1
|
Wei C, Liao K, Chen HJ, Xiao ZX, Meng Q, Liu ZK, Lu YX, Sheng H, Mo HY, Wu QN, Han Y, Zeng ZL, Guan XY, Luo HY, Ju HQ, Xu RH. Nuclear mitochondrial acetyl-CoA acetyltransferase 1 orchestrates natural killer cell-dependent antitumor immunity in colorectal cancer. Signal Transduct Target Ther 2025; 10:138. [PMID: 40289129 PMCID: PMC12034769 DOI: 10.1038/s41392-025-02221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 03/19/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
Tumor metabolism often interferes with the immune microenvironment. Although natural killer (NK) cells play pivotal roles in antitumor immunity, the connection between NK cells and tumor metabolism remains unclear. Our systematic analysis of multiomics data and survival data from colorectal cancer (CRC) patients uncovered a novel association between mitochondrial acetyl-CoA acetyltransferase 1 (ACAT1) and NK cell infiltration that influences disease progression. ACAT1, a metabolic enzyme involved in reversible conversion of acetoacetyl-CoA to two molecules of acetyl-CoA, exhibits nuclear protein acetylation activity through its translocation. Under immune stimulation, mitochondrial ACAT1 can be phosphorylated at serine 60 (S60) and enters the nucleus; however, this process is hindered in nutrient-poor tumor microenvironments. Nuclear ACAT1 directly acetylates lysine 146 of p50 (NFKB1), attenuating its DNA binding and transcriptional repression activity and thereby increasing the expression of immune-related factors, which in turn promotes NK cell recruitment and activation to suppress colorectal cancer growth. Furthermore, significant associations are found among low nuclear ACAT1 levels, decreased S60 phosphorylation, and reduced NK cell infiltration, as well as poor prognosis in CRC. Our findings reveal an unexpected function of ACAT1 as a nuclear acetyltransferase and elucidate its role in NK cell-dependent antitumor immunity through p50 acetylation.
Collapse
Affiliation(s)
- Chen Wei
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, PR China
| | - Kun Liao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, PR China
| | - Hao-Jie Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, PR China
| | - Zi-Xuan Xiao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, PR China
| | - Qi Meng
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, PR China
| | - Ze-Kun Liu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, PR China
| | - Yun-Xin Lu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, PR China
| | - Hui Sheng
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, PR China
| | - Hai-Yu Mo
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, PR China
| | - Qi-Nian Wu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, PR China
| | - Yi Han
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, PR China
| | - Zhao-Lei Zeng
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, PR China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, PR China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, PR China
| | - Hui-Yan Luo
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, PR China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, PR China
| | - Huai-Qiang Ju
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, PR China.
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, PR China.
| | - Rui-Hua Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, PR China.
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, PR China.
| |
Collapse
|
2
|
You M, Wang B, Li L, Liu M, Wang L, Cao T, Zhou Q, Mou A, Wang H, Sun M, Lu Z, Zhu Z, Yan Z, Gao P. SIRT3 Represses Vascular Remodeling via Reducing Mitochondrial Ac-CoA Accumulation in Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2025. [PMID: 40242869 DOI: 10.1161/atvbaha.125.322428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND Vascular remodeling characterized by vascular smooth muscle cell (VSMC) phenotypic switching is a key pathological process leading to numerous cardiovascular diseases, often accompanied by a decrease in mitochondrial oxidative phosphorylation. However, whether VSMC mitochondrial homeostasis plays a central role in vascular remodeling remains elusive. In this study, we investigated the role of SIRT3 (sirtuin 3), a deacetylase that maintains mitochondrial homeostasis, in vascular remodeling. METHODS We established a VSMC-specific SIRT3 knockout mouse and a VSMC-specific SIRT3 overexpression mouse. Mice were infused with Ang II (angiotensin II) to establish the conventional abdominal aortic aneurysm model and underwent carotid artery ligation to establish the neointima formation model to investigate the role of SIRT3 in vascular remodeling. In vitro, quiescent-state VSMCs were stimulated with PDGF-BB (platelet-derived growth factor type BB) to investigate the direct role of SIRT3 in VSMC phenotypic switching, and the detailed mechanisms were investigated. RESULTS The expression and activity of SIRT3 were decreased in the aortas from mice with Ang II-induced abdominal aortic aneurysm or ligation-induced neointima formation. VSMC-specific knockout of SIRT3 exacerbated vascular remodeling, whereas overexpression or activation of SIRT3 in VSMCs displayed therapeutic effect. Moreover, the reduction of SIRT3 was shown to increase the expression level of KLF4, an important transcription factor that orchestrates VSMC phenotypic switching. Mechanistically, SIRT3 repression caused mitochondrial Ac-CoA (acetyl coenzyme A) accumulation that increased acetylated histone 3 lysine 27 levels in the KLF4 gene promoter region. Blockage of mitochondrial Ac-CoA transporting into the cytoplasm by inhibiting ACLY (ATP-citrate lyase) also inhibited VSMC phenotypic switching and thus attenuated vascular remodeling even when SIRT3 was knocked down. CONCLUSIONS This study provides evidence that mitochondrial dysfunction induced by SIRT3 inhibition is a major factor leading to VSMC phenotypic switching and vascular remodeling. Restoration of mitochondrial function and inhibition of mitochondrial Ac-CoA accumulation by activation of SIRT3 may help to treat remodeling-related cardiovascular damage.
