self-limiting gene drives, enabling population elimination with even low efficiency and high fitness costs. Moreover, dominant female sterility further strengthens self-limiting systems that can either use gene drive or disruptors that target genes without a mechanism to bias their own inheritance. Some of these strategies are highly persistent, resulting in relatively low release ratios even when released males suffer high fitness costs. To quantitatively evaluate different strategies independent from ecological impact, we proposed constant-population genetic load, which achieves over 95% accuracy in predicting simulation outcomes for most strategies, though it is not as precise in a few frequency-dependent systems. Our results suggest that many new self-limiting strategies are safe, flexible, and more cost-effective than traditional SIT and RIDL, and thus have great potential for population suppression of insects and other pests.
Collapse
Affiliation(s)
- Yue Han
- Center for Bioinformatics, Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
- CLS Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jackson Champer
- Center for Bioinformatics, Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Nikolouli K, Compton A, Tu ZJ, Bourtzis K. Evaluation of ebony as a potential selectable marker for genetic sexing in Aedes aegypti. Parasit Vectors 2025; 18:76. [PMID: 40001184 PMCID: PMC11863432 DOI: 10.1186/s13071-025-06709-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Aedes aegypti is expected to invade previously unoccupied areas, mainly due to the climate change, the increase in travel and trade activities and the continuous transformation of the rural environment into urban areas. The sterile insect technique (SIT), which relies on the mass production and release of sterile males, is an environmentally friendly approach that can be applied for population control of Ae. aegypti. SIT programs can be greatly benefited by a genetic sexing strain (GSS) and a reliable sex sorting system to minimize any accidental female release. Visually detectable or conditionally lethal selectable markers can be used for the development of new GSSs. In this study, we evaluated the suitability and competence of a mutant Ae. aegypti ebony strain for the development of a new GSS. The ebony gene is known to be involved in the pigmentation pathway of several dipteran insects, including Ae. aegypti. METHODS An ebony gene knockout was developed though CRISPR/Cas9 mutagenesis. G0 individuals with the desired phenotype were crossed, and progeny were screened in every generation. PCR and sequencing were performed using gDNA from a pulled leg to determine the mutant genotype. Quality control tests, including pupae and adult recovery rates, male sex ratio and fecundity, were applied to the ebony mutant line to determine whether the mutation confers any fitness cost. RESULTS An Ae. aegypti ebony knockout mutant carrying a 5-bp deletion was obtained, which presented darker head and siphon phenotypes at the larval stage. However, genetic analysis revealed that this ebony mutation results in incomplete penetrance and variable expressivity. The establishment of a pure ebony mutant line was not possible because of the fitness costs conferred by the mutation. CONCLUSIONS In this study, the adequacy and suitability of the ebony gene as a selectable marker for the development of a GSS in Ae. aegypti were assessed. Despite its clear phenotype early in larval development, the homozygous mutant line presented phenotypic inconsistency and loss of fertility. These drawbacks clearly indicate that this particular mutation is not suitable for the development of a new GSS. Nonetheless, it cannot be excluded that a different mutation will lead to a different expression and penetrance profile and a viable homozygous mutant line.
Collapse
Affiliation(s)
- Katerina Nikolouli
- Insect Pest Control Laboratory, Department of Nuclear Sciences and Applications, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, IAEA Laboratories, 2444, Seibersdorf, Austria.
