1
|
Rajendra D, Maroli N, Dixit NM, Maiti PK. Molecular dynamics simulations show how antibodies may rescue HIV-1 mutants incapable of infecting host cells. J Biomol Struct Dyn 2025; 43:2982-2992. [PMID: 38111161 DOI: 10.1080/07391102.2023.2294835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/01/2023] [Indexed: 12/20/2023]
Abstract
High mutation and replication rates of HIV-1 result in the continuous generation of variants, allowing it to adapt to changing host environments. Mutations often have deleterious effects, but variants carrying them are rapidly purged. Surprisingly, a particular variant incapable of entering host cells was found to be rescued by host antibodies targeting HIV-1. Understanding the molecular mechanism of this rescue is important to develop and improve antibody-based therapies. To unravel the underlying mechanisms, we performed fully atomistic molecular dynamics simulations of the HIV-1 gp41 trimer responsible for viral entry into host cells, its entry-deficient variant, and its complex with the rescuing antibody. We find that the Q563R mutation, which the entry-deficient variant carries, prevents the native conformation of the gp41 6-helix bundle required for entry and stabilizes an alternative conformation instead. This is the consequence of substantial changes in the secondary structure and interactions between the domains of gp41. Binding of the antibody F240 to gp41 reverses these changes and re-establishes the native conformation, resulting in rescue. To test the generality of this mechanism, we performed simulations with the entry-deficient L565A variant and antibody 3D6. We find that 3D6 binding was able to reverse structural and interaction changes introduced by the mutation and restore the native gp41 conformation. Viral variants may not only escape antibodies but be aided by them in their survival, potentially compromising antibody-based therapies, including vaccination and passive immunization. Our simulation framework could serve as a tool to assess the likelihood of such resistance against specific antibodies.
Collapse
Affiliation(s)
- Dharanish Rajendra
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bengaluru, India
| | - Nikhil Maroli
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bengaluru, India
| | - Narendra M Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
- Department of Bioengineering, Indian Institute of Science, Bengaluru, India
| | - Prabal K Maiti
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
2
|
Tauzin A, Marchitto L, Bélanger É, Benlarbi M, Beaudoin-Bussières G, Prévost J, Yang D, Chiu TJ, Chen HC, Bourassa C, Medjahed H, Korzeniowski MK, Gottumukkala S, Tolbert WD, Richard J, Smith AB, Pazgier M, Finzi A. Three families of CD4-induced antibodies are associated with the capacity of plasma from people living with HIV to mediate ADCC in the presence of CD4-mimetics. J Virol 2024; 98:e0096024. [PMID: 39230306 PMCID: PMC11495032 DOI: 10.1128/jvi.00960-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/11/2024] [Indexed: 09/05/2024] Open
Abstract
CD4-mimetics (CD4mcs) are small molecule compounds that mimic the interaction of the CD4 receptor with HIV-1 envelope glycoproteins (Env). Env from primary viruses normally samples a "closed" conformation that occludes epitopes recognized by CD4-induced (CD4i) non-neutralizing antibodies (nnAbs). CD4mcs induce conformational changes on Env resulting in the exposure of these otherwise inaccessible epitopes. Here, we evaluated the capacity of plasma from a cohort of 50 people living with HIV to recognize HIV-1-infected cells and eliminate them by antibody-dependent cellular cytotoxicity (ADCC) in the presence of a potent indoline CD4mc. We observed a marked heterogeneity among plasma samples. By measuring the levels of different families of CD4i Abs, we found that the levels of anti-cluster A, anti-coreceptor binding site, and anti-gp41 cluster I antibodies are responsible for plasma-mediated ADCC in the presence of CD4mc. IMPORTANCE There are several reasons that make it difficult to target the HIV reservoir. One of them is the capacity of infected cells to prevent the recognition of HIV-1 envelope glycoproteins (Env) by commonly elicited antibodies in people living with HIV. Small CD4-mimetic compounds expose otherwise occluded Env epitopes, thus enabling their recognition by non-neutralizing antibodies (nnAbs). A better understanding of the contribution of these antibodies to eliminate infected cells in the presence of CD4mc could lead to the development of therapeutic cure strategies.
