1
|
Su X, Liu S, Gong X, Tong X, Li L, Huo Y, Liu Q, Wang Y, Tan ML, Li Q, Zhang S, Ji W. Regulating the Piezoelectricity of Cyclic Dipeptide-Based Supramolecular Materials through Co-Assembly Strategy. J Am Chem Soc 2025; 147:16255-16269. [PMID: 40304604 DOI: 10.1021/jacs.5c01672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Supramolecular co-assembly can modulate the architecture of molecular assemblies, thereby influencing their electromechanical properties. However, the relationship between supramolecular packing and electromechanical response of co-assemblies remains largely unexplored, posing a challenge in designing high-performance bioinspired piezoelectric materials. Herein, we combined experiments and theoretical calculations to systematically explore the regulation of supramolecular packing and electromechanical properties of cyclic l-aspartyl-l-aspartyl (cyclo-DD (LL))-based assemblies through co-assembling with pyridine derivatives. Crystal structures indicated that intermolecular hydrogen bonding between the carboxyl group of the cyclic dipeptide and the pyridine ring resulted in a markedly different molecular organizations and packing modes of co-assemblies. Density functional theory calculations revealed that increasing the molecular length of the pyridine derivatives enhanced the polarization effect and piezoelectric response of the cyclo-DD (LL)-based co-assemblies due to the reduced structural symmetry. Notably, the maximum piezoelectric coefficient of the cyclo-DD (LL)/4,4'-trimethylenedipyridine (TDP) co-assembly was predicted to be 140.8 pC/N, representing the highest value among peptide-based co-assemblies. Furthermore, cyclo-DD (LL)/TDP co-assembly based piezoelectric nanogenerator could generate stable open-circuit voltages over 3 V under an applied mechanical force of 50 N. For the first time, peptide-based co-assemblies were utilized as active piezoelectric materials to successfully power a display screen. Moreover, the effect of chirality on the piezoelectricity of cyclic dipeptide-based co-assemblies was investigated. This work presents an effective co-assembly strategy to manipulate the piezoelectric response of bioinspired cyclic dipeptide-based assemblies, advancing the development of high-performance piezoelectric molecular materials for sustainable energy harvesting systems.
Collapse
Affiliation(s)
- Xin Su
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Shuaijie Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Xuewen Gong
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaoyu Tong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Lingling Li
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yehong Huo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Qingxi Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yuehui Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Mei-Ling Tan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Qi Li
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Shijin Zhang
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Wei Ji
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
2
|
Veloso SRS, Vijayakanth T, Shankar S, Fridman N, Rencus-Lazar S, Hilliou L, Rodrigues PV, Moura C, Ferreira PMT, Correa-Duarte MA, Castanheira EMS, Gazit E. Self-Assembly Pathway Influence on Dehydropeptide-Based Gel Properties and Drug Release. Macromol Biosci 2025:e70003. [PMID: 40366348 DOI: 10.1002/mabi.202400449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 04/03/2025] [Indexed: 05/15/2025]
Abstract
Low-molecular-weight peptide-based hydrogels formed through self-assembly have emerged as promising candidates for biomedical applications. While the self-assembly process is known to affect the network morphology, its impact on mechanical properties and drug delivery remains poorly understood. In this work, it is explored how different gelation conditions influence the morphology, properties, and drug release profiles of dehydropeptide-based gels. Additionally, it is presented and analyzed, for the first time, the crystal structure of a naphthalene N-capped dehydropeptide (2-Naph-L-Phe-Z-ΔPhe-OH), which reveals a maximum pore diameter of ≈4.08 Å. By changing the preparation conditions, it is found that the stiffness of the hydrogels can vary by nearly three orders of magnitude. Employing spectroscopic and imaging techniques, the relationship between the gelation methods and the resulting mechanical properties is investigated. These findings suggest that the assembly structure, morphology, and non-covalent interactions significantly influence the release profile of model drugs such as doxorubicin, methotrexate, and curcumin. These results provide valuable insights into how preparation conditions can impact the properties of peptide-based hydrogels and their drug release profiles.
Collapse
Affiliation(s)
- Sérgio R S Veloso
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and LaPMET Associate Laboratory, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- CINBIO, Universidad de Vigo, Vigo, 36310, Spain
| | - Thangavel Vijayakanth
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Sudha Shankar
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Natalia Fridman
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Sigal Rencus-Lazar
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Loic Hilliou
- Department of Polymer Engineering, Institute for Polymers and Composites (IPC), University of Minho, Guimarães, 4804-533, Portugal
| | - Pedro V Rodrigues
- Department of Polymer Engineering, Institute for Polymers and Composites (IPC), University of Minho, Guimarães, 4804-533, Portugal
| | - Cacilda Moura
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and LaPMET Associate Laboratory, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Paula M T Ferreira
- Chemistry Centre of the University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | | | - Elisabete M S Castanheira
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and LaPMET Associate Laboratory, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Ehud Gazit
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
3
|
Jeon N, Kim L, Choi SG, Lee H, Min JY, Kim HM, Han EH, Lee E. Self-Assembled Peptide-Gold Nanoparticle 1D Nanohybrids Functionalized with GHK Tripeptide for Enhanced Wound-Healing and Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15080-15096. [PMID: 40019920 DOI: 10.1021/acsami.4c21924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Glycyl-l-histidyl-l-lysine (GHK) tripeptides are known for their remarkable therapeutic potential, including wound-healing, anti-inflammatory activity, and cellular regeneration. However, their clinical application has been significantly hindered by poor biological stability and limited efficacy in a physiological medium. In this study, we introduce a sophisticated approach to overcome these limitations by developing supramolecular peptide nanofiber-gold (Au) nanoparticle (NP) hybrids functionalized with GHK tripeptides. By strategically manipulating peptide self-assembly and NP integration, we demonstrated a useful platform that enhances both therapeutic efficacy and material stability. Our methodology involves the precise engineering of 9-fluorenylmethoxycarbonyl-diphenylalanine scaffolds with GHK and KHG tripeptides, enabling robust nanofibril formation through π-π stacking and hydrogen bonding. Critically, we discovered that the specific amino acid sequence significantly influences the surface exposure of lysine, directly impacting the nanohybrid's wound-healing capabilities. The resultant nanohybrids exhibit exceptional characteristics: Au NPs are spatially confined within the peptide nanofibers, achieving a remarkably uniform size distribution of approximately 3 nm. These nanohybrids demonstrate superior near-infrared (NIR) light absorption and photothermal conversion efficiency, enabling effective eradication of cancer cells and organoids killing under NIR irradiation. This dual-functional nanohybrid integrates biocompatible and enzymatically degradable peptide scaffolds to achieve synergistic wound-healing and cancer-killing effects. By mitigating the cytotoxicity and biodegradability issues associated with conventional photothermal agents, our system provides a promising strategy to improve postoperative cancer therapy and promote tissue regeneration. This work highlights the potential of peptide-inorganic nanohybrids in advancing multifunctional therapeutic platforms for cancer treatment and tissue repair.
Collapse
Affiliation(s)
- Nayeong Jeon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Leeseo Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Seong Gyu Choi
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Hyunseung Lee
- Biopharmaceutical Research Center, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Jin Young Min
- Biopharmaceutical Research Center, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Hye Min Kim
- Biopharmaceutical Research Center, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
- Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Eun Hee Han
- Biopharmaceutical Research Center, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
- Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Eunji Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
4
|
Das TN, Ramesh A, Ghosh A, Moyra S, Maji TK, Ghosh G. Peptide-based nanomaterials and their diverse applications. NANOSCALE HORIZONS 2025; 10:279-313. [PMID: 39629637 DOI: 10.1039/d4nh00371c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The supramolecular self-assembly of peptides offers a promising avenue for both materials science and biological applications. Peptides have garnered significant attention in molecular self-assembly, forming diverse nanostructures with α-helix, β-sheet, and random coil conformations. These self-assembly processes are primarily driven by the amphiphilic nature of peptides and stabilized by non-covalent interactions, leading to complex nanoarchitectures responsive to environmental stimuli. While extensively studied in biomedical applications, including drug delivery and tissue engineering, their potential applications in the fields of piezoresponsive materials, conducting materials, catalysis and energy harvesting remain underexplored. This review comprehensively elucidates the diverse material characteristics and applications of self-assembled peptides. We discuss the multi-stimuli-responsiveness of peptide self-assemblies and their roles as energy harvesters, catalysts, liquid crystalline materials, glass materials and contributors to electrical conductivity. Additionally, we address the challenges and present future perspectives associated with peptide nanomaterials. This review aims to provide insights into the versatile applications of peptide self-assemblies while concisely summarizing their well-established biomedical roles that have previously been extensively reviewed by various research groups, including our group.
Collapse
Affiliation(s)
- Tarak Nath Das
- Molecular Materials Laboratory, New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India.
| | - Aparna Ramesh
- Centre for Nano and Soft Matter Sciences (CeNS), Shivanapura, Dasanapura Hobli, Bengaluru, 562162, India.
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Arghya Ghosh
- Molecular Materials Laboratory, New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India.
| | - Sourav Moyra
- Centre for Nano and Soft Matter Sciences (CeNS), Shivanapura, Dasanapura Hobli, Bengaluru, 562162, India.
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Tapas Kumar Maji
- Molecular Materials Laboratory, New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India.
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit (CPMU), International Centre for Materials Science (ICMS), School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Goutam Ghosh
- Centre for Nano and Soft Matter Sciences (CeNS), Shivanapura, Dasanapura Hobli, Bengaluru, 562162, India.
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
5
|
Biswas S, Umesh, Das B, Koley P, Acharya S, Bhattacharya S. Molecular Propeller Tethering on a Dipeptide Induces a One-Step Conversion of Its Secondary Structure on Water Surface Promoted by Chiral Supramolecular Assembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408634. [PMID: 39610158 DOI: 10.1002/smll.202408634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Indexed: 11/30/2024]
Abstract
Water provides a unique surface for the formation of directed self-assembly and transformation of secondary structures of peptides and proteins as witnessed in the biological systems. Herein a one-step transformation of an amyloid-derived dipeptide is reported from β-sheet to α-helix structures on the water surface, facilitated by chiral supramolecular assembly. The study utilizes various analytical techniques to elucidate the structural transformation and the supramolecular packing of the peptide assemblies. Organizations such as spherical aggregates and molecular nanowires containing β-sheet structure are converted into (2D) molecular sheets comprising a larger planar area yet with a molecular level thickness of α-helix structure. The conformational features of the β-sheet to α-helix structural transformation are dominated by the intermolecular H-bonding, π-π stacking, and C─H···π interactions. Strikingly, the dynamic changes in the dihedral (intramolecular) angle between the aromatic rings of the dipeptide at the water surface alter the molecular packing and shorten the intermolecular H-bonds with larger binding energies required for the secondary structural transformation. Thus, the novel one-step strategy reports herein offers a simple, efficient, and hitherto unprecedented way of chiral supramolecular assembly directed total secondary structural transformation of the dipeptide on water surface.
