1
|
Ishak SR, Ganzoury MME, Fouda EM, Anwar MA, Kamal AM, Hamza HM, Bakry NA. Serum growth differentiation factor-15 (GDF-15) is a biomarker of cardiac manifestations in children with COVID-19. Eur J Med Res 2023; 28:527. [PMID: 37974205 PMCID: PMC10652507 DOI: 10.1186/s40001-023-01514-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND COVID-19 leads to severe overwhelming inflammation in some patients mediated by various cytokines (cytokine storm) that usually leads to severe illness accompanied by cardiovascular manifestations. Growth differentiation factor-15 is a cytokine induced by stress and is associated with inflammatory processes in the lung and heart. This study aimed to measure the level of serum growth differentiation factor (GDF-15) in children with COVID-19 and to correlate it with the disease severity, cardiac affection, and the outcome of COVID-19. METHODS A cross-sectional study was conducted on 144 children; 72 children diagnosed with COVID-19, and 72 healthy children. The severity of COVID-19 was assessed clinically, laboratory, and radiologically. Echocardiography was done within 48 h of admission for COVID-19 patients. Serum GDF-15 was measured by ELISA for both patients and controls. RESULTS Serum GDF-15 level was significantly higher in patients with COVID-19 than in controls (p < 0.01). In COVID-19 patients with severe clinical grading, those who were hospitalized in the PICU, and those who died, serum GDF-15 levels were greater. individuals with cardiac manifestations exhibited significantly higher serum GDF-15 levels than individuals without them. In children with COVID-19, increased GDF-15 was correlated to poorer ejection fraction and higher INR using multivariate linear regression analysis. CONCLUSION Serum GDF-15 is a promising biomarker of COVID-19, it can be used as a predictor of cardiac manifestations in children with COVID-19 and severe disease.
Collapse
Affiliation(s)
- Sally Raafat Ishak
- Pediatrics Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | | | - Eman Mahmoud Fouda
- Pediatrics Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Maha Ahmad Anwar
- Clinical Pathology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Heba Mostafa Hamza
- Pediatrics Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nehad Ahmed Bakry
- Pediatrics Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Ahmed DS, Isnard S, Berini C, Lin J, Routy JP, Royston L. Coping With Stress: The Mitokine GDF-15 as a Biomarker of COVID-19 Severity. Front Immunol 2022; 13:820350. [PMID: 35251002 PMCID: PMC8888851 DOI: 10.3389/fimmu.2022.820350] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/24/2022] [Indexed: 12/20/2022] Open
Abstract
Growth differentiation factor 15 (GDF-15) is a transforming growth factor (TGF)-β superfamily cytokine that plays a central role in metabolism regulation. Produced in response to mitochondrial stress, tissue damage or hypoxia, this cytokine has emerged as one of the strongest predictors of disease severity during inflammatory conditions, cancers and infections. Reports suggest that GDF-15 plays a tissue protective role via sympathetic and metabolic adaptation in the context of mitochondrial damage, although the exact mechanisms involved remain uncertain. In this review, we discuss the emergence of GDF-15 as a distinctive marker of viral infection severity, especially in the context of COVID-19. We will critically review the role of GDF-15 as an inflammation-induced mediator of disease tolerance, through metabolic and immune reprogramming. Finally, we discuss potential mechanisms of GDF-15 elevation during COVID-19 cytokine storm and its limitations. Altogether, this cytokine seems to be involved in disease tolerance to viral infections including SARS-CoV-2, paving the way for novel therapeutic interventions.
Collapse
Affiliation(s)
- Darakhshan Sohail Ahmed
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Stéphane Isnard
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,CIHR Canadian HIV Trials Network, Vancouver, BC, Canada
| | - Carolina Berini
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - John Lin
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Jean-Pierre Routy
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Léna Royston
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,CIHR Canadian HIV Trials Network, Vancouver, BC, Canada.,Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
3
|
Fejzo MS, MacGibbon KW, First O, Quan C, Mullin PM. Whole-exome sequencing uncovers new variants in GDF15 associated with hyperemesis gravidarum. BJOG 2022; 129:1845-1852. [PMID: 35218128 PMCID: PMC9546032 DOI: 10.1111/1471-0528.17129] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 12/11/2022]
Abstract
Whole‐exome sequencing reveals placenta and vomiting hormone GDF15 most likely cause of Hyperemesis Gravidarum.
Collapse
Affiliation(s)
- Marlena S Fejzo
- Department of Maternal Fetal Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | - Olivia First
- Hyperemesis Education and Research Foundation, Clackamas, Oregon, USA
| | - Courtney Quan
- Hyperemesis Education and Research Foundation, Clackamas, Oregon, USA
| | - Patrick M Mullin
- Department of Maternal Fetal Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
4
|
Santos I, Colaço HG, Neves-Costa A, Seixas E, Velho TR, Pedroso D, Barros A, Martins R, Carvalho N, Payen D, Weis S, Yi HS, Shong M, Moita LF. CXCL5-mediated recruitment of neutrophils into the peritoneal cavity of Gdf15-deficient mice protects against abdominal sepsis. Proc Natl Acad Sci U S A 2020; 117:12281-12287. [PMID: 32424099 PMCID: PMC7275717 DOI: 10.1073/pnas.1918508117] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Sepsis is a life-threatening organ dysfunction condition caused by a dysregulated host response to an infection. Here we report that the circulating levels of growth and differentiation factor-15 (GDF15) are strongly increased in septic shock patients and correlate with mortality. In mice, we find that peptidoglycan is a potent ligand that signals through the TLR2-Myd88 axis for the secretion of GDF15, and that Gdf15-deficient mice are protected against abdominal sepsis due to increased chemokine CXC ligand 5 (CXCL5)-mediated recruitment of neutrophils into the peritoneum, leading to better local bacterial control. Our results identify GDF15 as a potential target to improve sepsis treatment. Its inhibition should increase neutrophil recruitment to the site of infection and consequently lead to better pathogen control and clearance.
Collapse
Affiliation(s)
- Isa Santos
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
- Serviço de Cirurgia Geral, Hospital de São Bernardo-Centro Hospitalar de Setúbal EPE, 2910-446 Setúbal, Portugal
| | - Henrique G Colaço
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Ana Neves-Costa
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Elsa Seixas
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Tiago R Velho
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Dora Pedroso
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - André Barros
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Rui Martins
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Nuno Carvalho
- Serviço de Cirurgia Geral, Hospital Garcia de Orta, 2801-951 Almada, Portugal
- Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisboa, Portugal
| | - Didier Payen
- INSERM, UMR 1160, Universite Paris 7 Denis Diderot, Universite-Sorbonne Cité, 75013 Paris, France
| | - Sebastian Weis
- Institute for Infectious Disease and Infection Control, Jena University Hospital, 07747 Jena, Germany
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany
| | - Hyon-Seung Yi
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 35015 Daejeon, Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 35015 Daejeon, Korea
| | - Luís F Moita
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal;
- Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisboa, Portugal
| |
Collapse
|