1
|
Heidkamp M, Herwig A, Singer D. Mammalian birth versus arousal from hibernation: thyroid hormones, common regulators of metabolic transition? J Comp Physiol B 2025:10.1007/s00360-025-01611-6. [PMID: 40208295 DOI: 10.1007/s00360-025-01611-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/23/2025] [Indexed: 04/11/2025]
Abstract
Mammalian birth and arousal from hibernation are both endogenously regulated transitional events, characterized by an increase in metabolic rate (MR) and onset of thermogenesis. Thyroid hormones (THs) are known to be key regulators of metabolic and thermogenic activity. To explore the similarities and differences in the role of THs during mammalian birth as opposed to arousal from hibernation, a comprehensive review is given of the levels and kinetics of serum thyrotropin-releasing hormone (TRH), thyroid stimulating hormone (TSH), thyroxine (T4), triiodothyronine (T3), and reverse triiodothyronine (rT3) in hibernating mammals upon arousal and in mammalian neonates at birth. The results for arousal are more heterogeneous than those for birth, reflecting different hibernation patterns between species as well as varying sampling times and methods. Overall, serum TRH concentrations were found to be decreased, TSH unchanged, and T4, T3, and rT3 mostly increased. In contrast, the data for mammalian birth show a marked increase in serum levels of TRH, TSH, T4, and T3, particularly in human neonates, with inconsistent results for rT3. In conclusion, both during arousal from hibernation and mammalian birth, THs play a critical yet not exclusive role in metabolic transition. In hibernators, the metabolic effects of THs appear to be mediated by the conversion rates in target tissues rather than by their serum levels alone, suggesting a sustained readiness for arousal. This contrasts with mammalian newborns, who at the beginning of their autonomous life experience the first activation of their thyroid gland, resulting in a transitory "hyperthyroid" state.
Collapse
Affiliation(s)
- Melanie Heidkamp
- Division of Neonatology and Pediatric Critical Care Medicine, Center for Obestrics and Pediatrics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Annika Herwig
- Institute of Neurobiology, Ulm University, Ulm, Germany
| | - Dominique Singer
- Division of Neonatology and Pediatric Critical Care Medicine, Center for Obestrics and Pediatrics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| |
Collapse
|
2
|
Mohr SM, Dai Pra R, Platt MP, Feketa VV, Shanabrough M, Varela L, Kristant A, Cao H, Merriman DK, Horvath TL, Bagriantsev SN, Gracheva EO. Hypothalamic hormone deficiency enables physiological anorexia in ground squirrels during hibernation. Nat Commun 2024; 15:5803. [PMID: 38987241 PMCID: PMC11236985 DOI: 10.1038/s41467-024-49996-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/19/2024] [Indexed: 07/12/2024] Open
Abstract
Mammalian hibernators survive prolonged periods of cold and resource scarcity by temporarily modulating normal physiological functions, but the mechanisms underlying these adaptations are poorly understood. The hibernation cycle of thirteen-lined ground squirrels (Ictidomys tridecemlineatus) lasts for 5-7 months and comprises weeks of hypometabolic, hypothermic torpor interspersed with 24-48-h periods of an active-like interbout arousal (IBA) state. We show that ground squirrels, who endure the entire hibernation season without food, have negligible hunger during IBAs. These squirrels exhibit reversible inhibition of the hypothalamic feeding center, such that hypothalamic arcuate nucleus neurons exhibit reduced sensitivity to the orexigenic and anorexigenic effects of ghrelin and leptin, respectively. However, hypothalamic infusion of thyroid hormone during an IBA is sufficient to rescue hibernation anorexia. Our results reveal that thyroid hormone deficiency underlies hibernation anorexia and demonstrate the functional flexibility of the hypothalamic feeding center.
