1
|
Huang H, Liao Y, Li N, Qu X, Li C, Hou J. The translation initiation factor eIF2α regulates lipid homeostasis and metabolic aging. Aging Cell 2025; 24:e14348. [PMID: 39407444 PMCID: PMC11709108 DOI: 10.1111/acel.14348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/23/2024] [Accepted: 08/01/2024] [Indexed: 01/11/2025] Open
Abstract
Aging is usually accompanied by excessive body fat gain, leading to increased susceptibility to comorbidities. This study aimed to explore an unexpected function for the eukaryotic initiation factor-2α (eIF2α) during aging. Reducing the eIF2α dose led to a reconfiguration of the metabolic equilibrium, promoting catabolism, facilitating lipolysis, and decreasing body fat accumulation while maintaining healthy glucose and lipid metabolism during aging. Specifically, eIF2α enhanced the expression of distinct messenger RNAs encoding mitochondrial electron transport chain proteins at the translation level. The mitochondrial respiration increased in eIF2α heterozygotes, even during aging. Deceleration of translation was demonstrated as a conserved mechanism for promoting longevity across various species. Our findings demonstrated that the restriction of translation by reducing eIF2α expression could fend off multiple tissue damage and improve metabolic homeostasis during aging. Hence, eIF2α was a crucial target for benefiting mammalian aging achieving delayed mammalian aging.
Collapse
Affiliation(s)
- Haipeng Huang
- School of Life SciencesTsinghua UniversityBeijingChina
- Institute of Molecular Medicine, College of Future TechnologyPeking UniversityBeijingChina
| | - Yilie Liao
- School of Life SciencesTsinghua UniversityBeijingChina
| | - Ning Li
- School of Life SciencesTsinghua UniversityBeijingChina
| | - Xingfan Qu
- School of Life SciencesTsinghua UniversityBeijingChina
| | - Chaocan Li
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal EngineeringTianjin Chengjian UniversityTianjinChina
| | - Jiaqi Hou
- State Key Laboratory of Environmental Criteria and Risk AssessmentChinese Research Academy of Environmental SciencesBeijingChina
| |
Collapse
|
2
|
Kolesnikova VV, Nikonov OS, Phat TD, Nikonova EY. The Proteins Diversity of the eIF4E Family in the eIF4F Complex. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S60-S85. [PMID: 40164153 DOI: 10.1134/s0006297924603721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/17/2024] [Accepted: 10/02/2024] [Indexed: 04/02/2025]
Abstract
In eukaryotes, translation initiation occurs by the cap-dependent mechanism. Each translated mRNA must be pre-bound by the translation initiation factor eIF4E. All isoforms of this factor are combined into one family. The review considers natural diversity of the eIF4E isoforms in different organisms, provides structural information about them, and describes their functional role in the processes, such as oncogenesis, participation in the translation of certain mRNAs under stress, and selective use of the individual isoforms by viruses. In addition, this review briefly describes the mechanism of cap-dependent translation initiation and possible ways to regulate the eIF4E function.
Collapse
Affiliation(s)
- Viktoriya V Kolesnikova
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Oleg S Nikonov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Tien Do Phat
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ekaterina Yu Nikonova
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
3
|
De Siqueira MK, Li G, Zhao Y, Wang S, Ahn IS, Tamboline M, Hildreth AD, Larios J, Schcolnik-Cabrera A, Nouhi Z, Zhang Z, Tol MJ, Pandey V, Xu S, O'Sullivan TE, Mack JJ, Tontonoz P, Sallam T, Wohlschlegel JA, Hulea L, Xiao X, Yang X, Villanueva CJ. PPARγ-dependent remodeling of translational machinery in adipose progenitors is impaired in obesity. Cell Rep 2024; 43:114945. [PMID: 39579770 PMCID: PMC12002411 DOI: 10.1016/j.celrep.2024.114945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/14/2024] [Accepted: 10/17/2024] [Indexed: 11/25/2024] Open
Abstract
Adipose tissue regulates energy homeostasis and metabolic function, but its adaptability is impaired in obesity. In this study, we investigate the impact of acute PPARγ agonist treatment in obese mice and find significant transcriptional remodeling of cells in the stromal vascular fraction (SVF). Using single-cell RNA sequencing, we profile the SVF of inguinal and epididymal adipose tissue of obese mice following rosiglitazone treatment and find an induction of ribosomal factors in both progenitor and preadipocyte populations, while expression of ribosomal factors is reduced with obesity. Notably, the expression of a subset of ribosomal factors is directly regulated by PPARγ. Polysome profiling of the epididymal SVF shows that rosiglitazone promotes translational selectivity of mRNAs that encode pathways involved in adipogenesis and lipid metabolism. Inhibition of translation using a eukaryotic translation initiation factor 4A (eIF4A) inhibitor is sufficient in blocking adipogenesis. Our findings shed light on how PPARγ agonists promote adipose tissue plasticity in obesity.
Collapse
Affiliation(s)
- Mirian Krystel De Siqueira
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gaoyan Li
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yutian Zhao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Siqi Wang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - In Sook Ahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mikayla Tamboline
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA 90025, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90025, USA
| | - Andrew D Hildreth
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jakeline Larios
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alejandro Schcolnik-Cabrera
- Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC H1T 2M4, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Zaynab Nouhi
- Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC H1T 2M4, Canada
| | - Zhengyi Zhang
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Medicine, Division of Cardiology, Los Angeles, Los Angeles, CA 90095, USA
| | - Marcus J Tol
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Vijaya Pandey
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shili Xu
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA 90025, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90025, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90025, USA
| | - Timothy E O'Sullivan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Julia J Mack
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Medicine, Division of Cardiology, Los Angeles, Los Angeles, CA 90095, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tamer Sallam
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Medicine, Division of Cardiology, Los Angeles, Los Angeles, CA 90095, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Laura Hulea
- Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC H1T 2M4, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada; Département de Médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Xinshu Xiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90025, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90025, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Claudio J Villanueva
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
4
|
Preston SEJ, Dahabieh MS, Flores González RE, Gonçalves C, Richard VR, Leibovitch M, Dakin E, Papadopoulos T, Lopez Naranjo C, McCallum PA, Huang F, Gagnon N, Perrino S, Zahedi RP, Borchers CH, Jones RG, Brodt P, Miller WH, del Rincón SV. Blocking tumor-intrinsic MNK1 kinase restricts metabolic adaptation and diminishes liver metastasis. SCIENCE ADVANCES 2024; 10:eadi7673. [PMID: 39270021 PMCID: PMC11397505 DOI: 10.1126/sciadv.adi7673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/07/2024] [Indexed: 09/15/2024]
Abstract
Dysregulation of the mitogen-activated protein kinase interacting kinases 1/2 (MNK1/2)-eukaryotic initiation factor 4E (eIF4E) signaling axis promotes breast cancer progression. MNK1 is known to influence cancer stem cells (CSCs); self-renewing populations that support metastasis, recurrence, and chemotherapeutic resistance, making them a clinically relevant target. The precise function of MNK1 in regulating CSCs, however, remains unexplored. Here, we generated MNK1 knockout cancer cell lines, resulting in diminished CSC properties in vitro and slowed tumor growth in vivo. Using a multiomics approach, we functionally demonstrated that loss of MNK1 restricts tumor cell metabolic adaptation by reducing glycolysis and increasing dependence on oxidative phosphorylation. Furthermore, MNK1-null breast and pancreatic tumor cells demonstrated suppressed metastasis to the liver, but not the lung. Analysis of The Cancer Genome Atlas (TCGA) data from breast cancer patients validated the positive correlation between MNK1 and glycolytic enzyme protein expression. This study defines metabolic perturbations as a previously unknown consequence of targeting MNK1/2, which may be therapeutically exploited.
Collapse
Affiliation(s)
- Samuel E. J. Preston
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Michael S. Dahabieh
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Raúl Ernesto Flores González
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Christophe Gonçalves
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Vincent R. Richard
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Matthew Leibovitch
- MUHC Research Institute, McGill University Health Centre, Montréal, QC, Canada
| | - Eleanor Dakin
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Theodore Papadopoulos
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Carolina Lopez Naranjo
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Paige A. McCallum
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Fan Huang
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Natascha Gagnon
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Stephanie Perrino
- MUHC Research Institute, McGill University Health Centre, Montréal, QC, Canada
| | - René P. Zahedi
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
- CancerCare Manitoba, Winnipeg, MB, Canada
| | - Christoph H. Borchers
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
- Department of Pathology, McGill University, Montréal, QC, Canada
| | - Russell G. Jones
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Pnina Brodt
- MUHC Research Institute, McGill University Health Centre, Montréal, QC, Canada
- Departments of Surgery, Oncology and Medicine, McGill University, Montréal, QC, Canada
| | - Wilson H. Miller
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Sonia V. del Rincón
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| |
Collapse
|
5
|
Biffo S, Ruggero D, Santoro MM. The crosstalk between metabolism and translation. Cell Metab 2024; 36:1945-1962. [PMID: 39232280 PMCID: PMC11586076 DOI: 10.1016/j.cmet.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/24/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
Metabolism and mRNA translation represent critical steps involved in modulating gene expression and cellular physiology. Being the most energy-consuming process in the cell, mRNA translation is strictly linked to cellular metabolism and in synchrony with it. Indeed, several mRNAs for metabolic pathways are regulated at the translational level, resulting in translation being a coordinator of metabolism. On the other hand, there is a growing appreciation for how metabolism impacts several aspects of RNA biology. For example, metabolic pathways and metabolites directly control the selectivity and efficiency of the translational machinery, as well as post-transcriptional modifications of RNA to fine-tune protein synthesis. Consistently, alterations in the intricate interplay between translational control and cellular metabolism have emerged as a critical axis underlying human diseases. A better understanding of such events will foresee innovative therapeutic strategies in human disease states.
