1
|
Russell IC, Lee D, Wootten D, Sexton PM, Bumbak F. Cryoelectron microscopy as a tool for illuminating activation mechanisms of human class A orphan G protein-coupled receptors. Pharmacol Rev 2025; 77:100056. [PMID: 40286430 DOI: 10.1016/j.pharmr.2025.100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
G protein-coupled receptors (GPCRs) are critically important medicinal targets, and the cryogenic electron microscopy (cryo-EM) revolution is providing novel high-resolution GPCR structures at a rapid pace. Orphan G protein-coupled receptors (oGPCRs) are a group of approximately 100 nonolfactory GPCRs for which endogenous ligands are unknown or not validated. The absence of modulating ligands adds difficulties to understanding the physiologic significance of oGPCRs and in the determination of high-resolution structures of isolated receptors that could facilitate drug discovery. Despite the challenges, cryo-EM structures of oGPCR-G protein complexes are emerging. This is being facilitated by numerous developments to stabilize GPCR-G protein complexes such as the use of dominant-negative G proteins, mini-G proteins, complex-stabilizing nanobodies or antibody fragments, and protein tethering methods. Moreover, many oGPCRs are constitutively active, which can facilitate complex formation in the absence of a known activating ligand. Consequently, in addition to providing templates for drug discovery, active oGPCR structures shed light on constitutive GPCR activation mechanisms. These comprise self-activation, whereby mobile extracellular portions of the receptor act as tethered agonists by occupying a canonical orthosteric-binding site in the transmembrane core, constitutive activity due to alterations to conserved molecular switches that stabilize inactive states of GPCRs, as well as receptors activated by cryptic ligands that are copurified with the receptor. Cryo-EM structures of oGPCRs are now being determined at a rapid pace and are expected to be invaluable tools for oGPCR drug discovery. SIGNIFICANCE STATEMENT: Orphan G protein-coupled receptors (GPCRs) provide large untapped potential for development of new medicines. Many of these receptors display constitutive activity, enabling structure determination and insights into observed GPCR constitutive activity including (1) self-activation by mobile receptor extracellular portions that function as tethered agonists, (2) modification of conserved motifs canonically involved in receptor quiescence and/or activation, and (3) activation by cryptic lipid ligands. Collectively, these studies advance fundamental understanding of GPCR function and provide opportunities for novel drug discovery.
Collapse
Affiliation(s)
- Isabella C Russell
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins and Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Dongju Lee
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins and Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Denise Wootten
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins and Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
| | - Patrick M Sexton
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins and Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
| | - Fabian Bumbak
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins and Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
| |
Collapse
|
2
|
Souza‐Silva IM, Carregari VC, Steckelings UM, Verano‐Braga T. Phosphoproteomics for studying signaling pathways evoked by hormones of the renin-angiotensin system: A source of untapped potential. Acta Physiol (Oxf) 2025; 241:e14280. [PMID: 39821680 PMCID: PMC11737475 DOI: 10.1111/apha.14280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 01/19/2025]
Abstract
The Renin-Angiotensin System (RAS) is a complex neuroendocrine system consisting of a single precursor protein, angiotensinogen (AGT), which is processed into various peptide hormones, including the angiotensins [Ang I, Ang II, Ang III, Ang IV, Ang-(1-9), Ang-(1-7), Ang-(1-5), etc] and Alamandine-related peptides [Ang A, Alamandine, Ala-(1-5)], through intricate enzymatic pathways. Functionally, the RAS is divided into two axes with opposing effects: the classical axis, primarily consisting of Ang II acting through the AT1 receptor (AT1R), and in contrast the protective axis, which includes the receptors Mas, AT2R and MrgD and their respective ligands. A key area of RAS research is to gain a better understanding how signaling cascades elicited by these receptors lead to either "classical" or "protective" effects, as imbalances between the two axes can contribute to disease. On the other hand, therapeutic benefits can be achieved by selectively activating protective receptors and their associated signaling pathways. Traditionally, robust "hypothesis-driven" methods like Western blotting have built a solid knowledge foundation on RAS signaling. In this review, we introduce untargeted mass spectrometry-based phosphoproteomics, a "hypothesis-generating approach", to explore RAS signaling pathways. This technology enables the unbiased discovery of phosphorylation events, offering insights into previously unknown signaling mechanisms. We review the existing studies which used phosphoproteomics to study RAS signaling and discuss potential future applications of phosphoproteomics in RAS research including advantages and limitations. Ultimately, phosphoproteomics represents a so far underused tool for deepening our understanding of RAS signaling and unveiling novel therapeutic targets.
