1
|
Wang X, Dai L, Wu N, Wu D, Wang X, Meng X, Zhang Q, Lu J, Yan X, Zhang J, Chen B. DEAD-Box Helicase 6 Blockade in Brain-Derived Aβ Oligomers From Alzheimer's Disease Patients Attenuates Neurotoxicity. MedComm (Beijing) 2025; 6:e70156. [PMID: 40276647 PMCID: PMC12018770 DOI: 10.1002/mco2.70156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/17/2025] [Accepted: 02/13/2025] [Indexed: 04/26/2025] Open
Abstract
There are no effective curative treatments for Alzheimer's disease (AD), the most prevalent form of dementia. Amyloid-beta (Aβ) oligomers are considered key neurotoxic molecules that trigger AD. Recent studies have shown that direct antibody targeting of Aβ oligomers is beneficial for early AD patients; however, serious side effects (e.g., brain hemorrhage, edema, and shrinkage) persist. Considering that Aβ oligomers readily bind to other proteins, contributing to neurotoxicity and AD onset, those proteins could represent alternative therapeutic targets. However, proteins that bind to Aβ oligomers in the brains of AD patients have not yet been identified. In this study, we identified four proteins (DDX6, DSP, JUP, and HRNR) that bind to Aβ oligomers derived from the brains of AD patients. Intriguingly, among these four proteins, only the blockade of DEAD-box helicase 6 (DDX6) in human-derived Aβ oligomers attenuated their neurotoxicity both in vitro and in vivo. Mechanistic analysis revealed that DDX6 promotes the formation of Aβ oligomers, likely due to DDX6 bind to Aβ oligomers at four distinct sites. These findings suggest that DDX6 could serve as a potential therapeutic target to reduce the neurotoxicity of Aβ oligomers in the brain and prevent the progression of AD.
Collapse
Affiliation(s)
- Xiaoxu Wang
- Department of Laboratory Animal Sciences, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Lu Dai
- Department of Laboratory Animal Sciences, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Na Wu
- Laboratory Animal Resource CenterCapital Medical UniversityBeijingChina
| | - Donghui Wu
- Department of Laboratory Animal Sciences, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Xinyuan Wang
- Department of Laboratory Animal Sciences, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Xia Meng
- Laboratory Animal Resource CenterCapital Medical UniversityBeijingChina
| | - Qilei Zhang
- Department of Anatomy and NeurobiologyCentral South University Xiangya School of MedicineChangshaHunanChina
| | - Jing Lu
- Department of Laboratory Animal Sciences, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
- Laboratory Animal Resource CenterCapital Medical UniversityBeijingChina
| | - Xiaoxin Yan
- Department of Anatomy and NeurobiologyCentral South University Xiangya School of MedicineChangshaHunanChina
| | - Jing Zhang
- Department of Laboratory Animal Sciences, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
- Laboratory Animal Resource CenterCapital Medical UniversityBeijingChina
| | - Baian Chen
- Department of Laboratory Animal Sciences, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
- Laboratory Animal Resource CenterCapital Medical UniversityBeijingChina
- Center of Alzheimer's Disease, Beijing Institute of Brain DisordersCapital Medical UniversityBeijingChina
| |
Collapse
|
2
|
Auer F, Nardone K, Matsuda K, Hibi M, Schoppik D. Cerebellar Purkinje cells control posture in larval zebrafish ( Danio rerio). eLife 2025; 13:RP97614. [PMID: 40272244 PMCID: PMC12021414 DOI: 10.7554/elife.97614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025] Open
Abstract
Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate new approaches to perturb cerebellar function in simpler vertebrates. Here, we adapted a validated chemogenetic tool (TRPV1/capsaicin) to describe the role of Purkinje cells - the output neurons of the cerebellar cortex - as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation modified postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.