Collapse
Affiliation(s)
- Sandip Biswas
- School of Applied & Interdisciplinary Sciences (SAIS), Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Umesh
- School of Applied & Interdisciplinary Sciences (SAIS), Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Bidisa Das
- School of Applied & Interdisciplinary Sciences (SAIS), Indian Association for the Cultivation of Science, Kolkata, 700032, India
- Research Institute of Sustainable Energy (RISE), TCG-CREST, Sector V, Salt Lake, Kolkata, 700091, India
| | - Pradyot Koley
- School of Applied & Interdisciplinary Sciences (SAIS), Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Somobrata Acharya
- School of Applied & Interdisciplinary Sciences (SAIS), Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Santanu Bhattacharya
- School of Applied & Interdisciplinary Sciences (SAIS), Indian Association for the Cultivation of Science, Kolkata, 700032, India
- Department of Organic Chemistry, Indian Institute of Science, Bengaluru, 560012, India
- Department of Chemistry, Indian Institute of Science Education and Research, Tirupati, 517619, India
| |
Collapse
|
6
|
Elizebath D, Sharma S, Varughese S, Ramachandran CN, Praveen VK. Monomers Versus Prenucleation Clusters En Route to Polymorphism of Supramolecular Polymers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405305. [PMID: 39491528 DOI: 10.1002/smll.202405305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/04/2024] [Indexed: 11/05/2024]
Abstract
Polymorphism in supramolecular polymers is strongly correlated with the polymerization pathways underlying their formation. To effectively control emerging polymorphs, a comprehensive understanding of nucleation pathways and mechanisms is essential. Herein, a coronene-dipeptide conjugate (Cr-o-FFOEt) is introduced and its self-assembly into two different stable 1D supramolecular polymorphs (Agg 1 and 2f) is observed in the same solvent composition (water/THF, 7:3 v/v) and same concentration at room temperature, following two competitive self-assembly pathways. The difference in the mode of solvent addition triggers the two self-assembly pathways. Furthermore, the isolated intermediate Agg 2i is found to transform into Agg 1 or Agg 2f under controlled experimental conditions. The supramolecular aggregates of Cr-o-FFOEt are thoroughly examined with the help of optical, chiroptical, and morphological techniques to understand the subtle difference in choosing the self-assembling pathways. The studies reveal that the nanotube formation of Agg 1 follows a classical nucleation-elongation supramolecular polymerization mechanism (involving monomers). In contrast, the helical fibers of Agg 2f are formed by the involvement of preorganized oligomers (nonclassical process). The observation highlights the underappreciated role of prenucleation clusters in pathway complexity and polymorphism of supramolecular 1D polymers.
Collapse
Affiliation(s)
- Drishya Elizebath
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sanjay Sharma
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Sunil Varughese
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - C N Ramachandran
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Vakayil K Praveen
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
7
|
Kim M, Choi H, Kim M, Kim S, Yun S, Lee E, Cho J, Jung SH, Jung JH. Pathway control in metallosupramolecular polymerization of a monoalkynylplatinum(ii) terpyridine complex through competitive complex formation. Chem Sci 2024; 15:19729-19738. [PMID: 39568936 PMCID: PMC11575569 DOI: 10.1039/d4sc06083k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
Understanding the pathway complexity of supramolecular polymerization in biomimetic systems has been a challenging issue due to its importance in the development of rationally controlled materials and insight into self-assembly in nature. We herein report a kinetic trapping strategy as a new methodology on how to control the pathway of metallosupramolecular polymerization by employing secondary metal ions and/or ligands which form competitive complex species. For this, we proposed monoalkynylplatinum(ii) metalloligand (Pt-L1) derived from a bis(amideterpyridine) receptor with one unoccupied terpyridyl terminal as a coordination site for the secondary metal ion (Ag+ or Fe2+). The inherent pathway complexity intrinsic to the Pt-L1-anchored supramolecular polymerization has been modulated through the incorporation of Ag+ or Fe2+. During the supramolecular polymerization of Pt-L1 in the presence of Ag+ and Fe2+, the added secondary ligand bpy (4,4'-dimethyl-2,2'-bipyridine) or DA18C6 (1,14-diaza-18-crown-6) form complexes as kinetic species, thereby inhibiting spontaneous polymerizations. The supramolecular polymer (SP-I), with a spherical structure composed of Pt-L1 in the absence of metal ions as a kinetic product, did not transform into the thermodynamic product, namely supramolecular polymer (SP-III) with a left-handed fiber structure, due to a high energy barrier. However, the supramolecular polymer (SP-II) with a left-handed fiber structure, which was formed by Pt-L1 in the presence of AgNO3, converted to SP-III upon the addition of NaCl. Additionally, SP-II transformed into supramolecular polymer (SP-IV) upon the addition of Fe(BF4)2, through an on-pathway process. Both the morphological and emissive characteristics of the resulting supramolecular polymers can be fine-tuned via the Pt⋯Pt or Ag⋯Ag interactions as well as through the changes of the coordination geometry depending on the existing Ag+ or Fe2+ ions. The present results have important implications in expanding the scope of pathway complexity to produce a variety of products via kinetically controlled processes involving secondary metal ions and ligands.
Collapse
Affiliation(s)
- Minhye Kim
- Department of Chemistry, Gyeongsang National University Jinju 52828 Korea
| | - Heekyoung Choi
- Department of Chemistry, Gyeongsang National University Jinju 52828 Korea
| | - Minjoo Kim
- Department of Chemistry, Gyeongsang National University Jinju 52828 Korea
| | - Seonghan Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology Ulsan 44919 Korea
| | - Seohyeon Yun
- Department of Chemistry and Advanced Materials, Gangneung-Wonju National University Gangneung 25457 Korea
| | - Eunji Lee
- Department of Chemistry and Advanced Materials, Gangneung-Wonju National University Gangneung 25457 Korea
| | - Jaeheung Cho
- Department of Chemistry, Ulsan National Institute of Science and Technology Ulsan 44919 Korea
| | - Sung Ho Jung
- Department of Chemistry, Gyeongsang National University Jinju 52828 Korea
- Research Institute of Advanced Materials Chemistry, Gyeongsang National University Jinju 52828 Korea
| | - Jong Hwa Jung
- Department of Chemistry, Gyeongsang National University Jinju 52828 Korea
- Research Institute of Advanced Materials Chemistry, Gyeongsang National University Jinju 52828 Korea
| |
Collapse
|
8
|
Kumar V, Anand P, Srivastava A, Akhter Y, Verma D. The structural insights of L-asparaginase from Pseudomonas aeruginosa CSPS4 at elevated temperatures highlight its thermophilic nature. 3 Biotech 2024; 14:230. [PMID: 39280800 PMCID: PMC11391003 DOI: 10.1007/s13205-024-04072-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/28/2024] [Indexed: 09/18/2024] Open
Abstract
In the present investigation, a novel thermophilic L-asparaginase (Asn_PA) from Pseudomonas aeruginosa CSPS4 was investigated to explore its structural insights at elevated temperatures. Sequence analysis of Asn_PA depicted three conserved motifs (VVILATGGTIAG, DGIVITHGTDTLEETAYFL, and, LRKQGVQIIRSSHVNAGGF), of them, two motifs exhibit catalytically-important residues i.e., T45 and T125. A homology modelling-based structure model for Asn_PA was generated with 4PGA as the top-matched template. The predicted structure was validated and energy was minimized. Molecular docking was carried out cantered at the active site for asparagine and glutamine as its substrate ligands. The enzyme-substrate interaction analysis showed binding affinities of - 4.8 and - 4.1 kcal/mol for asparagine and glutamine respectively. Molecular dynamics (MD) simulation studies showed a better stability of Asn_PA at temperatures of 60 °C, over 40, 50 and, 80 °C, making this enzyme a novel L-asparaginase from other mesophilic P. aeruginosa strain. The trajectory analysis showed that RMSD, Rg, and, SASA values correlate well with each other in the different tested temperatures during the MD analysis. Thus, the present findings encourage extensive characterization of the Asn_PA using laboratory experiments to understand the structural behavior of the active site loop in an open or closed state with and without the substrate molecules. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04072-w.
Collapse
Affiliation(s)
- Vinay Kumar
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025 India
| | - Pragya Anand
- Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025 India
| | - Ankita Srivastava
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025 India
| | - Yusuf Akhter
- Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025 India
| | - Digvijay Verma
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025 India
| |
Collapse
|
9
|
Ramesh A, Das TN, Maji TK, Ghosh G. Unravelling denaturation, temperature and cosolvent-driven chiroptical switching in peptide self-assembly with switchable piezoelectric responses. Chem Sci 2024:d4sc05016a. [PMID: 39309077 PMCID: PMC11409859 DOI: 10.1039/d4sc05016a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024] Open
Abstract
Herein, we explore the intricate pathway complexity, focusing on the dynamic interplay between kinetic and thermodynamic states, during the supramolecular self-assembly of peptides. We uncover a multiresponsive chiroptical switching phenomenon influenced by temperature, denaturation and content of cosolvent in peptide self-assembly through pathway complexity (kinetic vs. thermodynamic state). Particularly noteworthy is the observation of chiroptical switching during the denaturation process, marking an unprecedented phenomenon in the literature. Furthermore, the variation in cosolvent contents produces notable chiroptical switching effects, emphasizing their infrequent incidence. Such chiroptical switching yields switchable piezoresponsive peptide-based nanomaterials, demonstrating the potential for dynamic control over material properties. In essence, our work pioneers the ability to control piezoresponsive behavior by transforming nanostructures from kinetic to thermodynamic states through pathway complexity. This approach provides new insights and opportunities for tailoring material properties in self-assembled systems.