| | - Austin Compton
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061, USA
| | - Zhijian Jake Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061, USA
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Department of Nuclear Sciences and Applications, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, IAEA Laboratories, 2444, Seibersdorf, Austria
| |
Collapse
|
4
|
Lejarre Q, Scussel S, Esnault J, Gaudillat B, Duployer M, Mavingui P, Tortosa P, Cattel J. Development of the Incompatible Insect Technique targeting Aedes albopictus: introgression of a wild nuclear background restores the performance of males artificially infected with Wolbachia. Appl Environ Microbiol 2025; 91:e0235024. [PMID: 39840979 PMCID: PMC11837521 DOI: 10.1128/aem.02350-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 12/09/2024] [Indexed: 01/23/2025] Open
Abstract
The bacterium Wolbachia pipientis is increasingly studied for its potential use in controlling insect vectors or pests due to its ability to induce Cytoplasmic Incompatibility (CI). CI can be exploited by establishing an opportunistic Wolbachia infection in a targeted insect species through trans-infection and then releasing the infected males into the environment as sterilizing agents. Several host life history traits (LHT) have been reported to be negatively affected by artificial Wolbachia infection. Wolbachia is often considered the causative agent of these detrimental effects, and the importance of the host's genetic origins in the outcome of trans-infection is generally overlooked. In this study, we investigated the impact of host genetic background using an Aedes albopictus line recently trans-infected with wPip from the Culex pipiens mosquito, which exhibited some fitness costs. We measured several LHTs including fecundity, egg hatch rate, and male mating competitiveness in the incompatible line after four rounds of introgression aiming at restoring genetic diversity in the nuclear genome. Our results show that introgression with a wild genetic background restored most fitness traits and conferred mating competitiveness comparable to that of wild males. Finally, we show that introgression leads to faster and stronger population suppression under laboratory conditions. Overall, our data support that the host genome plays a decisive role in determining the fitness of Wolbachia-infected incompatible males.IMPORTANCEThe bacterium Wolbachia pipientis is increasingly used to control insect vectors and pests through the Incompatible Insect Technique (IIT) inducing a form of conditional sterility when a Wolbachia-infected male mates with an uninfected or differently infected female. Wolbachia artificial trans-infection has been repeatedly reported to affect mosquitoes LHTs, which may in turn compromise the efficiency of IIT. Using a tiger mosquito (Aedes albopictus) line recently trans-infected with a Wolbachia strain from Culex pipiens and displaying reduced fitness, we show that restoring genetic diversity through introgression significantly mitigated the fitness costs associated with Wolbachia trans-infection. This was further demonstrated through experimental population suppression, showing that introgression is required to achieve mosquito population suppression under laboratory conditions. These findings are significant for the implementation of IIT programs, as an increase in female fecundity and male performance improves mass rearing productivity as well as the sterilizing capacity of released males.
Collapse
Affiliation(s)
- Quentin Lejarre
- Symbiosis Technologies for Insect Control (SymbioTIC), Plateforme de Recherche CYROI, Ste Clotilde, France
| | - Sarah Scussel
- Groupement d’Intérêt Public Cyclotron Océan Indien (CYROI), Ste Clotilde, France
| | - Jérémy Esnault
- Groupement d’Intérêt Public Cyclotron Océan Indien (CYROI), Ste Clotilde, France
| | - Benjamin Gaudillat
- Groupement d’Intérêt Public Cyclotron Océan Indien (CYROI), Ste Clotilde, France
| | - Marianne Duployer
- Groupement d’Intérêt Public Cyclotron Océan Indien (CYROI), Ste Clotilde, France
| | - Patrick Mavingui
- Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (UMR PIMIT), Université de La Réunion, CNRS 9192, INSERM 1187, IRD 249, La Réunion, France
| | - Pablo Tortosa
- Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (UMR PIMIT), Université de La Réunion, CNRS 9192, INSERM 1187, IRD 249, La Réunion, France
| | - Julien Cattel
- Symbiosis Technologies for Insect Control (SymbioTIC), Plateforme de Recherche CYROI, Ste Clotilde, France
| |
Collapse
|
5
|
Scussel S, Gaudillat B, Esnault J, Lejarre Q, Duployer M, Lebon C, Benlali A, Mavingui P, Tortosa P, Cattel J. Combining transinfected Wolbachia and a genetic sexing strain to control Aedes albopictus in laboratory-controlled conditions. Proc Biol Sci 2024; 291:20240429. [PMID: 38628128 PMCID: PMC11021938 DOI: 10.1098/rspb.2024.0429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 04/19/2024] Open
Abstract
The global expansion of Aedes albopictus has stimulated the development of environmentally friendly methods aiming to control disease transmission through the suppression of natural vector populations. Sterile male release programmes are currently being deployed worldwide, and are challenged by the availability of an efficient sex separation which can be achieved mechanically at the pupal stage and/or by artificial intelligence at the adult stage, or through genetic sexing, which allows separating males and females at an early development stage. In this study, we combined the genetic sexing strain previously established based on the linkage of dieldrin resistance to the male locus with a Wolbachia transinfected line. For this, we introduced either the wPip-I or the wPip-IV strain from Culex pipiens in an asymbiotic Wolbachia-free Ae. albopictus line. We then measured the penetrance of cytoplasmic incompatibility and life-history traits of both transinfected lines, selected the wPip-IV line and combined it with the genetic sexing strain. Population suppression experiments demonstrated a 90% reduction in population size and a 50% decrease in hatching rate. Presented results showed that such a combination has a high potential in terms of vector control but also highlighted associated fitness costs, which should be reduced before large-scale field assay.