Collapse
Affiliation(s)
- Sarah M Mohr
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Kavli Institute for Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Rafael Dai Pra
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Kavli Institute for Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Maryann P Platt
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Kavli Institute for Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Viktor V Feketa
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Kavli Institute for Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Marya Shanabrough
- Department of Comparative Medicine, Yale University School of Medicine, 310 Cedar Street, New Haven, CT, 06510, USA
| | - Luis Varela
- Department of Comparative Medicine, Yale University School of Medicine, 310 Cedar Street, New Haven, CT, 06510, USA
- Laboratory of Glia-Neuron Interactions in the Control of Hunger. Achucarro_Basque Center for Neuroscience, 48940, Leioa, Vizcaya, Spain
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Vizcaya, Spain
| | - Ashley Kristant
- Department of Comparative Medicine, Yale University School of Medicine, 310 Cedar Street, New Haven, CT, 06510, USA
| | - Haoran Cao
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Kavli Institute for Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Dana K Merriman
- Department of Biology, University of Wisconsin-Oshkosh, 800 Algoma Boulevard, Oshkosh, WI, 54901, USA
| | - Tamas L Horvath
- Department of Comparative Medicine, Yale University School of Medicine, 310 Cedar Street, New Haven, CT, 06510, USA
- Laboratory of Glia-Neuron Interactions in the Control of Hunger. Achucarro_Basque Center for Neuroscience, 48940, Leioa, Vizcaya, Spain
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Vizcaya, Spain
| | - Sviatoslav N Bagriantsev
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
| | - Elena O Gracheva
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
- Kavli Institute for Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
| |
Collapse
|
3
|
Markussen FAF, Cázarez-Márquez F, Melum VJ, Hazlerigg DG, Wood SH. c-fos induction in the choroid plexus, tanycytes and pars tuberalis is an early indicator of spontaneous arousal from torpor in a deep hibernator. J Exp Biol 2024; 227:jeb247224. [PMID: 38690647 PMCID: PMC11166454 DOI: 10.1242/jeb.247224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
Hibernation is an extreme state of seasonal energy conservation, reducing metabolic rate to as little as 1% of the active state. During the hibernation season, many species of hibernating mammals cycle repeatedly between the active (aroused) and hibernating (torpid) states (T-A cycling), using brown adipose tissue (BAT) to drive cyclical rewarming. The regulatory mechanisms controlling this process remain undefined but are presumed to involve thermoregulatory centres in the hypothalamus. Here, we used the golden hamster (Mesocricetus auratus), and high-resolution monitoring of BAT, core body temperature and ventilation rate, to sample at precisely defined phases of the T-A cycle. Using c-fos as a marker of cellular activity, we show that although the dorsomedial hypothalamus is active during torpor entry, neither it nor the pre-optic area shows any significant changes during the earliest stages of spontaneous arousal. Contrastingly, in three non-neuronal sites previously linked to control of metabolic physiology over seasonal and daily time scales - the choroid plexus, pars tuberalis and third ventricle tanycytes - peak c-fos expression is seen at arousal initiation. We suggest that through their sensitivity to factors in the blood or cerebrospinal fluid, these sites may mediate metabolic feedback-based initiation of the spontaneous arousal process.
Collapse
Affiliation(s)
- Fredrik A. F. Markussen
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic Chronobiology and Physiology,Department of Arctic and Marine Biology, BFE, UiT – The Arctic University of Norway, Tromsø, NO-9037, Norway
| | - Fernando Cázarez-Márquez
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic Chronobiology and Physiology,Department of Arctic and Marine Biology, BFE, UiT – The Arctic University of Norway, Tromsø, NO-9037, Norway
| | - Vebjørn J. Melum
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic Chronobiology and Physiology,Department of Arctic and Marine Biology, BFE, UiT – The Arctic University of Norway, Tromsø, NO-9037, Norway
| | - David G. Hazlerigg