Collapse
Affiliation(s)
- Aparna Ramesh
- Centre for Nano and Soft Matter Sciences (CeNS) Shivanapura, Dasanapura Hobli Bangalore 562162 India
- Academy of Scientific and Innovation Research (AcSIR) Ghaziabad 201002 India
| | - Tarak Nath Das
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| | - Tapas Kumar Maji
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
- Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| | - Goutam Ghosh
- Centre for Nano and Soft Matter Sciences (CeNS) Shivanapura, Dasanapura Hobli Bangalore 562162 India
- Academy of Scientific and Innovation Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
10
|
Criado-Gonzalez M, Peñas MI, Barbault F, Müller AJ, Boulmedais F, Hernández R. Salt-induced Fmoc-tripeptide supramolecular hydrogels: a combined experimental and computational study of the self-assembly. NANOSCALE 2024; 16:9887-9898. [PMID: 38683577 DOI: 10.1039/d4nr00335g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Delving into the mechanism behind the molecular interactions at the atomic level of short-sequence peptides plays a key role in the development of nanomaterials with specific structure-property-function relationships from a bottom-up perspective. Due to their poor water solubility, the self-assembly of Fmoc-bearing peptides is usually induced by dissolution in an organic solvent, followed by a dilution step in water, pH changes, and/or a heating-cooling process. Herein, we report a straightforward methodology for the gelation of Fmoc-FFpY (F: phenylalanine; Y: tyrosine; and p: PO42-), a negatively charged tripeptide, in NaCl solution. The electrostatic interactions between Fmoc-FFpY and Na+ ions give rise to different nanofibrillar hydrogels with rheological properties and nanofiber sizes modulated by the NaCl concentration in pure aqueous media. Initiated by the electrostatic interactions between the peptide phosphate groups and the Na+ ions, the peptide self-assembly is stabilized thanks to hydrogen bonds between the peptide backbones and the π-π stacking of aromatic Fmoc and phenyl units. The hydrogels showed self-healing and thermo-responsive properties for potential biomedical applications. Molecular dynamics simulations from systems devoid of prior training not only confirm the aggregation of peptides at a critical salt concentration and the different interactions involved, but also corroborate the secondary structure of the hydrogels at the microsecond timescale. It is worth highlighting the remarkable achievement of reproducing the morphological behavior of the hydrogels using atomistic simulations. To our knowledge, this study is the first to report such a correspondence.
Collapse
Affiliation(s)
- Miryam Criado-Gonzalez
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), 28006 Madrid, Spain.
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - Mario Iván Peñas
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), 28006 Madrid, Spain.
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | | | - Alejandro J Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Fouzia Boulmedais
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR 22), 67034 Strasbourg, France
| | - Rebeca Hernández
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), 28006 Madrid, Spain.
| |
Collapse
|
11
|
Daou D, Zarate Y, Maaloum M, Collin D, Fleith G, Constantin D, Moulin E, Giuseppone N. Out-of-Equilibrium Mechanical Disruption of β-Amyloid-Like Fibers using Light-Driven Molecular Motors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311293. [PMID: 38236822 DOI: 10.1002/adma.202311293] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/10/2024] [Indexed: 01/26/2024]
Abstract
Artificial molecular motors have the potential to generate mechanical work on their environment by producing autonomous unidirectional motions when supplied with a source of energy. However, the harnessing of this mechanical work to subsequently activate various endoenergetic processes that can be useful in materials science remains elusive. Here, it is shown that by integrating a light-driven rotary motor through hydrogen bonds in a β-amyloid-like structure forming supramolecular hydrogels, the mechanical work generated during the constant rotation of the molecular machine under UV irradiation is sufficient to disrupt the β-amyloid fibers and to trigger a gel-to-sol transition at macroscopic scale. This melting of the gel under UV irradiation occurs 25 °C below the temperature needed to melt it by solely using thermal activation. In the dark, a reversible sol-gel transition is observed as the system fully recovers its original microstructure, thus illustrating the possible access to new kinds of motorized materials that can be controlled by advanced out-of-equilibrium thermodynamics.
Collapse
Affiliation(s)
- Dania Daou
- SAMS Research Group, CNRS, Université de Strasbourg, Institut Charles Sadron UPR 22, Strasbourg, 67000, France
| | - Yohan Zarate
- SAMS Research Group, CNRS, Université de Strasbourg, Institut Charles Sadron UPR 22, Strasbourg, 67000, France
| | - Mounir Maaloum
- SAMS Research Group, CNRS, Université de Strasbourg, Institut Charles Sadron UPR 22, Strasbourg, 67000, France
| | | | | | - Doru Constantin
- CNRS, Institut Charles Sadron UPR 22, Strasbourg, 67000, France
| | - Emilie Moulin
- SAMS Research Group, CNRS, Université de Strasbourg, Institut Charles Sadron UPR 22, Strasbourg, 67000, France
| | - Nicolas Giuseppone
- SAMS Research Group, CNRS, Université de Strasbourg, Institut Charles Sadron UPR 22, Strasbourg, 67000, France
- Institut Universitaire de France (IUF), Paris, 75005, France
| |
Collapse
|
12
|
Shao X, Wang C, Wang C, Bai M, Hou T, Wang X, Yan C, Guan P, Hu X. Novel photocatalytic carbon dots: efficiently inhibiting amyloid aggregation and quickly disaggregating amyloid aggregates. NANOSCALE 2024; 16:8074-8089. [PMID: 38563405 DOI: 10.1039/d3nr06165e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Amyloid aggregation is implicated in the pathogenesis of various neurodegenerative disorders, such as Alzheimer's disease (AD) and Parkinson's disease (PD). It is critical to develop high-performance drugs to combat amyloid-related diseases. Most identified nanomaterials exhibit limited biocompatibility and therapeutic efficacy. In this work, we used a solvent-free carbonization process to prepare new photo-responsive carbon nanodots (CNDs). The surface of the CNDs is densely packed with chemical groups. CNDs with large, conjugated domains can interact with proteins through π-π stacking and hydrophobic interactions. Furthermore, CNDs possess the ability to generate singlet oxygen species (1O2) and can be used to oxidize amyloid. The hydrophobic interaction and photo-oxidation can both influence amyloid aggregation and disaggregation. Thioflavin T (ThT) fluorescence analysis and circular dichroism (CD) spectroscopy indicate that CNDs can block the transition of amyloid from an α-helix structure to a β-sheet structure. CNDs demonstrate efficacy in alleviating cytotoxicity induced by Aβ42 and exhibit promising blood-brain barrier (BBB) permeability. CNDs have small size, low biotoxicity, good fluorescence and photocatalytic properties, and provide new ideas for the diagnosis and treatment of amyloid-related diseases.
Collapse
Affiliation(s)
- Xu Shao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Chao Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Chaoli Wang
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Air Force Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Mengyao Bai
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Tongtong Hou
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Xin Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Chaoren Yan
- School of Medicine, Xizang Minzu University, Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, Xianyang, Shaanxi 712082, China.
| | - Ping Guan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Xiaoling Hu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| |
Collapse
|
13
|
Nezhad NG, Jamaludin SZB, Rahman RNZRA, Yahaya NM, Oslan SN, Shariff FM, Isa NM, Leow TC. Functional expression, purification, biochemical and biophysical characterizations, and molecular dynamics simulation of a histidine acid phosphatase from Saccharomyces cerevisiae. World J Microbiol Biotechnol 2024; 40:171. [PMID: 38630327 DOI: 10.1007/s11274-024-03970-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024]
Abstract
A histidine acid phosphatase (HAP) (PhySc) with 99.50% protein sequence similarity with PHO5 from Saccharomyces cerevisiae was expressed functionally with the molecular mass of ∼110 kDa through co-expression along with the set of molecular chaperones dnaK, dnaJ, GroESL. The purified HAP illustrated the optimum activity of 28.75 ± 0.39 U/mg at pH 5.5 and 40 ˚C. The Km and Kcat values towards calcium phytate were 0.608 ± 0.09 mM and 650.89 ± 3.6 s- 1. The half-lives (T1/2) at 55 and 60 ˚C were 2.75 min and 55 s, respectively. The circular dichroism (CD) demonstrated that PhySc includes 30.5, 28.1, 21.3, and 20.1% of random coils, α-Helix, β-Turns, and β-Sheet, respectively. The Tm recorded by CD for PhySc was 56.5 ± 0.34˚C. The molecular docking illustrated that His59 and Asp322 act as catalytic residues in the PhySc. MD simulation showed that PhySc at 40 ˚C has higher structural stability over those of the temperatures 60 and 80 ˚C that support the thermodynamic in vitro investigations. Secondary structure content results obtained from MD simulation indicated that PhySc consists of 34.03, 33.09, 17.5, 12.31, and 3.05% of coil, helix, turn, sheet, and helix310, respectively, which is almost consistent with the experimental results.
Collapse
Affiliation(s)
- Nima Ghahremani Nezhad
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
| | - Siti Zahra Binti Jamaludin
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
| | - Normi Mohd Yahaya
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
| | - Fairolniza Mohd Shariff
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
| | - Nurulfiza Mat Isa
- Laboratory of Vaccine and Biomolecules (VacBio), Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia.
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia.
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia.
| |
Collapse
|
14
|
Li M, Wu A, Li L, Li Z, Zang H. Three Stages of Dynamic Assembly Process of Dipeptide-Based Supramolecular Gel Revealed by In Situ Infrared Spectroscopy. ACS Biomater Sci Eng 2024; 10:863-874. [PMID: 38240580 DOI: 10.1021/acsbiomaterials.3c01609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
The exploration of short peptide-based assembly is vital for understanding protein-misfolding-associated diseases and seeking strategies to attenuate aggregate formation. While, the molecular mechanism of their structural evolution remains poorly studied in view of the dynamic and unpredictable assembly process. Herein, infrared (IR) spectroscopy, which serves as an in situ and real-time analytical technique, was intelligently employed to investigate the mechanism of phase transition and aggregate formation during the dynamic assembly process of diphenylalanine. Combined with other spectroscopy and electron microscopy technologies, three stages of gel formation and the main driving forces in different stages were revealed. A variety of stoichiometric methods such as continuous wavelet transform, principal component analysis, and two-dimensional correlation spectroscopy techniques were conducted to analyze the original time-dependent IR spectra to obtain detailed information on the changes in the amide bands and hydration layer. The microenvironment of hydrogen bonding among amide bands was significantly changed with the addition of pyridine derivatives, resulting in great differences in the properties of co-assembled gels. This work not only provides a universal analytical way to reveal the dynamic assembly process of dipeptide-based supramolecular gel but also expands their applications in supramolecular regulation and high-throughput screens in situ.
Collapse
Affiliation(s)
- Meiqi Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Aoli Wu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Lian Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zibo Li
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Hengchang Zang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
15
|
Elizebath D, Lim JH, Nishiyama Y, Vedhanarayanan B, Saeki A, Ogawa Y, Praveen VK. Nonclassical Crystal Growth of Supramolecular Polymers in Aqueous Medium. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306175. [PMID: 37771173 DOI: 10.1002/smll.202306175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/08/2023] [Indexed: 09/30/2023]
Abstract
A mechanistic understanding of the principles governing the hierarchical organization of supramolecular polymers offers a paradigm for tailoring synthetic molecular architectures at the nano to micrometric scales. Herein, the unconventional crystal growth mechanism of a supramolecular polymer of superbenzene(coronene)-diphenylalanine conjugate (Cr-FFOEt ) is demonstrated. 3D electron diffraction (3D ED), a technique underexplored in supramolecular chemistry, is effectively utilized to gain a molecular-level understanding of the gradual growth of the initially formed poorly crystalline hairy, fibril-like supramolecular polymers into the ribbon-like crystallites. The further evolution of these nanosized flat ribbons into microcrystals by oriented attachment and lateral fusion is probed by time-resolved microscopy and electron diffraction. The gradual morphological and structural changes reveal the nonclassical crystal growth pathway, where the balance of strong and weak intermolecular interactions led to a structure beyond the nanoscale. The role of distinct π-stacking and H-bonding interactions that drive the nonclassical crystallization process of Cr-FFOEt supramolecular polymers is analyzed in comparison to analogous molecules, Py-FFOEt and Cr-FF forming helical and twisted fibers, respectively. Furthermore, the Cr-FFOEt crystals formed through nonclassical crystallization are found to improve the functional properties.