Collapse
Affiliation(s)
- Stefano Biffo
- National Institute of Molecular Genetics and Biosciences Department, University of Milan, Milan, Italy.
| | - Davide Ruggero
- Department of Cellular and Molecular Pharmacology, Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| | - Massimo Mattia Santoro
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padua, Padua, Italy.
| |
Collapse
|
6
|
Yang J, Zhang M, Zhang X, Zhou Y, Ma T, Liang J, Zhang J. Glioblastoma-derived exosomes promote lipid accumulation and induce ferroptosis in dendritic cells via the NRF2/GPX4 pathway. Front Immunol 2024; 15:1439191. [PMID: 39192971 PMCID: PMC11347305 DOI: 10.3389/fimmu.2024.1439191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Glioblastoma-derived exosomes (GDEs), containing nucleic acids, proteins, fatty acids and other substances, perform multiple important functions in glioblastoma microenvironment. Tumor-derived exosomes serve as carriers of fatty acids and induce a shift in metabolism towards oxidative phosphorylation, thus driving immune dysfunction of dendritic cells (DCs). Lipid peroxidation is an important characteristic of ferroptosis. Nevertheless, it remains unclear whether GDEs can induce lipid accumulation and lipid oxidation to trigger ferroptosis in DCs. In our study, we investigate the impact of GDEs on lipid accumulation and oxidation in DCs by inhibiting GDEs secretion through knocking down the expression of Rab27a using a rat orthotopic glioblastoma model. The results show that inhibiting the secretion of GDEs can reduce lipid accumulation in infiltrating DCs in the brain and decrease mature dendritic cells (mDCs) lipid peroxidation levels, thereby suppressing glioblastoma growth. Mechanistically, we employed in vitro treatments of bone marrow-derived dendritic cells (BMDCs) with GDEs. The results indicate that GDEs decrease the viability of mDCs compared to immature dendritic cells (imDCs) and trigger ferroptosis in mDCs via the NRF2/GPX4 pathway. Overall, these findings provide new insights into the development of immune-suppressive glioblastoma microenvironment through the interaction of GDEs with DCs.
Collapse
Affiliation(s)
- Jian Yang
- Institution of Life Science, Jinzhou Medical University, Jinzhou, China
| | - Mingqi Zhang
- Institution of Life Science, Jinzhou Medical University, Jinzhou, China
| | - Xuying Zhang
- Institution of Life Science, Jinzhou Medical University, Jinzhou, China
| | - Yue Zhou
- Institution of Life Science, Jinzhou Medical University, Jinzhou, China
| | - Tingting Ma
- Institution of Life Science, Jinzhou Medical University, Jinzhou, China
| | - Jia Liang
- Institution of Life Science, Jinzhou Medical University, Jinzhou, China
- Liaoning Provincial Key Laboratory of Neurodegenerative Diseases, Jinzhou Medical University, Jinzhou, China
| | - Jinyi Zhang
- Institution of Life Science, Jinzhou Medical University, Jinzhou, China
- Liaoning Technology and Engineering Center for Tumor Immunology and Molecular Theranotics, Jinzhou Medical University, Jinzhou, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, China
| |
Collapse
|
7
|
Liu Y, Chen Z, Cheng S, Zhai M, Ma F, Nian Y, Ding L, Hu B. Interfacial Protein Fibril Polymorphisms Regulate In Vivo Adipose Expansion for Control of Obesity. ACS NANO 2024; 18:17969-17986. [PMID: 38920100 DOI: 10.1021/acsnano.4c04758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Obesity is becoming a worldwide pandemic. Interfacial engineering of food lipid is expected to inhibit diet-induced obesity without damage to the eating enjoyment brought by high-fat diets. Unfortunately, this strategy has not been achieved yet. After screening different plant proteins, bromelain and papain were found to form wormlike and long-straight protein fibrils, respectively. The conversion of long-straight amyloid-like fibrils to wormlike fibrils was demonstrated in the fibrillation of bromelain. Using oil-in-water high internal phase emulsions (HIPEs) as a proof of concept, bromelain fibrils showed dramatically stronger interfacial stabilization capabilities than papain fibrils with high application potentials in the real-world formulation of high-fat food products such as mayonnaise. Compared with papain fibrils, oral administration of HIPEs stabilized by bromelain fibrils resulted in substantially higher fecal lipid contents and significantly decreased expression levels of the genes related to lipid absorption and transport in the intestine, including CD36, FATP-2, FATP-4, and APOA-4, without a difference in intervening gut microbiota. Consequently, dramatically less lipid absorption in the small intestine, markedly smaller chylomicron particles in the plasma, lower serum triglycerides, and controlled energy and lipid metabolism, as well as the inhibition of adipose expansion and overweight, were observed in the group with gavage of HIPEs stabilized by the bromelain fibrils rather than the papain fibrils. Furthermore, with the same calorie, substitution of all the fat in the standard high-fat feed of mice with the HIPEs emulsified by the bromelain fibrils showed a significantly stronger effect than the ones prepared by the papain fibrils on preventing high-fat-diet (HFD)-induced obesity including alleviation of adipose expansion and inflammation as well as fatty liver, also via inhibiting the absorption and transport of lipid in the intestine. The effect is ascribed to the suppressed lipolysis caused by a more compact and elastic interfacial layer formed by the wormlike fibrils than that of the long-straight fibrils, which are resistant to gastric environments and replacement by bile acids in digestion. Therefore, we provide an appealing and general strategy for controlling obesity by reducing the supply of free fatty acids (FAs) for absorption in the enteric lumen through protein fibril polymorphisms at the interface.
Collapse
Affiliation(s)
- Yanhua Liu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu 210095, P. R. China
| | - Zhengzhi Chen
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu 210095, P. R. China
| | - Siying Cheng
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu 210095, P. R. China
| | - Meng Zhai
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu 210095, P. R. China
| | - Fengguang Ma
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu 210095, P. R. China
| | - Yingqun Nian
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu 210095, P. R. China
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| | - Lianggong Ding
- Institute of Food, Nutrition and Health, ETH Zürich, Schwerzenbach 8603, Switzerland
| | - Bing Hu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu 210095, P. R. China
| |
Collapse
|
8
|
Levy T, Voeltzke K, Hruby L, Alasad K, Bas Z, Snaebjörnsson M, Marciano R, Scharov K, Planque M, Vriens K, Christen S, Funk CM, Hassiepen C, Kahler A, Heider B, Picard D, Lim JKM, Stefanski A, Bendrin K, Vargas-Toscano A, Kahlert UD, Stühler K, Remke M, Elkabets M, Grünewald TGP, Reichert AS, Fendt SM, Schulze A, Reifenberger G, Rotblat B, Leprivier G. mTORC1 regulates cell survival under glucose starvation through 4EBP1/2-mediated translational reprogramming of fatty acid metabolism. Nat Commun 2024; 15:4083. [PMID: 38744825 PMCID: PMC11094136 DOI: 10.1038/s41467-024-48386-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Energetic stress compels cells to evolve adaptive mechanisms to adjust their metabolism. Inhibition of mTOR kinase complex 1 (mTORC1) is essential for cell survival during glucose starvation. How mTORC1 controls cell viability during glucose starvation is not well understood. Here we show that the mTORC1 effectors eukaryotic initiation factor 4E binding proteins 1/2 (4EBP1/2) confer protection to mammalian cells and budding yeast under glucose starvation. Mechanistically, 4EBP1/2 promote NADPH homeostasis by preventing NADPH-consuming fatty acid synthesis via translational repression of Acetyl-CoA Carboxylase 1 (ACC1), thereby mitigating oxidative stress. This has important relevance for cancer, as oncogene-transformed cells and glioma cells exploit the 4EBP1/2 regulation of ACC1 expression and redox balance to combat energetic stress, thereby supporting transformation and tumorigenicity in vitro and in vivo. Clinically, high EIF4EBP1 expression is associated with poor outcomes in several cancer types. Our data reveal that the mTORC1-4EBP1/2 axis provokes a metabolic switch essential for survival during glucose starvation which is exploited by transformed and tumor cells.