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic Chronobiology and Physiology,Department of Arctic and Marine Biology, BFE, UiT – The Arctic University of Norway, Tromsø, NO-9037, Norway
| | - Shona H. Wood
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic Chronobiology and Physiology,Department of Arctic and Marine Biology, BFE, UiT – The Arctic University of Norway, Tromsø, NO-9037, Norway
| |
Collapse
|
4
|
Lutterschmidt DI, Stratton K, Winters TJ, Martin S, Merlino LJ. Neural thyroid hormone metabolism integrates seasonal changes in environmental temperature with the neuroendocrine reproductive axis. Horm Behav 2024; 161:105517. [PMID: 38422864 DOI: 10.1016/j.yhbeh.2024.105517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
We asked if environmental temperature alters thyroid hormone metabolism within the hypothalamus, thereby providing a neuroendocrine mechanism by which temperature could be integrated with photoperiod to regulate seasonal rhythms. We used immunohistochemistry to assess the effects of low-temperature winter dormancy at 4 °C or 12 °C on thyroid-stimulating hormone (TSH) within the infundibulum of the pituitary as well as deiodinase 2 (Dio2) and 3 (Dio3) within the hypothalamus of red-sided garter snakes (Thamnophis sirtalis). Both the duration and, in males, magnitude of low-temperature dormancy altered deiodinase immunoreactivity within the hypothalamus, increasing the area of Dio2-immunoreactivity in males and females and decreasing the number of Dio3-immunoreactive cells in males after 8-16 weeks. Reciprocal changes in Dio2/3 favor the accumulation of triiodothyronine within the hypothalamus. Whether TSH mediates these effects requires further study, as significant changes in TSH-immunoreactive cell number were not observed. Temporal changes in deiodinase immunoreactivity coincided with an increase in the proportion of males exhibiting courtship behavior as well as changes in the temporal pattern of courtship behavior after emergence. Our findings mirror those of previous studies, in which males require low-temperature exposure for at least 8 weeks before significant changes in gonadotropin-releasing hormone immunoreactivity and sex steroid hormones are observed. Collectively, these data provide evidence that the neuroendocrine pathway regulating the reproductive axis via thyroid hormone metabolism is capable of transducing temperature information. Because all vertebrates can potentially use temperature as a supplementary cue, these results are broadly applicable to understanding how environment-organism interactions mediate seasonally adaptive responses.
Collapse
Affiliation(s)
| | - Kalera Stratton
- Department of Biology, Portland State University, OR, United States
| | - Treven J Winters
- Department of Biology, Portland State University, OR, United States
| | - Stephanie Martin
- Department of Biology, Portland State University, OR, United States
| | - Lauren J Merlino
- Department of Biology, Portland State University, OR, United States
| |
Collapse
|
5
|
Rae CD, Baur JA, Borges K, Dienel G, Díaz-García CM, Douglass SR, Drew K, Duarte JMN, Duran J, Kann O, Kristian T, Lee-Liu D, Lindquist BE, McNay EC, Robinson MB, Rothman DL, Rowlands BD, Ryan TA, Scafidi J, Scafidi S, Shuttleworth CW, Swanson RA, Uruk G, Vardjan N, Zorec R, McKenna MC. Brain energy metabolism: A roadmap for future research. J Neurochem 2024; 168:910-954. [PMID: 38183680 PMCID: PMC11102343 DOI: 10.1111/jnc.16032] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 01/08/2024]
Abstract
Although we have learned much about how the brain fuels its functions over the last decades, there remains much still to discover in an organ that is so complex. This article lays out major gaps in our knowledge of interrelationships between brain metabolism and brain function, including biochemical, cellular, and subcellular aspects of functional metabolism and its imaging in adult brain, as well as during development, aging, and disease. The focus is on unknowns in metabolism of major brain substrates and associated transporters, the roles of insulin and of lipid droplets, the emerging role of metabolism in microglia, mysteries about the major brain cofactor and signaling molecule NAD+, as well as unsolved problems underlying brain metabolism in pathologies such as traumatic brain injury, epilepsy, and metabolic downregulation during hibernation. It describes our current level of understanding of these facets of brain energy metabolism as well as a roadmap for future research.