Collapse
Affiliation(s)
- Drishya Elizebath
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jia Hui Lim
- Univ. Grenoble Alpes, CNRS, CERMAV, Grenoble, 38000, France
| | | | - Balaraman Vedhanarayanan
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
| | - Akinori Saeki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yu Ogawa
- Univ. Grenoble Alpes, CNRS, CERMAV, Grenoble, 38000, France
| | - Vakayil K Praveen
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
16
|
Gallo E, Diaferia C, Giordano S, Rosa E, Carrese B, Piccialli G, Borbone N, Morelli G, Oliviero G, Accardo A. Ultrashort Cationic Peptide Fmoc-FFK as Hydrogel Building Block for Potential Biomedical Applications. Gels 2023; 10:12. [PMID: 38247735 PMCID: PMC10815546 DOI: 10.3390/gels10010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/23/2024] Open
Abstract
Fmoc-diphenylalanine (Fmoc-FF) is a low-molecular-weight peptide hydrogelator. This simple all-aromatic peptide can generate self-supporting hydrogel materials, which have been proposed as novel materials for diagnostic and pharmaceutical applications. Our knowledge of the molecular determinants of Fmoc-FF aggregation is used as a guide to design new peptide-based gelators, with features for the development of improved tools. Here, we enlarge the plethora of Fmoc-FF-based hydrogelated matrices by studying the properties of the Fmoc-FFK tripeptide, alone or in combination with Fmoc-FF. For multicomponent matrices, the relative weight ratios between Fmoc-FFK and Fmoc-FF (specifically, 1/1, 1/5, 1/10, and 1/20 w/w) are evaluated. All the systems and their multiscale organization are studied using different experimental techniques, including rheology, circular dichroism, Fourier transform infrared spectroscopy, and scanning electron microscopy (SEM). Preliminary profiles of biocompatibility for the studied systems are also described by testing them in vitro on HaCaT and 3T3-L1 cell lines. Additionally, the lysine (K) residue at the C-terminus of the Fmoc-FF moiety introduces into the supramolecular material chemical functions (amino groups) which may be useful for modification/derivatization with bioactive molecules of interest, including diagnostic probes, chelating agents, active pharmaceutical ingredients, or peptide nucleic acids.
Collapse
Affiliation(s)
- Enrico Gallo
- IRCCS SYNLAB SDN, Via Gianturco 113, 80143 Naples, Italy; (E.G.); (S.G.); (B.C.)
| | - Carlo Diaferia
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (C.D.); (E.R.); (G.P.); (N.B.); (G.M.)
| | - Sabrina Giordano
- IRCCS SYNLAB SDN, Via Gianturco 113, 80143 Naples, Italy; (E.G.); (S.G.); (B.C.)
| | - Elisabetta Rosa
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (C.D.); (E.R.); (G.P.); (N.B.); (G.M.)
| | - Barbara Carrese
- IRCCS SYNLAB SDN, Via Gianturco 113, 80143 Naples, Italy; (E.G.); (S.G.); (B.C.)
| | - Gennaro Piccialli
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (C.D.); (E.R.); (G.P.); (N.B.); (G.M.)
| | - Nicola Borbone
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (C.D.); (E.R.); (G.P.); (N.B.); (G.M.)
| | - Giancarlo Morelli
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (C.D.); (E.R.); (G.P.); (N.B.); (G.M.)
| | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy;
| | - Antonella Accardo
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (C.D.); (E.R.); (G.P.); (N.B.); (G.M.)
| |
Collapse
|
17
|
Giordano S, Gallo E, Diaferia C, Rosa E, Carrese B, Borbone N, Scognamiglio PL, Franzese M, Oliviero G, Accardo A. Multicomponent Peptide-Based Hydrogels Containing Chemical Functional Groups as Innovative Platforms for Biotechnological Applications. Gels 2023; 9:903. [PMID: 37998993 PMCID: PMC10671135 DOI: 10.3390/gels9110903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/03/2023] [Accepted: 11/11/2023] [Indexed: 11/25/2023] Open
Abstract
Multicomponent hydrogels (HGs) based on ultrashort aromatic peptides have been exploited as biocompatible matrices for tissue engineering applications, the delivery of therapeutic and diagnostic agents, and the development of biosensors. Due to its capability to gel under physiological conditions of pH and ionic strength, the low molecular-weight Fmoc-FF (Nα-fluorenylmethoxycarbonyl-diphenylalanine) homodimer is one of the most studied hydrogelators. The introduction into the Fmoc-FF hydrogel of additional molecules like protein, organic compounds, or other peptide sequences often allows the generation of novel hydrogels with improved mechanical and functional properties. In this perspective, here we studied a library of novel multicomponent Fmoc-FF based hydrogels doped with different amounts of the tripeptide Fmoc-FFX (in which X= Cys, Ser, or Thr). The insertion of these tripeptides allows to obtain hydrogels functionalized with thiol or alcohol groups that can be used for their chemical post-derivatization with bioactive molecules of interest like diagnostic or biosensing agents. These novel multicomponent hydrogels share a similar peptide organization in their supramolecular matrix. The hydrogels' biocompatibility, and their propensity to support adhesion, proliferation, and even cell differentiation, assessed in vitro on fibroblast cell lines, allows us to conclude that the hybrid hydrogels are not toxic and can potentially act as a scaffold and support for cell culture growth.
Collapse
Affiliation(s)
- Sabrina Giordano
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (S.G.); (C.D.); (N.B.)
| | - Enrico Gallo
- IRCCS SYNLAB SDN, Via Gianturco 113, 80143 Naples, Italy; (E.G.); (B.C.); (M.F.)
| | - Carlo Diaferia
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (S.G.); (C.D.); (N.B.)
| | - Elisabetta Rosa
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (S.G.); (C.D.); (N.B.)
| | - Barbara Carrese
- IRCCS SYNLAB SDN, Via Gianturco 113, 80143 Naples, Italy; (E.G.); (B.C.); (M.F.)
| | - Nicola Borbone
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (S.G.); (C.D.); (N.B.)
| | | | - Monica Franzese
- IRCCS SYNLAB SDN, Via Gianturco 113, 80143 Naples, Italy; (E.G.); (B.C.); (M.F.)
| | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy;
| | - Antonella Accardo
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (S.G.); (C.D.); (N.B.)
| |
Collapse
|
18
|
Monti M, Scarel E, Hassanali A, Stener M, Marchesan S. Diverging conformations guide dipeptide self-assembly into crystals or hydrogels. Chem Commun (Camb) 2023; 59:10948-10951. [PMID: 37605851 DOI: 10.1039/d3cc02682e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The prediction of dipeptide assembly into crystals or gels is challenging. This work reveals the diverging conformational landscape that guides self-organization towards different outcomes. In silico and experimental data enabled deciphering of the electronic circular dichroism (ECD) spectra of self-assembling dipeptides to reveal folded or extended conformers as key players.
Collapse
Affiliation(s)
- M Monti
- Chem. Pharm. Sc. Dept., University of Trieste, Via L. Giorgieri 1, Trieste 34127, Italy.
| | - E Scarel
- Chem. Pharm. Sc. Dept., University of Trieste, Via L. Giorgieri 1, Trieste 34127, Italy.
| | - A Hassanali
- The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, Trieste 34151, Italy
| | - M Stener
- Chem. Pharm. Sc. Dept., University of Trieste, Via L. Giorgieri 1, Trieste 34127, Italy.
| | - S Marchesan
- Chem. Pharm. Sc. Dept., University of Trieste, Via L. Giorgieri 1, Trieste 34127, Italy.
| |
Collapse
|
19
|
Castro VIB, Araújo AR, Duarte F, Sousa-Franco A, Reis RL, Pashkuleva I, Pires RA. Glycopeptide-Based Supramolecular Hydrogels Induce Differentiation of Adipose Stem Cells into Neural Lineages. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37327399 DOI: 10.1021/acsami.3c05309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We applied a bottom-up approach to develop biofunctional supramolecular hydrogels from an aromatic glycodipeptide. The self-assembly of the glycopeptide was induced by either temperature manipulation (heating-cooling cycle) or solvent (DMSO to water) switch. The sol-gel transition was salt-triggered in cell culture media and resulted in gels with the same chemical compositions but different mechanical properties. Human adipose derived stem cells (hASCs) cultured on these gels under basal conditions (i.e., without differentiation factors) overexpressed neural markers, such as GFAP, Nestin, MAP2, and βIII-tubulin, confirming the differentiation into neural lineages. The mechanical properties of the gels influenced the number and distribution of the adhered cells. A comparison with gels obtained from the nonglycosylated peptide showed that glycosylation is crucial for the biofunctionality of the hydrogels by capturing and preserving essential growth factors, e.g., FGF-2.
Collapse
Affiliation(s)
- Vânia I B Castro
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Guimarães, Portugal
- ICVS/3B's─PT Government Associated Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Ana R Araújo
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Guimarães, Portugal
- ICVS/3B's─PT Government Associated Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Filipa Duarte
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Guimarães, Portugal
- ICVS/3B's─PT Government Associated Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - António Sousa-Franco
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Guimarães, Portugal
- ICVS/3B's─PT Government Associated Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Guimarães, Portugal
- ICVS/3B's─PT Government Associated Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Iva Pashkuleva
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Guimarães, Portugal
- ICVS/3B's─PT Government Associated Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Ricardo A Pires
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Guimarães, Portugal
- ICVS/3B's─PT Government Associated Laboratory, 4805-017 Braga/Guimarães, Portugal
| |
Collapse
|
20
|
Tian J, Fu D, Liu Y, Guan Y, Miao S, Xue Y, Chen K, Huang S, Zhang Y, Xue L, Chong T, Yang P. Rectifying disorder of extracellular matrix to suppress urethral stricture by protein nanofilm-controlled drug delivery from urinary catheter. Nat Commun 2023; 14:2816. [PMID: 37198161 PMCID: PMC10192346 DOI: 10.1038/s41467-023-38282-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 04/24/2023] [Indexed: 05/19/2023] Open
Abstract
Urethral stricture secondary to urethral injury, afflicting both patients and urologists, is initiated by excessive deposition of extracellular matrix in the submucosal and periurethral tissues. Although various anti-fibrotic drugs have been applied to urethral stricture by irrigation or submucosal injection, their clinical feasibility and effectiveness are limited. Here, to target the pathological state of the extracellular matrix, we design a protein-based nanofilm-controlled drug delivery system and assemble it on the catheter. This approach, which integrates excellent anti-biofilm properties with stable and controlled drug delivery for tens of days in one step, ensures optimal efficacy and negligible side effects while preventing biofilm-related infections. In a rabbit model of urethral injury, the anti-fibrotic catheter maintains extracellular matrix homeostasis by reducing fibroblast-derived collagen production and enhancing metalloproteinase 1-induced collagen degradation, resulting in a greater improvement in lumen stenosis than other topical therapies for urethral stricture prevention. Such facilely fabricated biocompatible coating with antibacterial contamination and sustained-drug-release functionality could not only benefit populations at high risk of urethral stricture but also serve as an advanced paradigm for a range of biomedical applications.