Collapse
Affiliation(s)
- Igor Maciel Souza‐Silva
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Department of Molecular Medicine, Cardiovascular and Renal Research UnitUniversity of Southern DenmarkOdense MDenmark
| | - Victor Corasolla Carregari
- Laboratório de Neuroproteômica, Instituto de BiologiaUniversidade de CampinasSão PauloBrazil
- Department of Biochemistry and Molecular Biology, Protein Research GroupUniversity of Southern DenmarkOdense MDenmark
| | - U. Muscha Steckelings
- Department of Molecular Medicine, Cardiovascular and Renal Research UnitUniversity of Southern DenmarkOdense MDenmark
| | - Thiago Verano‐Braga
- Department of Molecular Medicine, Cardiovascular and Renal Research UnitUniversity of Southern DenmarkOdense MDenmark
- Departamento de Fisiologia e BiofísicaUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
- Instituto Nacional de Ciência e Tecnologia Em Nanobiofarmacêutica (INCT‐Nanobiofar)Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| |
Collapse
|
3
|
Wang C, Liu Y, Lanier M, Yeager A, Singh I, Gumpper RH, Krumm BE, DeLeon C, Zhang S, Boehm M, Pittner R, Baron A, Dvorak L, Bacon C, Shoichet BK, Martinborough E, Fay JF, Cao C, Roth BL. High-affinity agonists reveal recognition motifs for the MRGPRD GPCR. Cell Rep 2024; 43:114942. [PMID: 39580805 PMCID: PMC12006980 DOI: 10.1016/j.celrep.2024.114942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 08/07/2024] [Accepted: 10/17/2024] [Indexed: 11/26/2024] Open
Abstract
The human MRGPRD protein is a member of the Mas-related G protein-coupled receptors (MRGPRs) that is involved in the sensing of pain, itch, and other inflammatory stimuli. As with other MRGPRs, MRGPRD is a relatively understudied receptor with few known agonists. The most potent small-molecule agonist of MRGPRD reported so far is β-alanine, with an affinity in the micromole range, which largely restricts its functional study. Here, we report two MRGPRD agonists, EP-2825 and EP-3945, that are approximately 100-fold more potent than β-alanine and determine the structures of MRGPRD-Gq in complex with EP-2825 and EP-3945, respectively. The structures reveal distinct agonist binding modes of MRGPRD and large conformational plasticity of the orthosteric pocket. Collectively, the discovery of high-affinity MRGPRD agonists and their distinct binding modes will facilitate the functional study and the structure-based design of ligands targeting this understudied receptor.
Collapse
Affiliation(s)
- Chunyu Wang
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Insitute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Yongfeng Liu
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA; National Institute of Mental Health Psychoactive Drug Screening Program, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Marion Lanier
- Escient Pharmaceuticals, 10578 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Adam Yeager
- Escient Pharmaceuticals, 10578 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Isha Singh
- Department of Pharmaceutical Sciences, University of California, San Francisco, School of Medicine, San Francisco, CA, USA
| | - Ryan H Gumpper
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA; Division of Chemical Biology and Medicinal Chemistry, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Brian E Krumm
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Chelsea DeLeon
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Shicheng Zhang
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Marcus Boehm
- Escient Pharmaceuticals, 10578 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Richard Pittner
- Escient Pharmaceuticals, 10578 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Alain Baron
- Escient Pharmaceuticals, 10578 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Lisa Dvorak
- Escient Pharmaceuticals, 10578 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Corinne Bacon
- Escient Pharmaceuticals, 10578 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Brian K Shoichet
- Department of Pharmaceutical Sciences, University of California, San Francisco, School of Medicine, San Francisco, CA, USA
| | - Esther Martinborough
- Escient Pharmaceuticals, 10578 Science Center Drive, Suite 250, San Diego, CA 92121, USA.
| | - Jonathan F Fay
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Can Cao
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Insitute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China.