Collapse
Affiliation(s)
- Sarah Scussel
- Groupement d'Intérêt Public Cyclotron Océan Indien (CYROI), 2 rue Maxime Rivière, 97490 Ste Clotilde, Ste Clotilde, France
| | - Benjamin Gaudillat
- Groupement d'Intérêt Public Cyclotron Océan Indien (CYROI), 2 rue Maxime Rivière, 97490 Ste Clotilde, Ste Clotilde, France
| | - Jérémy Esnault
- Groupement d'Intérêt Public Cyclotron Océan Indien (CYROI), 2 rue Maxime Rivière, 97490 Ste Clotilde, Ste Clotilde, France
| | - Quentin Lejarre
- Symbiosis Technologies for Insect Control (SymbioTIC), Plateforme de Recherche Cyroi, 2 rue Maxime Rivière, 97490 Ste Clotilde, Ste Clotilde, France
| | - Marianne Duployer
- Groupement d'Intérêt Public Cyclotron Océan Indien (CYROI), 2 rue Maxime Rivière, 97490 Ste Clotilde, Ste Clotilde, France
| | - Cyrille Lebon
- Groupement d'Intérêt Public Cyclotron Océan Indien (CYROI), 2 rue Maxime Rivière, 97490 Ste Clotilde, Ste Clotilde, France
| | - Aude Benlali
- Groupement d'Intérêt Public Cyclotron Océan Indien (CYROI), 2 rue Maxime Rivière, 97490 Ste Clotilde, Ste Clotilde, France
| | - Patrick Mavingui
- Université de La Réunion, Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (UMR PIMIT), CNRS 9192, INSERM 1187, IRD 249. Plateforme de recherché CYROI, 2 rue Maxime Rivière, 97490 Ste Clotilde, La Réunion, France
| | - Pablo Tortosa
- Université de La Réunion, Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (UMR PIMIT), CNRS 9192, INSERM 1187, IRD 249. Plateforme de recherché CYROI, 2 rue Maxime Rivière, 97490 Ste Clotilde, La Réunion, France
| | - Julien Cattel
- Symbiosis Technologies for Insect Control (SymbioTIC), Plateforme de Recherche Cyroi, 2 rue Maxime Rivière, 97490 Ste Clotilde, Ste Clotilde, France
| |
Collapse
|
6
|
Biedler JK, Aryan A, Qi Y, Wang A, Martinson EO, Hartman DA, Yang F, Sharma A, Morton KS, Potters M, Chen C, Dobson SL, Ebel GD, Kading RC, Paulson S, Xue RD, Strand MR, Tu Z. On the Origin and Evolution of the Mosquito Male-determining Factor Nix. Mol Biol Evol 2024; 41:msad276. [PMID: 38128148 PMCID: PMC10798136 DOI: 10.1093/molbev/msad276] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/02/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
The mosquito family Culicidae is divided into 2 subfamilies named the Culicinae and Anophelinae. Nix, the dominant male-determining factor, has only been found in the culicines Aedes aegypti and Aedes albopictus, 2 important arboviral vectors that belong to the subgenus Stegomyia. Here we performed sex-specific whole-genome sequencing and RNAseq of divergent mosquito species and explored additional male-inclusive datasets to investigate the distribution of Nix. Except for the Culex genus, Nix homologs were found in all species surveyed from the Culicinae subfamily, including 12 additional species from 3 highly divergent tribes comprising 4 genera, suggesting Nix originated at least 133 to 165 million years ago (MYA). Heterologous expression of 1 of 3 divergent Nix open reading frames (ORFs) in Ae. aegypti resulted in partial masculinization of genetic females as evidenced by morphology and doublesex splicing. Phylogenetic analysis suggests Nix is related to femaleless (fle), a recently described intermediate sex-determining factor found exclusively in anopheline mosquitoes. Nix from all species has a conserved structure, including 3 RNA-recognition motifs (RRMs), as does fle. However, Nix has evolved at a much faster rate than fle. The RRM3 of both Nix and fle are distantly related to the single RRM of a widely distributed and conserved splicing factor transformer-2 (tra2). The RRM3-based phylogenetic analysis suggests this domain in Nix and fle may have evolved from tra2 or a tra2-related gene in a common ancestor of mosquitoes. Our results provide insights into the evolution of sex determination in mosquitoes and will inform broad applications of mosquito-control strategies based on manipulating sex ratios toward nonbiting males.