Collapse
Affiliation(s)
- Alexandra Tauzin
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Lorie Marchitto
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Étienne Bélanger
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Mehdi Benlarbi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Derek Yang
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ta-Jung Chiu
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hung-Ching Chen
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | - Marek K. Korzeniowski
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Suneetha Gottumukkala
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - William D. Tolbert
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Amos B. Smith
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marzena Pazgier
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Becerra JC, Hitchcock L, Vu K, Gach JS. Neutralizing the threat: harnessing broadly neutralizing antibodies against HIV-1 for treatment and prevention. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:207-220. [PMID: 38975023 PMCID: PMC11224682 DOI: 10.15698/mic2024.07.826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 07/09/2024]
Abstract
Broadly neutralizing antibodies (bnAbs) targeting the human immunodeficiency virus-1 (HIV-1) have played a crucial role in elucidating and characterizing neutralization-sensitive sites on the HIV-1 envelope spike and in informing vaccine development. Continual advancements in identifying more potent bnAbs, along with their capacity to trigger antibody-mediated effector functions, coupled with modifications to extend their half-life, position them as promising candidates for both HIV-1 treatment and prevention. While current pharmacological interventions have made significant progress in managing HIV-1 infection and enhancing quality of life, no definitive cure or vaccines have been developed thus far. Standard treatments involve daily oral anti-retroviral therapy, which, despite its efficacy, can lead to notable long-term side effects. Recent clinical trial data have demonstrated encouraging therapeutic and preventive potential for bnAb therapies in both HIV-1-infected individuals and those without the infection. This review provides an overview of the advancements in HIV-1-specific bnAbs and discusses the insights gathered from recent clinical trials regarding their application in treating and preventing HIV-1 infection.
Collapse
Affiliation(s)
- Juan C Becerra
- Department of Medicine, Division of Infectious Diseases, University of CaliforniaCA, Irvine, Irvine, 92697USA
| | - Lauren Hitchcock
- Department of Medicine, Division of Infectious Diseases, University of CaliforniaCA, Irvine, Irvine, 92697USA
| | - Khoa Vu
- Department of Medicine, Division of Infectious Diseases, University of CaliforniaCA, Irvine, Irvine, 92697USA
| | - Johannes S Gach
- Department of Medicine, Division of Infectious Diseases, University of CaliforniaCA, Irvine, Irvine, 92697USA
| |
Collapse
|
4
|
Tauzin A, Marchitto L, Bélanger É, Benlarbi M, Beaudoin-Bussières G, Prévost J, Yang D, Chiu TJ, Chen HC, Bourassa C, Medjahed H, Korzeniowski MK, Gottumukkala S, Tolbert WD, Richard J, Smith AB, Pazgier M, Finzi A. Three families of CD4-induced antibodies are associated with the capacity of plasma from people living with HIV to mediate ADCC in presence of CD4-mimetics. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.02.24308281. [PMID: 38883797 PMCID: PMC11177920 DOI: 10.1101/2024.06.02.24308281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
CD4-mimetics (CD4mcs) are small molecule compounds that mimic the interaction of the CD4 receptor with HIV-1 envelope glycoproteins (Env). Env from primary viruses normally samples a "closed" conformation which occludes epitopes recognized by CD4-induced (CD4i) non-neutralizing antibodies (nnAbs). CD4mcs induce conformational changes on Env resulting in the exposure of these otherwise inaccessible epitopes. Here we evaluated the capacity of plasma from a cohort of 50 people living with HIV to recognize HIV-1-infected cells and eliminate them by antibody-dependent cellular cytotoxicity (ADCC) in the presence of a potent indoline CD4mc. We observed a marked heterogeneity among plasma samples. By measuring the levels of different families of CD4i Abs, we found that the levels of anti-cluster A, anti-coreceptor binding site and anti-gp41 cluster I antibodies are responsible for plasma-mediated ADCC in presence of CD4mc.