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA; National Institute of Mental Health Psychoactive Drug Screening Program, University of North Carolina School of Medicine, Chapel Hill, NC, USA; Division of Chemical Biology and Medicinal Chemistry, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Monteiro ALL, Eliezeck M, Scalzo SRA, Silva MM, Sanches B, Ferreira KKS, Poletini MO, Peliciari-Garcia RA, Cau SBA, Souza Santos RA, Guatimosim S. Time of day affects MrgD-dependent modulation of cardiomyocyte contractility. Am J Physiol Cell Physiol 2024; 327:C1143-C1149. [PMID: 39159390 DOI: 10.1152/ajpcell.00049.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024]
Abstract
The renin-angiotensin system (RAS) is composed of a series of peptides, receptors, and enzymes that play a pivotal role in maintaining cardiovascular homeostasis. Among the most important players in this system are the angiotensin-II and angiotensin-(1-7) peptides. Our group has recently demonstrated that alamandine (ALA), a peptide with structural and functional similarities to angiotensin-(1-7), interacts with cardiomyocytes, enhancing contractility via the Mas-related G protein-coupled receptor member D (MrgD). It is currently unknown whether this modulation varies along the distinct phases of the day. To address this issue, we assessed the ALA-induced contractility response of cardiomyocytes from mice at four Zeitgeber times (ZTs). At ZT2 (light phase), ALA enhanced cardiomyocyte shortening in an MrgD receptor-dependent manner, which was associated with nitric oxide (NO) production. At ZT14 (dark phase), ALA induced a negative modulation on the cardiomyocyte contraction. β-Alanine, an MrgD agonist, reproduced the time-of-day effects of ALA on myocyte shortening. NG-nitro-l-arginine methyl ester, an NO synthase inhibitor, blocked the increase in fractional shortening induced by ALA at ZT2. No effect of ALA on myocyte shortening was observed at ZT8 and ZT20. Our results show that ALA/MrgD signaling in cardiomyocytes is subject to temporal modulation. This finding has significant implications for pharmacological approaches that combine chronotherapy for cardiac conditions triggered by disruption of circadian rhythms and hormonal signaling.NEW & NOTEWORTHY Alamandine, a member of the renin-angiotensin system, serves critical roles in cardioprotection, including the modulation of cardiomyocyte contractility. Whether this effect varies along the day is unknown. Our results provide evidence that alamandine via receptor MrgD exerts opposing actions on cardiomyocyte shortening, enhancing, or reducing contraction depending on the time of day. These findings may have significant implications for the development and effectiveness of future cardiac therapies.
Collapse
Affiliation(s)
- André L L Monteiro
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- INCT Nanobiofarmacêutica, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcos Eliezeck
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sérgio R A Scalzo
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mário Morais Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- INCT Nanobiofarmacêutica, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bruno Sanches
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- INCT Nanobiofarmacêutica, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Katyana K S Ferreira
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maristela O Poletini
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo A Peliciari-Garcia
- Department of Biological Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, Brazil
| | - Stêfany B A Cau
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Robson A Souza Santos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- INCT Nanobiofarmacêutica, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Silvia Guatimosim
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- INCT Nanobiofarmacêutica, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
5
|
Zinßmeister D, Leibovitch M, Natan E, Turjeman S, Koren O, Travisano M, Vortman Y, Baselga-Cervera B. Detecting life by behavior, the overlooked sensitivity of behavioral assays. Sci Rep 2024; 14:18904. [PMID: 39143360 PMCID: PMC11324786 DOI: 10.1038/s41598-024-69942-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/12/2024] [Indexed: 08/16/2024] Open
Abstract
Detecting life has driven research and exploration for centuries, but recent attempts to compile and generate a framework that summarizes life features, aimed to develop strategies for life detection missions beyond planet Earth, have disregarded a key life feature: behavior. Yet, some behaviors such as biomineralization or motility have occasionally been proposed as biosignatures to detect life. Here, we capitalize on a specific taxis' motility behavior, magnetotaxis, to experimentally provide insights in support of behavior as an unambiguous, sensitive biosignature, and magnetic forces as a prescreening option. Using a magnetotactic bacterial species, Magnetospirillum magneticum, we conducted a lab sensitivity experiment comparing PCR with the hanging drop behavioral assay, using a dilution series. The hanging drop behavioral assay visually shows the motility of MTB toward magnetic poles. Our findings reveal that the behavioral assay exhibits higher sensitivity in the detection of M. magneticum when compared to the established PCR protocol. While both methods present similar detection sensitivities at high concentrations, at ≥ 10-7 fold dilutions, the behavioral method proved more sensitive. The behavioral method can detect bacteria even when samples are diluted at 10-9. Comparable results were obtained with environmental samples from the Hula Valley. We propose behavioral cues as valuable biosignatures in the ongoing efforts of life detection in unexplored aquatic habitats on Earth and to stimulate and support discussions about how to detect extant life beyond Earth. Generic and robust behavioral assays can represent a methodological revolution.