Collapse
Affiliation(s)
- Caroline D. Rae
- School of Psychology, The University of New South Wales, NSW 2052 & Neuroscience Research Australia, Randwick, New South Wales, Australia
| | - Joseph A. Baur
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Karin Borges
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | - Gerald Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Carlos Manlio Díaz-García
- Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | - Kelly Drew
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - João M. N. Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, & Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Jordi Duran
- Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120; Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Tibor Kristian
- Veterans Affairs Maryland Health Center System, Baltimore, Maryland, USA
- Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Dasfne Lee-Liu
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Región Metropolitana, Chile
| | - Britta E. Lindquist
- Department of Neurology, Division of Neurocritical Care, Gladstone Institute of Neurological Disease, University of California at San Francisco, San Francisco, California, USA
| | - Ewan C. McNay
- Behavioral Neuroscience, University at Albany, Albany, New York, USA
| | - Michael B. Robinson
- Departments of Pediatrics and System Pharmacology & Translational Therapeutics, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Douglas L. Rothman
- Magnetic Resonance Research Center and Departments of Radiology and Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Benjamin D. Rowlands
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Timothy A. Ryan
- Department of Biochemistry, Weill Cornell Medicine, New York, New York, USA
| | - Joseph Scafidi
- Department of Neurology, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Susanna Scafidi
- Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - C. William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine Albuquerque, Albuquerque, New Mexico, USA
| | - Raymond A. Swanson
- Department of Neurology, University of California, San Francisco, and San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Gökhan Uruk
- Department of Neurology, University of California, San Francisco, and San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Nina Vardjan
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology—Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology—Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mary C. McKenna
- Department of Pediatrics and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Hernandez CM, Florant GL, Stranahan AM. Seasonal fluctuations in BDNF regulate hibernation and torpor in golden-mantled ground squirrels. Am J Physiol Regul Integr Comp Physiol 2024; 326:R311-R318. [PMID: 38344803 PMCID: PMC11283892 DOI: 10.1152/ajpregu.00186.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/23/2023] [Accepted: 01/30/2024] [Indexed: 03/24/2024]
Abstract
Aphagic hibernators such as the golden-mantled ground squirrel (GMGS; Callospermophilus lateralis) can fast for months and exhibit profound seasonal fluctuations in body weight, food intake, and behavior. Brain-derived neurotrophic factor (BDNF) regulates cellular and systemic metabolism via mechanisms that are conserved across mammalian species. In this study, we characterized regional changes in BDNF with hibernation, hypothermia, and seasonal cycle in GMGS. Analysis of BDNF protein concentrations by ELISA revealed overlapping seasonal patterns in the hippocampus and hypothalamus, where BDNF levels were highest in summer and lowest in winter. BDNF is the primary ligand for receptor tyrosine kinase B (TrkB), and BDNF/TrkB signaling in the brain potently regulates energy expenditure. To examine the functional relevance of seasonal variation in BDNF, hibernating animals were injected with the small molecule TrkB agonist 7,8-dihydroxyflavone (DHF) daily for 2 wk. When compared with vehicle, DHF-treated animals exhibited fewer torpor bouts and shorter bout durations. These results suggest that activating BDNF/TrkB disrupts hibernation and raise intriguing questions related to the role of BDNF as a potential regulatory mechanism or downstream response to seasonal changes in body temperature and environment.NEW & NOTEWORTHY Golden-mantled ground squirrels exhibit dramatic seasonal fluctuations in metabolism and can fast for months while hibernating. Brain-derived neurotrophic factor is an essential determinant of cellular and systemic metabolism, and in this study, we characterized seasonal fluctuations in BDNF expression and then administered the small molecule BDNF mimetic 7,8-dihydroxyflavone (DHF) in hibernating squirrels. The results indicate that activating BDNF/TrkB signaling disrupts hibernation, with implications for synaptic homeostasis in prolonged hypometabolic states.