Collapse
Affiliation(s)
- James K Biedler
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Azadeh Aryan
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Yumin Qi
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Aihua Wang
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Ellen O Martinson
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Daniel A Hartman
- Center for Vector-borne Infectious Diseases, Department of Microbiology Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Fan Yang
- Department of Entomology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Atashi Sharma
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Katherine S Morton
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mark Potters
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Chujia Chen
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Genetics Bioinformatics and Computational Biology PhD program, Virginia Tech, Blacksburg, VA 24061, USA
| | - Stephen L Dobson
- Department of Entomology, University of Kentucky, Lexington, KY 40503, USA
- MosquitoMate, Inc., Lexington, KY 40502, USA
| | - Gregory D Ebel
- Center for Vector-borne Infectious Diseases, Department of Microbiology Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Rebekah C Kading
- Center for Vector-borne Infectious Diseases, Department of Microbiology Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Sally Paulson
- Department of Entomology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Rui-De Xue
- Anastasia Mosquito Control District, St. Augustine, FL 32092, USA
| | - Michael R Strand
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Zhijian Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Genetics Bioinformatics and Computational Biology PhD program, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
7
|
Weng SC, Antoshechkin I, Marois E, Akbari OS. Efficient sex separation by exploiting differential alternative splicing of a dominant marker in Aedes aegypti. PLoS Genet 2023; 19:e1011065. [PMID: 38011259 PMCID: PMC10703412 DOI: 10.1371/journal.pgen.1011065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/07/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023] Open
Abstract
Only female mosquitoes consume blood giving them the opportunity to transmit deadly human pathogens. Therefore, it is critical to remove females before conducting releases for genetic biocontrol interventions. Here we describe a robust sex-sorting approach termed SEPARATOR (Sexing Element Produced by Alternative RNA-splicing of A Transgenic Observable Reporter) that exploits sex-specific alternative splicing of an innocuous reporter to ensure exclusive dominant male-specific expression. Using SEPARATOR, we demonstrate reliable sex selection from early larval and pupal stages in Aedes aegypti, and use a Complex Object Parametric Analyzer and Sorter (COPAS) to demonstrate scalable high-throughput sex-selection of first instar larvae. Additionally, we use this approach to sequence the transcriptomes of early larval males and females and find several genes that are sex-specifically expressed. SEPARATOR can simplify mass production of males for release programs and is designed to be cross-species portable and should be instrumental for genetic biocontrol interventions.
Collapse
Affiliation(s)
- Shih-Che Weng
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, United States of America
| | - Igor Antoshechkin
- Division of Biology and Biological Engineering (BBE), California Institute of Technology, Pasadena, California, United States of America
| | - Eric Marois
- CNRS UPR9022, INSERM U1257, Université de Strasbourg, Strasbourg, France
| | - Omar S. Akbari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
8
|
Scussel S, Gaudillat B, Esnault J, Lejarre Q, Duployer M, Messaoudi D, Mavingui P, Tortosa P, Cattel J. Optimization of Dieldrin Selection for the Genetic Sexing of Aedes albopictus. INSECTS 2023; 14:630. [PMID: 37504636 PMCID: PMC10380853 DOI: 10.3390/insects14070630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023]
Abstract
The mass production of mosquitoes at an industrial scale requires efficient sex separation, which can be achieved through mechanical, genetic or artificial intelligence means. Compared with other methods, the genetic sexing approach offers the advantage of limiting costs and space by removing females at the larval stage. We recently developed a Genetic Sexing Strain (GSS) in Aedes albopictus based on the sex linkage of the rdlR allele, conferring resistance to dieldrin, to the male (M) locus. It has been previously reported that dieldrin ingested by larvae can be detected in adults and bioaccumulated in predators, raising the question of its use at a large scale. In this context, we performed several experiments aiming at optimizing dieldrin selection by decreasing both dieldrin concentration and exposure time while maintaining a stable percentage of contaminating females averaging 1%. We showed that the previously used dieldrin exposure induced an important toxicity as it killed 60% of resistant males at the larval stage. We lowered this toxicity by reducing the dose and/or the exposure time to recover nearly all resistant males. We then quantified the residues of dieldrin in resistant male adults and showed that dieldrin toxicity in larvae was positively correlated with dieldrin concentrations detected in adults. Interestingly, we showed that the use of reduced dieldrin exposure led to a dieldrin quantification in adult males that was below the quantity threshold of the Gas Chromatography-Mass Spectrometry detection method. Presented data show that dieldrin exposure can be adjusted to suppress toxicity in males while achieving efficient sexing and lowering the levels of dieldrin residues in adults to barely quantifiable levels.