Collapse
Affiliation(s)
- Daniela Zinßmeister
- Hula Research Center, Department of Animal Sciences, Tel-Hai Academic College, Tel Hai, Israel
| | - Moshe Leibovitch
- Hula Research Center, Department of Biotechnology, Tel-Hai Academic College, Tel Hai, Israel
| | | | - Sondra Turjeman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Michael Travisano
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN, USA
- Minnesota Center for Philosophy of Science, University of Minnesota, Minneapolis, MN, USA
- The BioTechnology Institute, University of Minnesota, St Paul, MN, USA
| | - Yoni Vortman
- Hula Research Center, Department of Animal Sciences, Tel-Hai Academic College, Tel Hai, Israel
- MIGAL-Galilee Research Institute, 11016, Kiryat Shmona, Israel
| | - Beatriz Baselga-Cervera
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN, USA.
- Minnesota Center for Philosophy of Science, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
6
|
Hawker P, Zhang L, Liu L. Mas-related G protein-coupled receptors in gastrointestinal dysfunction and inflammatory bowel disease: A review. Br J Pharmacol 2024; 181:2197-2211. [PMID: 36787888 DOI: 10.1111/bph.16059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/25/2022] [Accepted: 02/04/2023] [Indexed: 02/16/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic debilitating condition, hallmarked by persistent inflammation of the gastrointestinal tract. Despite recent advances in clinical treatments, the aetiology of IBD is unknown, and a large proportion of patients are refractory to pharmacotherapy. Understanding IBD immunopathogenesis is crucial to discern the cause of IBD and optimise treatments. Mas-related G protein-coupled receptors (Mrgprs) are a family of approximately 50 G protein-coupled receptors that were first identified over 20 years ago. Originally known for their expression in skin nociceptors and their role in transmitting the sensation of itch in the periphery, new reports have described the presence of Mrgprs in the gastrointestinal tract. In this review, we consider the impact of these findings and assess the evidence that suggests that Mrgprs may be involved in the disrupted homeostatic processes that contribute to gastrointestinal disorders and IBD. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Patrick Hawker
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Lu Liu
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Scharf MM, Humphrys LJ, Berndt S, Di Pizio A, Lehmann J, Liebscher I, Nicoli A, Niv MY, Peri L, Schihada H, Schulte G. The dark sides of the GPCR tree - research progress on understudied GPCRs. Br J Pharmacol 2024. [PMID: 38339984 DOI: 10.1111/bph.16325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/24/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024] Open
Abstract
A large portion of the human GPCRome is still in the dark and understudied, consisting even of entire subfamilies of GPCRs such as odorant receptors, class A and C orphans, adhesion GPCRs, Frizzleds and taste receptors. However, it is undeniable that these GPCRs bring an untapped therapeutic potential that should be explored further. Open questions on these GPCRs span diverse topics such as deorphanisation, the development of tool compounds and tools for studying these GPCRs, as well as understanding basic signalling mechanisms. This review gives an overview of the current state of knowledge for each of the diverse subfamilies of understudied receptors regarding their physiological relevance, molecular mechanisms, endogenous ligands and pharmacological tools. Furthermore, it identifies some of the largest knowledge gaps that should be addressed in the foreseeable future and lists some general strategies that might be helpful in this process.
Collapse
Affiliation(s)
- Magdalena M Scharf
- Karolinska Institutet, Dept. Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Stockholm, Sweden
| | - Laura J Humphrys
- Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| | - Sandra Berndt
- Rudolf Schönheimer Institute for Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Antonella Di Pizio
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Chemoinformatics and Protein Modelling, Department of Molecular Life Science, School of Life Science, Technical University of Munich, Freising, Germany
| | - Juliane Lehmann
- Rudolf Schönheimer Institute for Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute for Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Alessandro Nicoli
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Chemoinformatics and Protein Modelling, Department of Molecular Life Science, School of Life Science, Technical University of Munich, Freising, Germany
| | - Masha Y Niv
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Lior Peri
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Hannes Schihada
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Gunnar Schulte
- Karolinska Institutet, Dept. Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Stockholm, Sweden
| |
Collapse
|
8
|
Gour N, Dong X. The MRGPR family of receptors in immunity. Immunity 2024; 57:28-39. [PMID: 38198852 PMCID: PMC10825802 DOI: 10.1016/j.immuni.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/03/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
The discovery of Mas-related G protein-coupled receptors (Mrgprs) has opened a compelling chapter in our understanding of immunity and sensory biology. This family of receptors, with their unique expression and diverse ligands, has emerged as key players in inflammatory states and hold the potential to alleviate human diseases. This review will focus on the members of this receptor family expressed on immune cells and how they govern immune and neuro-immune pathways underlying various physiological and pathological states. Immune cell-specific Mrgprs have been shown to control a variety of manifestations, including adverse drug reactions, inflammatory conditions, bacterial immunity, and the sensing of environmental exposures like allergens and irritants.