Collapse
Affiliation(s)
- Tal Levy
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Kai Voeltzke
- Institute of Neuropathology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Laura Hruby
- Institute of Neuropathology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Khawla Alasad
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Zuelal Bas
- Institute of Neuropathology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Marteinn Snaebjörnsson
- Biochemistry and Molecular Biology, Theodor-Boveri-Institute, 97074, Würzburg, Germany
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Ran Marciano
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Katerina Scharov
- Institute of Neuropathology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Mélanie Planque
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, 3000, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium
| | - Kim Vriens
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, 3000, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium
| | - Stefan Christen
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, 3000, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium
| | - Cornelius M Funk
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Hopp Children's Cancer Center (KiTZ), 69120, Heidelberg, Germany
| | - Christina Hassiepen
- Institute of Neuropathology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Alisa Kahler
- Institute of Neuropathology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Beate Heider
- Institute of Neuropathology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Daniel Picard
- Institute of Neuropathology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany
- German cancer consortium (DKTK) partner site Essen/Düsseldorf, 40225, Düsseldorf, Germany
| | - Jonathan K M Lim
- Institute of Neuropathology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Anja Stefanski
- Molecular Proteomics Laboratory, Biomedical Research Center (BMFZ), Heinrich Heine University, Medical Faculty, Düsseldorf, Germany
| | - Katja Bendrin
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Andres Vargas-Toscano
- Clinic for Neurosurgery, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany
- Experimental and Clinical Research Center, Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13125, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, 13353, Berlin, Germany
| | - Ulf D Kahlert
- Molecular and Experimental Surgery, University Clinic for General-, Visceral, Vascular- and Transplantation Surgery, Faculty of Medicine and University Medicine, Otto-von-Guericke-University, 39120, Magdeburg, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Biomedical Research Center (BMFZ), Heinrich Heine University, Medical Faculty, Düsseldorf, Germany
| | - Marc Remke
- Institute of Neuropathology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany
- German cancer consortium (DKTK) partner site Essen/Düsseldorf, 40225, Düsseldorf, Germany
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Thomas G P Grünewald
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Hopp Children's Cancer Center (KiTZ), 69120, Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, 3000, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium
| | - Almut Schulze
- Biochemistry and Molecular Biology, Theodor-Boveri-Institute, 97074, Würzburg, Germany
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Guido Reifenberger
- Institute of Neuropathology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany
- German cancer consortium (DKTK) partner site Essen/Düsseldorf, 40225, Düsseldorf, Germany
| | - Barak Rotblat
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| | - Gabriel Leprivier
- Institute of Neuropathology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany.
| |
Collapse
|
9
|
Potolitsyna E, Pickering SH, Bellanger A, Germier T, Collas P, Briand N. Cytoskeletal rearrangement precedes nucleolar remodeling during adipogenesis. Commun Biol 2024; 7:458. [PMID: 38622242 PMCID: PMC11018602 DOI: 10.1038/s42003-024-06153-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/07/2024] [Indexed: 04/17/2024] Open
Abstract
Differentiation of adipose progenitor cells into mature adipocytes entails a dramatic reorganization of the cellular architecture to accommodate lipid storage into cytoplasmic lipid droplets. Lipid droplets occupy most of the adipocyte volume, compressing the nucleus beneath the plasma membrane. How this cellular remodeling affects sub-nuclear structure, including size and number of nucleoli, remains unclear. We describe the morphological remodeling of the nucleus and the nucleolus during in vitro adipogenic differentiation of primary human adipose stem cells. We find that cell cycle arrest elicits a remodeling of nucleolar structure which correlates with a decrease in protein synthesis. Strikingly, triggering cytoskeletal rearrangements mimics the nucleolar remodeling observed during adipogenesis. Our results point to nucleolar remodeling as an active, mechano-regulated mechanism during adipogenic differentiation and demonstrate a key role of the actin cytoskeleton in defining nuclear and nucleolar architecture in differentiating human adipose stem cells.
Collapse
Affiliation(s)
- Evdokiia Potolitsyna
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Blindern, PO Box 1112, 0317, Oslo, Norway
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sarah Hazell Pickering
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Blindern, PO Box 1112, 0317, Oslo, Norway
| | - Aurélie Bellanger
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Blindern, PO Box 1112, 0317, Oslo, Norway
| | - Thomas Germier
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Blindern, PO Box 1112, 0317, Oslo, Norway
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Blindern, PO Box 1112, 0317, Oslo, Norway
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0424, Oslo, Norway
| | - Nolwenn Briand
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Blindern, PO Box 1112, 0317, Oslo, Norway.
| |
Collapse
|
10
|
Castañeda-Sánchez CY, Chimal-Vega B, León-Gutiérrez R, Araiza-Robles AE, Serafín-Higuera N, Pulido-Capiz A, Rivero IA, Díaz-Molina R, Alatorre-Meda M, Rodríguez-Velázquez E, García-González V. Low-Density Lipoproteins Increase Proliferation, Invasion, and Chemoresistance via an Exosome Autocrine Mechanism in MDA-MB-231 Chemoresistant Cells. Biomedicines 2024; 12:742. [PMID: 38672098 PMCID: PMC11048396 DOI: 10.3390/biomedicines12040742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 04/28/2024] Open
Abstract
Dyslipidemias involving high concentrations of low-density lipoproteins (LDLs) increase the risk of developing triple-negative breast cancer (TNBC), wherein cholesterol metabolism and protein translation initiation mechanisms have been linked with chemoresistance. Doxorubicin (Dox) treatment, a member of the anthracycline family, represents a typical therapeutic strategy; however, chemoresistance remains a significant challenge. Exosomes (Exs) secreted by tumoral cells have been implicated in cell communication pathways and chemoresistance mechanisms; the content of exosomes is an outcome of cellular cholesterol metabolism. We previously induced Dox resistance in TNBC cell models, characterizing a variant denominated as variant B cells. Our results suggest that LDL internalization in parental and chemoresistant variant B cells is associated with increased cell proliferation, migration, invasion, and spheroid growth. We identified the role of eIF4F translation initiation factor and the down-regulation of tumor suppressor gene PDCD4, an inhibitor of eIF4A, in chemoresistant variant B cells. In addition, the exomes secreted by variant B cells were characterized by the protein content, electronic microscopy, and cell internalization assays. Critically, exosomes purified from LDL-treated variant B cell promoted cell proliferation, migration, and an increment in lactate concentration. Our results suggest that an autocrine phenomenon induced by exosomes in chemoresistant cells may induce modifications on signaling mechanisms of the p53/Mdm2 axis and activation of p70 ribosomal protein kinase S6. Moreover, the specific down-regulated profile of chaperones Hsp90 and Hsp70 secretion inside the exosomes of the chemoresistant variant could be associated with this phenomenon. Therefore, autocrine activation mediated by exosomes and the effect of LDL internalization may influence changes in exosome chaperone content and modulate proliferative signaling pathways, increasing the aggressiveness of MDA-MB-231 chemoresistant cells.
Collapse
Affiliation(s)
- César Y. Castañeda-Sánchez
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico; (C.Y.C.-S.); (B.C.-V.); (R.L.-G.); (A.E.A.-R.); (A.P.-C.); (R.D.-M.)
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| | - Brenda Chimal-Vega
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico; (C.Y.C.-S.); (B.C.-V.); (R.L.-G.); (A.E.A.-R.); (A.P.-C.); (R.D.-M.)
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| | - Roberto León-Gutiérrez
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico; (C.Y.C.-S.); (B.C.-V.); (R.L.-G.); (A.E.A.-R.); (A.P.-C.); (R.D.-M.)
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| | - Adrián Ernesto Araiza-Robles
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico; (C.Y.C.-S.); (B.C.-V.); (R.L.-G.); (A.E.A.-R.); (A.P.-C.); (R.D.-M.)
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| | - Nicolás Serafín-Higuera
- Facultad de Odontología Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico;
| | - Angel Pulido-Capiz
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico; (C.Y.C.-S.); (B.C.-V.); (R.L.-G.); (A.E.A.-R.); (A.P.-C.); (R.D.-M.)
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| | - Ignacio A. Rivero
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México, Instituto Tecnológico de Tijuana, Tijuana 22510, Mexico;
| | - Raúl Díaz-Molina
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico; (C.Y.C.-S.); (B.C.-V.); (R.L.-G.); (A.E.A.-R.); (A.P.-C.); (R.D.-M.)
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| | - Manuel Alatorre-Meda
- Centro de Graduados e Investigación en Química-Grupo de Biomateriales y Nanomedicina, CONAHCYT-Tecnológico Nacional de México, Instituto Tecnológico de Tijuana, Tijuana 22510, Mexico;
| | - Eustolia Rodríguez-Velázquez
- Facultad de Odontología, Universidad Autónoma de Baja California, Tijuana 22390, Mexico;
- Centro de Graduados e Investigación en Química-Grupo de Biomateriales y Nanomedicina, Tecnológico Nacional de México, Instituto Tecnológico de Tijuana, Tijuana 22510, Mexico
| | - Victor García-González
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico; (C.Y.C.-S.); (B.C.-V.); (R.L.-G.); (A.E.A.-R.); (A.P.-C.); (R.D.-M.)
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| |
Collapse
|
11
|
Ye Z, Xiong H, Huang L, Zhao Q, Xiong Z, Zhang H, Zhang W. Mechanisms underlying the combination effect of arsenite and high-fat diet on aggravating liver injury in mice. ENVIRONMENTAL TOXICOLOGY 2024; 39:1323-1334. [PMID: 37955338 DOI: 10.1002/tox.24037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/23/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
Arsenic (As) is a highly toxic metalloid that can be found in insufficiently purified drinking water and exerts adverse effects on the physiology of living organisms that can negatively affect human health after subchronic exposure, causing several diseases, such as liver damage. A high-fat diet, which is increasing in frequency worldwide, can aggravate hepatic pathology. However, the mechanisms behind liver injury caused by the combinatory effects of As exposure and a high-fat diet remain unclear. In this study, we investigated such underlying mechanisms by focusing on three different aspects: As biotransformation, pathological liver damage, and differential expression of signaling pathway components. We employed mice that were fed a regular diet or a high-fat diet and exposed them to a range of arsenite concentrations (As(III), 0.05-50 mg/L) for 12 weeks. Our results showed that a high-fat diet increased the absorption of As into the liver and enhanced liver toxicity, which became progressively more severe as the As concentration increased. Co-exposure to a high-fat diet and As(III) activated PI3K/AKT and PPAR signaling as well as fatty acid metabolism pathways. In addition, the expression of proteins related to lipid cell function, lipid metabolism, and the regulation of body weight was also affected. Our study provides insights into the mechanisms that contribute to liver injury from subchronic combinatory exposure to As and a high-fat diet and showcases the importance of a healthy lifestyle, which may be of particular benefit to people living in areas with high As(III) concentrations, as a means to reduce or prevent aggravated liver damage.