Collapse
Affiliation(s)
- Mei You
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, China (M.Y., B.W., L.L., M.L., L.W., T.C., Q.Z., A.M., H.W., M.S., Z.L., Z.Z., Z.Y., P.G.)
| | - Bowen Wang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, China (M.Y., B.W., L.L., M.L., L.W., T.C., Q.Z., A.M., H.W., M.S., Z.L., Z.Z., Z.Y., P.G.)
| | - Li Li
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, China (M.Y., B.W., L.L., M.L., L.W., T.C., Q.Z., A.M., H.W., M.S., Z.L., Z.Z., Z.Y., P.G.)
| | - Min Liu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, China (M.Y., B.W., L.L., M.L., L.W., T.C., Q.Z., A.M., H.W., M.S., Z.L., Z.Z., Z.Y., P.G.)
| | - Lijuan Wang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, China (M.Y., B.W., L.L., M.L., L.W., T.C., Q.Z., A.M., H.W., M.S., Z.L., Z.Z., Z.Y., P.G.)
| | - Tingbing Cao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, China (M.Y., B.W., L.L., M.L., L.W., T.C., Q.Z., A.M., H.W., M.S., Z.L., Z.Z., Z.Y., P.G.)
| | - Qing Zhou
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, China (M.Y., B.W., L.L., M.L., L.W., T.C., Q.Z., A.M., H.W., M.S., Z.L., Z.Z., Z.Y., P.G.)
| | - Aidi Mou
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, China (M.Y., B.W., L.L., M.L., L.W., T.C., Q.Z., A.M., H.W., M.S., Z.L., Z.Z., Z.Y., P.G.)
| | - Hongya Wang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, China (M.Y., B.W., L.L., M.L., L.W., T.C., Q.Z., A.M., H.W., M.S., Z.L., Z.Z., Z.Y., P.G.)
| | - Min Sun
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, China (M.Y., B.W., L.L., M.L., L.W., T.C., Q.Z., A.M., H.W., M.S., Z.L., Z.Z., Z.Y., P.G.)
| | - Zongshi Lu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, China (M.Y., B.W., L.L., M.L., L.W., T.C., Q.Z., A.M., H.W., M.S., Z.L., Z.Z., Z.Y., P.G.)
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, China (M.Y., B.W., L.L., M.L., L.W., T.C., Q.Z., A.M., H.W., M.S., Z.L., Z.Z., Z.Y., P.G.)
- Chongqing Institute of Brain and Science, China (Z.Z.)
| | - Zhencheng Yan
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, China (M.Y., B.W., L.L., M.L., L.W., T.C., Q.Z., A.M., H.W., M.S., Z.L., Z.Z., Z.Y., P.G.)
| | - Peng Gao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, China (M.Y., B.W., L.L., M.L., L.W., T.C., Q.Z., A.M., H.W., M.S., Z.L., Z.Z., Z.Y., P.G.)
| |
Collapse
|
3
|
Tang L, Peng S, Zhuang X, He Y, Song Y, Nie H, Zheng C, Pan Z, Lam AK, He M, Shi X, Li B, Xu WW. Tumor Metastasis: Mechanistic Insights and Therapeutic Intervention. MEDCOMM – ONCOLOGY 2025; 4. [DOI: 10.1002/mog2.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/10/2025] [Indexed: 03/04/2025]
Abstract
ABSTRACTMetastasis remains a leading cause of cancer‐related deaths, defined by a complex, multi‐step process in which tumor cells spread and form secondary growths in distant tissues. Despite substantial progress in understanding metastasis, the molecular mechanisms driving this process and the development of effective therapies remain incompletely understood. Elucidating the molecular pathways governing metastasis is essential for the discovery of innovative therapeutic targets. The rapid advancements in sequencing technologies and the expansion of biological databases have significantly deepened our understanding of the molecular drivers of metastasis and associated drug resistance. This review focuses on the molecular drivers of metastasis, particularly the roles of genetic mutations, epigenetic changes, and post‐translational modifications in metastasis progression. We also examine how the tumor microenvironment influences metastatic behavior and explore emerging therapeutic strategies, including targeted therapies and immunotherapies. Finally, we discuss future research directions, stressing the importance of novel treatment approaches and personalized strategies to overcome metastasis and improve patient outcomes. By integrating contemporary insights into the molecular basis of metastasis and therapeutic innovation, this review provides a comprehensive framework to guide future research and clinical advancements in metastatic cancer.
