1
|
Marks RA, Ekwealor JTB, Artur MAS, Bondi L, Boothby TC, Carmo OMS, Centeno DC, Coe KK, Dace HJW, Field S, Hutt A, Porembski S, Thalhammer A, van der Pas L, Wood AJ, Alpert P, Bartels D, Boeynaems S, Datar MN, Giese T, Seidou WI, Kirchner SM, Köhler J, Kumara UGVSS, Kyung J, Lyall R, Mishler BD, Ndongmo JBVT, Otegui MS, Reddy V, Rexroth J, Tebele SM, VanBuren R, Verdier J, Vothknecht UC, Wittenberg MF, Zokov E, Oliver MJ, Rhee SY. Life on the dry side: a roadmap to understanding desiccation tolerance and accelerating translational applications. Nat Commun 2025; 16:3284. [PMID: 40189591 PMCID: PMC11973199 DOI: 10.1038/s41467-025-58656-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/25/2025] [Indexed: 04/09/2025] Open
Abstract
To thrive in extreme conditions, organisms have evolved a diverse arsenal of adaptations that confer resilience. These species, their traits, and the mechanisms underlying them comprise a valuable resource that can be mined for numerous conceptual insights and applied objectives. One of the most dramatic adaptations to water limitation is desiccation tolerance. Understanding the mechanisms underlying desiccation tolerance has important potential implications for medicine, biotechnology, agriculture, and conservation. However, progress has been hindered by a lack of standardization across sub-disciplines, complicating the integration of data and slowing the translation of basic discoveries into practical applications. Here, we synthesize current knowledge on desiccation tolerance across evolutionary, ecological, physiological, and cellular scales to provide a roadmap for advancing desiccation tolerance research. We also address critical gaps and technical roadblocks, highlighting the need for standardized experimental practices, improved taxonomic sampling, and the development of new tools for studying biology in a dry state. We hope that this perspective can serve as a roadmap to accelerating research breakthroughs and unlocking the potential of desiccation tolerance to address global challenges related to climate change, food security, and health.
Collapse
Affiliation(s)
- R A Marks
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA.
- Department of Plant Biology, University of Illinois, Urbana, IL, USA.
| | - J T B Ekwealor
- Department of Biology, San Francisco State University, San Francisco, CA, USA.
| | - M A S Artur
- Laboratory of Plant Physiology, Wageningen Seed Science Centre, Wageningen University, Wageningen, The Netherlands
| | - L Bondi
- Department of Botany, University of Rostock, Institute of Biosciences, Rostock, Germany
| | - T C Boothby
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | - O M S Carmo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - D C Centeno
- Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - K K Coe
- Department of Biology, Middlebury College, Middlebury, VT, USA
| | - H J W Dace
- Delft University of Technology, Delft, The Netherlands
| | - S Field
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - A Hutt
- University of Texas at Austin, Austin, TX, USA
| | - S Porembski
- Department of Botany, University of Rostock, Institute of Biosciences, Rostock, Germany
| | - A Thalhammer
- Department of Physical Biochemistry, University of Potsdam, Potsdam, Germany
| | - L van der Pas
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - A J Wood
- School of Biological Sciences, Southern Illinois University, Carbondale, IL, USA
| | - P Alpert
- University of Massachusetts-Amherst, Amherst, MA, USA
- Department of Integrative Biology, University of California at Berkeley, Berkeley, CA, USA
| | - D Bartels
- IMBIO, University of Bonn, Bonn, Germany
| | - S Boeynaems
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, TX, USA
- Center for Alzheimer's and Neurodegenerative Diseases (CAND), Texas Children's Hospital, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center (DLDCCC), Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - M N Datar
- Agharkar Research Institute, Pune, India
| | - T Giese
- Department of Botany, University of Rostock, Institute of Biosciences, Rostock, Germany
| | - W I Seidou
- WASCAL, Universite Felix Houphouet-Boigny, Abidjan, Côte d'Ivoire
| | - S M Kirchner
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - J Köhler
- Department of Botany, University of Rostock, Institute of Biosciences, Rostock, Germany
| | - U G V S S Kumara
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | - J Kyung
- Department of Integrative Biology, University of California at Berkeley, Berkeley, CA, USA
| | - R Lyall
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - B D Mishler
- Department of Integrative Biology, University and Jepson Herbaria, University of California, Berkeley, CA, USA
| | - J B V T Ndongmo
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - M S Otegui
- University of Wisconsin-Madison, Madison, WI, USA
| | - V Reddy
- Botanic Gardens, Tissue Culture Laboratory, Parks Recreation and Culture Unit, eThekwini Municipality, Durban, South Africa
| | - J Rexroth
- Department of Botany, University of Rostock, Institute of Biosciences, Rostock, Germany
| | - S M Tebele
- Forest Ecology and Management Department, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - R VanBuren
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - J Verdier
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - U C Vothknecht
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - M F Wittenberg
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - E Zokov
- Department of Botany, University of Rostock, Institute of Biosciences, Rostock, Germany
| | - M J Oliver
- Division of Plant Sciences and Technology, University of Missouri, Interdisciplinary Plant Group, Columbia, MO, USA.
| | - S Y Rhee
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA.
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
2
|
Tebele SM, Marks RA, Farrant JM. Microbial survival strategies in desiccated roots of Myrothamnus flabellifolia. Front Microbiol 2025; 16:1560114. [PMID: 40226100 PMCID: PMC11985526 DOI: 10.3389/fmicb.2025.1560114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/24/2025] [Indexed: 04/15/2025] Open
Abstract
Introduction Root-associated microbiomes are critical to plant vigor, particularly under drought stress. The spatial dynamics of microbial community diversity and composition are strongly influenced by plant root and environmental factors. While the desiccation tolerance of the resurrection plant Myrothamnus flabellifolia using leaf tissue has been previously investigated, the transcriptional responses of its root-associated microbiomes under desiccation remain completely unexplored. Methods Here, we conducted metatranscriptome sequencing on root samples of M. flabellifolia collected in the field across four states: dry, desiccated, partially hydrated, and fully hydrated. Results Bacterial transcripts dominated the root metatranscriptome across all conditions. Desiccated roots exhibited a significant increase in transcripts from Actinomycetota, whereas fully hydrated roots showed an enrichment of Pseudomonadota. Under desiccation, root-associated bacteria upregulated genes involved in antioxidant systems, trehalose biosynthesis, and hormonal regulation. Discussion These findings highlight microbial adaptive mechanisms to withstand extreme water loss. In contrast, the bacterial transcriptional response in hydrated roots was characterized by genes linked to peptidoglycan biosynthesis, sugar transporters, and chemotaxis. Taken together, our findings indicate that root-associated bacteria deploy defense mechanisms analogous to those of their host plant to adapt to extreme drought stress, highlighting their crucial role in plant resilience.