Collapse
Affiliation(s)
- Sarah Scussel
- Groupement d'Intérêt Public Cyclotron Océan Indien (CYROI), 2 rue Maxime Rivière, 97490 Ste Clotilde, France
| | - Benjamin Gaudillat
- Groupement d'Intérêt Public Cyclotron Océan Indien (CYROI), 2 rue Maxime Rivière, 97490 Ste Clotilde, France
| | - Jérémy Esnault
- Groupement d'Intérêt Public Cyclotron Océan Indien (CYROI), 2 rue Maxime Rivière, 97490 Ste Clotilde, France
| | - Quentin Lejarre
- Symbiosis Technologies for Insect Control (SymbioTIC), Plateforme de Recherche Cyroi, 2 rue Maxime Rivière, 97490 Ste Clotilde, France
| | - Marianne Duployer
- Groupement d'Intérêt Public Cyclotron Océan Indien (CYROI), 2 rue Maxime Rivière, 97490 Ste Clotilde, France
| | | | - Patrick Mavingui
- Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (UMR PIMIT), CNRS 9192, INSERM 1187, IRD 249, Université de La Réunion, Plateforme de recherché CYROI, 97490 Ste Clotilde, France
| | - Pablo Tortosa
- Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (UMR PIMIT), CNRS 9192, INSERM 1187, IRD 249, Université de La Réunion, Plateforme de recherché CYROI, 97490 Ste Clotilde, France
| | - Julien Cattel
- Symbiosis Technologies for Insect Control (SymbioTIC), Plateforme de Recherche Cyroi, 2 rue Maxime Rivière, 97490 Ste Clotilde, France
| |
Collapse
|
9
|
Weng SC, Antoshechkin I, Marois E, Akbari OS. Efficient Sex Separation by Exploiting Differential Alternative Splicing of a Dominant Marker in Aedes aegypti. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545348. [PMID: 37398094 PMCID: PMC10312783 DOI: 10.1101/2023.06.16.545348] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Only female mosquitoes consume blood and transmit deadly human pathogens. Therefore, it is critical to remove females before conducting releases for genetic biocontrol interventions. Here we describe a robust sex-sorting approach termed SEPARATOR (Sexing Element Produced by Alternative RNA-splicing of A Transgenic Observable Reporter) that exploits sex-specific alternative splicing of an innocuous reporter to ensure exclusive dominant male-specific expression. Using SEPARATOR, we demonstrate reliable sex selection from larval and pupal stages in Aedes aegypti, and use a Complex Object Parametric Analyzer and Sorter (COPAS®) to demonstrate scalable high-throughput sex-selection of first instar larvae. Additionally, we use this approach to sequence the transcriptomes of early larval males and females and find several genes that are sex-specifically expressed in males. SEPARATOR can simplify mass production of males for release programs and is designed to be cross-species portable and should be instrumental for genetic biocontrol interventions.
Collapse
Affiliation(s)
- Shih-Che Weng
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Igor Antoshechkin
- Division of Biology and Biological Engineering (BBE), California Institute of Technology, Pasadena, CA91125, USA
| | - Eric Marois
- CNRS UPR9022, INSERM U1257, Université de Strasbourg, France
| | - Omar S. Akbari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
10
|
Lutrat C, Burckbuchler M, Olmo RP, Beugnon R, Fontaine A, Akbari OS, Argilés-Herrero R, Baldet T, Bouyer J, Marois E. Combining two genetic sexing strains allows sorting of non-transgenic males for Aedes genetic control. Commun Biol 2023; 6:646. [PMID: 37328568 PMCID: PMC10275924 DOI: 10.1038/s42003-023-05030-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023] Open
Abstract
Chemical control of disease vectoring mosquitoes Aedes albopictus and Aedes aegypti is costly, unsustainable, and increasingly ineffective due to the spread of insecticide resistance. The Sterile Insect Technique is a valuable alternative but is limited by slow, error-prone, and wasteful sex-separation methods. Here, we present four Genetic Sexing Strains (two for each Aedes species) based on fluorescence markers linked to the m and M sex loci, allowing for the isolation of transgenic males. Furthermore, we demonstrate how combining these sexing strains enables the production of non-transgenic males. In a mass-rearing facility, 100,000 first instar male larvae could be sorted in under 1.5 h with an estimated 0.01-0.1% female contamination on a single machine. Cost-efficiency analyses revealed that using these strains could result in important savings while setting up and running a mass-rearing facility. Altogether, these Genetic Sexing Strains should enable a major upscaling in control programmes against these important vectors.