Collapse
Affiliation(s)
- Zijun Ye
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Haiyan Xiong
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of Environment and Ecology, Xiamen University, Xiamen, China
| | - Liping Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Qianyu Zhao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Zhu Xiong
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Wei Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| |
Collapse
|
12
|
Wilson RB, Kozlov AM, Hatam Tehrani H, Twumasi-Ankrah JS, Chen YJ, Borrelli MJ, Sawyez CG, Maini S, Shepherd TG, Cumming RC, Betts DH, Borradaile NM. Elongation factor 1A1 regulates metabolic substrate preference in mammalian cells. J Biol Chem 2024; 300:105684. [PMID: 38272231 PMCID: PMC10891338 DOI: 10.1016/j.jbc.2024.105684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 01/27/2024] Open
Abstract
Eukaryotic elongation factor 1A1 (EEF1A1) is canonically involved in protein synthesis but also has noncanonical functions in diverse cellular processes. Previously, we identified EEF1A1 as a mediator of lipotoxicity and demonstrated that chemical inhibition of EEF1A1 activity reduced mouse liver lipid accumulation. These findings suggested a link between EEF1A1 and metabolism. Therefore, we investigated its role in regulating metabolic substrate preference. EEF1A1-deficient Chinese hamster ovary (2E2) cells displayed reduced media lactate accumulation. These effects were also observed with EEF1A1 knockdown in human hepatocyte-like HepG2 cells and in WT Chinese hamster ovary and HepG2 cells treated with selective EEF1A inhibitors, didemnin B, or plitidepsin. Extracellular flux analyses revealed decreased glycolytic ATP production and increased mitochondrial-to-glycolytic ATP production ratio in 2E2 cells, suggesting a more oxidative metabolic phenotype. Correspondingly, fatty acid oxidation was increased in 2E2 cells. Both 2E2 cells and HepG2 cells treated with didemnin B exhibited increased neutral lipid content, which may be required to support elevated oxidative metabolism. RNA-seq revealed a >90-fold downregulation of a rate-limiting glycolytic enzyme, hexokinase 2, which we confirmed through immunoblotting and enzyme activity assays. Pathway enrichment analysis identified downregulations in TNFA signaling via NFKB and MYC targets. Correspondingly, nuclear abundances of RELB and MYC were reduced in 2E2 cells. Thus, EEF1A1 deficiency may perturb glycolysis by limiting NFKB- and MYC-mediated gene expression, leading to decreased hexokinase expression and activity. This is the first evidence of a role for a translation elongation factor, EEF1A1, in regulating metabolic substrate utilization in mammalian cells.
Collapse
Affiliation(s)
- Rachel B Wilson
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | | | - Helia Hatam Tehrani
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jessica S Twumasi-Ankrah
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Yun Jin Chen
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Matthew J Borrelli
- The Mary & John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer Program, London, Ontario, Canada; Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Cynthia G Sawyez
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Siddhant Maini
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Trevor G Shepherd
- The Mary & John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer Program, London, Ontario, Canada; Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Robert C Cumming
- Department of Biology, Western University, London, Ontario, Canada; Genetics and Development Division, The Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Dean H Betts
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Department of Biology, Western University, London, Ontario, Canada; Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Genetics and Development Division, The Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Nica M Borradaile
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
| |
Collapse
|
13
|
Wang K, Wen XL, Chen XY, Yue Y, Yang YS, Zhu HL, Wang MY, Jiang HX. Promoting In Vivo NIR-II Fluorescent Imaging for Lipid in Lipid Metabolism Diseases Diagnosis. Anal Chem 2024; 96:2264-2272. [PMID: 38266388 DOI: 10.1021/acs.analchem.3c05676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Lipid metabolism diseases have become a tremendous risk worldwide, along with the development of productivity and particular attention to public health. It has been an urgent necessity to exploit reliable imaging strategies for lipids and thus to monitor fatty liver diseases. Herein, by converting the NIR-I signal to the NIR-II signal with IR1061 for the monitoring of lipid, the in vivo imaging of fatty liver disease was promoted on the contrast and visual effect. The main advantages of the imaging promotion in this work included a long emission wavelength, rapid response, and high signal-background-ratio (SBR) value. After promoting the NIR-I signal to NIR-II signal, IR1061 achieved higher SBR value and exhibited a dose-dependent fluorescence intensity at 1100 nm along with the increase of the EtOH proportion as well as steady and selective optical responses toward liposomes. IR1061 was further applied in the in vivo imaging of lipid in fatty liver diseases. In spite of the differences in body weight gain and TC level between healthy mice and fatty liver diseases two models, IR1061 achieved high-resolution imaging in the liver region to monitor the fatty liver disease status. This work might be informatic for the clinical diagnosis and therapeutical treatments of fatty liver diseases.
Collapse
Affiliation(s)
- Kai Wang
- Affiliated Children's Hospital of Jiangnan University, Wuxi 214023, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xiao-Lin Wen
- Affiliated Children's Hospital of Jiangnan University, Wuxi 214023, China
| | - Xu-Yang Chen
- Affiliated Children's Hospital of Jiangnan University, Wuxi 214023, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ying Yue
- Affiliated Children's Hospital of Jiangnan University, Wuxi 214023, China
| | - Yu-Shun Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Miao-Yan Wang
- Affiliated Children's Hospital of Jiangnan University, Wuxi 214023, China
| | - Hao-Xiang Jiang
- Affiliated Children's Hospital of Jiangnan University, Wuxi 214023, China
| |
Collapse
|
14
|
Zeng Q, Gao H, Yin S, Peng Y, Yang F, Fu Y, Deng X, Chen Y, Hou X, Wang Q, Jin Z, Song G, He J, Yin Y, Xu K. Genome-Wide Association Study and Identification of Candidate Genes for Intramuscular Fat Fatty Acid Composition in Ningxiang Pigs. Animals (Basel) 2023; 13:3192. [PMID: 37893916 PMCID: PMC10603709 DOI: 10.3390/ani13203192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Ningxiang pigs exhibit a diverse array of fatty acids, making them an intriguing model for exploring the genetic underpinnings of fatty acid metabolism. We conducted a genome-wide association study using a dataset comprising 50,697 single-nucleotide polymorphisms (SNPs) and samples from over 600 Ningxiang pigs. Our investigation yielded novel candidate genes linked to five saturated fatty acids (SFAs), four monounsaturated fatty acids (MUFAs), and five polyunsaturated fatty acids (PUFAs). Significant associations with SFAs, MUFAs, and PUFAs were found for 37, 21, and 16 SNPs, respectively. Notably, some SNPs have significant PVE, such as ALGA0047587, which can explain 89.85% variation in Arachidic acid (C20:0); H3GA0046208 and DRGA0016063 can explain a total of 76.76% variation in Elaidic Acid (C18:1n-9(t)), and the significant SNP ALGA0031262 of Arachidonic acid (C20:4n-6) can explain 31.76% of the variation. Several significant SNPs were positioned proximally to previously reported genes. In total, we identified 11 candidate genes (hnRNPU, CEPT1, ATP1B1, DPT, DKK1, PRKG1, EXT2, MEF2C, IL17RA, ITGA1 and ALOX5), six candidate genes (ALOX5AP, MEDAG, ISL1, RXRB, CRY1, and CDKAL1), and five candidate genes (NDUFA4L2, SLC16A7, OTUB1, EIF4E and ROBO2) associated with SFAs, MUFAs, and PUFAs, respectively. These findings hold great promise for advancing breeding strategies aimed at optimizing meat quality and enhancing lipid metabolism within the intramuscular fat (IMF) of Ningxiang pigs.