Collapse
Affiliation(s)
- Franziska Auer
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of MedicineNew YorkUnited States
| | - Katherine Nardone
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of MedicineNew YorkUnited States
| | - Koji Matsuda
- Division of Biological Science, Graduate School of Science, Nagoya UniversityNagoyaJapan
| | - Masahiko Hibi
- Division of Biological Science, Graduate School of Science, Nagoya UniversityNagoyaJapan
| | - David Schoppik
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of MedicineNew YorkUnited States
| |
Collapse
|
3
|
Zhang H, Lu J, Zhang L, Hu J, Yue J, Ma Y, Yao Q, Jie P, Fan M, Fang J, Zhao J. Abnormal cerebellar activity and connectivity alterations of the cerebellar-limbic system in post-stroke cognitive impairment: a study based on resting state functional magnetic resonance imaging. Front Neurosci 2025; 19:1543760. [PMID: 40177371 PMCID: PMC11962788 DOI: 10.3389/fnins.2025.1543760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/05/2025] [Indexed: 04/05/2025] Open
Abstract
Background Stroke is an important cause of cognitive impairment. Post-stroke cognitive impairment (PSCI) is a prevalent psychiatric disorder following stroke. However, the effects of PSCI on the cerebellum remain mostly unknown. Methods A total of 31 PSCI patients and 31 patients without cognitive impairment after stroke were included in this study. The Mini-Mental State Examination (MMSE) and the Montreal Cognitive Assessment (MoCA) were administered to all participants. Analyses of ALFF, fALFF, and ReHo were employed to investigate alterations in brain neuronal activity, while limbic connectivity analysis was utilized to reflect changes within the abnormal connections within brain regions. Results We found that ALFF values were increased in Cerebelum_7b_R, Cerebelum_Crus1_L. fALFF values were increased in Vermis_3. The ReHo values were increased in Cerebelum_8_R, Cerebelum_Crus2_R, Cerebelum_Crus1_L. The functional connection between Frontal_Mid_Orb_L and Cerebelum_Crus2_R brain regions was decreased. The functional connection between Hippocampus_L and Cerebelum_Crus2_R brain regions was decreased. The functional connection between Vermis_3 and Frontal_Med_Orb_L brain regions was decreased. Conclusion The severity of cognitive impairment may influence the extent of functional connectivity disruption between the cerebellum and the limbic system. Furthermore, atypical alterations in neuronal activity within cerebellar regions are associated with cognitive decline.
Collapse
Affiliation(s)
- Haiyi Zhang
- Department of Magnetic Resonance Imaging, The Affiliated Traditional Chinese Medicine Hospital, Luzhou, Sichuan, China
| | - Juan Lu
- Department of Magnetic Resonance Imaging, The Affiliated Traditional Chinese Medicine Hospital, Luzhou, Sichuan, China
| | - Lu Zhang
- Department of Acupuncture and Rehabilitation, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Jidan Hu
- Department of Radiology, The Second People’s Hospital of Neijiang, Southwest Medical University, Neijiang, Sichuan, China
| | - Jiajun Yue
- Department of Magnetic Resonance Imaging, The Affiliated Traditional Chinese Medicine Hospital, Luzhou, Sichuan, China
| | - Yunhan Ma
- Department of Magnetic Resonance Imaging, The Affiliated Traditional Chinese Medicine Hospital, Luzhou, Sichuan, China
| | - Qi Yao
- Department of Magnetic Resonance Imaging, The Affiliated Traditional Chinese Medicine Hospital, Luzhou, Sichuan, China
| | - Pingping Jie
- Department of Magnetic Resonance Imaging, The Affiliated Traditional Chinese Medicine Hospital, Luzhou, Sichuan, China
| | - Min Fan
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Molecular Imaging Key Laboratory of Sichuan Province, Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Radiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Jiliang Fang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Zhao
- Department of Magnetic Resonance Imaging, The Affiliated Traditional Chinese Medicine Hospital, Luzhou, Sichuan, China
| |
Collapse
|
4
|
Hikosaka M, Parvez MSA, Yamawaki Y, Oe S, Liang Y, Wada Y, Hirahara Y, Koike T, Imai H, Oishi N, Schalbetter SM, Kumagai A, Yoshida M, Sakurai T, Kitada M, Meyer U, Narumiya S, Ohtsuki G. Maternal immune activation followed by peripubertal stress combinedly produce reactive microglia and confine cerebellar cognition. Commun Biol 2025; 8:296. [PMID: 40033126 PMCID: PMC11876345 DOI: 10.1038/s42003-025-07566-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 01/15/2025] [Indexed: 03/05/2025] Open
Abstract
The functional alteration of microglia arises in brains exposed to external stress during early development. Pathophysiological findings of neurodevelopmental disorders such as schizophrenia and autism spectrum disorder suggest cerebellar functional deficits. However, the link between stress-induced microglia reactivity and cerebellar dysfunction is missing. Here, we investigate the developmental immune environment in translational mouse models that combine two risk factors: maternal infection and repeated social defeat stress (2HIT). We find the synergy of inflammatory stress insults, leading to microglial increase specifically in the cerebellum of both sexes. Microglial turnover correlates with the Purkinje neuron loss in 2HIT mice. Highly multiplexed imaging-mass-cytometry identifies a cell transition to TREM2(+) stress-associated microglia in the cerebellum. Single-cell-proteomic clustering reveals IL-6- and TGFβ-signaling association with microglial cell transitions. Reduced excitability of remaining Purkinje cells, cerebellum-involved brain-wide functional dysconnectivity, and behavioral abnormalities indicate cerebellar cognitive dysfunctions in 2HIT animals, which are ameliorated by both systemic and cerebellum-specific microglia replacement.