Collapse
Affiliation(s)
- Lin Tang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| | - Shao‐Cong Peng
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Xiao‐Wan Zhuang
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Yan He
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| | - Yu‐Xiang Song
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| | - Hao Nie
- Department of Radiation Oncology, The Fifth Affiliated Hospital Guangzhou Medical University Guangzhou China
| | - Can‐Can Zheng
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Zhen‐Yu Pan
- Department of Radiation Oncology, The Affiliated Huizhou Hospital Guangzhou Medical University Huizhou China
| | - Alfred King‐Yin Lam
- Cancer Molecular Pathology and Griffith Medical School Griffith University Gold Coast Queensland Australia
| | - Ming‐Liang He
- Department of Biomedical Sciences City University of Hong Kong Hong Kong China
| | - Xing‐Yuan Shi
- Department of Radiation Oncology, The Fifth Affiliated Hospital Guangzhou Medical University Guangzhou China
| | - Bin Li
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Wen Wen Xu
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| |
Collapse
|
4
|
Hashemi M, Khosroshahi EM, Daneii P, Hassanpoor A, Eslami M, Koohpar ZK, Asadi S, Zabihi A, Jamali B, Ghorbani A, Nabavi N, Memarkashani MR, Salimimoghadam S, Taheriazam A, Tan SC, Entezari M, Farahani N, Hushmandi K. Emerging roles of CircRNA-miRNA networks in cancer development and therapeutic response. Noncoding RNA Res 2025; 10:98-115. [PMID: 39351450 PMCID: PMC11440256 DOI: 10.1016/j.ncrna.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/18/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
The complex interplay of epigenetic factors is essential in regulating the hallmarks of cancer and orchestrating intricate molecular interactions during tumor progression. Circular RNAs (circRNAs), known for their covalently closed loop structures, are non-coding RNA molecules exceptionally resistant to enzymatic degradation, which enhances their stability and regulatory functions in cancer. Similarly, microRNAs (miRNAs) are endogenous non-coding RNAs with linear structures that regulate cellular biological processes akin to circRNAs. Both miRNAs and circRNAs exhibit aberrant expressions in various cancers. Notably, circRNAs can function as sponges for miRNAs, influencing their activity. The circRNA/miRNA interaction plays a pivotal role in the regulation of cancer progression, including in brain, gastrointestinal, gynecological, and urological cancers, influencing key processes such as proliferation, apoptosis, invasion, autophagy, epithelial-mesenchymal transition (EMT), and more. Additionally, this interaction impacts the response of tumor cells to radiotherapy and chemotherapy and contributes to immune evasion, a significant challenge in cancer therapy. Both circRNAs and miRNAs hold potential as biomarkers for cancer prognosis and diagnosis. In this review, we delve into the circRNA-miRNA circuit within human cancers, emphasizing their role in regulating cancer hallmarks and treatment responses. This discussion aims to provide insights for future research to better understand their functions and potentially guide targeted treatments for cancer patients using circRNA/miRNA-based strategies.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Aria Hassanpoor
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maedeh Eslami
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abbas Zabihi
- Department of Biology, Faculty of Basic Sciences, Islamic Azad University, Hamedan Branch, Hamedan, Iran
| | - Behdokht Jamali
- Department of Microbiology and Genetics, Kherad Institute of Higher Education, Bushehr, Iran
| | - Amin Ghorbani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, V8V 1P7, Canada
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
5
|
Zhang X, Cao J, Li X, Zhang Y, Yan W, Ding B, Hu J, Liu H, Chen X, Nie Y, Liu F, Lin N, Wang S. Comprehensive Analysis of the SUMO-related Signature: Implication for Diagnosis, Prognosis, and Immune Therapeutic Approaches in Cervical Cancer. Biochem Genet 2024; 62:4654-4678. [PMID: 38349439 DOI: 10.1007/s10528-024-10728-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/30/2024] [Indexed: 11/29/2024]
Abstract
SUMOylation, an important post-translational protein modification, plays a critical role in cancer development and immune processes. This study aimed to construct diagnostic and prognostic models for cervical cancer (CC) using SUMOylation-related genes (SRGs) and explore their implications for novel clinical therapies. We analyzed the expression profiles of SRGs in CC patients and identified 15 SRGs associated with CC occurrence. After the subsequent qPCR verification of 20 cases of cancer and adjacent tissues, 13 of the 15 SRGs were differentially expressed in cancer tissues. Additionally, we identified molecular markers associated with the prognosis and recurrence of CC patients, based on SRGs. Next, a SUMOScore, based on SRG expression patterns, was generated to stratify patients into different subgroups. The SUMOScore showed significant associations with the tumor microenvironment, immune function features, immune checkpoint expression, and immune evasion score in CC patients, highlighting the strong connection between SUMOylation factors and immune processes. In terms of immune therapy, our analysis identified specific chemotherapy drugs with higher sensitivity in the subgroups characterized by high and low SUMOScore, indicating potential treatment options. Furthermore, we conducted drug sensitivity analysis to evaluate the response of different patient subgroups to conventional chemotherapy drugs. Our findings revealed enrichment of immune-related pathways in the low-risk subgroup identified by the prognostic model. In conclusion, this study presents diagnostic and prognostic models based on SRGs, accompanied by a comprehensive index derived from SRGs expression patterns. These findings offer valuable insights for CC diagnosis, prognosis, treatment, and immune-related analysis.
Collapse
Affiliation(s)
- Xing Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Jian Cao
- Department of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China
| | - Xiuting Li
- School of Health Management and Basic Science, Jiangsu Health Vocational College, Nanjing, 210029, China
| | - Yan Zhang
- School of Medicine, Shihezi University, Xinjiang, 832003, China
| | - Wenjing Yan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Bo Ding
- Department of Gynecology and Obstetrics, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Jing Hu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Haohan Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Xue Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Yamei Nie
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Fengying Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Ning Lin
- Jiangsu Institute of Planned Parenthood Research, Nanjing, 210036, China.
| | - Shizhi Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China.
| |
Collapse
|
6
|
Stacpoole PW, Dirain CO. The pyruvate dehydrogenase complex at the epigenetic crossroads of acetylation and lactylation. Mol Genet Metab 2024; 143:108540. [PMID: 39067348 DOI: 10.1016/j.ymgme.2024.108540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
The pyruvate dehydrogenase complex (PDC) is remarkable for its size and structure as well as for its physiological and pathological importance. Its canonical location is in the mitochondrial matrix, where it primes the tricarboxylic acid (TCA) cycle by decarboxylating glycolytically-derived pyruvate to acetyl-CoA. Less well appreciated is its role in helping to shape the epigenetic landscape, from early development throughout mammalian life by its ability to "moonlight" in the nucleus, with major repercussions for human healthspan and lifespan. The PDC's influence on two crucial modifiers of the epigenome, acetylation and lactylation, is the focus of this brief review.