Collapse
Affiliation(s)
- Qinghua Zeng
- Animal Nutrition Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Hu Gao
- Animal Nutrition Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Laboratory of Animal Nutrition Physiology and Metabolism, The Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Shishu Yin
- Animal Nutrition Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yinglin Peng
- Hunan Institute of Animal & Veterinary Science, Changsha 410131, China
| | - Fang Yang
- Animal Nutrition Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yawei Fu
- Animal Nutrition Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Laboratory of Animal Nutrition Physiology and Metabolism, The Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Xiaoxiao Deng
- Laboratory of Animal Nutrition Physiology and Metabolism, The Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Yue Chen
- Laboratory of Animal Nutrition Physiology and Metabolism, The Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Xiaohong Hou
- Laboratory of Animal Nutrition Physiology and Metabolism, The Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Qian Wang
- Animal Nutrition Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Laboratory of Animal Nutrition Physiology and Metabolism, The Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Zhao Jin
- Animal Nutrition Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Laboratory of Animal Nutrition Physiology and Metabolism, The Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Gang Song
- Animal Nutrition Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Laboratory of Animal Nutrition Physiology and Metabolism, The Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Jun He
- Animal Nutrition Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yulong Yin
- Animal Nutrition Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Laboratory of Animal Nutrition Physiology and Metabolism, The Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Kang Xu
- Laboratory of Animal Nutrition Physiology and Metabolism, The Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
15
|
Xu H, Oses-Prieto JA, Khvotchev M, Jain S, Liang J, Burlingame A, Edwards RH. Adaptor protein AP-3 produces synaptic vesicles that release at high frequency by recruiting phospholipid flippase ATP8A1. Nat Neurosci 2023; 26:1685-1700. [PMID: 37723322 DOI: 10.1038/s41593-023-01434-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/14/2023] [Indexed: 09/20/2023]
Abstract
Neural systems encode information in the frequency of action potentials, which is then decoded by synaptic transmission. However, the rapid, synchronous release of neurotransmitters depletes synaptic vesicles (SVs), limiting release at high firing rates. How then do synapses convey information about frequency? Here, we show in mouse hippocampal neurons and slices that the adaptor protein AP-3 makes a subset of SVs that respond specifically to high-frequency stimulation. Neurotransmitter transporters slot onto these SVs in different proportions, contributing to the distinct properties of release observed at different excitatory synapses. Proteomics reveals that AP-3 targets the phospholipid flippase ATP8A1 to SVs; loss of ATP8A1 recapitulates the defect in SV mobilization at high frequency observed with loss of AP-3. The mechanism involves recruitment of synapsin by the cytoplasmically oriented phosphatidylserine translocated by ATP8A1. Thus, ATP8A1 enables the subset of SVs made by AP-3 to release at high frequency.
Collapse
Affiliation(s)
- Hongfei Xu
- Departments of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Juan A Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Mikhail Khvotchev
- Departments of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, USA
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Shweta Jain
- Departments of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Jocelyn Liang
- Departments of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Alma Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Robert H Edwards
- Departments of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, USA.
| |
Collapse
|
16
|
Chen X, An Y, Tan M, Xie D, Liu L, Xu B. Biological functions and research progress of eIF4E. Front Oncol 2023; 13:1076855. [PMID: 37601696 PMCID: PMC10435865 DOI: 10.3389/fonc.2023.1076855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/30/2023] [Indexed: 08/22/2023] Open
Abstract
The eukaryotic translation initiation factor eIF4E can specifically bind to the cap structure of an mRNA 5' end, mainly regulating translation initiation and preferentially enhancing the translation of carcinogenesis related mRNAs. The expression of eIF4E is closely related to a variety of malignant tumors. In tumor cells, eIF4E activity is abnormally increased, which stimulates cell growth, metastasis and translation of related proteins. The main factors affecting eIF4E activity include intranuclear regulation, phosphorylation of 4EBPs, and phosphorylation and sumoylation of eIF4E. In this review, we summarize the biological functions and the research progress of eIF4E, the main influencing factors of eIF4E activity, and the recent progress of drugs targeting eIF4E, in the hope of providing new insights for the treatment of multiple malignancies and development of targeted drugs.
Collapse
Affiliation(s)
- Xiaocong Chen
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Yang An
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Mengsi Tan
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Dongrui Xie
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Ling Liu
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China
| | - Benjin Xu
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China
| |
Collapse
|
17
|
Montiel-Dávalos A, Ayala Y, Hernández G. The dark side of mRNA translation and the translation machinery in glioblastoma. Front Cell Dev Biol 2023; 11:1086964. [PMID: 36994107 PMCID: PMC10042294 DOI: 10.3389/fcell.2023.1086964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/03/2023] [Indexed: 03/14/2023] Open
Abstract
Among the different types of cancer affecting the central nervous system (CNS), glioblastoma (GB) is classified by the World Health Organization (WHO) as the most common and aggressive CNS cancer in adults. GB incidence is more frequent among persons aged 45–55 years old. GB treatments are based on tumor resection, radiation, and chemotherapies. The current development of novel molecular biomarkers (MB) has led to a more accurate prediction of GB progression. Moreover, clinical, epidemiological, and experimental studies have established genetic variants consistently associated with the risk of suffering GB. However, despite the advances in these fields, the survival expectancy of GB patients is still shorter than 2 years. Thus, fundamental processes inducing tumor onset and progression remain to be elucidated. In recent years, mRNA translation has been in the spotlight, as its dysregulation is emerging as a key cause of GB. In particular, the initiation phase of translation is most involved in this process. Among the crucial events, the machinery performing this phase undergoes a reconfiguration under the hypoxic conditions in the tumor microenvironment. In addition, ribosomal proteins (RPs) have been reported to play translation-independent roles in GB development. This review focuses on the research elucidating the tight relationship between translation initiation, the translation machinery, and GB. We also summarize the state-of-the-art drugs targeting the translation machinery to improve patients’ survival. Overall, the recent advances in this field are shedding new light on the dark side of translation in GB.
Collapse
|
18
|
Cao S, Jurczak MJ, Shuda Y, Sun R, Shuda M, Chang Y, Moore PS. Mitotic CDK1 and 4E-BP1 II: A single phosphomimetic mutation in 4E-BP1 induces glucose intolerance in mice. PLoS One 2023; 18:e0282914. [PMID: 36897840 PMCID: PMC10004604 DOI: 10.1371/journal.pone.0282914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
OBJECTIVE Cyclin-dependent kinase 1 (CDK1)/cyclin B1 phosphorylates many of the same substrates as mTORC1 (a key regulator of glucose metabolism), including the eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). Only mitotic CDK1 phosphorylates 4E-BP1 at residue S82 in mice (S83 in humans), in addition to the common 4E-BP1 phospho-acceptor sites phosphorylated by both CDK1 and mTORC1. We examined glucose metabolism in mice having a single aspartate phosphomimetic amino acid knock in substitution at the 4E-BP1 serine 82 (4E-BP1S82D) mimicking constitutive CDK1 phosphorylation. METHODS Knock-in homozygous 4E-BP1S82D and 4E-BP1S82A C57Bl/6N mice were assessed for glucose tolerance testing (GTT) and metabolic cage analysis on regular and on high-fat chow diets. Gastrocnemius tissues from 4E-BP1S82D and WT mice were subject to Reverse Phase Protein Array analysis. Since the bone marrow is one of the few tissues typically having cycling cells that transit mitosis, reciprocal bone-marrow transplants were performed between male 4E-BP1S82D and WT mice, followed by metabolic assessment, to determine the role of actively cycling cells on glucose homeostasis. RESULTS Homozygous knock-in 4E-BP1S82D mice showed glucose intolerance that was markedly accentuated with a diabetogenic high-fat diet (p = 0.004). In contrast, homozygous mice with the unphosphorylatable alanine substitution (4E-BP1S82A) had normal glucose tolerance. Protein profiling of lean muscle tissues, largely arrested in G0, did not show protein expression or signaling changes that could account for these results. Reciprocal bone-marrow transplantation between 4E-BP1S82D and wild-type littermates revealed a trend for wild-type mice with 4E-BP1S82D marrow engraftment on high-fat diets to become hyperglycemic after glucose challenge. CONCLUSIONS 4E-BP1S82D is a single amino acid substitution that induces glucose intolerance in mice. These findings indicate that glucose metabolism may be regulated by CDK1 4E-BP1 phosphorylation independent from mTOR and point towards an unexpected role for cycling cells that transit mitosis in diabetic glucose control.
Collapse
Affiliation(s)
- Simon Cao
- Hillman Cancer Center, Cancer Virology Program, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Michael J. Jurczak
- Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Yoko Shuda
- Hillman Cancer Center, Cancer Virology Program, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Rui Sun
- Hillman Cancer Center, Cancer Virology Program, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Masahiro Shuda
- Hillman Cancer Center, Cancer Virology Program, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Yuan Chang
- Hillman Cancer Center, Cancer Virology Program, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Patrick S. Moore
- Hillman Cancer Center, Cancer Virology Program, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
19
|
Translational Control of Metabolism and Cell Cycle Progression in Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:ijms24054885. [PMID: 36902316 PMCID: PMC10002961 DOI: 10.3390/ijms24054885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The liver is a metabolic hub characterized by high levels of protein synthesis. Eukaryotic initiation factors, eIFs, control the first phase of translation, initiation. Initiation factors are essential for tumor progression and, since they regulate the translation of specific mRNAs downstream of oncogenic signaling cascades, may be druggable. In this review, we address the issue of whether the massive translational machinery of liver cells contributes to liver pathology and to the progression of hepatocellular carcinoma (HCC); it represents a valuable biomarker and druggable target. First, we observe that the common markers of HCC cells, such as phosphorylated ribosomal protein S6, belong to the ribosomal and translational apparatus. This fact is in agreement with observations that demonstrate a huge amplification of the ribosomal machinery during the progression to HCC. Some translation factors, such as eIF4E and eIF6, are then harnessed by oncogenic signaling. In particular, the action of eIF4E and eIF6 is particularly important in HCC when driven by fatty liver pathologies. Indeed, both eIF4E and eIF6 amplify at the translational level the production and accumulation of fatty acids. As it is evident that abnormal levels of these factors drive cancer, we discuss their therapeutic value.