Collapse
Affiliation(s)
- Momoka Hikosaka
- Department of Drug Discovery Medicine, Kyoto University, Graduate School of Medicine, Kyoto, Japan
| | - Md Sorwer Alam Parvez
- Department of Drug Discovery Medicine, Kyoto University, Graduate School of Medicine, Kyoto, Japan
- Graduate Biomedical Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yuki Yamawaki
- Department of Drug Discovery Medicine, Kyoto University, Graduate School of Medicine, Kyoto, Japan
| | - Souichi Oe
- Department of Anatomy, Kansai Medical University, Hirakata-shi, Osaka, Japan
| | - Yuan Liang
- Department of Drug Discovery Medicine, Kyoto University, Graduate School of Medicine, Kyoto, Japan
- Institute of Basic Theory in Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yayoi Wada
- Department of Drug Discovery Medicine, Kyoto University, Graduate School of Medicine, Kyoto, Japan
| | - Yukie Hirahara
- Department of Anatomy, Kansai Medical University, Hirakata-shi, Osaka, Japan
| | - Taro Koike
- Department of Anatomy, Kansai Medical University, Hirakata-shi, Osaka, Japan
| | - Hirohiko Imai
- Department of Systems Science, Kyoto University Graduate School of Informatics, Yoshida-Honmachi, Kyoto, Japan
- Innovation Research Center for Quantum Medicine, Gifu University School of Medicine, Gifu, Japan
| | - Naoya Oishi
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sina M Schalbetter
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | | | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi, Japan
| | - Takeshi Sakurai
- Department of Drug Discovery Medicine, Kyoto University, Graduate School of Medicine, Kyoto, Japan
| | - Masaaki Kitada
- Department of Anatomy, Kansai Medical University, Hirakata-shi, Osaka, Japan
| | - Urs Meyer
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Shuh Narumiya
- Department of Drug Discovery Medicine, Kyoto University, Graduate School of Medicine, Kyoto, Japan
| | - Gen Ohtsuki
- Department of Drug Discovery Medicine, Kyoto University, Graduate School of Medicine, Kyoto, Japan.
| |
Collapse
|
5
|
Lee AS, Arefin TM, Gubanova A, Stephen DN, Liu Y, Lao Z, Krishnamurthy A, De Marco García NV, Heck DH, Zhang J, Rajadhyaksha AM, Joyner AL. Cerebellar output neurons can impair non-motor behaviors by altering development of extracerebellar connectivity. Nat Commun 2025; 16:1858. [PMID: 39984491 PMCID: PMC11845701 DOI: 10.1038/s41467-025-57080-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 02/10/2025] [Indexed: 02/23/2025] Open
Abstract
The capacity of the brain to compensate for insults during development depends on the type of cell loss, whereas the consequences of genetic mutations in the same neurons are difficult to predict. We reveal powerful compensation from outside the mouse cerebellum when the excitatory cerebellar output neurons are ablated embryonically and demonstrate that the main requirement for these neurons is for motor coordination and not basic learning and social behaviors. In contrast, loss of the homeobox transcription factors Engrailed1/2 (EN1/2) in the cerebellar excitatory lineage leads to additional deficits in adult learning and spatial working memory, despite half of the excitatory output neurons being intact. Diffusion MRI indicates increased thalamo-cortico-striatal connectivity in En1/2 mutants, showing that the remaining excitatory neurons lacking En1/2 exert adverse effects on extracerebellar circuits regulating motor learning and select non-motor behaviors. Thus, an absence of cerebellar output neurons is less disruptive than having cerebellar genetic mutations.