Collapse
Affiliation(s)
- Caterina M Hernandez
- Department of Neuroscience and Regenerative Medicine, Augusta University, Medical College of Georgia, Augusta, Georgia, United States
- Department of Pharmaceutical Sciences, Appalachian College of Pharmacy, Oakwood, Virginia, United States
| | - Gregory L Florant
- Department of Biology, Colorado State University, Fort Collins, Colorado, United States
| | - Alexis M Stranahan
- Department of Neuroscience and Regenerative Medicine, Augusta University, Medical College of Georgia, Augusta, Georgia, United States
| |
Collapse
|
7
|
Haugg E, Borner J, Stalder G, Kübber‐Heiss A, Giroud S, Herwig A. Comparative transcriptomics of the garden dormouse hypothalamus during hibernation. FEBS Open Bio 2024; 14:241-257. [PMID: 37925593 PMCID: PMC10839406 DOI: 10.1002/2211-5463.13731] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/06/2023] Open
Abstract
Torpor or heterothermy is an energy-saving mechanism used by endotherms to overcome harsh environmental conditions. During winter, the garden dormouse (Eliomys quercinus) hibernates with multiday torpor bouts and body temperatures of a few degrees Celsius, interrupted by brief euthermic phases. This study investigates gene expression within the hypothalamus, the key brain area controlling energy balance, adding information on differential gene expression potentially relevant to orchestrate torpor. A de novo assembled transcriptome of the hypothalamus was generated from garden dormice hibernating under constant darkness without food and water at 5 °C. Samples were collected during early torpor, late torpor, and interbout arousal. During early torpor, 765 genes were differentially expressed as compared with interbout arousal. Twenty-seven pathways were over-represented, including pathways related to hemostasis, extracellular matrix organization, and signaling of small molecules. Only 82 genes were found to be differentially expressed between early and late torpor, and no pathways were over-represented. During late torpor, 924 genes were differentially expressed relative to interbout arousal. Despite the high number of differentially expressed genes, only 10 pathways were over-represented. Of these, eight were also observed to be over-represented when comparing early torpor and interbout arousal. Our results are largely consistent with previous findings in other heterotherms. The addition of a transcriptome of a novel species may help to identify species-specific and overarching torpor mechanisms through future species comparisons.
Collapse
Affiliation(s)
- Elena Haugg
- Institute of NeurobiologyUlm UniversityGermany
| | - Janus Borner
- Sackler Institute for Comparative GenomicsAmerican Museum of Natural HistoryNew YorkNYUSA
| | - Gabrielle Stalder
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife EcologyUniversity of Veterinary MedicineViennaAustria
| | - Anna Kübber‐Heiss
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife EcologyUniversity of Veterinary MedicineViennaAustria
| | - Sylvain Giroud
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife EcologyUniversity of Veterinary MedicineViennaAustria
- Energetics Lab, Department of BiologyNorthern Michigan UniversityMarquetteMIUSA
| | | |
Collapse
|
8
|
Hazlerigg DG, Appenroth D, Tomotani BM, West AC, Wood SH. Biological timekeeping in polar environments: lessons from terrestrial vertebrates. J Exp Biol 2023; 226:jeb246308. [PMID: 38031958 DOI: 10.1242/jeb.246308] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
The polar regions receive less solar energy than anywhere else on Earth, with the greatest year-round variation in daily light exposure; this produces highly seasonal environments, with short summers and long, cold winters. Polar environments are also characterised by a reduced daily amplitude of solar illumination. This is obvious around the solstices, when the Sun remains continuously above (polar 'day') or below (polar 'night') the horizon. Even at the solstices, however, light levels and spectral composition vary on a diel basis. These features raise interesting questions about polar biological timekeeping from the perspectives of function and causal mechanism. Functionally, to what extent are evolutionary drivers for circadian timekeeping maintained in polar environments, and how does this depend on physiology and life history? Mechanistically, how does polar solar illumination affect core daily or seasonal timekeeping and light entrainment? In birds and mammals, answers to these questions diverge widely between species, depending on physiology and bioenergetic constraints. In the high Arctic, photic cues can maintain circadian synchrony in some species, even in the polar summer. Under these conditions, timer systems may be refined to exploit polar cues. In other instances, temporal organisation may cease to be dominated by the circadian clock. Although the drive for seasonal synchronisation is strong in polar species, reliance on innate long-term (circannual) timer mechanisms varies. This variation reflects differing year-round access to photic cues. Polar chronobiology is a productive area for exploring the adaptive evolution of daily and seasonal timekeeping, with many outstanding areas for further investigation.