Collapse
Affiliation(s)
- Juanhua Tian
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, West Five Road, No. 157, 710004, Xi'an, China
| | - Delai Fu
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, West Five Road, No. 157, 710004, Xi'an, China
| | - Yongchun Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Yibing Guan
- Department of Urological Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan Province, China
| | - Shuting Miao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Yuquan Xue
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, West Five Road, No. 157, 710004, Xi'an, China
| | - Ke Chen
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University (BUAA), 100191, Beijing, China
| | - Shanlong Huang
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, West Five Road, No. 157, 710004, Xi'an, China
| | - Yanfeng Zhang
- School of Chemistry, Xi'an Jiaotong University, 710049, Xi'an, China
| | - Li Xue
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, West Five Road, No. 157, 710004, Xi'an, China
| | - Tie Chong
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, West Five Road, No. 157, 710004, Xi'an, China.
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China.
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China.
| |
Collapse
|
21
|
Bobylev AG, Yakupova EI, Bobyleva LG, Molochkov NV, Timchenko AA, Timchenko MA, Kihara H, Nikulin AD, Gabdulkhakov AG, Melnik TN, Penkov NV, Lobanov MY, Kazakov AS, Kellermayer M, Mártonfalvi Z, Galzitskaya OV, Vikhlyantsev IM. Nonspecific Amyloid Aggregation of Chicken Smooth-Muscle Titin: In Vitro Investigations. Int J Mol Sci 2023; 24:ijms24021056. [PMID: 36674570 PMCID: PMC9861715 DOI: 10.3390/ijms24021056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
A giant multidomain protein of striated and smooth vertebrate muscles, titin, consists of tandems of immunoglobulin (Ig)- and fibronectin type III (FnIII)-like domains representing β-sandwiches, as well as of disordered segments. Chicken smooth muscles express several titin isoforms of ~500-1500 kDa. Using various structural-analysis methods, we investigated in vitro nonspecific amyloid aggregation of the high-molecular-weight isoform of chicken smooth-muscle titin (SMTHMW, ~1500 kDa). As confirmed by X-ray diffraction analysis, under near-physiological conditions, the protein formed amorphous amyloid aggregates with a quaternary cross-β structure within a relatively short time (~60 min). As shown by circular dichroism and Fourier-transform infrared spectroscopy, the quaternary cross-β structure-unlike other amyloidogenic proteins-formed without changes in the SMTHMW secondary structure. SMTHMW aggregates partially disaggregated upon increasing the ionic strength above the physiological level. Based on the data obtained, it is not the complete protein but its particular domains/segments that are likely involved in the formation of intermolecular interactions during SMTHMW amyloid aggregation. The discovered properties of titin position this protein as an object of interest for studying amyloid aggregation in vitro and expanding our views of the fundamentals of amyloidogenesis.
Collapse
Affiliation(s)
- Alexander G. Bobylev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia
- Correspondence: (A.G.B.); (I.M.V.)
| | - Elmira I. Yakupova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow Region, Russia
| | - Liya G. Bobyleva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia
| | - Nikolay V. Molochkov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia
| | - Alexander A. Timchenko
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia
| | - Maria A. Timchenko
- Institute for Biological Instrumentation, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia
| | - Hiroshi Kihara
- Department of Early Childhood Education, Himeji-Hinomoto College, 890 Koro, Kodera-cho, Himeji 679-2151, Japan
| | - Alexey D. Nikulin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia
| | - Azat G. Gabdulkhakov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia
| | - Tatiana N. Melnik
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia
| | - Nikita V. Penkov
- Institute of Cell Biophysics, FRC PSCBR, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia
| | - Michail Y. Lobanov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia
| | - Alexey S. Kazakov
- Institute for Biological Instrumentation, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia
| | - Miklós Kellermayer
- Department of Biophysics and Radiation Biology, Semmelweis University, 1085 Budapest, Hungary
| | - Zsolt Mártonfalvi
- Department of Biophysics and Radiation Biology, Semmelweis University, 1085 Budapest, Hungary
| | - Oxana V. Galzitskaya
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia
| | - Ivan M. Vikhlyantsev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Correspondence: (A.G.B.); (I.M.V.)
| |
Collapse
|
22
|
Kang SG, Kim KY, Cho Y, Jeong DY, Lee JH, Nishimura T, Lee SS, Kwak SK, You Y, Jung JH. Circularly Polarized Luminescence Active Supramolecular Nanotubes Based on Pt
II
Complexes That Undergo Dynamic Morphological Transformation and Helicity Inversion. Angew Chem Int Ed Engl 2022; 61:e202207310. [DOI: 10.1002/anie.202207310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Seok Gyu Kang
- Department of Chemistry and Research Institution of Natural Sciences Gyeongsang National University (GNU) Jinju 52828 Republic of Korea
| | - Ka Young Kim
- Department of Chemistry and Research Institution of Natural Sciences Gyeongsang National University (GNU) Jinju 52828 Republic of Korea
| | - Yumi Cho
- Department of Energy Enginerring School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Dong Yeun Jeong
- Division of Chemical Engineering and Materials Science Graduate Program in System Health Science and Engineering Ewha Womans University Seoul 03760 Republic of Korea
| | - Ji Ha Lee
- Chemical Engineering Program Graduate School of Advanced Science and Engineering Hiroshima University Hiroshima 739-8527 Japan
| | - Tomoki Nishimura
- Department of Chemistry and Materials Faculty of Textile Science and Technology Shinshu University Nagano 386-8567 Japan
| | - Shim Sung Lee
- Department of Chemistry and Research Institution of Natural Sciences Gyeongsang National University (GNU) Jinju 52828 Republic of Korea
| | - Sang Kyu Kwak
- Department of Energy Enginerring School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Youngmin You
- Division of Chemical Engineering and Materials Science Graduate Program in System Health Science and Engineering Ewha Womans University Seoul 03760 Republic of Korea
| | - Jong Hwa Jung
- Department of Chemistry and Research Institution of Natural Sciences Gyeongsang National University (GNU) Jinju 52828 Republic of Korea
| |
Collapse
|
23
|
Antioxidative, cytotoxic, and antibacterial properties of self-assembled glycine-histidine-based dipeptides with or without silver nanoparticles in bio-inspired film. ARHIV ZA HIGIJENU RADA I TOKSIKOLOGIJU 2022; 73:169-177. [PMID: 35792768 PMCID: PMC9287833 DOI: 10.2478/aiht-2022-73-3658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/01/2022] [Indexed: 12/04/2022]
Abstract
Recent years have seen much attention being given to self-assembly of dipeptide-based structures, especially to self-regulation of dipeptide structures with different amino acid sequences. In this study we investigated the effects of varying solvent environments on the self-assembly of glycine-histidine (Gly-His) dipeptide structures. First we determined the morphological properties of Gly-His films formed in different solvent environments with scanning electron microscopy and then structural properties with Fourier-transform infrared (FTIR) spectroscopy. In addition, we studied the effects of Gly-His films on silver nanoparticle (AgNP) formation and the antioxidant and cytotoxic properties of AgNPs obtained in this way. We also, assessed antibacterial activities of Gly-His films against Gram-negative Escherichia coli and Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus. Silver nanoparticle-decorated Gly-His films were not significantly cytotoxic at concentrations below 2 mg/mL but had antibacterial activity. We therefore believe that AgNP-decorated Gly-His films at concentrations below 2 mg/mL can be used safely against bacteria.
Collapse
|
24
|
Kang SG, Kim KY, Cho Y, Jeong DY, Lee JH, Nishimura T, Lee SS, Kwak SK, You Y, Jung JH. Circularly Polarized Luminescence Active Supramolecular Nanotubes Based on Pt(II) Complexes that Undergo Dynamic Morphological Transformation and Helicity Inversion. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Seok Gyu Kang
- Gyeongsang National University Department of Chemistry KOREA, REPUBLIC OF
| | - Ka Young Kim
- Gyeongsang National University Department of Chemistry KOREA, REPUBLIC OF
| | - Yumi Cho
- Ulsan National Institute of Science and Technology Department of Energy Enginerring KOREA, REPUBLIC OF
| | - Dong Yeun Jeong
- Ewha Womans University Division of Chemical Engineering and Materials Science KOREA, REPUBLIC OF
| | - Ji Ha Lee
- Hiroshima University: Hiroshima Daigaku Chemical Engineering Program KOREA, REPUBLIC OF
| | - Tomoki Nishimura
- Shinshu Daigaku Department of Chemistry and Materials KOREA, REPUBLIC OF
| | - Shim Sung Lee
- Gyeongsang National University Department of Chemistry KOREA, REPUBLIC OF
| | - Sang Kyu Kwak
- Ulsan National Institute of Science and Technology Department of Energy Enginerring KOREA, REPUBLIC OF
| | - Youngmin You
- Ewha Womans University Division of Chemical Engineering and Materials Science KOREA, REPUBLIC OF
| | - Jong Hwa Jung
- Gyeongsang National University Department of Chemistry Gyeongsang National University 501 jinjudaero 52828 Jinju KOREA, REPUBLIC OF
| |
Collapse
|
25
|
Qiu R, Sasselli IR, Álvarez Z, Sai H, Ji W, Palmer LC, Stupp SI. Supramolecular Copolymers of Peptides and Lipidated Peptides and Their Therapeutic Potential. J Am Chem Soc 2022; 144:5562-5574. [PMID: 35296133 DOI: 10.1021/jacs.2c00433] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Supramolecular peptide chemistry offers a versatile strategy to create chemical systems useful as new biomaterials with potential to deliver nearly 1000 known candidate peptide therapeutics or integrate other types of bioactivity. We report here on the co-assembly of lipidated β-sheet-forming peptides with soluble short peptides, yielding supramolecular copolymers with various degrees of internal order. At low peptide concentrations, the co-monomer is protected by lodging within internal aqueous compartments and stabilizing internal β-sheets formed by the lipidated peptides. At higher concentrations, the peptide copolymerizes with the lipidated peptide and disrupts the β-sheet secondary structure. The thermodynamic metastability of the co-assembly in turn leads to the spontaneous release of peptide monomers and thus serves as a potential mechanism for drug delivery. We demonstrated the function of these supramolecular systems using a drug candidate for Alzheimer's disease and found that the copolymers enhance neuronal cell viability when the soluble peptide is released from the assemblies.