Collapse
Affiliation(s)
- Shandry M. Tebele
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
| | - Rose A. Marks
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Jill M. Farrant
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
| |
Collapse
|
3
|
Biswas S, Boothby TC. Diversity in the protective role(s) of the conserved motif 1 from tardigrade cytoplasmic-abundant heat-soluble proteins during drying. Protein Sci 2025; 34:e70059. [PMID: 39969123 PMCID: PMC11837025 DOI: 10.1002/pro.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/07/2025] [Accepted: 01/25/2025] [Indexed: 02/20/2025]
Affiliation(s)
- Sourav Biswas
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - Thomas C. Boothby
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| |
Collapse
|
4
|
Nicholson V, Nguyen K, Gollub E, McCoy M, Yu F, Holehouse AS, Sukenik S, Boothby TC. LEA_4 motifs function alone and in conjunction with synergistic cosolutes to protect a labile enzyme during desiccation. Protein Sci 2025; 34:e70028. [PMID: 39840786 PMCID: PMC11751883 DOI: 10.1002/pro.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/22/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025]
Abstract
Organisms from all kingdoms of life depend on Late Embryogenesis Abundant (LEA) proteins to survive desiccation. LEA proteins are divided into broad families distinguished by the presence of family-specific motif sequences. The LEA_4 family, characterized by 11-residue motifs, plays a crucial role in the desiccation tolerance of numerous species. However, the role of these motifs in the function of LEA_4 proteins is unclear, with some studies finding that they recapitulate the function of full-length LEA_4 proteins in vivo, and other studies finding the opposite result. In this study, we characterize the ability of LEA_4 motifs to protect a desiccation-sensitive enzyme, citrate synthase (CS), from loss of function during desiccation. We show here that LEA_4 motifs not only prevent the loss of function of CS during desiccation but also that they can do so more robustly via synergistically interactions with cosolutes. Our analysis further suggests that cosolutes induce synergy with LEA_4 motifs in a manner that correlates with transfer free energy. This research advances our understanding of LEA_4 proteins by demonstrating that during desiccation their motifs can protect specific clients to varying degrees and that their protective capacity is modulated by their chemical environment. Our findings extend beyond the realm of desiccation tolerance, offering insights into the interplay between IDPs and cosolutes. By investigating the function of LEA_4 motifs, we highlight broader strategies for understanding protein stability and function.
Collapse
Affiliation(s)
- Vincent Nicholson
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - Kenny Nguyen
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - Edith Gollub
- Department of Chemistry and BiochemistryUniversity of California MercedMercedCaliforniaUSA
| | - Mary McCoy
- Department of Chemistry and BiochemistryUniversity of California MercedMercedCaliforniaUSA
| | - Feng Yu
- Department of Chemistry and BiochemistryUniversity of California MercedMercedCaliforniaUSA
- Quantitative Systems Biology ProgramUniversity of California MercedMercedCaliforniaUSA
| | - Alex S. Holehouse
- Department of Biochemistry and Molecular BiophysicsWashington University in St. LouisSt. LouisMissouriUSA
- Center for Biomolecular CondensatesWashington University in St. LouisSt. LouisMissouriUSA
| | - Shahar Sukenik
- Department of Chemistry and BiochemistryUniversity of California MercedMercedCaliforniaUSA
| | - Thomas C. Boothby
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| |
Collapse
|
5
|
KC S, Nguyen KH, Nicholson V, Walgren A, Trent T, Gollub E, Romero-Perez PS, Holehouse AS, Sukenik S, Boothby TC. Disordered proteins interact with the chemical environment to tune their protective function during drying. eLife 2024; 13:RP97231. [PMID: 39560655 PMCID: PMC11575898 DOI: 10.7554/elife.97231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024] Open
Abstract
The conformational ensemble and function of intrinsically disordered proteins (IDPs) are sensitive to their solution environment. The inherent malleability of disordered proteins, combined with the exposure of their residues, accounts for this sensitivity. One context in which IDPs play important roles that are concomitant with massive changes to the intracellular environment is during desiccation (extreme drying). The ability of organisms to survive desiccation has long been linked to the accumulation of high levels of cosolutes such as trehalose or sucrose as well as the enrichment of IDPs, such as late embryogenesis abundant (LEA) proteins or cytoplasmic abundant heat-soluble (CAHS) proteins. Despite knowing that IDPs play important roles and are co-enriched alongside endogenous, species-specific cosolutes during desiccation, little is known mechanistically about how IDP-cosolute interactions influence desiccation tolerance. Here, we test the notion that the protective function of desiccation-related IDPs is enhanced through conformational changes induced by endogenous cosolutes. We find that desiccation-related IDPs derived from four different organisms spanning two LEA protein families and the CAHS protein family synergize best with endogenous cosolutes during drying to promote desiccation protection. Yet the structural parameters of protective IDPs do not correlate with synergy for either CAHS or LEA proteins. We further demonstrate that for CAHS, but not LEA proteins, synergy is related to self-assembly and the formation of a gel. Our results suggest that functional synergy between IDPs and endogenous cosolutes is a convergent desiccation protection strategy seen among different IDP families and organisms, yet the mechanisms underlying this synergy differ between IDP families.