Collapse
|
20
|
Therapeutic targeting of eukaryotic initiation factor (eIF) 4E. Biochem Soc Trans 2023; 51:113-124. [PMID: 36661272 DOI: 10.1042/bst20220285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/21/2023]
Abstract
Fundamental studies unraveled the role of eukaryotic initiation factor (eIF) 4E in mRNA translation and its control. Under physiological conditions, regulation of translation by eIF4E is essential to cellular homeostasis. Under stress, gene flow information is parsed by eIF4E to support adaptive mechanisms that favor cell survival. Dysregulated eIF4E activity fuels tumor formation and progression and modulates response to therapy. Thus, there has been heightened interest in understanding eIF4E function in controlling gene expression as well as developing strategies to block its activity to treat disease.
Collapse
|
21
|
Ren L, Du W, Song D, Lu H, Hamblin MH, Wang C, Du C, Fan GC, Becker RC, Fan Y. Genetic ablation of diabetes-associated gene Ccdc92 reduces obesity and insulin resistance in mice. iScience 2023; 26:105769. [PMID: 36594018 PMCID: PMC9804112 DOI: 10.1016/j.isci.2022.105769] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 10/30/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Multiple genome-wide association studies (GWAS) have identified specific genetic variants in the coiled-coil domain containing 92 (CCDC92) locus that is associated with obesity and type 2 diabetes in humans. However, the biological function of CCDC92 in obesity and insulin resistance remains to be explored. Utilizing wild-type (WT) and Ccdc92 whole-body knockout (KO) mice, we found that Ccdc92 KO reduced obesity and increased insulin sensitivity under high-fat diet (HFD) conditions. Ccdc92 KO inhibited macrophage infiltration and fibrosis in white adipose tissue (WAT), suggesting Ccdc92 ablation protects against adipose tissue dysfunction. Ccdc92 deletion also increased energy expenditure and further attenuated hepatic steatosis in mice on an HFD. Ccdc92 KO significantly inhibited the inflammatory response and suppressed the NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome in WAT. Altogether, we demonstrated the critical role of CCDC92 in metabolism, constituting a potential target for treating obesity and insulin resistance.
Collapse
Affiliation(s)
- Lu Ren
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Wa Du
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Dan Song
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Haocheng Lu
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Milton H. Hamblin
- Tulane University Health Sciences Center, Tulane University, New Orleans, LA 70112, USA
- College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Chenran Wang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Chunying Du
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Guo-Chang Fan
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Richard C. Becker
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Yanbo Fan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
22
|
Jin X, Qiu T, Xie J, Wei X, Wang X, Yu R, Proud C, Jiang T. Using Imidazo[2,1- b][1,3,4]thiadiazol Skeleton to Design and Synthesize Novel MNK Inhibitors. ACS Med Chem Lett 2023; 14:83-91. [PMID: 36655132 PMCID: PMC9841594 DOI: 10.1021/acsmedchemlett.2c00442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Mitogen-activated protein kinase-interacting protein kinases (MNKs) phosphorylate eukaryotic initiation factor 4E (eIF4E) and regulate the processes of cell proliferation, cell cycle, and migration and invasion of cancer cells. Selectively inhibiting the activity of MNKs could be effective in treating cancers. In this study, we report a series of novel MNK inhibitors with an imidazo[2,1-b][1,3,4]thiadiazol scaffold, from which, compound 18 inhibited the phosphorylation of eIF4E in various cancer cell lines potently. Compound 18 was more potent against MNK2 than MNK1, and decreased the levels of cyclin-B1, cyclin-D3, and MMP-3 in A549 and MDA-MB-231 cells, impaired cell growth and colony formation, arrested the cell cycle in the G0/G1 phase, and inhibited cell migration and the secretion of TNF-α, MCP-1, and IL-8 from A549 cells. It represents a starting compound to design further inhibitors that selectively target MNKs and apply in other diseases.
Collapse
Affiliation(s)
- Xin Jin
- School
of Medicine and Pharmacy, Ocean University
of China and Laboratory for Marine Drugs and Bioproducts, Qingdao
National Laboratory for Marine, Science and Technology, Qingdao 266237, China
- Lifelong
Health Theme, South Australian Health &
Medical Research Institute, North Terrace, Adelaide, South Australia 5000, Australia
- Shandong
Laboratory of Yantai Drug Discovery, Bohai
Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Tingting Qiu
- School
of Medicine and Pharmacy, Ocean University
of China and Laboratory for Marine Drugs and Bioproducts, Qingdao
National Laboratory for Marine, Science and Technology, Qingdao 266237, China
| | - Jianling Xie
- Lifelong
Health Theme, South Australian Health &
Medical Research Institute, North Terrace, Adelaide, South Australia 5000, Australia
| | - Xianfeng Wei
- School
of Medicine and Pharmacy, Ocean University
of China and Laboratory for Marine Drugs and Bioproducts, Qingdao
National Laboratory for Marine, Science and Technology, Qingdao 266237, China
| | - Xuemin Wang
- Lifelong
Health Theme, South Australian Health &
Medical Research Institute, North Terrace, Adelaide, South Australia 5000, Australia
- School
of Biomedical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Rilei Yu
- School
of Medicine and Pharmacy, Ocean University
of China and Laboratory for Marine Drugs and Bioproducts, Qingdao
National Laboratory for Marine, Science and Technology, Qingdao 266237, China
| | - Christopher Proud
- Lifelong
Health Theme, South Australian Health &
Medical Research Institute, North Terrace, Adelaide, South Australia 5000, Australia
- School
of Biomedical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Tao Jiang
- School
of Medicine and Pharmacy, Ocean University
of China and Laboratory for Marine Drugs and Bioproducts, Qingdao
National Laboratory for Marine, Science and Technology, Qingdao 266237, China
| |
Collapse
|
23
|
Pathophysiology of obesity and its associated diseases. Acta Pharm Sin B 2023. [DOI: 10.1016/j.apsb.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
24
|
Forester CM, Oses-Prieto JA, Phillips NJ, Miglani S, Pang X, Byeon GW, DeMarco R, Burlingame A, Barna M, Ruggero D. Regulation of eIF4E guides a unique translational program to control erythroid maturation. SCIENCE ADVANCES 2022; 8:eadd3942. [PMID: 36563140 PMCID: PMC9788769 DOI: 10.1126/sciadv.add3942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/22/2022] [Indexed: 05/22/2023]
Abstract
Translation control is essential in balancing hematopoietic precursors and differentiation; however, the mechanisms underlying this program are poorly understood. We found that the activity of the major cap-binding protein eIF4E is unexpectedly regulated in a dynamic manner throughout erythropoiesis that is uncoupled from global protein synthesis rates. Moreover, eIF4E activity directs erythroid maturation, and increased eIF4E expression maintains cells in an early erythroid state associated with a translation program driving the expression of PTPN6 and Igf2bp1. A cytosine-enriched motif in the 5' untranslated region is important for eIF4E-mediated translation specificity. Therefore, selective translation of key target genes necessary for the maintenance of early erythroid states by eIF4E highlights a unique mechanism used by hematopoietic precursors to rapidly elicit erythropoietic maturation upon need.
Collapse
Affiliation(s)
- Craig M. Forester
- Department of Pediatrics, University of Colorado, Denver, CO 80045, USA
- Division of Pediatric Hematology/Oncology/Bone Marrow Transplant, Children’s Hospital Colorado, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
| | - Juan A. Oses-Prieto
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nancy J. Phillips
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sohit Miglani
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Xiaming Pang
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gun Woo Byeon
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94309, USA
| | - Rachel DeMarco
- Department of Pediatrics, University of Colorado, Denver, CO 80045, USA
| | - Al Burlingame
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Maria Barna
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94309, USA
| | - Davide Ruggero
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
25
|
Different Protein Sources Enhance 18FDG-PET/MR Uptake of Brown Adipocytes in Male Subjects. Nutrients 2022; 14:nu14163411. [PMID: 36014915 PMCID: PMC9413993 DOI: 10.3390/nu14163411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Background: The unique ability of brown adipocytes to increase metabolic rate suggests that they could be targeted as an obesity treatment. Objective: The objective of the study was to search for new dietary factors that may enhance brown adipose tissue (BAT) activity. Methods: The study group comprised 28 healthy non-smoking males, aged 21–42 years old. All volunteers underwent a physical examination and a 75 g oral glucose tolerance test (75g-OGTT). Serum atrial and brain natriuretic peptide (ANP, BNP), PRD1-BF1-RIZ1 homologous domain containing 16 (PRDM16) and eukaryotic translation initiation factor 4E (eIF4E) measurements were taken, and 3-day food intake diaries were completed. Body composition measurements were assessed using dual-energy X-ray absorptiometry (DXA) scanning and bioimpedance methods. An fluorodeoxyglucose-18 (FDG-18) uptake in BAT was assessed by positron emission tomography/magnetic resonance (PET/MR) in all participants after 2 h cold exposure. The results were adjusted for age, daily energy intake, and DXA lean mass. Results: Subjects with detectable BAT (BAT(+)) were characterized by a higher percentage of energy obtained from dietary protein and fat and higher muscle mass (p = 0.01, p = 0.02 and p = 0.04, respectively). In the BAT(+) group, animal protein intake was positively associated (p= 0.04), whereas the plant protein intake negatively correlated with BAT activity (p = 0.03). Additionally, the presence of BAT was inversely associated with BNP concentration in the 2 h of cold exposure (p = 0.002). Conclusion: The outcomes of our study suggest that different macronutrient consumption may be a new way to modulate BAT activity leading to weight reduction.