Collapse
Affiliation(s)
- Peter W Stacpoole
- University of Florida, College of Medicine Department of Medicine, Department of Biochemistry & Molecular Biology, Gainesville, FL, United States.
| | - Carolyn O Dirain
- University of Florida, College of Medicine Department of Medicine, Gainesville, FL, United States
| |
Collapse
|
7
|
Li H, Liuha X, Chen R, Xiao Y, Xu W, Zhou Y, Bai L, Zhang J, Zhao Y, Zhao Y, Wang L, Qin F, Chen Y, Han S, Wei Q, Li S, Zhang D, Bu Q, Wang X, Jiang L, Dai Y, Zhang N, Kuang W, Qin M, Wang H, Tian J, Zhao Y, Cen X. Pyruvate dehydrogenase complex E1 subunit α crotonylation modulates cocaine-associated memory through hippocampal neuron activation. Cell Rep 2024; 43:114529. [PMID: 39046876 DOI: 10.1016/j.celrep.2024.114529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/04/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
Neuronal activation is required for the formation of drug-associated memory, which is critical for the development, persistence, and relapse of drug addiction. Nevertheless, the metabolic mechanisms underlying energy production for neuronal activation remain poorly understood. In the study, a large-scale proteomics analysis of lysine crotonylation (Kcr), a type of protein posttranslational modification (PTM), reveals that cocaine promoted protein Kcr in the hippocampal dorsal dentate gyrus (dDG). We find that Kcr is predominantly discovered in a few enzymes critical for mitochondrial energy metabolism; in particular, pyruvate dehydrogenase (PDH) complex E1 subunit α (PDHA1) is crotonylated at the lysine 39 (K39) residue through P300 catalysis. Crotonylated PDHA1 promotes pyruvate metabolism by activating PDH to increase ATP production, thus providing energy for hippocampal neuronal activation and promoting cocaine-associated memory recall. Our findings identify Kcr of PDHA1 as a PTM that promotes pyruvate metabolism to enhance neuronal activity for cocaine-associated memory.
Collapse
Affiliation(s)
- Hongchun Li
- Mental Health Center and Center for Preclinical Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoyu Liuha
- Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Rong Chen
- Mental Health Center and Center for Preclinical Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuzhou Xiao
- Mental Health Center and Center for Preclinical Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Xu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen 518055, China
| | - Yuanyi Zhou
- Mental Health Center and Center for Preclinical Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lin Bai
- Histology and Imaging Platform, Core Facilities of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Zhang
- Histology and Imaging Platform, Core Facilities of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yue Zhao
- Mental Health Center and Center for Preclinical Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ying Zhao
- Mental Health Center and Center for Preclinical Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liang Wang
- Mental Health Center and Center for Preclinical Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Feng Qin
- Mental Health Center and Center for Preclinical Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yaxing Chen
- Mental Health Center and Center for Preclinical Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shuang Han
- Mental Health Center and Center for Preclinical Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qingfan Wei
- Mental Health Center and Center for Preclinical Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shu Li
- Mental Health Center and Center for Preclinical Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dingwen Zhang
- Mental Health Center and Center for Preclinical Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qian Bu
- Mental Health Center and Center for Preclinical Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; West China-Frontier PharmaTech Co., Ltd., Chengdu 610041, China
| | - Xiaojie Wang
- Mental Health Center and Center for Preclinical Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Linhong Jiang
- Mental Health Center and Center for Preclinical Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanping Dai
- Mental Health Center and Center for Preclinical Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ni Zhang
- Mental Health Center and Center for Preclinical Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weihong Kuang
- Mental Health Center and Center for Preclinical Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meng Qin
- Mental Health Center and Center for Preclinical Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongbo Wang
- Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Jingwei Tian
- Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Yinglan Zhao
- Mental Health Center and Center for Preclinical Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaobo Cen
- Mental Health Center and Center for Preclinical Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
8
|
Shi HH, Mugaanyi J, Lu C, Li Y, Huang J, Dai L. A paradigm shift in cancer research based on integrative multi-omics approaches: glutaminase serves as a pioneering cuproptosis-related gene in pan-cancer. BMC Womens Health 2024; 24:213. [PMID: 38566121 PMCID: PMC10988933 DOI: 10.1186/s12905-024-03061-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Cuproptosis is a newly identified form of unprogrammed cell death. As a pivotal metabolic regulator, glutaminase (GLS) has recently been discovered to be linked to cuproptosis. Despite this discovery, the oncogenic functions and mechanisms of GLS in various cancers are still not fully understood. METHODS In this study, a comprehensive omics analysis was performed to investigate the differential expression levels, diagnostic and prognostic potential, correlation with tumor immune infiltration, genetic alterations, and drug sensitivity of GLS across multiple malignancies. RESULTS Our findings revealed unique expression patterns of GLS across various cancer types and molecular subtypes of carcinomas, underscoring its pivotal role primarily in energy and nutrition metabolism. Additionally, GLS showed remarkable diagnostic and prognostic performance in specific cancers, suggesting its potential as a promising biomarker for cancer detection and prognosis. Furthermore, we focused on uterine corpus endometrial carcinoma (UCEC) and developed a novel prognostic model associated with GLS, indicating a close correlation between GLS and UCEC. Moreover, our exploration into immune infiltration, genetic heterogeneity, tumor stemness, and drug sensitivity provided novel insights and directions for future research and laid the foundation for high-quality verification. CONCLUSION Collectively, our study is the first comprehensive investigation of the biological and clinical significance of GLS in pan-cancer. In our study, GLS was identified as a promising biomarker for UCEC, providing valuable evidence and a potential target for anti-tumor therapy. Overall, our findings shed light on the multifaceted functions of GLS in cancer and offer new avenues for further research.