Collapse
Affiliation(s)
- Shraddha KC
- Department of Molecular Biology, University of WyomingLaramieUnited States
| | - Kenny H Nguyen
- Department of Molecular Biology, University of WyomingLaramieUnited States
| | - Vincent Nicholson
- Department of Molecular Biology, University of WyomingLaramieUnited States
| | - Annie Walgren
- Department of Molecular Biology, University of WyomingLaramieUnited States
| | - Tony Trent
- Department of Molecular Biology, University of WyomingLaramieUnited States
| | - Edith Gollub
- Department of Chemistry and Biochemistry, University of California MercedMercedUnited States
| | | | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of MedicineSt LouisUnited States
- Center for Biomolecular Condensates, Washington University in St. LouisSt. LouisUnited States
| | - Shahar Sukenik
- Department of Chemistry and Biochemistry, University of California MercedMercedUnited States
| | - Thomas C Boothby
- Department of Molecular Biology, University of WyomingLaramieUnited States
| |
Collapse
|
6
|
Li L, Ge Z, Liu S, Zheng K, Li Y, Chen K, Fu Y, Lei X, Cui Z, Wang Y, Huang J, Liu Y, Duan M, Sun Z, Chen J, Li L, Shen P, Wang G, Chen J, Li R, Li C, Yang Z, Ning Y, Luo A, Chen B, Seim I, Liu X, Wang F, Yao Y, Guo F, Yang M, Liu CH, Fan G, Wang L, Yang D, Zhang L. Multi-omics landscape and molecular basis of radiation tolerance in a tardigrade. Science 2024; 386:eadl0799. [PMID: 39446960 DOI: 10.1126/science.adl0799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 09/05/2024] [Indexed: 10/26/2024]
Abstract
Tardigrades are captivating organisms known for their resilience in extreme environments, including ultra-high-dose radiation, but the underlying mechanisms of this resilience remain largely unknown. Using genome, transcriptome, and proteome analysis of Hypsibius henanensis sp. nov., we explored the molecular basis contributing to radiotolerance in this organism. A putatively horizontally transferred gene, DOPA dioxygenase 1 (DODA1), responds to radiation and confers radiotolerance by synthesizing betalains-a type of plant pigment with free radical-scavenging properties. A tardigrade-specific radiation-induced disordered protein, TRID1, facilitates DNA damage repair through a mechanism involving phase separation. Two mitochondrial respiratory chain complex assembly proteins, BCS1 and NDUFB8, accumulate to accelerate nicotinamide adenine dinucleotide (NAD+) regeneration for poly(adenosine diphosphate-ribosyl)ation (PARylation) and subsequent poly(adenosine diphosphate-ribose) polymerase 1 (PARP1)-mediated DNA damage repair. These three observations expand our understanding of mechanisms of tardigrade radiotolerance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Inge Seim
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572006, China
| | | | | | | | | | | | | | | | | | | | - Lingqiang Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| |
Collapse
|
7
|
Loeffelholz J, Meese E, Giovannini I, Ullibarri K, Momeni S, Merfeld N, Wessel J, Guidetti R, Rebecchi L, Boothby TC. An evaluation of thermal tolerance in six tardigrade species in an active and dry state. Biol Open 2024; 13:bio060485. [PMID: 39229830 PMCID: PMC11451804 DOI: 10.1242/bio.060485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024] Open
Abstract
Tardigrades are known for their ability to survive extreme conditions. Reports indicate that tardigrade thermal tolerance is enhanced in the desiccated state; however, these reports have almost always used a single tardigrade species and drying/heating methods vary between studies. Using six different species of tardigrades we confirm that desiccation enhances thermal tolerance in tardigrades. Furthermore, we show that differences in thermal tolerance exist between tardigrade species both when hydrated and desiccated. While Viridiscus viridianus survives the highest temperatures in the hydrated state of any species tested here, under hydrated conditions, the thermal tolerance of V. viridianus is restricted to an acute transient stress. Furthermore, unlike other stresses, such as desiccation, where mild initial exposure preconditions some species to survive subsequent harsher treatment, for V. viridianus exposure to mild thermal stress in the hydrated state does not confer protection to harsher heating. Our results suggest that while tardigrades have the capacity to tolerate mild thermal stress while hydrated, survival of high temperatures in a desiccated state is a by-product of tardigrades' ability to survive desiccation.
Collapse
Affiliation(s)
- Jacob Loeffelholz
- University of Wyoming, Department of Molecular Biology, Laramie, WY 82071, USA
| | - Emma Meese
- University of Wyoming, Department of Molecular Biology, Laramie, WY 82071, USA
| | - Ilaria Giovannini
- University of Modena and Reggio Emilia, Department of Life Sciences, Modena 41125, Italy
| | - Karsyn Ullibarri
- University of Wyoming, Department of Molecular Biology, Laramie, WY 82071, USA
| | - Sogol Momeni
- University of Alabama, Department of Biological Sciences, Tuscaloosa, AL 35487, USA
| | - Nicholas Merfeld
- University of Iowa, Tippie College of Business, Iowa City, IA 52242, USA
| | | | - Roberto Guidetti
- University of Modena and Reggio Emilia, Department of Life Sciences, Modena 41125, Italy
| | - Lorena Rebecchi
- University of Modena and Reggio Emilia, Department of Life Sciences, Modena 41125, Italy
| | - Thomas C. Boothby
- University of Wyoming, Department of Molecular Biology, Laramie, WY 82071, USA
| |
Collapse
|
8
|
Nicholson V, Meese E, Boothby TC. Osmolyte-IDP interactions during desiccation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 211:39-61. [PMID: 39947753 DOI: 10.1016/bs.pmbts.2024.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Desiccation, the extreme loss of water, poses a significant challenge to living organisms. Desiccation-tolerant organisms combat this in part by accumulating desiccation tolerance intrinsically disordered proteins (DT-IDPs) and osmolytes within their cells. While both osmolytes and DT-IDPs help maintain cellular viability on their own, combinations of the two can work synergistically to provide enhanced protection and survival. This review summarises our understanding of the interactions between DT-IDPs and osmolytes during desiccation, and explores possible molecular mechanisms underlying them. Using recent literature on DT-IDPs and on the broader study of IDP-osmolyte interactions, we propose several hypotheses that explain interactions between DT-IDPs and osmolytes. Finally, we highlight several techniques from literature on DT-IDPs that we feel are useful to the study of IDPs in other contexts.
Collapse
Affiliation(s)
- Vincent Nicholson
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Emma Meese
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Thomas C Boothby
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States.
| |
Collapse
|
9
|
Sadowska-Bartosz I, Bartosz G. Antioxidant Defense in the Toughest Animals on the Earth: Its Contribution to the Extreme Resistance of Tardigrades. Int J Mol Sci 2024; 25:8393. [PMID: 39125965 PMCID: PMC11313143 DOI: 10.3390/ijms25158393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Tardigrades are unique among animals in their resistance to dehydration, mainly due to anhydrobiosis and tun formation. They are also very resistant to high-energy radiation, low and high temperatures, low and high pressure, and various chemical agents, Interestingly, they are resistant to ionizing radiation both in the hydrated and dehydrated states to a similar extent. They are able to survive in the cosmic space. Apparently, many mechanisms contribute to the resistance of tardigrades to harmful factors, including the presence of trehalose (though not common to all tardigrades), heat shock proteins, late embryogenesis-abundant proteins, tardigrade-unique proteins, DNA repair proteins, proteins directly protecting DNA (Dsup and TDR1), and efficient antioxidant system. Antioxidant enzymes and small-molecular-weight antioxidants are an important element in the tardigrade resistance. The levels and activities of many antioxidant proteins is elevated by anhydrobiosis and UV radiation; one explanation for their induction during dehydration is provided by the theory of "preparation for oxidative stress", which occurs during rehydration. Genes coding for some antioxidant proteins are expanded in tardigrades; some genes (especially those coding for catalases) were hypothesized to be of bacterial origin, acquired by horizontal gene transfer. An interesting antioxidant protein found in tardigrades is the new Mn-dependent peroxidase.