Collapse
|
26
|
Muñoz-Ayala A, Chimal-Vega B, García-González V. Translation initiation and its relationship with metabolic mechanisms in cancer development, progression and chemoresistance. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 132:111-141. [PMID: 36088073 DOI: 10.1016/bs.apcsb.2022.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Pathways that regulate protein homeostasis (proteostasis) in cells range from mRNA processing to protein degradation; perturbations in regulatory mechanisms of these pathways can lead to oncogenic cellular processes. Protein synthesis modulation failures are common phenomena in cancer cells, wherein specific conditions that promote the translation of protein factors promoting carcinogenesis are present. These specific conditions may be favored by metabolic lipid alterations like those found in metabolic syndrome and obesity. Protein translation modifications have been described in obesity, favoring the translation of protein targets that benefit lipid accumulation; a determining factor is the activity of the cap-binding eukaryotic translation initiation factor 4E (eIF4E), a crosstalk in protein translation and lipogenesis. Besides, alterations of protein translation initiation steps are critical participants for the development of both pathogenic conditions, cancer, and obesity. This chapter is focused on the regulation of recognition and processing of carcinogenic-mRNA and the connections among lipid metabolism and cell signaling pathways that promote oncogenesis, tumoral microenvironment generation and potentially the development of chemoresistance. We performed an in-depth analysis of events, such as those occurring in obesity and dyslipidemias, that may influence protein translation, driving the recognition of certain mRNAs and favoring cancer development and chemoresistance.
Collapse
Affiliation(s)
- Andrea Muñoz-Ayala
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali, México; Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali, México
| | - Brenda Chimal-Vega
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali, México; Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali, México
| | - Victor García-González
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali, México; Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali, México.
| |
Collapse
|
27
|
Xu Y, Ruggero D. A tRF nucleator for Nucleolin in cancer metastasis. Mol Cell 2022; 82:2536-2538. [PMID: 35868253 DOI: 10.1016/j.molcel.2022.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this issue of Molecular Cell, Liu et al. (2022) report that 5'-tRFCys, a stress-induced transfer RNA-derived RNA fragment (tRF) derived from the 5' halves of cysteine tRNAs, regulates post-transcriptional gene expression, enabling the survival and lung metastasis formation of breast cancers.
Collapse
Affiliation(s)
- Yichen Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Davide Ruggero
- Department of Urology, University of California San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
28
|
Design, Synthesis and Evaluation of Novel Phorbazole C Derivatives as MNK Inhibitors through Virtual High-Throughput Screening. Mar Drugs 2022; 20:md20070429. [PMID: 35877722 PMCID: PMC9319845 DOI: 10.3390/md20070429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
MNKs (mitogen-activated protein kinase-interacting protein kinases) phosphorylate eIF4E at Ser209 to control the translation of certain mRNAs and regulate the process of cell proliferation, cell migration and invasion, etc. Development of MNK inhibitors would be an effective treatment for related diseases. We used the MarineChem3D database to identify hit compounds targeting the protein MNK1 and MNK2 through high-throughput screening. Compounds from the phorbazole family showed good interactions with MNK1, and phorbazole C was selected as our hit compound. By analyzing the binding mode, we designed and synthesized 29 derivatives and evaluated their activity against MNKs, of which, six compounds showed good inhibition to MNKs. We also confirmed three interactions between this kind of compound and MNK1, which are vital for the activity. In conclusion, we report series of novel MNK inhibitors inspired from marine natural products and their relative structure–activity relationship. This will provide important information for further developing MNK inhibitors based on this kind of structure.
Collapse
|
29
|
Biswas B, Chaaban R, Chakraborty S, Devaux A, Dian AL, Minello A, Singh JK, Vagner S, Uguen P, Lambert S, Dutertre M, Carreira A. At the crossroads of RNA biology, genome integrity and cancer. Bull Cancer 2022; 109:728-735. [PMID: 35597618 DOI: 10.1016/j.bulcan.2022.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 10/18/2022]
Abstract
This article is the synthesis of the scientific presentations that took place during two international courses at Institute Curie, one on post-transcriptional gene regulation and the other on genome instability and human disease, that were joined together in their 2021 edition. This joined course brought together the knowledge on RNA metabolism and the maintenance of genome stability.
Collapse
Affiliation(s)
- Biswendu Biswas
- CNRS UMR 3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| | - Rady Chaaban
- CNRS UMR 3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| | - Shrena Chakraborty
- CNRS UMR 3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| | - Alexandre Devaux
- CNRS UMR 3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| | - Ana Luisa Dian
- CNRS UMR 3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| | - Anna Minello
- CNRS UMR 3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| | - Jenny Kaur Singh
- CNRS UMR 3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| | - Stephan Vagner
- CNRS UMR 3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| | - Patricia Uguen
- CNRS UMR 3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France.
| | - Sarah Lambert
- CNRS UMR 3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| | - Martin Dutertre
- CNRS UMR 3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| | - Aura Carreira
- CNRS UMR 3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| |
Collapse
|
30
|
Mohan P, Pasion J, Ciriello G, Lailler N, de Stanchina E, Viale A, van den Berg A, Diepstra A, Wendel HG, Sanghvi VR, Singh K. Frequent 4EBP1 Amplification Induces Synthetic Dependence on FGFR Signaling in Cancer. Cancers (Basel) 2022; 14:2397. [PMID: 35626002 PMCID: PMC9139685 DOI: 10.3390/cancers14102397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
The eIF4E translation initiation factor has oncogenic properties and concordantly, the inhibitory eIF4E-binding protein (4EBP1) is considered a tumor suppressor. The exact molecular effects of 4EBP1 activation in cancer are still unknown. Surprisingly, 4EBP1 is a target of genomic copy number gains (Chr. 8p11) in breast and lung cancer. We noticed that 4EBP1 gains are genetically linked to gains in neighboring genes, including WHSC1L1 and FGFR1. Our results show that FGFR1 gains act to attenuate the function of 4EBP1 via PI3K-mediated phosphorylation at Thr37/46, Ser65, and Thr70 sites. This implies that not 4EBP1 but instead FGFR1 is the genetic target of Chr. 8p11 gains in breast and lung cancer. Accordingly, these tumors show increased sensitivity to FGFR1 and PI3K inhibition, and this is a therapeutic vulnerability through restoring the tumor-suppressive function of 4EBP1. Ribosome profiling reveals genes involved in insulin signaling, glucose metabolism, and the inositol pathway to be the relevant translational targets of 4EBP1. These mRNAs are among the top 200 translation targets and are highly enriched for structure and sequence motifs in their 5'UTR, which depends on the 4EBP1-EIF4E activity. In summary, we identified the translational targets of 4EBP1-EIF4E that facilitate the tumor suppressor function of 4EBP1 in cancer.
Collapse
Affiliation(s)
- Prathibha Mohan
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (P.M.); (J.P.); (H.-G.W.)
| | - Joyce Pasion
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (P.M.); (J.P.); (H.-G.W.)
| | - Giovanni Ciriello
- Department of Computational Biology, University of Lausanne, CH-1005 Lausanne, Switzerland;
| | - Nathalie Lailler
- Integrated Genomics Operation, Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (N.L.); (A.V.)
| | - Elisa de Stanchina
- Molecular Pharmacology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA;
| | - Agnes Viale
- Integrated Genomics Operation, Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (N.L.); (A.V.)
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (A.v.d.B.); (A.D.)
| | - Arjan Diepstra
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (A.v.d.B.); (A.D.)
| | - Hans-Guido Wendel
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (P.M.); (J.P.); (H.-G.W.)
| | - Viraj R. Sanghvi
- Department of Molecular and Cellular Pharmacology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Kamini Singh
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Albert Einstein Cancer Center, Bronx, NY 10461, USA
| |
Collapse
|
31
|
Kovalski JR, Kuzuoglu‐Ozturk D, Ruggero D. Protein synthesis control in cancer: selectivity and therapeutic targeting. EMBO J 2022; 41:e109823. [PMID: 35315941 PMCID: PMC9016353 DOI: 10.15252/embj.2021109823] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 11/09/2022] Open
Abstract
Translational control of mRNAs is a point of convergence for many oncogenic signals through which cancer cells tune protein expression in tumorigenesis. Cancer cells rely on translational control to appropriately adapt to limited resources while maintaining cell growth and survival, which creates a selective therapeutic window compared to non-transformed cells. In this review, we first discuss how cancer cells modulate the translational machinery to rapidly and selectively synthesize proteins in response to internal oncogenic demands and external factors in the tumor microenvironment. We highlight the clinical potential of compounds that target different translation factors as anti-cancer therapies. Next, we detail how RNA sequence and structural elements interface with the translational machinery and RNA-binding proteins to coordinate the translation of specific pro-survival and pro-growth programs. Finally, we provide an overview of the current and emerging technologies that can be used to illuminate the mechanisms of selective translational control in cancer cells as well as within the microenvironment.