Collapse
Affiliation(s)
- Célia Lutrat
- CIRAD, UMR ASTRE, F-34398, Montpellier, France.
- ASTRE, CIRAD, INRA, Univ. Montpellier, Montpellier, France.
- Université de Montpellier, Montpellier, France.
- CNRS UPR9022, INSERM U1257, Université de Strasbourg, Strasbourg, France.
| | | | | | - Rémy Beugnon
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstrasse 4, 04103, Leipzig, Germany
| | - Albin Fontaine
- Unité Parasitologie et Entomologie, Département Microbiologie et maladies infectieuses, Institut de Recherche Biomédicale des Armées (IRBA), Marseille, France
| | - Omar S Akbari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, CA, 92093, USA
| | | | - Thierry Baldet
- CIRAD, UMR ASTRE, F-34398, Montpellier, France
- CIRAD, UMR ASTRE, Sainte-Clotilde, F-97490, Reunion, France
| | - Jérémy Bouyer
- CIRAD, UMR ASTRE, F-34398, Montpellier, France
- CIRAD, UMR ASTRE, Saint-Pierre, F-97410, Reunion, France
- Insect Pest Control Sub-Programme, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Eric Marois
- CNRS UPR9022, INSERM U1257, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
11
|
Liu P, Yang W, Kong L, Zhao S, Xie Z, Zhao Y, Wu Y, Guo Y, Xie Y, Liu T, Jin B, Gu J, Tu ZJ, James AA, Chen XG. A DBHS family member regulates male determination in the filariasis vector Armigeres subalbatus. Nat Commun 2023; 14:2292. [PMID: 37085529 PMCID: PMC10121658 DOI: 10.1038/s41467-023-37983-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 04/10/2023] [Indexed: 04/23/2023] Open
Abstract
The initial signals governing sex determination vary widely among insects. Here we show that Armigeres subalbatus M factor (AsuMf), a male-specific duplication of an autosomal gene of the Drosophila behaviour/human splicing (DBHS) gene family, is the potential primary signal for sex determination in the human filariasis vector mosquito, Ar. subalbatus. Our results show that AsuMf satisfies two fundamental requirements of an M factor: male-specific expression and early embryonic expression. Ablations of AsuMf result in a shift from male- to female-specific splicing of doublesex and fruitless, leading to feminization of males both in morphology and general transcription profile. These data support the conclusion that AsuMf is essential for male development in Ar. subalbatus and reveal a male-determining factor that is derived from duplication and subsequent neofunctionalization of a member of the conserved DBHS family.
Collapse
Affiliation(s)
- Peiwen Liu
- Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Wenqiang Yang
- Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Ling Kong
- Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Siyu Zhao
- Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhensheng Xie
- Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yijie Zhao
- Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yang Wu
- Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yijia Guo
- Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yugu Xie
- Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Tong Liu
- Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Binbin Jin
- Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jinbao Gu
- Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhijian Jake Tu
- Department of Biochemistry and the Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Anthony A James
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697, USA.
| | - Xiao-Guang Chen
- Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
12
|
Malfacini M, Puggioli A, Balestrino F, Carrieri M, Dindo ML, Bellini R. Aedes albopictus Sterile Male Production: Influence of Strains, Larval Diet and Mechanical Sexing Tools. INSECTS 2022; 13:899. [PMID: 36292847 PMCID: PMC9604197 DOI: 10.3390/insects13100899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
The sterile insect technique (SIT) is a biologically based method of pest control, which relies on the mass production, sterilization, and release of sterile males of the target species. Since females can transmit viruses, it is important to develop a mass rearing system to produce a large number of males with a low presence of females. We evaluated the effects of different strains, larval diets and sexing tools on male productivity and residual female presence for the application of SIT against Aedes albopictus. Strains coming from Italy, Germany, Greece, and Montenegro, with different levels of colonization, were reared with three larval diets: IAEA-BY, BLP-B and SLP-BY. Developed pupae were sexed using two different mechanical methods: sieve or Fay-Morlan separator. The results proved that adoption of the Fay-Morlan separator increased the productivity and limited the female presence. The IAEA-BY diet showed the lowest female contamination. Strains with a high number of breeding generations showed a decreased productivity and an increased female presence. Increased female presence was found only in extensively reared strains and only when the sorting operation was conducted with sieves. We hypothesize that extensive colonization may determine a size reduction which limits the sexing tool efficiency itself.