Collapse
Affiliation(s)
- Izabela Sadowska-Bartosz
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszów, 4 Zelwerowicza Street, 35-601 Rzeszow, Poland;
| | | |
Collapse
|
10
|
Kc S, Nguyen KH, Nicholson V, Walgren A, Trent T, Gollub E, Ramero S, Holehouse AS, Sukenik S, Boothby TC. Disordered proteins interact with the chemical environment to tune their protective function during drying. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582506. [PMID: 38464187 PMCID: PMC10925285 DOI: 10.1101/2024.02.28.582506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The conformational ensemble and function of intrinsically disordered proteins (IDPs) are sensitive to their solution environment. The inherent malleability of disordered proteins combined with the exposure of their residues accounts for this sensitivity. One context in which IDPs play important roles that is concomitant with massive changes to the intracellular environment is during desiccation (extreme drying). The ability of organisms to survive desiccation has long been linked to the accumulation of high levels of cosolutes such as trehalose or sucrose as well as the enrichment of IDPs, such as late embryogenesis abundant (LEA) proteins or cytoplasmic abundant heat soluble (CAHS) proteins. Despite knowing that IDPs play important roles and are co-enriched alongside endogenous, species-specific cosolutes during desiccation, little is known mechanistically about how IDP-cosolute interactions influence desiccation tolerance. Here, we test the notion that the protective function of desiccation-related IDPs is enhanced through conformational changes induced by endogenous cosolutes. We find that desiccation-related IDPs derived from four different organisms spanning two LEA protein families and the CAHS protein family, synergize best with endogenous cosolutes during drying to promote desiccation protection. Yet the structural parameters of protective IDPs do not correlate with synergy for either CAHS or LEA proteins. We further demonstrate that for CAHS, but not LEA proteins, synergy is related to self-assembly and the formation of a gel. Our results suggest that functional synergy between IDPs and endogenous cosolutes is a convergent desiccation protection strategy seen among different IDP families and organisms, yet, the mechanisms underlying this synergy differ between IDP families.
Collapse
|
11
|
Robison ZL, Ren Q, Zhang Z. How to Survive without Water: A Short Lesson on the Desiccation Tolerance of Budding Yeast. Int J Mol Sci 2024; 25:7514. [PMID: 39062766 PMCID: PMC11277543 DOI: 10.3390/ijms25147514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Water is essential to all life on earth. It is a major component that makes up living organisms and plays a vital role in multiple biological processes. It provides a medium for chemical and enzymatic reactions in the cell and is a major player in osmoregulation and the maintenance of cell turgidity. Despite this, many organisms, called anhydrobiotes, are capable of surviving under extremely dehydrated conditions. Less is known about how anhydrobiotes adapt and survive under desiccation stress. Studies have shown that morphological and physiological changes occur in anhydrobiotes in response to desiccation stress. Certain disaccharides and proteins, including heat shock proteins, intrinsically disordered proteins, and hydrophilins, play important roles in the desiccation tolerance of anhydrobiotes. In this review, we summarize the recent findings of desiccation tolerance in the budding yeast Saccharomyces cerevisiae. We also propose that the yeast under desiccation could be used as a model to study neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | - Zhaojie Zhang
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA; (Z.L.R.); (Q.R.)
| |
Collapse
|
12
|
Smith FW, Game M, Mapalo MA, Chavarria RA, Harrison TR, Janssen R. Developmental and genomic insight into the origin of the tardigrade body plan. Evol Dev 2024; 26:e12457. [PMID: 37721221 DOI: 10.1111/ede.12457] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023]
Abstract
Tardigrada is an ancient lineage of miniaturized animals. As an outgroup of the well-studied Arthropoda and Onychophora, studies of tardigrades hold the potential to reveal important insights into body plan evolution in Panarthropoda. Previous studies have revealed interesting facets of tardigrade development and genomics that suggest that a highly compact body plan is a derived condition of this lineage, rather than it representing an ancestral state of Panarthropoda. This conclusion was based on studies of several species from Eutardigrada. We review these studies and expand on them by analyzing the publicly available genome and transcriptome assemblies of Echiniscus testudo, a representative of Heterotardigrada. These new analyses allow us to phylogenetically reconstruct important features of genome evolution in Tardigrada. We use available data from tardigrades to interrogate several recent models of body plan evolution in Panarthropoda. Although anterior segments of panarthropods are highly diverse in terms of anatomy and development, both within individuals and between species, we conclude that a simple one-to-one alignment of anterior segments across Panarthropoda is the best available model of segmental homology. In addition to providing important insight into body plan diversification within Panarthropoda, we speculate that studies of tardigrades may reveal generalizable pathways to miniaturization.
Collapse
Affiliation(s)
- Frank W Smith
- Biology Department, University of North Florida, Jacksonville, Florida, USA
| | - Mandy Game
- Biology Department, University of North Florida, Jacksonville, Florida, USA
| | - Marc A Mapalo
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Raul A Chavarria
- Biology Department, University of North Florida, Jacksonville, Florida, USA
| | - Taylor R Harrison
- Biology Department, University of North Florida, Jacksonville, Florida, USA
| | - Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
13
|
Lapointe MR, Laframboise T, Pirkkanen J, Tai TC, Lees SJ, Santa Maria SR, Tharmalingam S, Boreham DR, Thome C. Protracted Exposure to a Sub-background Radiation Environment Negatively Impacts the Anhydrobiotic Recovery of Desiccated Yeast Sentinels. HEALTH PHYSICS 2024; 126:397-404. [PMID: 38568172 DOI: 10.1097/hp.0000000000001804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
ABSTRACT Experiments that examine the impacts of subnatural background radiation exposure provide a unique approach to studying the biological effects of low-dose radiation. These experiments often need to be conducted in deep underground laboratories in order to filter surface-level cosmic radiation. This presents some logistical challenges in experimental design and necessitates a model organism with minimal maintenance. As such, desiccated yeast ( Saccharomyces cerevisiae ) is an ideal model system for these investigations. This study aimed to determine the impact of prolonged sub-background radiation exposure in anhydrobiotic (desiccated) yeast at SNOLAB in Sudbury, Ontario, Canada. Two yeast strains were used: a normal wild type and an isogenic recombinational repair-deficient rad51 knockout strain ( rad51 Δ). Desiccated yeast samples were stored in the normal background surface control laboratory (68.0 nGy h -1 ) and in the sub-background environment within SNOLAB (10.1 nGy h -1 ) for up to 48 wk. Post-rehydration survival, growth rate, and metabolic activity were assessed at multiple time points. Survival in the sub-background environment was significantly reduced by a factor of 1.39 and 2.67 in the wild type and rad51 ∆ strains, respectively. Post-rehydration metabolic activity measured via alamarBlue reduction remained unchanged in the wild type strain but was 26% lower in the sub-background rad51 ∆ strain. These results demonstrate that removing natural background radiation negatively impacts the survival and metabolism of desiccated yeast, highlighting the potential importance of natural radiation exposure in maintaining homeostasis of living organisms.