Collapse
Affiliation(s)
- David G Hazlerigg
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic chronobiology and physiology research group, Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø NO-9037, Norway
| | - Daniel Appenroth
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic chronobiology and physiology research group, Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø NO-9037, Norway
| | - Barbara M Tomotani
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic chronobiology and physiology research group, Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø NO-9037, Norway
| | - Alexander C West
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic chronobiology and physiology research group, Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø NO-9037, Norway
| | - Shona H Wood
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic chronobiology and physiology research group, Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø NO-9037, Norway
| |
Collapse
|
9
|
Wacker CB, Geiser F. The Rate of Cooling during Torpor Entry Drives Torpor Patterns in a Small Marsupial. Physiol Biochem Zool 2023; 96:393-404. [PMID: 38237188 DOI: 10.1086/727975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
AbstractTo maximize energy savings, entry into torpor should involve a fast reduction of metabolic rate and body temperature (Tb); that is, animals should thermoconform. However, animals often defend against the decrease in Tb via a temporary increase in thermoregulatory heat production, slowing the cooling process. We investigated how thermoregulating or thermoconforming during torpor entry affects temporal and thermoenergetic aspects in relation to body mass and age in juvenile and adult fat-tailed dunnarts (Sminthopsis crassicaudata; Marsupialia: Dasyuridae). During torpor entry, juvenile thermoconformers cooled twice as fast as and used less energy during cooling than juvenile thermoregulators. While both juvenile and adult thermoconformers had a lower minimum Tb, a lower torpor metabolic rate, and longer torpor bouts than thermoregulators, these differences were more pronounced in the juveniles. Rewarming from torpor took approximately twice as long for juvenile thermoconformers, and the costs of rewarming were greater. To determine the difference in average daily metabolic rate between thermoconformers and thermoregulators independent of body mass, we compared juveniles of a similar size (∼13 g) and similarly sized adults (∼17 g). The average daily metabolic rate was 7% (juveniles) and 17% (adults) less in thermoconformers than in thermoregulators, even though thermoconformers were active for longer. Our data suggest that thermoconforming during torpor entry provides an energetic advantage for both juvenile and adult dunnarts and may aid growth for juveniles. While thermoregulation during torpor entry is more costly, it still saves energy, and the higher Tb permits greater alertness and mobility and reduces the energetic cost of endogenous rewarming.
Collapse
|
10
|
Chmura HE, Duncan C, Saer B, Moore JT, Barnes BM, Buck CL, Loudon ASI, Williams CT. Effects of spring warming on seasonal neuroendocrinology and activation of the reproductive axis in hibernating arctic ground squirrels. Integr Comp Biol 2022; 62:1012-1021. [PMID: 35790133 DOI: 10.1093/icb/icac112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/14/2022] Open
Abstract
Many animals adjust the timing of seasonal events, such as reproduction, molt, migration, and hibernation, in response to interannual variation and directional climate-driven changes in temperature. However, the mechanisms by which temperature influences seasonal timing are relatively under-explored. Seasonal timing involves retrograde signaling in which thyrotropin (TSH) in the pars tuberalis (PT) alters expression of thyroid hormone (TH) deiodinases (Dio2/Dio3) in tanycyte cells lining the third ventricle of the hypothalamus. This, in turn, affects the availability of triiodothyronine (T3) within the mediobasal hypothalamus - increased hypothalamic T3 restores a summer phenotype and activates the reproductive axis in long-day breeders. Recently, we showed that retrograde TH signaling is activated during late hibernation in arctic ground squirrels (Urocitellus parryii) held in constant darkness and constant ambient temperature. Sensitivity of seasonal pathways to non-photic cues, such as temperature, is likely particularly important to hibernating species that are sequestered in hibernacula during spring. To address this issue, we exposed captive arctic ground squirrels of both sexes to an ecologically relevant increase in ambient temperature (from -6°C to -1°C) late in hibernation and examined the effects of warming on the seasonal retrograde TSH/Dio/T3 signaling pathway, as well as downstream elements of the reproductive axis. We found that warmed males tended to have higher PT TSHβ expression and significantly heavier testis mass whereas the TSH/Dio/T3 signaling pathway was unaffected by warming in females, although warmed females exhibited a slight decrease in ovarian mass. Our findings suggest that temperature could have different effects on gonadal growth in male and female arctic ground squirrels, which could lead to mismatched timing in response to rapid climate change.