Collapse
Affiliation(s)
- Ruomeng Qiu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ivan R Sasselli
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 E. Superior Street, Chicago, Illinois 60611, United States
| | - Zaida Álvarez
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 E. Superior Street, Chicago, Illinois 60611, United States.,Department of Medicine, Northwestern University, 676 N. St. Clair Street, Chicago, Illinois 60611, United States
| | - Hiroaki Sai
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 E. Superior Street, Chicago, Illinois 60611, United States.,Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
| | - Wei Ji
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 E. Superior Street, Chicago, Illinois 60611, United States
| | - Liam C Palmer
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 E. Superior Street, Chicago, Illinois 60611, United States
| | - Samuel I Stupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 E. Superior Street, Chicago, Illinois 60611, United States.,Department of Medicine, Northwestern University, 676 N. St. Clair Street, Chicago, Illinois 60611, United States.,Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States.,Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
26
|
Criado-Gonzalez M, Espinosa-Cano E, Rojo L, Boulmedais F, Aguilar MR, Hernández R. Injectable Tripeptide/Polymer Nanoparticles Supramolecular Hydrogel: A Candidate for the Treatment of Inflammatory Pathologies. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10068-10080. [PMID: 35179869 DOI: 10.1021/acsami.1c22993] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Supramolecular peptide-based hydrogels attract great attention in several fields, i.e., biomedicine, catalysis, energy, and materials chemistry, due to the noncovalent nature of the self-assembly and functional tunable properties defined by the amino acid sequence. In this work, we developed an injectable hybrid supramolecular hydrogel whose formation was triggered by electrostatic interactions between a phosphorylated tripeptide, Fmoc-FFpY (F: phenylalanine, pY: phosphorylated tyrosine), and cationic polymer nanoparticles made of vinylimidazole and ketoprofen (poly(HKT-co-VI) NPs). Hydrogel formation was assessed through inverted tube tests, and its fibrillary structure, around polymer NPs, was observed by transmission electron microscopy. Interestingly, peptide self-assembly yields the formation of nontwisted and twisted fibers, which could be attributed to β-sheets and α-helix structures, respectively, as characterized by circular dichroism and infrared spectroscopies. An increase of the elastic modulus of the Fmoc-FFpY/polymer NPs hybrid hydrogels was observed with peptide concentration as well as its injectability property, due to its shear thinning behavior and self-healing ability. After checking their stability under physiological conditions, the cytotoxicity properties of these hybrid hydrogels were evaluated in contact with human dermal fibroblasts (FBH) and murine macrophages (RAW 264.7). Finally, the Fmoc-FFpY/polymer NPs hybrid hydrogels exhibited a great nitric oxide reduction (∼67%) up to basal values of pro-inflammatory RAW 264.7 cells, thus confirming their excellent anti-inflammatory properties for the treatment of localized inflammatory pathologies.
Collapse
Affiliation(s)
- Miryam Criado-Gonzalez
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), c/ Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Eva Espinosa-Cano
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), c/ Juan de la Cierva, 3, 28006 Madrid, Spain
- CIBER-BBN, c/ Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain
| | - Luis Rojo
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), c/ Juan de la Cierva, 3, 28006 Madrid, Spain
- CIBER-BBN, c/ Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain
| | - Fouzia Boulmedais
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR 22), 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France
| | - María Rosa Aguilar
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), c/ Juan de la Cierva, 3, 28006 Madrid, Spain
- CIBER-BBN, c/ Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain
| | - Rebeca Hernández
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), c/ Juan de la Cierva, 3, 28006 Madrid, Spain
| |
Collapse
|
27
|
Wang X, Zhao L, Wang C, Feng X, Ma Q, Yang G, Wang T, Yan X, Jiang J. Phthalocyanine-Triggered Helical Dipeptide Nanotubes with Intense Circularly Polarized Luminescence. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104438. [PMID: 34816581 DOI: 10.1002/smll.202104438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Nanotubes with circularly polarized luminescence (CPL) are attracting much attention due to many potential applications, such as chiroptical materials, displays, and sensing. However, it remains a challenge to change the assemblies of ordinarily molecular building blocks into CPL supramolecular nanotubes. Herein, the regulation of quite common dipeptide (Fmoc-FF) assemblies into unprecedented helical nanotubes exhibiting intense CPL is reported by simply doping a few phthalocyanine (octakis(carboxyl)phthalocyaninato zinc complex (Pc)) molecules. Interestingly, altering the Fmoc-FF/Pc molar ratios over a wide range cannot change the nanotubes structures according to transmission electron microscopy (TEM) and atomic force microscope (AFM) measurements. Although molecular dynamics simulations suggest that the noncovalent interactions between Fmoc-FF and Pc are quite weak, few Pc molecules can still change the secondary structures of a large number of Fmoc-FF assemblies, which hierarchically form helical supramolecular nanotubes with long-range ordered molecular packing, leading to intense CPL signals with large luminescence dissymmetry factor (glum = 0.04). Consequently, the chiral reorganization of Fmoc-FF assemblies is dependent on the coassembly between Pc molecule and Fmoc-FF supramolecular architectures. These results open the possibility for the fine-tuning of helix and supramolecular nanotubes with CPL properties by using a small number of cofactors.
Collapse
Affiliation(s)
- Xiqian Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Luyang Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chiming Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xuenan Feng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qing Ma
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Gengxiang Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Tianyu Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
28
|
Interaction of Supramolecular Congo Red and Congo Red-Doxorubicin Complexes with Proteins for Drug Carrier Design. Pharmaceutics 2021; 13:pharmaceutics13122027. [PMID: 34959309 PMCID: PMC8707210 DOI: 10.3390/pharmaceutics13122027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Targeted immunotherapy has expanded to simultaneous delivery of drugs, including chemotherapeutics. The aim of the presented research is to design a new drug carrier system. Systems based on the use of proteins as natural components of the body offer the chance to boost safety and efficacy of targeted drug delivery and excess drug removal. Congo red (CR) type supramolecular, self-assembled ribbon-like structures (SRLS) were previously shown to interact with some proteins, including albumin and antibodies complexed with antigen. CR can intercalate some chemotherapeutics including doxorubicin (Dox). The goal of this work was to describe the CR-Dox complexes, to analyze their interaction with some proteins, and to explain the mechanism of this interaction. In the present experiments, a model system composed of heated immunoglobulin light chain Lλ capable of CR binding was used. Heat aggregated immunoglobulins (HAI) and albumin were chosen as another model system. The results of experiments employing methods such as gel filtration chromatography and dynamic light scattering confirmed the formation of the CR-Dox complex of large size and properties different from the free CR structures. Electrophoresis and chromatography experiments have shown the binding of free CR to heated Lλ while CR-Dox mixed structures were not capable of forming such complexes. HAI was able to bind both free CR and CR-Dox complexes. Albumin also bound both CR and its complex with Dox. Additionally, we observed that albumin-bound CR-Dox complexes were transferred from albumin to HAI upon addition of HAI. DLS analyses showed that interaction of CR with Dox distinctly increased the hydrodynamic diameter of CR-Dox compared with a free CR supramolecular structure. To our knowledge, individual small proteins such as Lλ may bind upon heating a few molecules of Congo red tape penetrating protein body due to the relatively low cohesion of the dye micelle. If, however, the compactness is high (in the case of, e.g., CR-Dox) large ribbon-like, micellar structures appear. They do not divide easily into smaller portions and cannot attach to proteins where there is no room for binding large ligands. Such binding is, however, possible by albumin which is biologically adapted to form complexes with different large ligands and by tightly packed immune complexes and heat aggregated immunoglobulin-specific protein complex structures of even higher affinity for Congo red than albumin. The CR clouds formed around them also bind the CR-Dox complexes. The presented research is essential in the search for optimum solutions for SRLS application in immuno-targeting therapeutic strategies, especially with the use of chemotherapeutics.
Collapse
|
29
|
Lopez-Silva TL, Schneider JP. From structure to application: Progress and opportunities in peptide materials development. Curr Opin Chem Biol 2021; 64:131-144. [PMID: 34329941 PMCID: PMC8585687 DOI: 10.1016/j.cbpa.2021.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/10/2021] [Accepted: 06/20/2021] [Indexed: 01/12/2023]
Abstract
For over 20 years, peptide materials in their hydrogel or soluble fibril form have been used for biomedical applications such as drug delivery, cell culture, vaccines, and tissue regeneration. To facilitate the translation of these materials, key areas of research still need to be addressed. Their structural characterization lags compared to amyloid proteins. Many of the structural features designed to guide materials formation are primarily being characterized by their observation in atomic resolution structures of amyloid assemblies. Herein, these motifs are examined in relation to peptide designs identifying common interactions that drive assembly and provide structural specificity. Current efforts to design complex structures, as reviewed here, highlight the need to extend the structural revolution of amyloid proteins to peptide assemblies to validate design principles. With respect to clinical applications, the fundamental interactions and responses of proteins, cells, and the immune system to peptide materials are still not well understood. Only a few trends are just now emerging for peptide materials interactions with biological systems. Understanding how peptide material properties influence these interactions will enable the translation of materials towards current and emerging applications.
Collapse
Affiliation(s)
- Tania L Lopez-Silva
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, United States
| | - Joel P Schneider
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, United States.
| |
Collapse
|
30
|
Gao T, Wu Y, Wang W, Deng C, Chen Y, Yi L, Song Y, Li W, Xu L, Xie Y, Fang L, Jin Q, Zhang L, Tang BZ, Xie M. Biomimetic Glucan Particles with Aggregation-Induced Emission Characteristics for Noninvasive Monitoring of Transplant Immune Response. ACS NANO 2021; 15:11908-11928. [PMID: 34264052 DOI: 10.1021/acsnano.1c03029] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Real-time monitoring of post-transplant immune response is critical to prolong the survival of grafts. The current gold standard for assessing the immune response to graft is biopsy. However, such a method is invasive and prone to false negative results due to limited tissue size available and the heterogeneity of the rejection site. Herein, we report biomimetic glucan particles with aggregation-induced emission (AIE) characteristics (HBTTPEP/GPs) for real-time noninvasive monitoring of post-transplant immune response. We have found that the positively charged near-infrared AIEgens can effectively aggregate in the confined space of glucan particles (GPs), thereby turning on the fluorescence emission. HBTTPEP/GPs can track macrophages for 7 days without hampering the bioactivity. Oral administration of HBTTPEP/GPs can specially target macrophages by mimicking yeast, which then migrate to the transplant rejection site. The fluorescence emitted from HBTTPEP/GPs correlated well with the infiltration of macrophages and the degree of allograft rejection. Furthermore, a single oral HBTTPEP/GPs dose can dynamically evaluate the therapeutic response to immunosuppressive therapy. Consequently, the biomimetic AIE-active glucan particles can be developed as a promising probe for immune-monitoring in solid organ transplantation.