Collapse
Affiliation(s)
| | | | | | | | - Simon J Lees
- Medical Sciences Division, NOSM University, Sudbury, Ontario, Canada
| | | | | | | | | |
Collapse
|
14
|
Kuczyńska-Wiśnik D, Stojowska-Swędrzyńska K, Laskowska E. Intracellular Protective Functions and Therapeutical Potential of Trehalose. Molecules 2024; 29:2088. [PMID: 38731579 PMCID: PMC11085779 DOI: 10.3390/molecules29092088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Trehalose is a naturally occurring, non-reducing saccharide widely distributed in nature. Over the years, research on trehalose has revealed that this initially thought simple storage molecule is a multifunctional and multitasking compound protecting cells against various stress factors. This review presents data on the role of trehalose in maintaining cellular homeostasis under stress conditions and in the virulence of bacteria and fungi. Numerous studies have demonstrated that trehalose acts in the cell as an osmoprotectant, chemical chaperone, free radical scavenger, carbon source, virulence factor, and metabolic regulator. The increasingly researched medical and therapeutic applications of trehalose are also discussed.
Collapse
Affiliation(s)
| | | | - Ewa Laskowska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (D.K.-W.); (K.S.-S.)
| |
Collapse
|
15
|
Gupta MN, Uversky VN. Reexamining the diverse functions of arginine in biochemistry. Biochem Biophys Res Commun 2024; 705:149731. [PMID: 38432110 DOI: 10.1016/j.bbrc.2024.149731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Arginine in a free-state and as part of peptides and proteins shows distinct tendency to form clusters. In free-form, it has been found useful in cryoprotection, as a drug excipient for both solid and liquid formulations, as an aggregation suppressor, and an eluent in protein chromatography. In many cases, the mechanisms by which arginine acts in all these applications is either debatable or at least continues to attract interest. It is quite possible that arginine clusters may be involved in many such applications. Furthermore, it is possible that such clusters are likely to behave as intrinsically disordered polypeptides. These considerations may help in understanding the roles of arginine in diverse applications and may even lead to better strategies for using arginine in different situations.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India.
| | - Vladimir N Uversky
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya Str., 7, Pushchino, Moscow Region, 142290, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
16
|
Sanchez‐Martinez S, Nguyen K, Biswas S, Nicholson V, Romanyuk AV, Ramirez J, Kc S, Akter A, Childs C, Meese EK, Usher ET, Ginell GM, Yu F, Gollub E, Malferrari M, Francia F, Venturoli G, Martin EW, Caporaletti F, Giubertoni G, Woutersen S, Sukenik S, Woolfson DN, Holehouse AS, Boothby TC. Labile assembly of a tardigrade protein induces biostasis. Protein Sci 2024; 33:e4941. [PMID: 38501490 PMCID: PMC10949331 DOI: 10.1002/pro.4941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 03/20/2024]
Abstract
Tardigrades are microscopic animals that survive desiccation by inducing biostasis. To survive drying tardigrades rely on intrinsically disordered CAHS proteins, which also function to prevent perturbations induced by drying in vitro and in heterologous systems. CAHS proteins have been shown to form gels both in vitro and in vivo, which has been speculated to be linked to their protective capacity. However, the sequence features and mechanisms underlying gel formation and the necessity of gelation for protection have not been demonstrated. Here we report a mechanism of fibrillization and gelation for CAHS D similar to that of intermediate filament assembly. We show that in vitro, gelation restricts molecular motion, immobilizing and protecting labile material from the harmful effects of drying. In vivo, we observe that CAHS D forms fibrillar networks during osmotic stress. Fibrillar networking of CAHS D improves survival of osmotically shocked cells. We observe two emergent properties associated with fibrillization; (i) prevention of cell volume change and (ii) reduction of metabolic activity during osmotic shock. We find that there is no significant correlation between maintenance of cell volume and survival, while there is a significant correlation between reduced metabolism and survival. Importantly, CAHS D's fibrillar network formation is reversible and metabolic rates return to control levels after CAHS fibers are resolved. This work provides insights into how tardigrades induce reversible biostasis through the self-assembly of labile CAHS gels.