Collapse
Affiliation(s)
- Helen E Chmura
- Institute of Arctic Biology, University of Alaska Fairbanks, 2140 Koyukuk Drive, Fairbanks, AK 99775, USA.,Rocky Mountain Research Station, United States Forest Service, 800 E. Beckwith, Missoula, MT 59801, USA
| | - Cassandra Duncan
- Department of Biology and Wildlife, University of Alaska Fairbanks, 2090 Koyukuk Drive, Fairbanks, AK 99775, USA
| | - Ben Saer
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jeanette T Moore
- Institute of Arctic Biology, University of Alaska Fairbanks, 2140 Koyukuk Drive, Fairbanks, AK 99775, USA
| | - Brian M Barnes
- Institute of Arctic Biology, University of Alaska Fairbanks, 2140 Koyukuk Drive, Fairbanks, AK 99775, USA
| | - C Loren Buck
- Northern Arizona University, Department of Biological Sciences, 227 Building 21, 617 S Beaver, Flagstaff, Arizona 86011, USA
| | - Andrew S I Loudon
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Cory T Williams
- Institute of Arctic Biology, University of Alaska Fairbanks, 2140 Koyukuk Drive, Fairbanks, AK 99775, USA.,Department of Biology and Wildlife, University of Alaska Fairbanks, 2090 Koyukuk Drive, Fairbanks, AK 99775, USA.,Department of Biology, Colorado State University, 1878 Campus Delivery Fort Collins, CO 80523, USA
| |
Collapse
|
11
|
Williams CT, Chmura HE, Deal CK, Wilsterman K. Sex-differences in Phenology: A Tinbergian Perspective. Integr Comp Biol 2022; 62:980-997. [PMID: 35587379 DOI: 10.1093/icb/icac035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/18/2022] [Accepted: 04/23/2022] [Indexed: 11/13/2022] Open
Abstract
Shifts in the timing of cyclic seasonal life-history events are among the most commonly reported responses to climate change, with differences in response rates among interacting species leading to phenological mismatches. Within a species, however, males and females can also exhibit differential sensitivity to environmental cues and may therefore differ in their responsiveness to climate change, potentially leading to phenological mismatches between the sexes. This occurs because males differ from females in when and how energy is allocated to reproduction, resulting in marked sex-differences in life-history timing across the annual cycle. In this review, we take a Tinbergian perspective and examine sex differences in timing of vertebrates from adaptive, ontogenetic, mechanistic, and phylogenetic viewpoints with the goal of informing and motivating more integrative research on sexually dimorphic phenologies. We argue that sexual and natural selection lead to sex-differences in life-history-timing and that understanding the ecological and evolutionary drivers of these differences is critical for connecting climate-driven phenological shifts to population resilience. Ontogeny may influence how and when sex differences in life-history timing arise because the early-life environment can profoundly affect developmental trajectory, rates of reproductive maturation, and seasonal timing. The molecular mechanisms underlying these organismal traits are relevant to identifying the diversity and genetic basis of population- and species-level responses to climate change, and promisingly, the molecular basis of phenology is becoming increasingly well-understood. However, because most studies focus on a single sex, the causes of sex-differences in phenology critical to population resilience often remain unclear. New sequencing tools and analyses informed by phylogeny may help generate hypotheses about mechanism as well as insight into the general "evolvability" of sex differences across phylogenetic scales, especially as trait and genome resources grow. We recommend that greater attention be placed on determining sex-differences in timing mechanisms and monitoring climate change responses in both sexes, and we discuss how new tools may provide key insights into sex-differences in phenology from all four Tinbergian domains.
Collapse
Affiliation(s)
- Cory T Williams
- Department of Biology, Colorado State University, 1878 Campus Delivery Fort Collins, CO 80523, USA
| | - Helen E Chmura
- Institute of Arctic Biology, University of Alaska Fairbanks, 2140 Koyukuk Drive, Fairbanks, AK 99775, USA.,Rocky Mountain Research Station, United States Forest Service, 800 E. Beckwith Ave, Missoula, MT 59801, USA
| | - Cole K Deal
- Department of Biology, Colorado State University, 1878 Campus Delivery Fort Collins, CO 80523, USA
| | - Kathryn Wilsterman
- Department of Biology, Colorado State University, 1878 Campus Delivery Fort Collins, CO 80523, USA
| |
Collapse
|