Collapse
Affiliation(s)
- Tang Gao
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Ya Wu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Wenyuan Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Cheng Deng
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yihan Chen
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Luyang Yi
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yishu Song
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Wenqu Li
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Lingling Xu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yuji Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Lingyun Fang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Qiaofeng Jin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Li Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, China
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| |
Collapse
|
31
|
Erdoğan H. Cation-based approach to morphological diversity of diphenylalanine dipeptide structures. SOFT MATTER 2021; 17:5221-5230. [PMID: 33949599 DOI: 10.1039/d1sm00083g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Different approaches are taken in order to examine the spontaneous arrangement processes of dipeptide structures. One of these approaches is to examine the effects of common cations on dipeptide structures' self-assembly processes. In this study, the effects of Al3+, Cu2+, Pb2+, Hg2+, Mg2+, Zn2+, Cd2+, Fe2+ and Ni2+ cations on the self-assembly processes of diphenylalanine (FF) dipeptide molecules were investigated. A detailed examination was made of the self-assembly of FF dipeptides in the presence of Hg2+, and a spherical architecture structure was shown. The morphological diversity resulting from the effects of Hg2+ cations at different concentrations on FF dipeptides was explained using Scanning Electron Microscopy (SEM), X-ray Diffraction, (XRD), and Fourier Transform Infrared Spectroscopy (FTIR) techniques. It is thought that this work will contribute to the indexing of the effects of toxic species such as Hg2+ on dipeptides, which are the smallest peptide units obtained. We think that the examination of FF dipeptides in the structures of amyloid plaques, which are thought to affect neurological disorders such as Alzheimer's and Parkinson's, will prompt further studies.
Collapse
Affiliation(s)
- Hakan Erdoğan
- University of Health Sciences Turkey, Gülhane Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 06018 Ankara, Turkey.
| |
Collapse
|
32
|
Ghosh P, Torner J, Arora PS, Maayan G. Dual Control of Peptide Conformation with Light and Metal Coordination. Chemistry 2021; 27:8956-8959. [PMID: 33909298 DOI: 10.1002/chem.202101006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Indexed: 11/08/2022]
Abstract
The design of a stimuli-responsive peptide whose conformation is controlled by wavelength-specific light and metal coordination is described. The peptide adopts a defined tertiary structure and its conformation can be modulated between an α-helical coiled coil and β-sheet. The peptide is designed with a hydrophobic interface to induce coiled coil formation and is based on a recently described strategy to obtain switchable helix dimers. Herein, we endowed the helix dimer with 8-hydroxyquinoline (HQ) groups to achieve metal coordination and shift to a β-sheet structure. It was found that the conformational shift only occurs upon introduction of Zn2+ ; other metal ions (Cu2+ , Fe3+ , Co2+ , Mg2 , and Ni2+ ) do not offer switching likely due to non-specific metal-peptide coordination. A control peptide lacking the metal-coordinating residues does not show conformational switching with Zn2+ supporting the role of this metal in stabilizing the β-sheet conformation in a defined manner.
Collapse
Affiliation(s)
- Pritam Ghosh
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa, 3200008, Israel
| | - Justin Torner
- Department of Chemistry, New York University, New York, New York, 10003, United States
| | - Paramjit S Arora
- Department of Chemistry, New York University, New York, New York, 10003, United States
| | - Galia Maayan
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa, 3200008, Israel
| |
Collapse
|
33
|
Wang Y, Yang L, Wang M, Zhang J, Qi W, Su R, He Z. Bioinspired Phosphatase-like Mimic Built from the Self-Assembly of De Novo Designed Helical Short Peptides. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00129] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yutong Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, P. R. China
| | - Lijun Yang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, P. R. China
| | - Mengfan Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, P. R. China
| | - Jiaxing Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, P. R. China
| | - Wei Qi
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, P. R. China
- The Co-Innovation Centre of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, P. R. China
| | - Rongxin Su
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, P. R. China
- The Co-Innovation Centre of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, P. R. China
| | - Zhimin He
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, P. R. China
| |
Collapse
|
34
|
Oh JS, Kim KY, Park J, Lee H, Park Y, Cho J, Lee SS, Kim H, Jung SH, Jung JH. Dynamic Transformation of a Ag+-Coordinated Supramolecular Nanostructure from a 1D Needle to a 1D Helical Tube via a 2D Ribbon Accompanying the Conversion of Complex Structures. J Am Chem Soc 2021; 143:3113-3123. [DOI: 10.1021/jacs.0c10678] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jeong Sang Oh
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ka Young Kim
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jaehyeon Park
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyeonju Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Younwoo Park
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jaeheung Cho
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Shim Sung Lee
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sung Ho Jung
- Department of Liberal Arts, Gyeongnam National University of Science and Technology (GNTECH), Jinju 52725, Republic of Korea
| | - Jong Hwa Jung
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
35
|
Prasanna G, Jing P. Polyphenol binding disassembles glycation-modified bovine serum albumin amyloid fibrils. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:119001. [PMID: 33038859 DOI: 10.1016/j.saa.2020.119001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Glycation of protein results in the formation of advanced glycation end-products (AGEs) and leads to deposition as amyloid fibrils. Adhesive structural properties of polyphenols to aromatic amino acids draw significance in promoting, accelerating and/or stabilizing on-pathway and off-pathway folding intermediates, although the mechanistic action remains unclear. In this study, polyphenols remodeling mature AGEs modified amyloid fibrils were investigated through UV-visible spectroscopy, fluorescence spectroscopy, transmission electron microscopy, atomic force microscopy, circular dichroism spectroscopy, MALDI-MS/MS analysis and molecular docking studies. Our findings confirmed the glycation-mediated transformation of native protein into β-sheet rich amyloid fibrils. SDS-PAGE results suggested the presence of shorter peptide fragments ranging from ~10 kDa to ~40 kDa. MALDI-MS/MS results identified the plausible sequences to be His105-His181, Arg193-Lys242, Leu325-Tyr410, and Ala451-Tyr529. TEM and AFM results suggested that polyphenols binding mature amyloid fibrils remodel/disassemble them into distinct aggregate structures or non-amyloid fibrils. Circular dichroism studies suggested that polyphenols upon binding amyloid fibrils stabilizes and transforms the secondary structure towards helical or random coil-like conformation. Molecular modeling studies suggested high binding affinity and hydrophobic interaction to be the main driving force in remodeling perspective. Together, our findings suggest that polyphenols could differentially remodel mature AGEs-modified amyloid fibrils into distinct aggregate structures through non-covalent interactions and can alleviate AGEs-mediated amyloidosis.
Collapse
Affiliation(s)
- Govindarajan Prasanna
- Shanghai Food Safety and Engineering Technology Research Center, Key Lab of Urban Agriculture (South), Bor S. Luh Food Safety Research Center, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pu Jing
- Shanghai Food Safety and Engineering Technology Research Center, Key Lab of Urban Agriculture (South), Bor S. Luh Food Safety Research Center, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
36
|
Veloso SRS, Jervis PJ, Silva JFG, Hilliou L, Moura C, Pereira DM, Coutinho PJG, Martins JA, Castanheira EMS, Ferreira PMT. Supramolecular ultra-short carboxybenzyl-protected dehydropeptide-based hydrogels for drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111869. [PMID: 33641890 DOI: 10.1016/j.msec.2021.111869] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/15/2020] [Accepted: 01/05/2021] [Indexed: 01/29/2023]
Abstract
Self-assembled peptide-based hydrogels are promising materials for biomedical research owing to biocompatibility and similarity to the extracellular matrix, amenable synthesis and functionalization and structural tailoring of the rheological properties. Wider developments of self-assembled peptide-based hydrogels in biomedical research and clinical translation are hampered by limited commercial availability allied to prohibitive costs. In this work a focused library of Cbz-protected dehydrodipeptides Cbz-L-Xaa-Z-ΔPhe-OH (Xaa= Met, Phe, Tyr, Ala, Gly) was synthesised and evaluated as minimalist hydrogels. The Cbz-L-Met-Z-ΔPhe-OH and Cbz-L-Phe-Z-ΔPhe-OH hydrogelators were comprehensively evaluated regarding molecular aggregation and self-assembly, gelation, biocompatibility and as drug carriers for delivery of the natural compound curcumin and the clinically important antitumor drug doxorubicin. Drug release profiles and FRET studies of drug transport into small unilamellar vesicles (as biomembrane models) demonstrated that the Cbz-protected dehydropeptide hydrogels are effective nanocarriers for drug delivery. The expedite and scalable synthesis (in 3 steps), using commercially available reagents and amenable reaction conditions, makes Cbz-protected dehydrodipeptide hydrogels, widely available at affordable cost to the research community.
Collapse
Affiliation(s)
- Sérgio R S Veloso
- Centre of Physics (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Peter J Jervis
- Centre of Chemistry (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; REQUIMTE/LAQV, Lab. of Pharmacognosy, Dep. of Chemistry, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Joana F G Silva
- Centre of Physics (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Loic Hilliou
- Institute for Polymers and Composites/I3N, Department of Polymer Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - C Moura
- Centre of Physics (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - David M Pereira
- REQUIMTE/LAQV, Lab. of Pharmacognosy, Dep. of Chemistry, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Paulo J G Coutinho
- Centre of Physics (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - J A Martins
- Centre of Chemistry (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | - Paula M T Ferreira
- Centre of Chemistry (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
37
|
Qi Y, Yi P, He T, Song X, Liu Y, Li Q, Zheng J, Song R, Liu C, Zhang Z, Peng W, Zhang Y. Quercetin-loaded selenium nanoparticles inhibit amyloid-β aggregation and exhibit antioxidant activity. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125058] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
38
|
Ji W, Xue B, Bera S, Guerin S, Liu Y, Yuan H, Li Q, Yuan C, Shimon LJW, Ma Q, Kiely E, Tofail SAM, Si M, Yan X, Cao Y, Wang W, Yang R, Thompson D, Li J, Gazit E. Tunable Mechanical and Optoelectronic Properties of Organic Cocrystals by Unexpected Stacking Transformation from H- to J- and X-Aggregation. ACS NANO 2020; 14:10704-10715. [PMID: 32806055 PMCID: PMC7450703 DOI: 10.1021/acsnano.0c05367] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Molecular stacking modes, generally classified as H-, J-, and X-aggregation, play a key role in determining the optoelectronic properties of organic crystals. However, the control of stacking transformation of a specific molecule is an unmet challenge, and a priori prediction of the performance in different stacking modes is extraordinarily difficult to achieve. In particular, the existence of hybrid stacking modes and their combined effect on physicochemical properties of molecular crystals are not fully understood. Herein, unexpected stacking transformation from H- to J- and X-aggregation is observed in the crystal structure of a small heterocyclic molecule, 4,4'-bipyridine (4,4'-Bpy), upon coassembly with N-acetyl-l-alanine (AcA), a nonaromatic amino acid derivative. This structural transformation into hybrid stacking mode improves physicochemical properties of the cocrystals, including a large red-shifted emission, enhanced supramolecular chirality, improved thermal stability, and higher mechanical properties. While a single crystal of 4,4'-Bpy shows good optical waveguiding and piezoelectric properties due to the uniform elongated needles and low symmetry of crystal packing, the significantly lower band gap and resistance of the cocrystal indicate improved conductivity. This study not only demonstrates cocrystallization-induced packing transformation between H-, J-, and X-aggregations in the solid state, leading to tunable mechanical and optoelectronic properties, but also will inspire future molecular design of organic functional materials by the coassembly strategy.
