1
|
Chen C, Wang Q, Zhang Z, Liu Z, Xu C, Ren W. Facile Growth of h-BN Films by Using Surface-Activated h-BN Powders as Precursors. SMALL METHODS 2025; 9:e2401422. [PMID: 39950512 DOI: 10.1002/smtd.202401422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/03/2024] [Indexed: 04/25/2025]
Abstract
Atomically thick hexagonal boron nitride (h-BN) films have gained increasing interest, such as nanoelectronics and protection coatings. Chemical vapor deposition (CVD) has been proven to be an efficient method for synthesizing h-BN thin films, but its precursors are still limited. Here, it is reported that a novel and easily available precursor, surface-activated h-BN (As-hBN), with NH3/N2 as an additional nitrogen source is used for CVD growth of monolayer h-BN films on the Cu foils. The as-grown h-BN films can significantly enhance the anti-oxidation ability of copper. Molecular dynamics simulations reveal that the reactivity of the As-hBN precursors is attributed to the decomposition of unstable BO3 and O-terminal edges on the surface under H2 atmosphere. This method provides a more reliable approach for fabricating h-BN films.
Collapse
Affiliation(s)
- Chen Chen
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, P. R. China
| | - Qiang Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, P. R. China
| | - Zongyuan Zhang
- Center of High Magnetic Fields and Free Electron Lasers, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Zhibo Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, P. R. China
| | - Chuan Xu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, P. R. China
| | - Wencai Ren
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, P. R. China
| |
Collapse
|
2
|
Gusdorff JA, Bhatia P, Shin TT, Uy-Tioco AS, Sailors BN, Keneipp RN, Drndić M, Bassett LC. Correlated Structural and Optical Characterization of Hexagonal Boron Nitride. ACS NANO 2025; 19:11100-11110. [PMID: 39982436 DOI: 10.1021/acsnano.4c17676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Hexagonal boron nitride (hBN) plays a central role in nanoelectronics and nanophotonics. Moreover, hBN hosts room-temperature quantum emitters and optically addressable spins, making the material promising for quantum sensing and photonics. Despite significant investigation of the optical and structural properties of hBN, the role of contamination at surfaces and interfaces remains unexplored. We prepare hBN samples that are compatible with confocal photoluminescence (PL) microscopy, transmission electron microscopy (TEM), and atomic-force microscopy (AFM), and we use those techniques to quantitatively investigate correlations between fluorescent emission, flake morphology, and surface residue. We find that the microscopy techniques themselves induce changes in hBN's optical activity and residue morphology: PL measurements induce photobleaching, whereas TEM measurements alter surface residue and emission characteristics. We also study the effects of common treatments─annealing and oxygen plasma cleaning─on the structure and optical activity of hBN. The methods can be broadly applied to study two-dimensional materials, and the results illustrate the importance of correlative studies to elucidate factors that influence hBN's structural and optical properties.
Collapse
Affiliation(s)
- Jordan A Gusdorff
- Quantum Engineering Laboratory, Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Pia Bhatia
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Trey T Shin
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Alexandra Sofia Uy-Tioco
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Benjamin N Sailors
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Rachael N Keneipp
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Marija Drndić
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Lee C Bassett
- Quantum Engineering Laboratory, Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
3
|
Verma AK, Sharma BB. The Impact of Pore Geometry on Frictional Properties of hBN and MoS 2 Nanomaterials. J Phys Chem B 2024; 128:11814-11824. [PMID: 39563087 DOI: 10.1021/acs.jpcb.4c05113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Two-dimensional (2D) nanomaterials hold significant promise for reducing energy consumption in water desalination. This study investigates the influence of pore size and shape on the slip behavior of saline water at the interface of two promising 2D nanomaterials: hexagonal boron nitride (hBN) and molybdenum disulfide (MoS2). Slip length, a key parameter governing fluid flow at the nanoscale, is highly dependent on interfacial properties. Here, we explore how the pore characteristics in these 2D nanomaterials can impact slip length, aiming to gain a fundamental understanding of the role of pore size and shape in optimizing desalination efficiency. We performed quantum mechanical calculations to compute the partial atomic charges on atoms in hBN and MoS2 containing pores. Our DFT calculations reveal a spatially varying charge distribution on these 2D nanomaterials with pores, which we then incorporate into molecular dynamic simulations to elucidate their influence on the 2D nanomaterial-water interface. Our results reveal a significant impact of pore size on friction for nanomaterials containing hexagonal pores, while pore size had no effect on nanomaterials containing triangular pores. Moreover, friction increases with pores in both materials. This research contributes to the development of efficient and energy-saving desalination technologies through the manipulation of interfacial properties in 2D nanomaterials.
Collapse
Affiliation(s)
- Ashutosh Kumar Verma
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | | |
Collapse
|
4
|
Dehhaghi Y, Kiakojouri A, Frank I, Nadimi E. Ab Initio Molecular Dynamics Investigation on the Permeation of Sodium and Chloride Ions Through Nanopores in Graphene and Hexagonal Boron Nitride Membranes. Chemphyschem 2024; 25:e202400318. [PMID: 38801292 DOI: 10.1002/cphc.202400318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/12/2024] [Accepted: 05/26/2024] [Indexed: 05/29/2024]
Abstract
Nanoporous membranes promise energy-efficient water desalination. Hexagonal boron nitride (h-BN), like graphene, exhibits outstanding physical and chemical properties, making it a promising candidate for water treatment. We employed Car-Parrinello molecular dynamics simulations to establish an accurate modeling of Na+ and Cl- permeation through hydrogen passivated nanopores in graphene and h-BN membranes. We demonstrate that ion separation works well for the h-BN system by imposing a barrier of 0.13 eV and 0.24 eV for Na+ and Cl- permeation, respectively. In contrast, for permeation of the graphene nanopore, the Cl- ion faces a minimum of energy of 0.68 eV in the nanopore plane and is prone toward blockade of the nanopore, while the Na+ ion experiences a slight minimum of 0.03 eV. Overall, the desalination performance of h-BN nanopores surpasses that of their graphene counterparts.