Collapse
Affiliation(s)
- Andrew S Lee
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Tanzil M Arefin
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Alina Gubanova
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Daniel N Stephen
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Yu Liu
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, USA
- Center for Cerebellar Network Structure and Function in Health and Disease, University of Minnesota, Duluth, MN, USA
| | - Zhimin Lao
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Anjana Krishnamurthy
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Natalia V De Marco García
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Detlef H Heck
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, USA
- Center for Cerebellar Network Structure and Function in Health and Disease, University of Minnesota, Duluth, MN, USA
| | - Jiangyang Zhang
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Anjali M Rajadhyaksha
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
- Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Autism Research Program, Weill Cornell Medicine, New York, NY, USA
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA.
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
- Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
6
|
Lyle TT, Verpeut JL. Adolescent Cerebellar Nuclei Manipulation Alters Reversal Learning and Perineuronal Net Intensity Independently in Male and Female Mice. J Neurosci 2025; 45:e2182232024. [PMID: 39753302 PMCID: PMC11823351 DOI: 10.1523/jneurosci.2182-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 02/14/2025] Open
Abstract
The cerebellum, identified to be active during cognitive and social behavior, has multisynaptic connections through the cerebellar nuclei (CN) and thalamus to cortical regions, yet formation and modulation of these pathways are not fully understood. Perineuronal nets (PNNs) respond to changes in local cellular activity and emerge during development. PNNs are implicated in learning and neurodevelopmental disorders, but their role in the CN during development is unknown. Connectivity deficits, specifically between lateral CN (LCN) and cortical regions have been found in autism spectrum disorder with patients displaying reduced cognitive flexibility. To examine the role of LCN on cognition, neural activity was perturbed in both male and female mice using designer receptors exclusively activated by designer drugs (DREADDs) from postnatal day 21 to 35. We found that while an adolescent LCN disruption did not alter task acquisition, correct choice reversal performance was dependent on DREADD manipulation and sex. Inhibitory DREADDs improved reversal learning in males (5 d faster to criteria), and excitatory DREADDs improved female reversal learning (10 d faster to criteria) compared with controls. Interestingly, the DREADD manipulation in females regardless of direction reduced PNN intensity, whereas in males, only the inhibitory DREADDs reduced PNNs. This suggests a chronic adolescent LCN manipulation may have sex-specific compensatory changes in PNN structure and LCN output to improve reversal learning. This study provides new evidence for LCN in nonmotor functions and sex-dependent differences in behavior and CN plasticity.
Collapse
Affiliation(s)
- Tristan T Lyle
- Department of Psychology, Arizona State University, Tempe, Arizona 85287
| | - Jessica L Verpeut
- Department of Psychology, Arizona State University, Tempe, Arizona 85287
| |
Collapse
|
7
|
Auer F, Nardone K, Matsuda K, Hibi M, Schoppik D. Cerebellar Purkinje Cells Control Posture in Larval Zebrafish ( Danio rerio). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.12.557469. [PMID: 37745506 PMCID: PMC10515840 DOI: 10.1101/2023.09.12.557469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate new approaches to perturb cerebellar function in simpler vertebrates. Here, we adapted a validated chemogenetic tool (TRPV1/capsaicin) to describe the role of Purkinje cells - the output neurons of the cerebellar cortex - as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation modified postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically-tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.
Collapse
Affiliation(s)
- Franziska Auer
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine
| | - Katherine Nardone
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine
| | - Koji Matsuda
- Division of Biological Science, Graduate School of Science, Nagoya University, Japan
| | - Masahiko Hibi
- Division of Biological Science, Graduate School of Science, Nagoya University, Japan
| | - David Schoppik
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine
- Lead Contact
| |
Collapse
|
8
|
Wahl L, Karim A, Hassett AR, van der Doe M, Dijkhuizen S, Badura A. Multiparametric Assays Capture Sex- and Environment-Dependent Modifiers of Behavioral Phenotypes in Autism Mouse Models. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100366. [PMID: 39262819 PMCID: PMC11387692 DOI: 10.1016/j.bpsgos.2024.100366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 09/13/2024] Open
Abstract
Background Current phenotyping approaches for murine autism models often focus on one selected behavioral feature, making the translation onto a spectrum of autistic characteristics in humans challenging. Furthermore, sex and environmental factors are rarely considered. Here, we aimed to capture the full spectrum of behavioral manifestations in 3 autism mouse models to develop a "behavioral fingerprint" that takes environmental and sex influences under consideration. Methods To this end, we employed a wide range of classical standardized behavioral tests and 2 multiparametric behavioral assays-the Live Mouse Tracker and Motion Sequencing-on male and female Shank2, Tsc1, and Purkinje cell-specific Tsc1 mutant mice raised in standard or enriched environments. Our aim was to integrate our high dimensional data into one single platform to classify differences in all experimental groups along dimensions with maximum discriminative power. Results Multiparametric behavioral assays enabled a more accurate classification of experimental groups than classical tests, and dimensionality reduction analysis demonstrated significant additional gains in classification accuracy, highlighting the presence of sex, environmental, and genotype differences in our experimental groups. Conclusions Together, our results provide a complete phenotypic description of all tested groups, suggesting that multiparametric assays can capture the entire spectrum of the heterogeneous phenotype in autism mouse models.