Collapse
Affiliation(s)
- Joanna R Kovalski
- Helen Diller Family Comprehensive Cancer CenterUniversity of California, San FranciscoSan FranciscoCAUSA
- Department of UrologyUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Duygu Kuzuoglu‐Ozturk
- Helen Diller Family Comprehensive Cancer CenterUniversity of California, San FranciscoSan FranciscoCAUSA
- Department of UrologyUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Davide Ruggero
- Helen Diller Family Comprehensive Cancer CenterUniversity of California, San FranciscoSan FranciscoCAUSA
- Department of UrologyUniversity of California, San FranciscoSan FranciscoCAUSA
- Department of Cellular and Molecular PharmacologyUniversity of California, San FranciscoSan FranciscoCAUSA
| |
Collapse
|
32
|
Amelioration of hepatic steatosis by dietary essential amino acid-induced ubiquitination. Mol Cell 2022; 82:1528-1542.e10. [PMID: 35245436 DOI: 10.1016/j.molcel.2022.01.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/14/2021] [Accepted: 01/25/2022] [Indexed: 12/30/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global health concern with no approved drugs. High-protein dietary intervention is currently the most effective treatment. However, its underlying mechanism is unknown. Here, using Drosophila oenocytes, the specialized hepatocyte-like cells, we find that dietary essential amino acids ameliorate hepatic steatosis by inducing polyubiquitination of Plin2, a lipid droplet-stabilizing protein. Leucine and isoleucine, two branched-chain essential amino acids, strongly bind to and activate the E3 ubiquitin ligase Ubr1, targeting Plin2 for degradation. We further show that the amino acid-induced Ubr1 activity is necessary to prevent steatosis in mouse livers and cultured human hepatocytes, providing molecular insight into the anti-NAFLD effects of dietary protein/amino acids. Importantly, split-intein-mediated trans-splicing expression of constitutively active UBR2, an Ubr1 family member, significantly ameliorates obesity-induced and high fat diet-induced hepatic steatosis in mice. Together, our results highlight activation of Ubr1 family proteins as a promising strategy in NAFLD treatment.
Collapse
|
33
|
Anderson R, Agarwal A, Ghosh A, Guan B, Casteel J, Dvorina N, Baldwin WM, Mazumder B, Nazarko TY, Merrick WC, Buchner DA, Hatzoglou M, Kondratov RV, Komar AA. eIF2A-knockout mice reveal decreased life span and metabolic syndrome. FASEB J 2021; 35:e21990. [PMID: 34665898 PMCID: PMC8848898 DOI: 10.1096/fj.202101105r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/02/2021] [Accepted: 09/29/2021] [Indexed: 01/07/2023]
Abstract
Eukaryotic initiation factor 2A (eIF2A) is a 65 kDa protein that functions in minor initiation pathways, which affect the translation of only a subset of messenger ribonucleic acid (mRNAs), such as internal ribosome entry site (IRES)-containing mRNAs and/or mRNAs harboring upstream near cognate/non-AUG start codons. These non-canonical initiation events are important for regulation of protein synthesis during cellular development and/or the integrated stress response. Selective eIF2A knockdown in cellular systems significantly inhibits translation of such mRNAs, which rely on alternative initiation mechanisms for their translation. However, there exists a gap in our understanding of how eIF2A functions in mammalian systems in vivo (on the organismal level) and ex vivo (in cells). Here, using an eIF2A-knockout (KO) mouse model, we present evidence implicating eIF2A in the biology of aging, metabolic syndrome and central tolerance. We discovered that eIF2A-KO mice have reduced life span and that eIF2A plays an important role in maintenance of lipid homeostasis, the control of glucose tolerance, insulin resistance and also reduces the abundance of B lymphocytes and dendritic cells in the thymic medulla of mice. We also show the eIF2A KO affects male and female mice differently, suggesting that eIF2A may affect sex-specific pathways. Interestingly, our experiments involving pharmacological induction of endoplasmic reticulum (ER) stress with tunicamycin did not reveal any substantial difference between the response to ER stress in eIF2A-KO and wild-type mice. The identification of eIF2A function in the development of metabolic syndrome bears promise for the further identification of specific eIF2A targets responsible for these changes.
Collapse
Affiliation(s)
- Richard Anderson
- Center for Gene Regulation in Health and DiseaseDepartment of Biological, Geological and Environmental SciencesCleveland State UniversityClevelandOhioUSA
| | - Anchal Agarwal
- Center for Gene Regulation in Health and DiseaseDepartment of Biological, Geological and Environmental SciencesCleveland State UniversityClevelandOhioUSA
| | - Arnab Ghosh
- Center for Gene Regulation in Health and DiseaseDepartment of Biological, Geological and Environmental SciencesCleveland State UniversityClevelandOhioUSA
| | - Bo‐Jhih Guan
- Department of Genetics and Genome SciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Jackson Casteel
- Center for Gene Regulation in Health and DiseaseDepartment of Biological, Geological and Environmental SciencesCleveland State UniversityClevelandOhioUSA
| | - Nina Dvorina
- Department of Inflammation and ImmunityCleveland Clinic Lerner College of MedicineClevelandOhioUSA
| | - William M. Baldwin
- Department of Inflammation and ImmunityCleveland Clinic Lerner College of MedicineClevelandOhioUSA
| | - Barsanjit Mazumder
- Center for Gene Regulation in Health and DiseaseDepartment of Biological, Geological and Environmental SciencesCleveland State UniversityClevelandOhioUSA
| | | | - William C. Merrick
- Department of BiochemistryCase Western Reserve University School of MedicineClevelandOhioUSA
| | - David A. Buchner
- Department of Genetics and Genome SciencesCase Western Reserve University School of MedicineClevelandOhioUSA,Department of BiochemistryCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Maria Hatzoglou
- Department of Genetics and Genome SciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Roman V. Kondratov
- Center for Gene Regulation in Health and DiseaseDepartment of Biological, Geological and Environmental SciencesCleveland State UniversityClevelandOhioUSA
| | - Anton A. Komar
- Center for Gene Regulation in Health and DiseaseDepartment of Biological, Geological and Environmental SciencesCleveland State UniversityClevelandOhioUSA,Department of BiochemistryCase Western Reserve University School of MedicineClevelandOhioUSA
| |
Collapse
|
34
|
Scagliola A, Miluzio A, Ventura G, Oliveto S, Cordiglieri C, Manfrini N, Cirino D, Ricciardi S, Valenti L, Baselli G, D'Ambrosio R, Maggioni M, Brina D, Bresciani A, Biffo S. Targeting of eIF6-driven translation induces a metabolic rewiring that reduces NAFLD and the consequent evolution to hepatocellular carcinoma. Nat Commun 2021; 12:4878. [PMID: 34385447 PMCID: PMC8361022 DOI: 10.1038/s41467-021-25195-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/24/2021] [Indexed: 12/30/2022] Open
Abstract
A postprandial increase of translation mediated by eukaryotic Initiation Factor 6 (eIF6) occurs in the liver. Its contribution to steatosis and disease is unknown. In this study we address whether eIF6-driven translation contributes to disease progression. eIF6 levels increase throughout the progression from Non-Alcoholic Fatty Liver Disease (NAFLD) to hepatocellular carcinoma. Reduction of eIF6 levels protects the liver from disease progression. eIF6 depletion blunts lipid accumulation, increases fatty acid oxidation (FAO) and reduces oncogenic transformation in vitro. In addition, eIF6 depletion delays the progression from NAFLD to hepatocellular carcinoma, in vivo. Mechanistically, eIF6 depletion reduces the translation of transcription factor C/EBPβ, leading to a drop in biomarkers associated with NAFLD progression to hepatocellular carcinoma and preserves mitochondrial respiration due to the maintenance of an alternative mTORC1-eIF4F translational branch that increases the expression of transcription factor YY1. We provide proof-of-concept that in vitro pharmacological inhibition of eIF6 activity recapitulates the protective effects of eIF6 depletion. We hypothesize the existence of a targetable, evolutionarily conserved translation circuit optimized for lipid accumulation and tumor progression.
Collapse
Affiliation(s)
- Alessandra Scagliola
- Istituto Nazionale di Genetica Molecolare, INGM, "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Annarita Miluzio
- Istituto Nazionale di Genetica Molecolare, INGM, "Romeo ed Enrica Invernizzi", Milan, Italy
| | | | - Stefania Oliveto
- Istituto Nazionale di Genetica Molecolare, INGM, "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Chiara Cordiglieri
- Istituto Nazionale di Genetica Molecolare, INGM, "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Nicola Manfrini
- Istituto Nazionale di Genetica Molecolare, INGM, "Romeo ed Enrica Invernizzi", Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Delia Cirino
- Department of Biosciences, University of Milan, Milan, Italy
| | - Sara Ricciardi
- Istituto Nazionale di Genetica Molecolare, INGM, "Romeo ed Enrica Invernizzi", Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Translational Medicine, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Policlinico, Milan, Italy
| | - Guido Baselli
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Roberta D'Ambrosio
- Department of Hepatology, Fondazione IRCCS Ca' Granda Granda Ospedale Policlinico, Milan, Italy
| | - Marco Maggioni
- Department of Pathology, Fondazione IRCCS Ca' Granda Ospedale Policlinico, Milan, Italy
| | - Daniela Brina
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Alberto Bresciani
- Department of Translational and Discovery Research, IRBM S.p.A., Pomezia (Roma), Italy
| | - Stefano Biffo
- Istituto Nazionale di Genetica Molecolare, INGM, "Romeo ed Enrica Invernizzi", Milan, Italy.
- Department of Biosciences, University of Milan, Milan, Italy.
| |
Collapse
|