Collapse
Affiliation(s)
- Marco Malfacini
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin, 42, 40127 Bologna, Italy
- Department of Medical and Veterinary Entomology, Centro Agricoltura Ambiente “G. Nicoli”, Via Sant’Agata 835, 40014 Crevalcore, Italy
| | - Arianna Puggioli
- Department of Medical and Veterinary Entomology, Centro Agricoltura Ambiente “G. Nicoli”, Via Sant’Agata 835, 40014 Crevalcore, Italy
| | - Fabrizio Balestrino
- Department of Medical and Veterinary Entomology, Centro Agricoltura Ambiente “G. Nicoli”, Via Sant’Agata 835, 40014 Crevalcore, Italy
| | - Marco Carrieri
- Department of Medical and Veterinary Entomology, Centro Agricoltura Ambiente “G. Nicoli”, Via Sant’Agata 835, 40014 Crevalcore, Italy
| | - Maria Luisa Dindo
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin, 42, 40127 Bologna, Italy
| | - Romeo Bellini
- Department of Medical and Veterinary Entomology, Centro Agricoltura Ambiente “G. Nicoli”, Via Sant’Agata 835, 40014 Crevalcore, Italy
| |
Collapse
|
13
|
Kojin BB, Compton A, Adelman ZN, Tu Z. Selective targeting of biting females to control mosquito-borne infectious diseases. Trends Parasitol 2022; 38:791-804. [PMID: 35952630 PMCID: PMC9372635 DOI: 10.1016/j.pt.2022.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
Abstract
Mosquitoes are vectors for a number of infectious diseases. Only females feed on blood to provision for their embryos and, in doing so, transmit pathogens to the associated vertebrate hosts. Therefore, sex is an important phenotype in the context of genetic control programs, both for sex separation in the rearing facilities to avoid releasing biting females and for ways to distort the sex ratio towards nonbiting males. We review recent progress in the fundamental knowledge of sex determination and sex chromosomes in mosquitoes and discuss new methods to achieve sex separation and sex ratio distortion to help control mosquito-borne infectious diseases. We conclude by suggesting a few critical areas for future research.
Collapse
Affiliation(s)
- Bianca B Kojin
- Department of Entomology and Agrilife Research, Texas A&M University, College Station, TX, USA
| | - Austin Compton
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA; Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA
| | - Zach N Adelman
- Department of Entomology and Agrilife Research, Texas A&M University, College Station, TX, USA.
| | - Zhijian Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA; Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
14
|
Kojin BB, Jakes E, Biedler JK, Tu Z, Adelman ZN. Partial masculinization of Aedes aegypti females by conditional expression of Nix. PLoS Negl Trop Dis 2022; 16:e0010598. [PMID: 35776760 PMCID: PMC9307153 DOI: 10.1371/journal.pntd.0010598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/22/2022] [Accepted: 06/20/2022] [Indexed: 11/18/2022] Open
Abstract
Background
Aedes aegypti, the main vector of dengue, yellow fever, and other arboviruses thrives in tropical and subtropical areas around the globe putting half of the world’s population at risk. Despite aggressive efforts to control the transmission of those viruses, an unacceptable number of cases occur every year, emphasizing the need to develop new control strategies. Proposals for vector control focused on population suppression could offer a feasible alternative method to reduce disease transmission. The induction of extreme male-biased sex ratios has been hypothesized to be able to suppress or collapse a population, with previous experiments showing that stable expression of the male determining factor Nix in A. aegypti is sufficient to convert females into fertile males.
Methodology/Principal findings
Here, we report on the conditional expression of Nix in transgenic A. aegypti under the control of the tetracycline-dependent (Tet-off) system, with the goal of establishing repressible sex distortion. A masculinization phenotype was observed in three of the seven transgenic lines with females exhibiting male-like long maxillary palps and most importantly, the masculinized females were unable to blood feed. Doxycycline treatment of the transgenic lines only partially restored the normal phenotype from the masculinized transgenic lines, while RT-qPCR analysis of early embryos or adults showed no correlation between the level of masculinization and ectopic Nix expression.