Collapse
Affiliation(s)
- Lucas Wahl
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Arun Karim
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Amy R Hassett
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Max van der Doe
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | | |
Collapse
|
9
|
Sefik E, Duan K, Li Y, Sholar B, Evans L, Pincus J, Ammar Z, Murphy MM, Klaiman C, Saulnier CA, Pulver SL, Goldman-Yassen AE, Guo Y, Walker EF, Li L, Mulle JG, Shultz S. Structural deviations of the posterior fossa and the cerebellum and their cognitive links in a neurodevelopmental deletion syndrome. Mol Psychiatry 2024; 29:3395-3411. [PMID: 38744992 PMCID: PMC11541222 DOI: 10.1038/s41380-024-02584-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024]
Abstract
High-impact genetic variants associated with neurodevelopmental disorders provide biologically-defined entry points for mechanistic investigation. The 3q29 deletion (3q29Del) is one such variant, conferring a 40-100-fold increased risk for schizophrenia, as well as high risk for autism and intellectual disability. However, the mechanisms leading to neurodevelopmental disability remain largely unknown. Here, we report the first in vivo quantitative neuroimaging study in individuals with 3q29Del (N = 24) and neurotypical controls (N = 1608) using structural MRI. Given prior radiology reports of posterior fossa abnormalities in 3q29Del, we focused our investigation on the cerebellum and its tissue-types and lobules. Additionally, we compared the prevalence of cystic/cyst-like malformations of the posterior fossa between 3q29Del and controls and examined the association between neuroanatomical findings and quantitative traits to probe gene-brain-behavior relationships. 3q29Del participants had smaller cerebellar cortex volumes than controls, before and after correction for intracranial volume (ICV). An anterior-posterior gradient emerged in finer grained lobule-based and voxel-wise analyses. 3q29Del participants also had larger cerebellar white matter volumes than controls following ICV-correction and displayed elevated rates of posterior fossa arachnoid cysts and mega cisterna magna findings independent of cerebellar volume. Cerebellar white matter and subregional gray matter volumes were associated with visual-perception and visual-motor integration skills as well as IQ, while cystic/cyst-like malformations yielded no behavioral link. In summary, we find that abnormal development of cerebellar structures may represent neuroimaging-based biomarkers of cognitive and sensorimotor function in 3q29Del, adding to the growing evidence identifying cerebellar pathology as an intersection point between syndromic and idiopathic forms of neurodevelopmental disabilities.
Collapse
Affiliation(s)
- Esra Sefik
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Kuaikuai Duan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Yiheng Li
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Brittney Sholar
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Lindsey Evans
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Jordan Pincus
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Zeena Ammar
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Melissa M Murphy
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Cheryl Klaiman
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Celine A Saulnier
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Neurodevelopmental Assessment & Consulting Services, Atlanta, GA, USA
| | - Stormi L Pulver
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Adam E Goldman-Yassen
- Department of Radiology, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Ying Guo
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Elaine F Walker
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Longchuan Li
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Jennifer G Mulle
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA.
| | - Sarah Shultz
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
10
|
Abstract
The cerebellum has a well-established role in controlling motor functions, including coordination, posture, and the learning of skilled movements. The mechanisms for how it carries out motor behavior remain under intense investigation. Interestingly though, in recent years the mechanisms of cerebellar function have faced additional scrutiny since nonmotor behaviors may also be controlled by the cerebellum. With such complexity arising, there is now a pressing need to better understand how cerebellar structure, function, and behavior intersect to influence behaviors that are dynamically called upon as an animal experiences its environment. Here, we discuss recent experimental work that frames possible neural mechanisms for how the cerebellum shapes disparate behaviors and why its dysfunction is catastrophic in hereditary and acquired conditions-both motor and nonmotor. For these reasons, the cerebellum might be the ideal therapeutic target.