Collapse
Affiliation(s)
- Yasaman Dehhaghi
- Center for Computational Micro and Nanoelectronics, Faculty of Electrical Engineering, K. N. Toosi University of Technology, 16317-14191, Tehran, Iran
| | - Ali Kiakojouri
- Center for Computational Micro and Nanoelectronics, Faculty of Electrical Engineering, K. N. Toosi University of Technology, 16317-14191, Tehran, Iran
| | - Irmgard Frank
- Theoretische Chemie, Universität Hannover, Callinstr. 3 A, 30167, Hannover, Germany
| | - Ebrahim Nadimi
- Center for Computational Micro and Nanoelectronics, Faculty of Electrical Engineering, K. N. Toosi University of Technology, 16317-14191, Tehran, Iran
| |
Collapse
|
5
|
Byrne DO, Ciston J, Allen FI. Probing Defectivity Beneath the Hydrocarbon Blanket in 2D hBN Using TEM-EELS. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:650-659. [PMID: 39028755 DOI: 10.1093/mam/ozae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/25/2024] [Accepted: 06/23/2024] [Indexed: 07/21/2024]
Abstract
The controlled creation and manipulation of defects in 2D materials has become increasingly popular as a means to design and tune new material functionalities. However, defect characterization by direct atomic-scale imaging is often severely limited by surface contamination due to a blanket of hydrocarbons. Thus, analysis techniques that can characterize atomic-scale defects despite the contamination layer are advantageous. In this work, we take inspiration from X-ray absorption spectroscopy and use broad-beam electron energy loss spectroscopy (EELS) to characterize defect structures in 2D hexagonal boron nitride (hBN) based on averaged fine structure in the boron K-edge. Since EELS is performed in a transmission electron microscope (TEM), imaging can be performed in-situ to assess contamination levels and other factors such as tears in the fragile 2D sheets, which can affect the spectroscopic analysis. We demonstrate the TEM-EELS technique for 2D hBN samples irradiated with different ion types and doses, finding spectral signatures indicative of boron-oxygen bonding that can be used as a measure of sample defectiveness depending on the ion beam treatment. We propose that even in cases where surface contamination has been mitigated, the averaging-based TEM-EELS technique can be useful for efficient sample surveys to support atomically resolved EELS experiments.
Collapse
Affiliation(s)
- Dana O Byrne
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, CA 94720, USA
| | - Jim Ciston
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, CA 94720, USA
| | - Frances I Allen
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
6
|
Óvári L, Farkas AP, Palotás K, Vári G, Szenti I, Berkó A, Kiss J, Kónya Z. Hexagonal boron nitride on metal surfaces as a support and template. SURFACE SCIENCE REPORTS 2024; 79:100637. [DOI: 10.1016/j.surfrep.2024.100637] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
|
7
|
Sülzle J, Yang W, Shimoda Y, Ronceray N, Mayner E, Manley S, Radenovic A. Label-Free Imaging of DNA Interactions with 2D Materials. ACS PHOTONICS 2024; 11:737-744. [PMID: 38405387 PMCID: PMC10885193 DOI: 10.1021/acsphotonics.3c01604] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 02/27/2024]
Abstract
Two-dimensional (2D) materials offer potential as substrates for biosensing devices, as their properties can be engineered to tune interactions between the surface and biomolecules. Yet, not many methods can measure these interactions in a liquid environment without introducing labeling agents such as fluorophores. In this work, we harness interferometric scattering (iSCAT) microscopy, a label-free imaging technique, to investigate the interactions of single molecules of long dsDNA with 2D materials. The millisecond temporal resolution of iSCAT allows us to capture the transient interactions and to observe the dynamics of unlabeled DNA binding to a hexagonal boron nitride (hBN) surface in solution for extended periods (including a fraction of 10%, of trajectories lasting longer than 110 ms). Using a focused ion beam technique to engineer defects, we find that DNA binding affinity is enhanced at defects; when exposed to long lanes, DNA binds preferentially at the lane edges. Overall, we demonstrate that iSCAT imaging is a useful tool to study how biomolecules interact with 2D materials, a key component in engineering future biosensors.
Collapse
Affiliation(s)
- Jenny Sülzle
- Institute
of Physics and Institute of Bioengineering, Laboratory of Experimental
Biophysics (LEB), École Polytechnique
Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Wayne Yang
- Institute
of Bioengineering, Laboratory of Nanoscale Biology (LBEN), École Polytechnique Fédérale
de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Yuta Shimoda
- Institute
of Bioengineering, Laboratory of Nanoscale Biology (LBEN), École Polytechnique Fédérale
de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Nathan Ronceray
- Institute
of Bioengineering, Laboratory of Nanoscale Biology (LBEN), École Polytechnique Fédérale
de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Eveline Mayner
- Institute
of Bioengineering, Laboratory of Nanoscale Biology (LBEN), École Polytechnique Fédérale
de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Suliana Manley
- Institute
of Physics and Institute of Bioengineering, Laboratory of Experimental
Biophysics (LEB), École Polytechnique
Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Aleksandra Radenovic
- Institute
of Bioengineering, Laboratory of Nanoscale Biology (LBEN), École Polytechnique Fédérale
de Lausanne (EPFL), Lausanne, 1015, Switzerland
| |
Collapse
|