Collapse
Affiliation(s)
| | - K. Nguyen
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - S. Biswas
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - V. Nicholson
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - A. V. Romanyuk
- School of ChemistryUniversity of BristolBristolUK
- Max Planck‐Bristol Centre for Minimal BiologyUniversity of BristolBristolUK
| | - J. Ramirez
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - S. Kc
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - A. Akter
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - C. Childs
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - E. K. Meese
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - E. T. Usher
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMissouriUSA
- Center for Biomolecular CondensatesWashington University in St. LouisSt. LouisMissouriUSA
| | - G. M. Ginell
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMissouriUSA
- Center for Biomolecular CondensatesWashington University in St. LouisSt. LouisMissouriUSA
| | - F. Yu
- Quantitative Systems Biology ProgramUniversity of California MercedMercedCaliforniaUSA
| | - E. Gollub
- Department of Chemistry and BiochemistryUniversity of California MercedMercedCaliforniaUSA
| | - M. Malferrari
- Dipartimento di Chimica “Giacomo Ciamician”Università di BolognaBolognaItaly
| | - F. Francia
- Laboratorio di Biochimica e Biofisica Molecolare, Dipartimento di Farmacia e Biotecnologie, FaBiTUniversità di BolognaBolognaItaly
| | - G. Venturoli
- Laboratorio di Biochimica e Biofisica Molecolare, Dipartimento di Farmacia e Biotecnologie, FaBiTUniversità di BolognaBolognaItaly
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), c/o Dipartimento di Fisica e Astronomia (DIFA)Università di BolognaBolognaItaly
| | - E. W. Martin
- Department of Structural BiologySt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - F. Caporaletti
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | - G. Giubertoni
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | - S. Woutersen
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | - S. Sukenik
- Quantitative Systems Biology ProgramUniversity of California MercedMercedCaliforniaUSA
- Department of Chemistry and BiochemistryUniversity of California MercedMercedCaliforniaUSA
| | - D. N. Woolfson
- School of ChemistryUniversity of BristolBristolUK
- Max Planck‐Bristol Centre for Minimal BiologyUniversity of BristolBristolUK
- School of BiochemistryUniversity of Bristol, Biomedical Sciences BuildingBristolUK
| | - A. S. Holehouse
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMissouriUSA
- Center for Biomolecular CondensatesWashington University in St. LouisSt. LouisMissouriUSA
| | - T. C. Boothby
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| |
Collapse
|
17
|
Gupta MN, Uversky VN. Protein structure-function continuum model: Emerging nexuses between specificity, evolution, and structure. Protein Sci 2024; 33:e4968. [PMID: 38532700 PMCID: PMC10966358 DOI: 10.1002/pro.4968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/18/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024]
Abstract
The rationale for replacing the old binary of structure-function with the trinity of structure, disorder, and function has gained considerable ground in recent years. A continuum model based on the expanded form of the existing paradigm can now subsume importance of both conformational flexibility and intrinsic disorder in protein function. The disorder is actually critical for understanding the protein-protein interactions in many regulatory processes, formation of membrane-less organelles, and our revised notions of specificity as amply illustrated by moonlighting proteins. While its importance in formation of amyloids and function of prions is often discussed, the roles of intrinsic disorder in infectious diseases and protein function under extreme conditions are also becoming clear. This review is an attempt to discuss how our current understanding of protein function, specificity, and evolution fit better with the continuum model. This integration of structure and disorder under a single model may bring greater clarity in our continuing quest for understanding proteins and molecular mechanisms of their functionality.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and BiotechnologyIndian Institute of TechnologyNew DelhiIndia
- Present address:
508/Block 3, Kirti Apartments, Mayur Vihar Phase 1 ExtensionDelhiIndia
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
| |
Collapse
|
18
|
Wilanowska PA, Rzymski P, Kaczmarek Ł. Long-Term Survivability of Tardigrade Paramacrobiotus experimentalis (Eutardigrada) at Increased Magnesium Perchlorate Levels: Implications for Astrobiological Research. Life (Basel) 2024; 14:335. [PMID: 38541660 PMCID: PMC10971682 DOI: 10.3390/life14030335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 05/26/2024] Open
Abstract
Perchlorate salts, including magnesium perchlorate, are highly toxic compounds that occur on Mars at levels far surpassing those on Earth and pose a significant challenge to the survival of life on this planet. Tardigrades are commonly known for their extraordinary resistance to extreme environmental conditions and are considered model organisms for space and astrobiological research. However, their long-term tolerance to perchlorate salts has not been the subject of any previous studies. Therefore, the present study aimed to assess whether the tardigrade species Paramacrobiotus experimentalis can survive and grow in an environment contaminated with high levels of magnesium perchlorates (0.25-1.0%, 1.5-6.0 mM ClO4- ions). The survival rate of tardigrades decreased with an increase in the concentration of the perchlorate solutions and varied from 83.3% (0.10% concentration) to 20.8% (0.25% concentration) over the course of 56 days of exposure. Tardigrades exposed to 0.15-0.25% magnesium perchlorate revealed significantly decreased body length. Our study indicates that tardigrades can survive and grow in relatively high concentrations of magnesium perchlorates, largely exceeding perchlorate levels observed naturally on Earth, indicating their potential use in Martian experiments.
Collapse
Affiliation(s)
- Paulina Anna Wilanowska
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznań, Poland;
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 60-806 Poznań, Poland;
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznań, Poland;
| |
Collapse
|
19
|
McNally DL, Macdougall LJ, Kirkpatrick BE, Maduka CV, Hoffman TE, Fairbanks BD, Bowman CN, Spencer SL, Anseth KS. Reversible Intracellular Gelation of MCF10A Cells Enables Programmable Control Over 3D Spheroid Growth. Adv Healthc Mater 2024; 13:e2302528. [PMID: 38142299 PMCID: PMC10939856 DOI: 10.1002/adhm.202302528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/21/2023] [Indexed: 12/25/2023]
Abstract
In nature, some organisms survive extreme environments by inducing a biostatic state wherein cellular contents are effectively vitrified. Recently, a synthetic biostatic state in mammalian cells is achieved via intracellular network formation using bio-orthogonal strain-promoted azide-alkyne cycloaddition (SPAAC) reactions between functionalized poly(ethylene glycol) (PEG) macromers. In this work, the effects of intracellular network formation on a 3D epithelial MCF10A spheroid model are explored. Macromer-transfected cells are encapsulated in Matrigel, and spheroid area is reduced by ≈50% compared to controls. The intracellular hydrogel network increases the quiescent cell population, as indicated by increased p21 expression. Additionally, bioenergetics (ATP/ADP ratio) and functional metabolic rates are reduced. To enable reversibility of the biostasis effect, a photosensitive nitrobenzyl-containing macromer is incorporated into the PEG network, allowing for light-induced degradation. Following light exposure, cell state, and proliferation return to control levels, while SPAAC-treated spheroids without light exposure (i.e., containing intact intracellular networks) remain smaller and less proliferative through this same period. These results demonstrate that photodegradable intracellular hydrogels can induce a reversible slow-growing state in 3D spheroid culture.