Collapse
Affiliation(s)
- Linda H Kim
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA;
| | - Detlef H Heck
- Center for Cerebellar Network Structure and Function in Health and Disease, University of Minnesota, Duluth, Minnesota, USA
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota, USA
| | - Roy V Sillitoe
- Departments of Neuroscience and Pediatrics, Program in Developmental Biology, and Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA;
| |
Collapse
|
11
|
Lee AS, Arefin TM, Gubanova A, Stephen DN, Liu Y, Lao Z, Krishnamurthy A, De Marco García NV, Heck DH, Zhang J, Rajadhyaksha AM, Joyner AL. Cerebellar output neurons impair non-motor behaviors by altering development of extracerebellar connectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602496. [PMID: 39026865 PMCID: PMC11257463 DOI: 10.1101/2024.07.08.602496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The capacity of the brain to compensate for insults during development depends on the type of cell loss, whereas the consequences of genetic mutations in the same neurons are difficult to predict. We reveal powerful compensation from outside the cerebellum when the excitatory cerebellar output neurons are ablated embryonically and demonstrate that the minimum requirement for these neurons is for motor coordination and not learning and social behaviors. In contrast, loss of the homeobox transcription factors Engrailed1/2 (EN1/2) in the cerebellar excitatory lineage leads to additional deficits in adult learning and spatial working memory, despite half of the excitatory output neurons being intact. Diffusion MRI indicates increased thalamo-cortico-striatal connectivity in En1/2 mutants, showing that the remaining excitatory neurons lacking En1/2 exert adverse effects on extracerebellar circuits regulating motor learning and select non-motor behaviors. Thus, an absence of cerebellar output neurons is less disruptive than having cerebellar genetic mutations.
Collapse
Affiliation(s)
- Andrew S. Lee
- Developmental Biology Program, Sloan Kettering Institute, New York 10065, NY, USA
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York 10021, NY, USA
| | - Tanzil M. Arefin
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York 10016, NY, USA
- Present Address: Center for Neurotechnology in Mental Health Research, Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16801, USA
| | - Alina Gubanova
- Developmental Biology Program, Sloan Kettering Institute, New York 10065, NY, USA
| | - Daniel N. Stephen
- Developmental Biology Program, Sloan Kettering Institute, New York 10065, NY, USA
| | - Yu Liu
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
- Center for Cerebellar Network Structure and Function in Health and Disease, University of Minnesota, Duluth, MN 55812, USA
| | - Zhimin Lao
- Developmental Biology Program, Sloan Kettering Institute, New York 10065, NY, USA
| | - Anjana Krishnamurthy
- Developmental Biology Program, Sloan Kettering Institute, New York 10065, NY, USA
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York 10021, NY, USA
| | - Natalia V. De Marco García
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York 10021, NY, USA
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York 10021, NY 10021, USA
| | - Detlef H. Heck
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
- Center for Cerebellar Network Structure and Function in Health and Disease, University of Minnesota, Duluth, MN 55812, USA
| | - Jiangyang Zhang
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York 10016, NY, USA
| | - Anjali M. Rajadhyaksha
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York 10021, NY, USA
- Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York 10021, NY, USA
- Weill Cornell Autism Research Program, Weill Cornell Medicine, New York 10021, NY, USA
- Present address: Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA and Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Alexandra L. Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York 10065, NY, USA
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York 10021, NY, USA
- Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York 10021, NY, USA
| |
Collapse
|
12
|
Yang C, Liu G, Chen X, Le W. Cerebellum in Alzheimer's disease and other neurodegenerative diseases: an emerging research frontier. MedComm (Beijing) 2024; 5:e638. [PMID: 39006764 PMCID: PMC11245631 DOI: 10.1002/mco2.638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024] Open
Abstract
The cerebellum is crucial for both motor and nonmotor functions. Alzheimer's disease (AD), alongside other dementias such as vascular dementia (VaD), Lewy body dementia (DLB), and frontotemporal dementia (FTD), as well as other neurodegenerative diseases (NDs) like Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and spinocerebellar ataxias (SCA), are characterized by specific and non-specific neurodegenerations in central nervous system. Previously, the cerebellum's significance in these conditions was underestimated. However, advancing research has elevated its profile as a critical node in disease pathology. We comprehensively review the existing evidence to elucidate the relationship between cerebellum and the aforementioned diseases. Our findings reveal a growing body of research unequivocally establishing a link between the cerebellum and AD, other forms of dementia, and other NDs, supported by clinical evidence, pathological and biochemical profiles, structural and functional neuroimaging data, and electrophysiological findings. By contrasting cerebellar observations with those from the cerebral cortex and hippocampus, we highlight the cerebellum's distinct role in the disease processes. Furthermore, we also explore the emerging therapeutic potential of targeting cerebellum for the treatment of these diseases. This review underscores the importance of the cerebellum in these diseases, offering new insights into the disease mechanisms and novel therapeutic strategies.