Collapse
Affiliation(s)
- Hai-Hong Shi
- Department of Hepato-Pancreato-Biliary Surgery, Ningbo Medical Center Li Huili Hospital, The Affiliated Hospital of Ningbo University, Ningbo, 315040, China
| | - Joseph Mugaanyi
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Changjiang Lu
- Department of Hepato-Pancreato-Biliary Surgery, Ningbo Medical Center Li Huili Hospital, The Affiliated Hospital of Ningbo University, Ningbo, 315040, China
| | - Yang Li
- Department of Emergency, Ningbo Medical Center Li Huili Hospital, The Affiliated Hospital of Ningbo University, Ningbo, 315040, China
| | - Jing Huang
- Department of Hepato-Pancreato-Biliary Surgery, Ningbo Medical Center Li Huili Hospital, The Affiliated Hospital of Ningbo University, Ningbo, 315040, China.
| | - Lei Dai
- Department of Hepato-Pancreato-Biliary Surgery, Ningbo Medical Center Li Huili Hospital, The Affiliated Hospital of Ningbo University, Ningbo, 315040, China.
| |
Collapse
|
9
|
Xu NY, Li J, Wang ML, Chen XY, Tang R, Liu XQ. Fabrication of a Coculture Organoid Model in the Biomimetic Matrix of Alginate to Investigate Breast Cancer Progression in a TAMs-Leading Immune Microenvironment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11275-11288. [PMID: 38383056 DOI: 10.1021/acsami.3c17863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The current research models of breast cancer are usually limited in their capacity to recapitulate the tumor microenvironment in vitro. The lack of an extracellular matrix (ECM) oversimplifies cell-cell or cell-ECM cross-talks. Moreover, the lack of tumor-associated macrophages (TAMs), that can comprise up to 50% of some solid neoplasms, poses a major problem for recognizing various hallmarks of cancer. To address these concerns, a type of direct breast cancer cells (BCCs)-TAMs coculture organoid model was well developed by a sequential culture method in this study. Alginate cryogels were fabricated with appropriate physical and mechanical properties to serve as an alternative ECM. Then, our previous experience was leveraged to polarize TAMs inside of the cryogels for creating an in vitro immune microenvironment. The direct coculture significantly enhanced BCCs organoid growth and cancer aggressive phenotypes, including the stemness, migration, ECM remodeling, and cytokine secretion. Furthermore, transcriptomic analysis and protein-protein interaction networks implied certain pathways (PI3K-Akt pathway, MAPK signaling pathway, etc.) and targets (TNF, PPARG, TLR2, etc.) during breast cancer progression in a TAM-leading immune microenvironment. Future studies to advance treatment strategies for BCC patients may benefit from using this facile model to reveal and target the interactions between cancer signaling and the immune microenvironment.
Collapse
Affiliation(s)
- Nian-Yuan Xu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Jun Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Mei-Ling Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Xue-Yu Chen
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Ruizhi Tang
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, P. R. China
| | - Xi-Qiu Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| |
Collapse
|
10
|
Ou Y, Wang M, Xu Q, Sun B, Jia Y. Small molecule agents for triple negative breast cancer: Current status and future prospects. Transl Oncol 2024; 41:101893. [PMID: 38290250 PMCID: PMC10840364 DOI: 10.1016/j.tranon.2024.101893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer with poor prognosis. The number of cases increased by 2.26 million in 2020, making it the most commonly diagnosed cancer type in the world. TNBCs lack hormone receptor (HR) and human epidermal growth factor 2 (HER2), which limits treatment options. Currently, paclitaxel-based drugs combined with other chemotherapeutics remain the main treatment for TNBC. There is currently no consensus on the best therapeutic regimen for TNBC. However, there have been successful clinical trials exploring large-molecule monoclonal antibodies, small-molecule targeted drugs, and novel antibody-drug conjugate (ADC). Although monoclonal antibodies have produced clinical success, their large molecular weight can limit therapeutic benefits. It is worth noting that in the past 30 years, the FDA has approved small molecule drugs for HER2-positive breast cancers. The lack of effective targets and the occurrence of drug resistance pose significant challenges in the treatment of TNBC. To improve the prognosis of TNBC, it is crucial to search for effective targets and to overcome drug resistance. This review examines the clinical efficacy, adverse effects, resistance mechanisms, and potential solutions of targeted small molecule drugs in both monotherapies and combination therapies. New therapeutic targets, including nuclear export protein 1 (XPO1) and hedgehog (Hh), are emerging as potential options for researchers and become integrated into clinical trials for TNBC. Additionally, there is growing interest in the potential of targeted protein degradation chimeras (PROTACs), degraders of rogue proteins, as a future therapy direction. This review provides potentially valuable insights with clinical implications.
Collapse
Affiliation(s)
- Yan Ou
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Mengchao Wang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qian Xu
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Binxu Sun
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yingjie Jia
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
11
|
Ma H, Yang Y, Nie T, Yan R, Si Y, Wei J, Li M, Liu H, Ye W, Zhang H, Cheng L, Zhang L, Lv X, Luo L, Xu Z, Zhang X, Lei Y, Zhang F. Disparate macrophage responses are linked to infection outcome of Hantan virus in humans or rodents. Nat Commun 2024; 15:438. [PMID: 38200007 PMCID: PMC10781751 DOI: 10.1038/s41467-024-44687-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Hantaan virus (HTNV) is asymptomatically carried by rodents, yet causes lethal hemorrhagic fever with renal syndrome in humans, the underlying mechanisms of which remain to be elucidated. Here, we show that differential macrophage responses may determine disparate infection outcomes. In mice, late-phase inactivation of inflammatory macrophage prevents cytokine storm syndrome that usually occurs in HTNV-infected patients. This is attained by elaborate crosstalk between Notch and NF-κB pathways. Mechanistically, Notch receptors activated by HTNV enhance NF-κB signaling by recruiting IKKβ and p65, promoting inflammatory macrophage polarization in both species. However, in mice rather than humans, Notch-mediated inflammation is timely restrained by a series of murine-specific long noncoding RNAs transcribed by the Notch pathway in a negative feedback manner. Among them, the lnc-ip65 detaches p65 from the Notch receptor and inhibits p65 phosphorylation, rewiring macrophages from the pro-inflammation to the pro-resolution phenotype. Genetic ablation of lnc-ip65 leads to destructive HTNV infection in mice. Thus, our findings reveal an immune-braking function of murine noncoding RNAs, offering a special therapeutic strategy for HTNV infection.