Conclusions/Significance
While the conditional expression of Nix produced intersex phenotypes, the level of expression was insufficient to program full conversion. Modifications that increase both the level of activation (no tet) and the level of repression (with tet) will be necessary, as such this study represents one step forward in the development of genetic strategies to control vector-borne diseases via sex ratio distortion.
Collapse
Affiliation(s)
- Bianca B. Kojin
- Department of Entomology and Agrilife Research, Texas A&M University, College Station, Texas, United States of America
| | - Emma Jakes
- Department of Entomology and Agrilife Research, Texas A&M University, College Station, Texas, United States of America
| | - James K. Biedler
- Department of Biochemistry and Fralin Life Science Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Zhijian Tu
- Department of Biochemistry and Fralin Life Science Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Zach N. Adelman
- Department of Entomology and Agrilife Research, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
15
|
Zhao Y, Jin B, Liu P, Xiao X, Cai L, Xie Z, Kong L, Liu T, Yang W, Wu Y, Gu J, Tu Z, James AA, Chen XG. The AalNix3&4 isoform is required and sufficient to convert Aedes albopictus females into males. PLoS Genet 2022; 18:e1010280. [PMID: 35737710 PMCID: PMC9258803 DOI: 10.1371/journal.pgen.1010280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/06/2022] [Accepted: 06/02/2022] [Indexed: 11/19/2022] Open
Abstract
Aedes albopictus is one of the most invasive insect species in the world and an effective vector for many important arboviruses. We reported previously that Ae. albopictus Nix (AalNix) is the male-determining factor of this species. However, whether AalNix alone is sufficient to initiate male development is unknown. Transgenic lines that express each of the three AalNix isoforms from the native promoter were obtained using piggyBac transformation. We verified the stable expression of AalNix isoforms in the transgenic lines and confirm that one isoform, AalNix3&4, is sufficient to convert females into fertile males (pseudo-males) that are indistinguishable from wild-type males. We also established a stable sex-converted female mosquito strain, AalNix3&4-♂4-pseudo-male. The pseudo-male mosquitoes can fly and mate normally with wild-type female, although their mating competitiveness is lower than wild-type. This work further clarifies the role of AalNix in the sex determination pathway and will facilitate the development of Ae. albopictus control strategies that rely on male-only releases such as SIT and sex-ratio distortion.
Collapse
Affiliation(s)
- Yijie Zhao
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Binbin Jin
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Peiwen Liu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaolin Xiao
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lijun Cai
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhensheng Xie
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ling Kong
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Tong Liu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wenqiang Yang
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yang Wu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jinbao Gu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhijian Tu
- Department of Biochemistry and the Fralin Life Science Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Anthony A. James
- Department of Microbiology & Molecular Genetics, University of California, Irvine California United States of America
- Department of Molecular Biology & Biochemistry, University of California, Irvine California United States of America
| | - Xiao-Guang Chen
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
Siddall A, Harvey-Samuel T, Chapman T, Leftwich PT. Manipulating Insect Sex Determination Pathways for Genetic Pest Management: Opportunities and Challenges. Front Bioeng Biotechnol 2022; 10:867851. [PMID: 35837548 PMCID: PMC9274970 DOI: 10.3389/fbioe.2022.867851] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/01/2022] [Indexed: 12/04/2022] Open
Abstract
Sex determination pathways in insects are generally characterised by an upstream primary signal, which is highly variable across species, and that regulates the splicing of a suite of downstream but highly-conserved genes (transformer, doublesex and fruitless). In turn, these downstream genes then regulate the expression of sex-specific characteristics in males and females. Identification of sex determination pathways has and continues to be, a critical component of insect population suppression technologies. For example, "first-generation" transgenic technologies such as fsRIDL (Female-Specific Release of Insects carrying Dominant Lethals) enabled efficient selective removal of females from a target population as a significant improvement on the sterile insect technique (SIT). Second-generation technologies such as CRISPR/Cas9 homing gene drives and precision-guided SIT (pgSIT) have used gene editing technologies to manipulate sex determination genes in vivo. The development of future, third-generation control technologies, such as Y-linked drives, (female to male) sex-reversal, or X-shredding, will require additional knowledge of aspects of sexual development, including a deeper understanding of the nature of primary signals and dosage compensation. This review shows how knowledge of sex determination in target pest species is fundamental to all phases of the development of control technologies.
Collapse
Affiliation(s)
- Alex Siddall
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Tim Harvey-Samuel
- Arthropod Genetics, The Pirbright Institute, Pirbright, United Kingdom
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Philip T Leftwich
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|