Collapse
Affiliation(s)
- Cui Yang
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Guangdong Liu
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Xi Chen
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Weidong Le
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| |
Collapse
|
13
|
Soumier A, Lio G, Demily C. Current and future applications of light-sheet imaging for identifying molecular and developmental processes in autism spectrum disorders. Mol Psychiatry 2024; 29:2274-2284. [PMID: 38443634 DOI: 10.1038/s41380-024-02487-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 03/07/2024]
Abstract
Autism spectrum disorder (ASD) is identified by a set of neurodevelopmental divergences that typically affect the social communication domain. ASD is also characterized by heterogeneous cognitive impairments and is associated with cooccurring physical and medical conditions. As behaviors emerge as the brain matures, it is particularly essential to identify any gaps in neurodevelopmental trajectories during early perinatal life. Here, we introduce the potential of light-sheet imaging for studying developmental biology and cross-scale interactions among genetic, cellular, molecular and macroscale levels of circuitry and connectivity. We first report the core principles of light-sheet imaging and the recent progress in studying brain development in preclinical animal models and human organoids. We also present studies using light-sheet imaging to understand the development and function of other organs, such as the skin and gastrointestinal tract. We also provide information on the potential of light-sheet imaging in preclinical drug development. Finally, we speculate on the translational benefits of light-sheet imaging for studying individual brain-body interactions in advancing ASD research and creating personalized interventions.
Collapse
Affiliation(s)
- Amelie Soumier
- Le Vinatier Hospital Center, 95 boulevard Pinel, 69675, Bron cedex, France.
- iMIND, Center of Excellence for Autism, 95 boulevard Pinel, 69675, Bron cedex, France.
- Institute of Cognitive Science Marc Jeannerod, CNRS, UMR 5229, 67 boulevard Pinel, 69675, Bron cedex, France.
- University Claude Bernard Lyon 1, 43 boulevard du 11 Novembre 1918, 69622, Villeurbanne cedex, France.
| | - Guillaume Lio
- Le Vinatier Hospital Center, 95 boulevard Pinel, 69675, Bron cedex, France
- iMIND, Center of Excellence for Autism, 95 boulevard Pinel, 69675, Bron cedex, France
- Institute of Cognitive Science Marc Jeannerod, CNRS, UMR 5229, 67 boulevard Pinel, 69675, Bron cedex, France
| | - Caroline Demily
- Le Vinatier Hospital Center, 95 boulevard Pinel, 69675, Bron cedex, France
- iMIND, Center of Excellence for Autism, 95 boulevard Pinel, 69675, Bron cedex, France
- Institute of Cognitive Science Marc Jeannerod, CNRS, UMR 5229, 67 boulevard Pinel, 69675, Bron cedex, France
- University Claude Bernard Lyon 1, 43 boulevard du 11 Novembre 1918, 69622, Villeurbanne cedex, France
| |
Collapse
|
14
|
Das-Earl P, Schreihofer DA, Sumien N, Schreihofer AM. Temporal and region-specific tau hyperphosphorylation in the medulla and forebrain coincides with development of functional changes in male obese Zucker rats. J Neurophysiol 2024; 131:689-708. [PMID: 38416718 PMCID: PMC11305650 DOI: 10.1152/jn.00409.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 03/01/2024] Open
Abstract
Metabolic syndrome (MetS) is associated with development of tauopathies that contribute to cognitive decline. Without functional leptin receptors, male obese Zucker rats (OZRs) develop MetS, and they have increased phosphorylated tau (ptau) with impaired cognitive function. In addition to regulating energy balance, leptin enhances activation of the hippocampus, which is essential for spatial learning and memory. Whether spatial learning and memory are always impaired in OZRs or develop with MetS is unknown. We hypothesized that male OZRs develop MetS traits that promote regional increases in ptau and functional deficits associated with those brain regions. In the medulla and cortex, tau-pSer199,202 and tau-pSer396 were comparable in juvenile (7-8 wk old) lean Zucker rats (LZRs) and OZRs but increased in 18- to 19-wk-old OZRs. Elevated tau-pSer396 was concentrated in the dorsal vagal complex of the medulla, and by this age OZRs had hypertension with increased arterial pressure variability. In the