Collapse
Affiliation(s)
- Hongwei Ma
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
- Department of Anaesthesiology & Critical Care Medicine, Xijing Hospital, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Yongheng Yang
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Tiejian Nie
- Department of Experimental Surgery, Tangdu Hospital, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710038, China
| | - Rong Yan
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Yue Si
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Jing Wei
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
- Shaanxi Provincial Centre for Disease Control and Prevention, Xi'an, Shaanxi, 710054, China
| | - Mengyun Li
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - He Liu
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Wei Ye
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Hui Zhang
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Linfeng Cheng
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Liang Zhang
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Xin Lv
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Limin Luo
- Department of Infectious Disease, Air Force Hospital of Southern Theatre Command, Guangzhou, Guangdong, 510602, China
| | - Zhikai Xu
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China.
| | - Xijing Zhang
- Department of Anaesthesiology & Critical Care Medicine, Xijing Hospital, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China.
| | - Yingfeng Lei
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China.
| | - Fanglin Zhang
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
12
|
Aleksandrova Y, Neganova M. Deciphering the Mysterious Relationship between the Cross-Pathogenetic Mechanisms of Neurodegenerative and Oncological Diseases. Int J Mol Sci 2023; 24:14766. [PMID: 37834214 PMCID: PMC10573395 DOI: 10.3390/ijms241914766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The relationship between oncological pathologies and neurodegenerative disorders is extremely complex and is a topic of concern among a growing number of researchers around the world. In recent years, convincing scientific evidence has accumulated that indicates the contribution of a number of etiological factors and pathophysiological processes to the pathogenesis of these two fundamentally different diseases, thus demonstrating an intriguing relationship between oncology and neurodegeneration. In this review, we establish the general links between three intersecting aspects of oncological pathologies and neurodegenerative disorders, i.e., oxidative stress, epigenetic dysregulation, and metabolic dysfunction, examining each process in detail to establish an unusual epidemiological relationship. We also focus on reviewing the current trends in the research and the clinical application of the most promising chemical structures and therapeutic platforms that have a modulating effect on the above processes. Thus, our comprehensive analysis of the set of molecular determinants that have obvious cross-functional pathways in the pathogenesis of oncological and neurodegenerative diseases can help in the creation of advanced diagnostic tools and in the development of innovative pharmacological strategies.
Collapse
Affiliation(s)
- Yulia Aleksandrova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Margarita Neganova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia
| |
Collapse
|
13
|
Yang YH, Wen R, Yang N, Zhang TN, Liu CF. Roles of protein post-translational modifications in glucose and lipid metabolism: mechanisms and perspectives. Mol Med 2023; 29:93. [PMID: 37415097 DOI: 10.1186/s10020-023-00684-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/10/2023] [Indexed: 07/08/2023] Open
Abstract
The metabolism of glucose and lipids is essential for energy production in the body, and dysregulation of the metabolic pathways of these molecules is implicated in various acute and chronic diseases, such as type 2 diabetes, Alzheimer's disease, atherosclerosis (AS), obesity, tumor, and sepsis. Post-translational modifications (PTMs) of proteins, which involve the addition or removal of covalent functional groups, play a crucial role in regulating protein structure, localization function, and activity. Common PTMs include phosphorylation, acetylation, ubiquitination, methylation, and glycosylation. Emerging evidence indicates that PTMs are significant in modulating glucose and lipid metabolism by modifying key enzymes or proteins. In this review, we summarize the current understanding of the role and regulatory mechanisms of PTMs in glucose and lipid metabolism, with a focus on their involvement in disease progression associated with aberrant metabolism. Furthermore, we discuss the future prospects of PTMs, highlighting their potential for gaining deeper insights into glucose and lipid metabolism and related diseases.
Collapse
Affiliation(s)
- Yu-Hang Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, SanHao Street, Liaoning Province, Shenyang City, 110004, China
| | - Ri Wen
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, SanHao Street, Liaoning Province, Shenyang City, 110004, China
| | - Ni Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, SanHao Street, Liaoning Province, Shenyang City, 110004, China
| | - Tie-Ning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, SanHao Street, Liaoning Province, Shenyang City, 110004, China.
| | - Chun-Feng Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, SanHao Street, Liaoning Province, Shenyang City, 110004, China.
| |
Collapse
|
14
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
15
|
Lv X, Mao Z, Sun X, Liu B. Intratumoral Heterogeneity in Lung Cancer. Cancers (Basel) 2023; 15:2709. [PMID: 37345046 PMCID: PMC10216154 DOI: 10.3390/cancers15102709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
The diagnosis and treatment of lung cancer (LC) is always a challenge. The difficulty in the decision of therapeutic schedule and diagnosis is directly related to intratumoral heterogeneity (ITH) in the progression of LC. It has been proven that most tumors emerge and evolve under the pressure of their living microenvironment, which involves genetic, immunological, metabolic, and therapeutic components. While most research on ITH revealed multiple mechanisms and characteristic, a systemic exposition of ITH in LC is still hard to find. In this review, we describe how ITH in LC develops from the perspective of space and time. We discuss elaborate details and affection of every aspect of ITH in LC and the relationship between them. Based on ITH in LC, we describe a more accurate multidisciplinary therapeutic strategy on LC and provide the newest opinion on the potential approach of LC therapy.