Collapse
Affiliation(s)
- Delaney L McNally
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Laura J Macdougall
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Bruce E Kirkpatrick
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Medical Scientist Training Program, School of Medicine, University of Colorado, Aurora, CO, 80045, USA
| | - Chima V Maduka
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Timothy E Hoffman
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Benjamin D Fairbanks
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- Materials Science and Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Materials Science and Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Sabrina L Spencer
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- Materials Science and Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| |
Collapse
|
20
|
Biswas S, Gollub E, Yu F, Ginell G, Holehouse A, Sukenik S, Boothby TC. Helicity of a tardigrade disordered protein contributes to its protective function during desiccation. Protein Sci 2024; 33:e4872. [PMID: 38114424 PMCID: PMC10804681 DOI: 10.1002/pro.4872] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
To survive extreme drying (anhydrobiosis), many organisms, spanning every kingdom of life, accumulate intrinsically disordered proteins (IDPs). For decades, the ability of anhydrobiosis-related IDPs to form transient amphipathic helices has been suggested to be important for promoting desiccation tolerance. However, evidence empirically supporting the necessity and/or sufficiency of helicity in mediating anhydrobiosis is lacking. Here, we demonstrate that the linker region of CAHS D, a desiccation-related IDP from the tardigrade Hypsibius exemplaris, that contains significant helical structure, is the protective portion of this protein. Perturbing the sequence composition and grammar of the linker region of CAHS D, through the insertion of helix-breaking prolines, modulating the identity of charged residues, or replacement of hydrophobic amino acids with serine or glycine residues results in variants with different degrees of helical structure. Importantly, correlation of protective capacity and helical content in variants generated through different helix perturbing modalities does not show as strong a trend, suggesting that while helicity is important, it is not the only property that makes a protein protective during desiccation. These results provide direct evidence for the decades-old theory that helicity of desiccation-related IDPs is linked to their anhydrobiotic capacity.
Collapse
Affiliation(s)
- Sourav Biswas
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - Edith Gollub
- Department of Chemistry and BiochemistryUniversity of California, MercedMercedCaliforniaUSA
- Quantitative Systems Biology ProgramUniversity of California MercedMercedCaliforniaUSA
| | - Feng Yu
- Department of Chemistry and BiochemistryUniversity of California, MercedMercedCaliforniaUSA
- Quantitative Systems Biology ProgramUniversity of California MercedMercedCaliforniaUSA
| | - Garrett Ginell
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMissouriUSA
- Center for Biomolecular CondensatesWashington University in St. LouisSt. LouisMissouriUSA
| | - Alex Holehouse
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMissouriUSA
- Center for Biomolecular CondensatesWashington University in St. LouisSt. LouisMissouriUSA
| | - Shahar Sukenik
- Department of Chemistry and BiochemistryUniversity of California, MercedMercedCaliforniaUSA
- Quantitative Systems Biology ProgramUniversity of California MercedMercedCaliforniaUSA
| | - Thomas C. Boothby
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| |
Collapse
|
21
|
Ramirez JF, Kumara U, Arulsamy N, Boothby TC. Water content, transition temperature and fragility influence protection and anhydrobiotic capacity. BBA ADVANCES 2024; 5:100115. [PMID: 38318251 PMCID: PMC10840120 DOI: 10.1016/j.bbadva.2024.100115] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Water is essential for metabolism and all life processes. Despite this, many organisms distributed across the kingdoms of life survive near-complete desiccation or anhydrobiosis. Increased intracellular viscosity, leading to the formation of a vitrified state is necessary, but not sufficient, for survival while dry. What properties of a vitrified system make it desiccation-tolerant or -sensitive are unknown. We have analyzed 18 different in vitro vitrified systems, composed of one of three protective disaccharides (trehalose, sucrose, or maltose) and glycerol, quantifying their enzyme-protective capacity and their material properties in a dry state. Protection conferred by mixtures containing maltose correlates strongly with increased water content, increased glass-transition temperature, and reduced glass former fragility, while the protection of glasses formed with sucrose correlates with increased glass transition temperature and the protection conferred by trehalose glasses correlates with reduced glass former fragility. Thus, in vitro different vitrified sugars confer protection through distinct material properties. Next, we examined the material properties of a dry desiccation tolerant and intolerant life stage from three different organisms. The dried desiccation tolerant life stage of all organisms had an increased glass transition temperature and reduced glass former fragility relative to its dried desiccation intolerant life stage. These results suggest in nature organismal desiccation tolerance relies on a combination of various material properties. This study advances our understanding of how protective and non-protective glasses differ in terms of material properties that promote anhydrobiosis. This knowledge presents avenues to develop novel stabilization technologies for pharmaceuticals that currently rely on the cold-chain. Statement of significance For the past three decades the anhydrobiosis field has lived with a paradox, while vitrification is necessary for survival in the dry state, it is not sufficient. Understanding what property(s) distinguishes a desiccation tolerant from an intolerant vitrified system and how anhydrobiotic organisms survive drying is one of the enduring mysteries of organismal physiology. Here we show in vitro the enzyme-protective capacity of different vitrifying sugars can be correlated with distinct material properties. However, in vivo, diverse desiccation tolerant organisms appear to combine these material properties to promote their survival in a dry state.
Collapse
Affiliation(s)
- John F. Ramirez
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - U.G.V.S.S. Kumara
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | | | - Thomas C. Boothby
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
22
|
Fuse H, Kikawada T, Cornette R. Effective methods for immobilization of non-adherent Pv11 cells while maintaining their desiccation tolerance. Cytotechnology 2023; 75:491-503. [PMID: 37841960 PMCID: PMC10575823 DOI: 10.1007/s10616-023-00592-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/24/2023] [Indexed: 10/17/2023] Open
Abstract
Pv11 was derived from embryos of the sleeping chironomid Polypedilum vanderplanki, which displays an extreme form of desiccation tolerance known as anhydrobiosis. Pre-treatment with a high concentration of trehalose allows Pv11 cells to enter anhydrobiosis. In the dry state, Pv11 cells preserve transgenic luciferase while retaining its activity. Thus, these cells could be utilized for dry-preserving antibodies, enzymes, signaling proteins or other valuable biological materials without denaturation. However, Pv11 cells grow in suspension, which limits their applicability; for instance, they cannot be integrated into microfluidic devices or used in devices such as sensor chips. Therefore, in this paper, we developed an effective immobilization system for Pv11 cells that, crucially, allows them to maintain their anhydrobiotic potential even when immobilized. Pv11 cells exhibited a very high adhesion rate with both biocompatible anchor for membrane (BAM) and Cell-Tak coatings, which have been reported to be effective on other cultured cells. We also found that Pv11 cells immobilized well to uncoated glass if handled in serum-free medium. Interestingly, Pv11 cells showed desiccation tolerance when trehalose treatment was done prior to immobilization of the cells. In contrast, trehalose treatment after immobilization of Pv11 cells resulted in a significant decrease in desiccation tolerance. Thus, it is important to induce anhydrobiosis before immobilization. In summary, we report the successful development of a protocol for the dry preservation of immobilized Pv11 cells. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-023-00592-0.