Collapse
Affiliation(s)
- Wei Ji
- School
of Molecular Cell Biology and Biotechnology, George S. Wise Faculty
of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Bin Xue
- National
Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, Jiangsu, China
| | - Santu Bera
- School
of Molecular Cell Biology and Biotechnology, George S. Wise Faculty
of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sarah Guerin
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick, V94 T9PX, Ireland
| | - Yanqing Liu
- Key
Laboratory for Magnetism and Magnetic Materials of the Ministry of
Education, Lanzhou University, Lanzhou 730000, China
| | - Hui Yuan
- School of
Advanced Materials and Nanotechnology, Xidian
University, Xi’an 710126, China
| | - Qi Li
- State
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China
| | - Chengqian Yuan
- State
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China
| | - Linda J. W. Shimon
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Qing Ma
- Institute
of Chemical Materials, China Academy of
Engineering Physics, Mianyang 621900, China
| | - Evan Kiely
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick, V94 T9PX, Ireland
| | - Syed A. M. Tofail
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick, V94 T9PX, Ireland
| | - Mingsu Si
- Key
Laboratory for Magnetism and Magnetic Materials of the Ministry of
Education, Lanzhou University, Lanzhou 730000, China
| | - Xuehai Yan
- State
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China
| | - Yi Cao
- National
Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, Jiangsu, China
| | - Wei Wang
- National
Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, Jiangsu, China
| | - Rusen Yang
- School of
Advanced Materials and Nanotechnology, Xidian
University, Xi’an 710126, China
| | - Damien Thompson
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick, V94 T9PX, Ireland
| | - Junbai Li
- Beijing
National Laboratory for Molecular Sciences, CAS Key Lab of Colloid
Interface and Chemical Thermodynamics, Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ehud Gazit
- School
of Molecular Cell Biology and Biotechnology, George S. Wise Faculty
of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
39
|
Ji W, Yuan C, Wang F, Liu J, Qin M, Yan X, Feng C. Deciphering the structure-property relationship in coumarin-based supramolecular organogel materials. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
40
|
Ji W, Yuan C, Chakraborty P, Makam P, Bera S, Rencus-Lazar S, Li J, Yan X, Gazit E. Coassembly-Induced Transformation of Dipeptide Amyloid-Like Structures into Stimuli-Responsive Supramolecular Materials. ACS NANO 2020; 14:7181-7190. [PMID: 32427482 PMCID: PMC7616928 DOI: 10.1021/acsnano.0c02138] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Conformational transition of proteins and peptides into highly stable, β-sheet-rich structures is observed in many amyloid-associated neurodegenerative disorders, yet the precise mechanism of amyloid formation at the molecular level remains poorly understood due to the complex molecular structures. Short peptides provide simplified models for studying the molecular basis of the assembly mechanism that governs β-sheet fibrillation processes underlying the formation and inhibition of amyloid-like structures. Herein, we report a supramolecular coassembly strategy for the inhibition and transformation of stable β-sheet-rich amyloid-derived dipeptide self-assemblies into adaptable secondary structural fibrillar assemblies by mixing with bipyridine derivatives. The interplay between the type and mixing ratio of bipyridine derivatives allowed the variable coassembly process with stimuli-responsive functional properties, studied by various experimental characterizations and computational methods. Furthermore, the resulting coassemblies showed functional redox- and photoresponsive properties, making them promising candidates for controllable drug release and fluorescent imprint. This work presents a coassembly strategy not only to explore the mechanism of amyloid-like structure formation and inhibition at the molecular level but also to manipulate amyloid-like structures into responsive supramolecular coassemblies for material science and biotechnology applications.
Collapse
Affiliation(s)
- Wei Ji
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Chengqian Yuan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences 100190 Beijing, China
| | - Priyadarshi Chakraborty
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Pandeeswar Makam
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Santu Bera
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sigal Rencus-Lazar
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences 100190 Beijing, China
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Materials Science and Engineering Iby and Aladar Fleischman Faculty of Engineering Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
41
|
Criado-Gonzalez M, Loftin B, Rodon Fores J, Vautier D, Kocgozlu L, Jierry L, Schaaf P, Boulmedais F, Harth E. Enzyme assisted peptide self-assemblies trigger cell adhesion in high density oxime based host gels. J Mater Chem B 2020; 8:4419-4427. [PMID: 32186320 DOI: 10.1039/d0tb00456a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Peptide supramolecular self-assemblies are recognized as important components in responsive hydrogel based materials with applications in tissue engineering and regenerative medicine. Studying the influence of hydrogel matrices on the self-assembly behavior of peptides and interaction with cells is essential to guide the future development of engineered biomaterials. In this contribution, we present a PEG based host hydrogel material generated by oxime click chemistry that shows cellular adhesion behavior in response to enzyme assisted peptide self-assembly (EASA) within the host gel. This hydrogel prepared from poly(dimethylacrylamide-co-diacetoneacrylamide), poly(DMA-DAAM) with high molar fractions (49%) of DAAM and dialkoxyamine PEG cross-linker, was studied in the presence of embedded enzyme alkaline phosphatase (AP) and a non-adhesive cell behavior towards NIH 3T3 fibroblasts was observed. When brought into contact with a Fmoc-FFpY peptide solution (pY: phosphorylated tyrosine), the gel forms intercalated Fmoc-FFY peptide self-assemblies upon diffusion of Fmoc-FFpY into the cross-linked hydrogel network as was confirmed by circular dichroism, fluorescence emission spectroscopy and confocal microscopy. Nevertheless, the mechanical properties do not change significantly after the peptide self-assembly in the host gel. This enzyme assisted peptide self-assembly promotes fibroblast cell adhesion that can be enhanced if Fmoc-F-RGD peptides are added to the pre-gelator Fmoc-FFpY peptide solution. Cell adhesion results mainly from interactions of cells with the non-covalent peptide self-assemblies present in the gel despite the fact that the mechanical properties are very close to those of the native host gel. This result is in contrast to numerous studies which showed that the mechanical properties of a substrate are key parameters of cell adhesion. It opens up the possibility to develop a diverse set of hybrid materials to control cell fate in culture due to tailored self-assemblies of peptides responding to the environment provided by the host guest gel.
Collapse
Affiliation(s)
- Miryam Criado-Gonzalez
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, 67034 Strasbourg, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Zhao W, Tropp J, Qiao B, Pink M, Azoulay JD, Flood AH. Tunable Adhesion from Stoichiometry-Controlled and Sequence-Defined Supramolecular Polymers Emerges Hierarchically from Cyanostar-Stabilized Anion-Anion Linkages. J Am Chem Soc 2020; 142:2579-2591. [PMID: 31931561 DOI: 10.1021/jacs.9b12645] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sequence-controlled supramolecular polymers offer new design paradigms for generating stimuli-responsive macromolecules with enhanced functionalities. The dynamic character of supramolecular links present challenges to sequence definition in extended supramolecular macromolecules, and design principles remain nascent. Here, we demonstrate the first example of using stoichiometry-control to specify the monomer sequence in a linear supramolecular polymer by synthesizing both a homopolymer and an alternating copolymer from the same glycol-substituted cyanostar macrocycle and phenylene-linked diphosphate monomers. A 2:1 stoichiometry between macrocycle and diphosphate produces a supramolecular homopolymer of general formula (A)n comprised of repeating units of cyanostar-stabilized phosphate-phosphate dimers. Using a 1:1 stoichiometry, an alternating (AB)n structure is produced with half the phosphate dimers now stabilized by the additional counter cations that emerge hierarchically after forming the stronger cyanostar-stabilized phosphate dimers. These new polymer materials and binding motifs are sufficient to bear normal and shear stress to promote significant and tunable adhesive properties. The homopolymer (A)n, consisting of cyanostar-stabilized anti-electrostatic linkages, shows adhesion strength comparable to commercial superglue formulations based on polycyanoacrylate but is thermally reversible. Unexpectedly, and despite including traditional ionic linkages, the alternating copolymer (AB)n shows weaker adhesion strength more similar to commercial white glue based on poly(vinyl acetate). Thus, the adhesion properties can be tuned over a wide range by simply controlling the stoichiometric ratio of monomers. This study offers new insight into supramolecular polymers composed of custom-designed anion and receptor monomers and demonstrates the utility of emerging functional materials based on anion-anion linkages.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Joshua Tropp
- School of Polymer Science and Engineering , The University of Southern Mississippi , 118 College Drive , Hattiesburg , Mississippi 39406 , United States
| | - Bo Qiao
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Maren Pink
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Jason D Azoulay
- School of Polymer Science and Engineering , The University of Southern Mississippi , 118 College Drive , Hattiesburg , Mississippi 39406 , United States
| | - Amar H Flood
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| |
Collapse
|
43
|
Tian J, Liu Y, Miao S, Yang Q, Hu X, Han Q, Xue L, Yang P. Amyloid-like protein aggregates combining antifouling with antibacterial activity. Biomater Sci 2020; 8:6903-6911. [DOI: 10.1039/d0bm00760a] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A new class of biopolymer coating based on amyloid-like protein aggregates is reported to combine both antifouling and antibacterial activity.
Collapse
Affiliation(s)
- Juanhua Tian
- Department of Urology
- The Second Affiliated Hospital of Xi'an Jiaotong University
- Xi'an 710004
- China
| | - Yongchun Liu
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710119
| | - Shuting Miao
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710119
| | - Qingmin Yang
- School of Chemistry and Chemical Engineering
- Northwestern Polytechnical University
- Xi'an 710072
- China
| | - Xinyi Hu
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710119
| | - Qian Han
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710119
| | - Li Xue
- Department of Urology
- The Second Affiliated Hospital of Xi'an Jiaotong University
- Xi'an 710004
- China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710119
| |
Collapse
|