Collapse
Affiliation(s)
- Alexandra Tauzin
- Centre de Recherche du CHUM, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Lorie Marchitto
- Centre de Recherche du CHUM, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Étienne Bélanger
- Centre de Recherche du CHUM, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Mehdi Benlarbi
- Centre de Recherche du CHUM, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Derek Yang
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Ta-Jung Chiu
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Hung-Ching Chen
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Marek K Korzeniowski
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Suneetha Gottumukkala
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - William D. Tolbert
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Amos B Smith
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Marzena Pazgier
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
5
|
Yucha R, Litchford ML, Fish CS, Yaffe ZA, Richardson BA, Maleche-Obimbo E, John-Stewart G, Wamalwa D, Overbaugh J, Lehman DA. Higher HIV-1 Env gp120-Specific Antibody-Dependent Cellular Cytotoxicity (ADCC) Activity Is Associated with Lower Levels of Defective HIV-1 Provirus. Viruses 2023; 15:2055. [PMID: 37896832 PMCID: PMC10611199 DOI: 10.3390/v15102055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
A cure for HIV-1 (HIV) remains unrealized due to a reservoir of latently infected cells that persist during antiretroviral therapy (ART), with reservoir size associated with adverse health outcomes and inversely with time to viral rebound upon ART cessation. Once established during ART, the HIV reservoir decays minimally over time; thus, understanding factors that impact the size of the HIV reservoir near its establishment is key to improving the health of people living with HIV and for the development of novel cure strategies. Yet, to date, few correlates of HIV reservoir size have been identified, particularly in pediatric populations. Here, we employed a cross-subtype intact proviral DNA assay (CS-IPDA) to quantify HIV provirus between one- and two-years post-ART initiation in a cohort of Kenyan children (n = 72), which had a median of 99 intact (range: 0-2469), 1340 defective (range: 172-3.84 × 104), and 1729 total (range: 178-5.11 × 104) HIV proviral copies per one million T cells. Additionally, pre-ART plasma was tested for HIV Env-specific antibody-dependent cellular cytotoxicity (ADCC) activity. We found that pre-ART gp120-specific ADCC activity inversely correlated with defective provirus levels (n = 68, r = -0.285, p = 0.0214) but not the intact reservoir (n = 68, r = -0.0321, p-value = 0.800). Pre-ART gp41-specific ADCC did not significantly correlate with either proviral population (n = 68; intact: r = -0.0512, p-value = 0.686; defective: r = -0.109, p-value = 0.389). This suggests specific host immune factors prior to ART initiation can impact proviruses that persist during ART.
Collapse
Affiliation(s)
- Ryan Yucha
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Morgan L. Litchford
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Carolyn S. Fish
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Zak A. Yaffe
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Barbra A. Richardson
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | | | - Grace John-Stewart
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
| | - Dalton Wamalwa
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
- Department of Pediatrics and Child Health, University of Nairobi, Nairobi P.O. Box 30197, Kenya
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Dara A. Lehman
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
6
|
Rojas Chávez RA, Boyt D, Schwery N, Han C, Wu L, Haim H. Commonly Elicited Antibodies against the Base of the HIV-1 Env Trimer Guide the Population-Level Evolution of a Structure-Regulating Region in gp41. J Virol 2022; 96:e0040622. [PMID: 35658529 PMCID: PMC9278142 DOI: 10.1128/jvi.00406-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/11/2022] [Indexed: 01/28/2023] Open
Abstract
The antibody response against the HIV-1 envelope glycoproteins (Envs) guides evolution of this protein within each host. Whether antibodies with similar target specificities are elicited in different individuals and affect the population-level evolution of Env is poorly understood. To address this question, we analyzed properties of emerging variants in the gp41 fusion peptide-proximal region (FPPR) that exhibit distinct evolutionary patterns in HIV-1 clade B. For positions 534, 536, and 539 in the FPPR, alanine was the major emerging variant. However, 534A and 536A show a constant frequency in the population between 1979 and 2016, whereas 539A is gradually increasing. To understand the basis for these differences, we introduced alanine substitutions in the FPPR of primary HIV-1 strains and examined their functional and antigenic properties. Evolutionary patterns could not be explained by fusion competence or structural stability of the emerging variants. Instead, 534A and 536A exhibited modest but significant increases in sensitivity to antibodies against the membrane-proximal external region (MPER) and gp120-gp41 interface. These Envs were also more sensitive to poorly neutralizing sera from HIV-1-infected individuals than the clade ancestral form or 539A variant. Competition binding assays confirmed for all sera tested the presence of antibodies against the base of the Env trimer that compete with monoclonal antibodies targeting the MPER and gp120-gp41 interface. Our findings suggest that weakly neutralizing antibodies against the trimer base are commonly elicited; they do not exert catastrophic population size reduction effects on emerging variants but, instead, determine their set point frequencies in the population and historical patterns of change. IMPORTANCE Infection by HIV-1 elicits formation of antibodies that target the viral Env proteins and can inactivate the virus. The specific targets of these antibodies vary among infected individuals. It is unclear whether some target specificities are shared among the antibody responses of different individuals. We observed that antibodies against the base of the Env protein are commonly elicited during infection. The selective pressure applied by such antibodies is weak. As a result, they do not completely eliminate the sensitive forms of the virus from the population, but maintain their frequency at a low level that has not increased since the beginning of the AIDS pandemic. Interestingly, the changes in Env do not occur at the sites targeted by the antibodies, but at a distinct region of Env, the fusion peptide-proximal region, which regulates their exposure.
Collapse
Affiliation(s)
- Roberth Anthony Rojas Chávez
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Devlin Boyt
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Nathan Schwery
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Changze Han
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Li Wu
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Hillel Haim
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|