Collapse
Affiliation(s)
- Naina Gour
- Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Xinzhong Dong
- Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
9
|
Gholami Z, Hekmat AS, Abbasi A, Javanmardi K. Alamandine injection in the periaqueductal gray and rostral ventromedial medulla attenuates allodynia induced by sciatic nerve ligation in rats. Neurosci Lett 2024; 818:137568. [PMID: 38008350 DOI: 10.1016/j.neulet.2023.137568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Alamandine, a peptide known to interact with Mas-related G protein-coupled receptor subtype D (MrgD), has been implicated in moderating inflammatory signals. MrgD receptors are abundantly found in pain transmission pathways, but the role of alamandine/MrgD in pain modulation has not been thoroughly explored. This study aimed to investigate the effects of alamandine (10, 40, and 100 pmol) in a rat model of allodynia induced by sciatic nerve ligation, with a specific focus on examining the involvement of MrgD receptors, NMDAR1, and serotonin transporter (SERT) in the ventrolateral periaqueductal gray (vlPAG) and rostral ventromedial medulla (RVM). Microinjection of alamandine into the vlPAG at a dose of 100 pmol and into the RVM at doses of 40 and 100 pmol resulted in a significant increase in paw withdrawal threshold (PWT). Additionally, co-administration of D-Pro7-Ang-(1-7) at 50 pmol, an MrgD receptor antagonist, effectively blocked the analgesic effects of alamandine. Immunofluorescence analysis confirmed the presence of MrgD receptors in both the vlPAG and RVM regions. Importantly, an upregulation of MrgD receptor expression was observed following allodynia induction, suggesting a potential compensatory mechanism in response to pain. Our findings support the co-localization of MrgD receptors with NMDAR1 in vlPAG neurons, suggesting their ability to initiate analgesic pathways similar to those activated by NMDA receptors in the vlPAG. Furthermore, our results underscore a significant co-localization of MrgD receptors with the SERT in the RVM, underscoring their potential impact on serotonergic neurons involved in promoting analgesic effects.
Collapse
Affiliation(s)
- Zahra Gholami
- Department of Physiology, Fasa University of Medical Sciences, Fasa, Iran
| | - Ava Soltani Hekmat
- Department of Physiology, Fasa University of Medical Sciences, Fasa, Iran
| | - Ali Abbasi
- Department of Physiology, Fasa University of Medical Sciences, Fasa, Iran
| | - Kazem Javanmardi
- Department of Physiology, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
10
|
Schmitz GP, Roth BL. G protein-coupled receptors as targets for transformative neuropsychiatric therapeutics. Am J Physiol Cell Physiol 2023; 325:C17-C28. [PMID: 37067459 PMCID: PMC10281788 DOI: 10.1152/ajpcell.00397.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/28/2023] [Accepted: 04/06/2023] [Indexed: 04/18/2023]
Abstract
G protein-coupled receptors (GPCRs) constitute the largest family of druggable genes in the human genome. Even though perhaps 30% of approved medications target GPCRs, they interact with only a small number of them. Here, we consider whether there might be new opportunities for transformative therapeutics for neuropsychiatric disorders by specifically targeting both known and understudied GPCRs. Using psychedelic drugs that target serotonin receptors as an example, we show how recent insights into the structure, function, signaling, and cell biology of these receptors have led to potentially novel therapeutics. We next focus on the possibility that nonpsychedelic 5-HT2A receptor agonists might prove to be safe and rapidly acting antidepressants. Finally, we examine understudied and orphan GPCRs using the MRGPR family of receptors as an example.