Collapse
Affiliation(s)
- Xiaodi Lv
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200437, China;
| | - Zixian Mao
- Pujiang Community Health Center of Minhang District of Shanghai, Shanghai 201114, China;
| | - Xianjun Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200437, China;
- Institutes of Integrative Medicine, Fudan University, Shanghai 200437, China
| | - Baojun Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200437, China;
- Institutes of Integrative Medicine, Fudan University, Shanghai 200437, China
| |
Collapse
|
16
|
Li D, Yang L, Wang W, Song C, Xiong R, Pan S, Li N, Geng Q. Eriocitrin attenuates sepsis-induced acute lung injury in mice by regulating MKP1/MAPK pathway mediated-glycolysis. Int Immunopharmacol 2023; 118:110021. [PMID: 36966548 DOI: 10.1016/j.intimp.2023.110021] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/18/2023] [Accepted: 03/08/2023] [Indexed: 03/28/2023]
Abstract
Metabolic reprogramming has been shown to aggravate sepsis-induced acute lung injury. In particular, enhanced glycolysis is closely associated with inflammation and oxidative stress. Eriocitrin (ERI) is a natural flavonoid found in citrus fruit that exhibits various pharmacological activities, with antioxidant, anti-inflammatory, anti-diabetic, and anti-tumor properties. However, the role of ERI in lung injury is not well understood. We established a septic mouse model of acute lung injury (ALI) using lipopolysaccharide (LPS) for induction. Primary peritoneal macrophages were isolated to verify the relevant molecular mechanism. Tissues were assessed for lung pathology, pro-inflammatory cytokines, markers of oxidative stress, and protein and mRNA expression levels. In vivo experiments showed that ERI effectively alleviated LPS-induced pathological injury, suppress the inflammatory response (TNF-α, IL-1β, IL-6 levels) and decreased oxidative stress (MDA, ROS) in murine lung tissue. In vitro, ERI increased the resistance of LPS-treated cells to excessive inflammation and oxidative stress by inhibiting the enhancement of glycolysis (indicated by expression levels of HIF-1α, HK2, LDHA, PFKFB3, and PKM2). Specifically, the beneficial effects of ERI following LPS-induced lung injury occurred through promoting the expression of MKP1, which mediates the inactivation of the MAPK pathway to inhibit enhanced glycolysis. These results demonstrate that ERI has a protective effect on sepsis-induced ALI by regulating MKP1/MAPK pathway mediated-glycolysis. Hence, ERI is a promising candidate against ALI via inhibiting glycolysis.
Collapse
Affiliation(s)
- Donghang Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Liu Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Congkuan Song
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Rui Xiong
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Shize Pan
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
17
|
Yang W, Zhang Z, Li L, Zhang K, Xu Y, Xia M, Zhou J, Gong Y, Chen J, Gong K. ZNF582 overexpression restrains the progression of clear cell renal cell carcinoma by enhancing the binding of TJP2 and ERK2 and inhibiting ERK2 phosphorylation. Cell Death Dis 2023; 14:212. [PMID: 36966163 PMCID: PMC10039855 DOI: 10.1038/s41419-023-05750-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/27/2023]
Abstract
Recent evidences have suggested that Zinc finger protein 582 (ZNF582) plays different important roles in various tumors, but its clinical role, biological function and regulatory mechanism in clear cell renal cell carcinoma (ccRCC) are still vague. Through analyzing GEO and TCGA-KIRC data and validation with local samples, we identified the low expression pattern of ZNF582 in ccRCC. Decreased ZNF582 expression is correlated with higher tumor stage and grade, distant metastasis and poor prognosis. By analyzing the DNA methylation data of ccRCC in TCGA-KIRC and using Massarray DNA methylation and demethylation analysis, we confirmed the hypermethylation status of ZNF582 in ccRCC and its negative regulation on ZNF582 expression. Using cell phenotype experiments and orthotopic kidney tumor growth models, we determined the inhibitory effect of ZNF582 overexpression on ccRCC growth and metastasis in vivo and in vitro. Mechanistically, using TMT (Tandem mass tags) quantitative proteomics test, Co-IP (Co-immunoprecipitation) and Western Blot experiments, we clarified that ZNF582 binds to TJP2 and up-regulates TJP2 protein expression. Increased TJP2 protein combines with ERK2 to promote ERK2 protein expression and suppresses the phosphorylation of ERK2, thereby inhibiting the growth and metastasis of ccRCC. In general, our findings provide the first solid theoretical rationale for targeting ZNF582/TJP2/ERK2 axis to improve ccRCC treatment.
Collapse
Affiliation(s)
- Wuping Yang
- Department of Urology, Peking University First Hospital, Beijing, 100034, P.R. China
- Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing, 100034, P.R. China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, P.R. China
| | - Zedan Zhang
- Department of Urology, Peking University First Hospital, Beijing, 100034, P.R. China
- Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing, 100034, P.R. China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, P.R. China
| | - Lei Li
- Department of Urology, Peking University First Hospital, Beijing, 100034, P.R. China
- Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing, 100034, P.R. China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, P.R. China
| | - Kenan Zhang
- Department of Urology, Peking University First Hospital, Beijing, 100034, P.R. China
- Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing, 100034, P.R. China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, P.R. China
| | - Yawei Xu
- Department of Urology, Peking University First Hospital, Beijing, 100034, P.R. China
- Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing, 100034, P.R. China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, P.R. China
| | - Mancheng Xia
- Department of Urology, Peking University First Hospital, Beijing, 100034, P.R. China
- Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing, 100034, P.R. China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, P.R. China
| | - Jingcheng Zhou
- Department of Urology, Peking University First Hospital, Beijing, 100034, P.R. China
- Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing, 100034, P.R. China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, P.R. China
| | - Yanqing Gong
- Department of Urology, Peking University First Hospital, Beijing, 100034, P.R. China.
- Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing, 100034, P.R. China.