hippocampus, tau-pSer199,202 and tau-pSer396 were still comparable in 18- to 19-wk-old OZRs and LZRs but elevated in 28- to 29-wk-old OZRs, with emergence of deficits in Morris water maze performance. Comparable escape latencies observed during acquisition in 18- to 19-wk-old OZRs and LZRs were increased in 28- to 29-wk-old OZRs, with greater use of nonspatial search strategies. Increased ptau developed with changes in the insulin/phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway in the hippocampus and cortex but not medulla, suggesting different underlying mechanisms. These data demonstrate that leptin is not required for spatial learning and memory in male OZRs. Furthermore, early development of MetS-associated autonomic dysfunction by the medulla may be predictive of later hippocampal dysfunction and cognitive impairment.NEW & NOTEWORTHY Male obese Zucker rats (OZRs) lack functional leptin receptors and develop metabolic syndrome (MetS). At 16-19 wk, OZRs are insulin resistant, with increased ptau in dorsal medulla and impaired autonomic regulation of AP. At 28-29 wk OZRs develop increased ptau in hippocampus with deficits in spatial learning and memory. Juvenile OZRs lack elevated ptau and these deficits, demonstrating that leptin is not essential for normal function. Elevated ptau and deficits emerge before the onset of diabetes in insulin-resistant OZRs.
Collapse
Affiliation(s)
- Paromita Das-Earl
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Derek A Schreihofer
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Nathalie Sumien
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Ann M Schreihofer
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| |
Collapse
|
15
|
Rudolph S, Badura A, Lutzu S, Pathak SS, Thieme A, Verpeut JL, Wagner MJ, Yang YM, Fioravante D. Cognitive-Affective Functions of the Cerebellum. J Neurosci 2023; 43:7554-7564. [PMID: 37940582 PMCID: PMC10634583 DOI: 10.1523/jneurosci.1451-23.2023] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 11/10/2023] Open
Abstract
The cerebellum, traditionally associated with motor coordination and balance, also plays a crucial role in various aspects of higher-order function and dysfunction. Emerging research has shed light on the cerebellum's broader contributions to cognitive, emotional, and reward processes. The cerebellum's influence on autonomic function further highlights its significance in regulating motivational and emotional states. Perturbations in cerebellar development and function have been implicated in various neurodevelopmental disorders, including autism spectrum disorder and attention deficit hyperactivity disorder. An increasing appreciation for neuropsychiatric symptoms that arise from cerebellar dysfunction underscores the importance of elucidating the circuit mechanisms that underlie complex interactions between the cerebellum and other brain regions for a comprehensive understanding of complex behavior. By briefly discussing new advances in mapping cerebellar function in affective, cognitive, autonomic, and social processing and reviewing the role of the cerebellum in neuropathology beyond the motor domain, this Mini-Symposium review aims to provide a broad perspective of cerebellar intersections with the limbic brain in health and disease.
Collapse
Affiliation(s)
- Stephanie Rudolph
- Department of Neuroscience, Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York 10461
| | - Aleksandra Badura
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, 3015 GD, The Netherlands
| | - Stefano Lutzu
- Department of Neuroscience, Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York 10461
| | - Salil Saurav Pathak
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota 55812
| | - Andreas Thieme
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen, D-45147, Germany
| | - Jessica L Verpeut
- Department of Psychology, Arizona State University, Tempe, Arizona 85287
| | - Mark J Wagner
- National Institute of Neurological Disorders & Stroke, National Institutes of Health, Bethesda, Maryland 20814
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota 55812
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Diasynou Fioravante
- Center for Neuroscience, University of California-Davis, Davis, California 95618
- Department of Neurobiology, Physiology and Behavior, University of California-Davis, Davis, California 95618
| |
Collapse
|