Collapse
Affiliation(s)
- Gavin P Schmitz
- Department of Pharmacology, UNC Chapel Hill Medical School, Chapel Hill, North Carolina, United States
| | - Bryan L Roth
- Department of Pharmacology, UNC Chapel Hill Medical School, Chapel Hill, North Carolina, United States
| |
Collapse
|
11
|
Cao C, Roth BL. The structure, function, and pharmacology of MRGPRs. Trends Pharmacol Sci 2023; 44:237-251. [PMID: 36870785 PMCID: PMC10066734 DOI: 10.1016/j.tips.2023.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 03/06/2023]
Abstract
Mas-related G protein-coupled receptor (MRGPR) family members play important roles in the sensation of noxious stimuli and represent novel targets for the treatment of itch and pain. MRGPRs recognize a diversity of agonists and display complicated downstream signaling profiles, high sequence diversity across species, and many polymorphisms in humans. The recent structural advances on MRGPRs reveal unique structural features and diverse agonist recognition modes of this receptor family, which should facilitate the structure-based drug discovery at MRGPRs. In addition, the newly discovered ligands also provide valuable tools to explore the function and the therapeutic potential of MRGPRs. In this review, we discuss these progresses in our understanding of MRGPRs and highlight the challenges and potential opportunities for the future drug discovery at these receptors.
Collapse
Affiliation(s)
- Can Cao
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Division of Chemical Biology and Medicinal Chemistry, Eschelman School of Pharmacy and NIMH Psychoactive Drug Screening Program, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
12
|
Chen H, Peng J, Wang T, Wen J, Chen S, Huang Y, Zhang Y. Counter-regulatory renin-angiotensin system in hypertension: Review and update in the era of COVID-19 pandemic. Biochem Pharmacol 2023; 208:115370. [PMID: 36481346 PMCID: PMC9721294 DOI: 10.1016/j.bcp.2022.115370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease is the major cause of mortality and disability, with hypertension being the most prevalent risk factor. Excessive activation of the renin-angiotensin system (RAS) under pathological conditions, leading to vascular remodeling and inflammation, is closely related to cardiovascular dysfunction. The counter-regulatory axis of the RAS consists of angiotensin-converting enzyme 2 (ACE2), angiotensin (1-7), angiotensin (1-9), alamandine, proto-oncogene Mas receptor, angiotensin II type-2 receptor and Mas-related G protein-coupled receptor member D. Each of these components has been shown to counteract the effects of the overactivated RAS. In this review, we summarize the latest insights into the complexity and interplay of the counter-regulatory RAS axis in hypertension, highlight the pathophysiological functions of ACE2, a multifunctional molecule linking hypertension and COVID-19, and discuss the function and therapeutic potential of targeting this counter-regulatory RAS axis to prevent and treat hypertension in the context of the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Hongyin Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518000, Guangdong, China
| | - Jiangyun Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Tengyao Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Jielu Wen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China,Corresponding authors
| | - Yang Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518000, Guangdong, China,Corresponding authors
| |
Collapse
|
13
|
Ferré G, Anazia K, Silva LO, Thakur N, Ray AP, Eddy MT. Global insights into the fine tuning of human A 2AAR conformational dynamics in a ternary complex with an engineered G protein viewed by NMR. Cell Rep 2022; 41:111844. [PMID: 36543140 PMCID: PMC9832913 DOI: 10.1016/j.celrep.2022.111844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/03/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
G protein-coupled receptor (GPCR) conformational plasticity enables formation of ternary signaling complexes with intracellular proteins in response to binding extracellular ligands. We investigate the dynamic process of GPCR complex formation in solution with the human A2A adenosine receptor (A2AAR) and an engineered Gs protein, mini-Gs. 2D nuclear magnetic resonance (NMR) data with uniform stable isotope-labeled A2AAR enabled a global comparison of A2AAR conformations between complexes with an agonist and mini-Gs and with an agonist alone. The two conformations are similar and show subtle differences at the receptor intracellular surface, supporting a model whereby agonist binding alone is sufficient to populate a conformation resembling the active state. However, an A2AAR "hot spot" connecting the extracellular ligand-binding pocket to the intracellular surface is observed to be highly dynamic in the ternary complex, suggesting a mechanism for allosteric connection between the bound G protein and the drug-binding pocket involving structural plasticity of the "toggle switch" tryptophan.
Collapse
Affiliation(s)
- Guillaume Ferré
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Kara Anazia
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Larissa O Silva
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Naveen Thakur
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Arka P Ray
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Matthew T Eddy
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|