Collapse
Affiliation(s)
- Hiroto Fuse
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwa, Chiba 277-8562 Japan
| | - Takahiro Kikawada
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwa, Chiba 277-8562 Japan
- Division of Biomaterial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki 305-0851 Japan
| | - Richard Cornette
- Division of Biomaterial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki 305-0851 Japan
| |
Collapse
|
23
|
Sanchez-Martinez S, Ramirez JF, Meese EK, Childs CA, Boothby TC. The tardigrade protein CAHS D interacts with, but does not retain, water in hydrated and desiccated systems. Sci Rep 2023; 13:10449. [PMID: 37369754 DOI: 10.1038/s41598-023-37485-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023] Open
Abstract
Tardigrades are a group of microscopic animals renowned for their ability to survive near complete desiccation. A family of proteins, unique to tardigrades, called Cytoplasmic Abundant Heat Soluble (CAHS) proteins are necessary to mediate robust desiccation tolerance in these animals. However, the mechanism(s) by which CAHS proteins help to protect tardigrades during water-loss have not been fully elucidated. Here we use thermogravimetric analysis to empirically test the proposed hypothesis that tardigrade CAHS proteins, due to their propensity to form hydrogels, help to retain water during desiccation. We find that regardless of its gelled state, both in vitro and in vivo, a model CAHS protein (CAHS D) retains no more water than common proteins and control cells in the dry state. However, we find that while CAHS D proteins do not increase the total amount of water retained in a dry system, they interact with the small amount of water that does remain. Our study indicates that desiccation tolerance mediated by CAHS D cannot be simply ascribed to water retention and instead implicates its ability to interact more tightly with residual water as a possible mechanism underlying its protective capacity. These results advance our fundamental understanding of tardigrade desiccation tolerance which could provide potential avenues for new technologies to aid in the storage of dry shelf-stable pharmaceuticals and the generation of stress tolerant crops to ensure food security in the face of global climate change.
Collapse
Affiliation(s)
| | - John F Ramirez
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA
| | - Emma K Meese
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA
| | - Charles A Childs
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA
| | - Thomas C Boothby
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA.
| |
Collapse
|
24
|
Eicher J, Hutcheson BO, Pielak GJ. Properties of a tardigrade desiccation-tolerance protein aerogel. Biophys J 2023; 122:2500-2505. [PMID: 37149732 PMCID: PMC10323019 DOI: 10.1016/j.bpj.2023.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/10/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023] Open
Abstract
Lyophilization is promising for tackling degradation during the drying and storage of protein-based drugs. Tardigrade cytosolically abundant heat soluble (CAHS) proteins are necessary and sufficient for desiccation-tolerance in vivo and protein protection in vitro. Hydrated CAHS proteins form coiled-coil-based fine-stranded, cold-setting hydrogels, but the dried protein remains largely uncharacterized. Here, we show that dried CAHS D gels (i.e., aerogels) retain the structural units of their hydrogels, but the details depend on prelyophilization CAHS concentrations. Low concentration samples (<10 g/L) form thin (<0.2 μm) tangled fibrils lacking regular structure on the micron scale. Upon increasing the concentration, the fibers thicken and form slabs comprising the walls of the aerogel pores. These changes in morphology are associated with a loss in disorder and an increase in large β sheets and a decrease in α helices and random coils. This disorder-to-order transition is also seen in hydrated gels as a function of concentration. These results suggest a mechanism for pore formation and indicate that using CAHS proteins as excipients will require attention to initial conditions because the starting concentration impacts the lyophilized product.
Collapse
Affiliation(s)
- Jonathan Eicher
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina
| | - Brent O Hutcheson
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina
| | - Gary J Pielak
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina; Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina; Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina.
| |
Collapse
|
25
|
Packebush MH, Sanchez-Martinez S, Biswas S, Kc S, Nguyen KH, Ramirez JF, Nicholson V, Boothby TC. Natural and engineered mediators of desiccation tolerance stabilize Human Blood Clotting Factor VIII in a dry state. Sci Rep 2023; 13:4542. [PMID: 36941331 PMCID: PMC10027729 DOI: 10.1038/s41598-023-31586-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/14/2023] [Indexed: 03/23/2023] Open
Abstract
Biologics, pharmaceuticals containing or derived from living organisms, such as vaccines, antibodies, stem cells, blood, and blood products are a cornerstone of modern medicine. However, nearly all biologics have a major deficiency: they are inherently unstable, requiring storage under constant cold conditions. The so-called 'cold-chain', while effective, represents a serious economic and logistical hurdle for deploying biologics in remote, underdeveloped, or austere settings where access to cold-chain infrastructure ranging from refrigerators and freezers to stable electricity is limited. To address this issue, we explore the possibility of using anhydrobiosis, the ability of organisms such as tardigrades to enter a reversible state of suspended animation brought on by extreme drying, as a jumping off point in the development of dry storage technology that would allow biologics to be kept in a desiccated state under not only ambient but elevated temperatures. Here we examine the ability of different protein and sugar-based mediators of anhydrobiosis derived from tardigrades and other anhydrobiotic organisms to stabilize Human Blood Clotting Factor VIII under repeated dehydration/rehydration cycles, thermal stress, and long-term dry storage conditions. We find that while both protein and sugar-based protectants can stabilize the biologic pharmaceutical Human Blood Clotting Factor VIII under all these conditions, protein-based mediators offer more accessible avenues for engineering and thus tuning of protective function. Using classic protein engineering approaches, we fine tune the biophysical properties of a protein-based mediator of anhydrobiosis derived from a tardigrade, CAHS D. Modulating the ability of CAHS D to form hydrogels make the protein better or worse at providing protection to Human Blood Clotting Factor VIII under different conditions. This study demonstrates the effectiveness of tardigrade CAHS proteins and other mediators of desiccation tolerance at preserving the function of a biologic without the need for the cold-chain. In addition, our study demonstrates that engineering approaches can tune natural products to serve specific protective functions, such as coping with desiccation cycling versus thermal stress. Ultimately, these findings provide a proof of principle that our reliance on the cold-chain to stabilize life-saving pharmaceuticals can be broken using natural and engineered mediators of desiccation tolerance.
Collapse
Affiliation(s)
| | | | - Sourav Biswas
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | - Shraddha Kc
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | - Kenny H Nguyen
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | - John F Ramirez
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | - Vincent Nicholson
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | - Thomas C Boothby
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA.
| |
Collapse
|