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, P.R. China.
| | - Jinchao Chen
- Department of Urologic Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, P.R. China.
| | - Kan Gong
- Department of Urology, Peking University First Hospital, Beijing, 100034, P.R. China.
- Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing, 100034, P.R. China.
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, P.R. China.
| |
Collapse
|
18
|
Stacpoole PW, McCall CE. The pyruvate dehydrogenase complex: Life's essential, vulnerable and druggable energy homeostat. Mitochondrion 2023; 70:59-102. [PMID: 36863425 DOI: 10.1016/j.mito.2023.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
Found in all organisms, pyruvate dehydrogenase complexes (PDC) are the keystones of prokaryotic and eukaryotic energy metabolism. In eukaryotic organisms these multi-component megacomplexes provide a crucial mechanistic link between cytoplasmic glycolysis and the mitochondrial tricarboxylic acid (TCA) cycle. As a consequence, PDCs also influence the metabolism of branched chain amino acids, lipids and, ultimately, oxidative phosphorylation (OXPHOS). PDC activity is an essential determinant of the metabolic and bioenergetic flexibility of metazoan organisms in adapting to changes in development, nutrient availability and various stresses that challenge maintenance of homeostasis. This canonical role of the PDC has been extensively probed over the past decades by multidisciplinary investigations into its causal association with diverse physiological and pathological conditions, the latter making the PDC an increasingly viable therapeutic target. Here we review the biology of the remarkable PDC and its emerging importance in the pathobiology and treatment of diverse congenital and acquired disorders of metabolic integration.
Collapse
Affiliation(s)
- Peter W Stacpoole
- Department of Medicine (Division of Endocrinology, Metabolism and Diabetes), and Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL, United States.
| | - Charles E McCall
- Department of Internal Medicine and Translational Sciences, and Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
19
|
Zhang F, Yan Y, Liang Q, Liu Y, Wu G, Xu Z, Yang K. A combined analysis of bulk and single-cell sequencing data reveals metabolic enzyme, pyruvate dehydrogenase E1 subunit beta (PDHB), as a prediction biomarker for the tumor immune response and immunotherapy. Heliyon 2023; 9:e13456. [PMID: 36816316 PMCID: PMC9929299 DOI: 10.1016/j.heliyon.2023.e13456] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Pyruvate dehydrogenase E1 subunit beta (PDHB) is located in mitochondria and catalyzes the conversion of glucose-derived acetyl-CoA. The detailed roles of PDHB in human cancers is unclear. Here, through comprehensive bioinformatics analysis, we found that PDHB was aberrantly expressed in multiple human cancers and is associated with patients' clinical stage. The abnormal expression of PDHB was related to the prognostic values of cancers, such as kidney renal clear cell carcinoma (KIRC) and kidney renal papillary cell carcinoma (KIRP). The Wanderer database with clinical data from Cancer Genome Atlas (TCGA) showed a significant correlation between PDHB expression and the pathologic stage of KIRP patients. We also evaluated the mutation profiles of PDHB in pan-cancer, and showed its roles on the patients' prognosis. At last, from several immunity algorithms, we demonstrated that the expression of PDHB was correlated with the infiltration of various immune cells in pan-cancer. Moreover, the aberrant PDHB had effects on the response to immune checkpoint inhibitors in cancer patients, such as anti-PD-1. Taken together, our study demonstrated the prognostic values of PDHB in pan-cancers. PDHB may be a potential molecular marker to predicting the immune response in cancer patients.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410008, Hunan, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yuanhong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Geting Wu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Keda Yang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| |
Collapse
|
20
|
Li W, Long Q, Wu H, Zhou Y, Duan L, Yuan H, Ding Y, Huang Y, Wu Y, Huang J, Liu D, Chen B, Zhang J, Qi J, Du S, Li L, Liu Y, Ruan Z, Liu Z, Liu Z, Zhao Y, Lu J, Wang J, Chan WY, Liu X. Nuclear localization of mitochondrial TCA cycle enzymes modulates pluripotency via histone acetylation. Nat Commun 2022; 13:7414. [PMID: 36460681 PMCID: PMC9718843 DOI: 10.1038/s41467-022-35199-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Pluripotent stem cells hold great promise in regenerative medicine and developmental biology studies. Mitochondrial metabolites, including tricarboxylic acid (TCA) cycle intermediates, have been reported to play critical roles in pluripotency. Here we show that TCA cycle enzymes including Pdha1, Pcb, Aco2, Cs, Idh3a, Ogdh, Sdha and Mdh2 are translocated to the nucleus during somatic cell reprogramming, primed-to-naive transition and totipotency acquisition. The nuclear-localized TCA cycle enzymes Pdha1, Pcb, Aco2, Cs, Idh3a promote somatic cell reprogramming and primed-to-naive transition. In addition, nuclear-localized TCA cycle enzymes, particularly nuclear-targeted Pdha1, facilitate the 2-cell program in pluripotent stem cells. Mechanistically, nuclear Pdha1 increases the acetyl-CoA and metabolite pool in the nucleus, leading to chromatin remodeling at pluripotency genes by enhancing histone H3 acetylation. Our results reveal an important role of mitochondrial TCA cycle enzymes in the epigenetic regulation of pluripotency that constitutes a mitochondria-to-nucleus retrograde signaling mode in different states of pluripotent acquisition.
Collapse
Affiliation(s)
- Wei Li
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Qi Long
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Hao Wu
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Yanshuang Zhou
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Lifan Duan
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Hao Yuan
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Yingzhe Ding
- grid.9227.e0000000119573309Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Yile Huang
- grid.9227.e0000000119573309Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Yi Wu
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Jinyu Huang
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Delong Liu
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Baodan Chen
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Jian Zhang
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China
| | - Juntao Qi
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Shiwei Du
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Linpeng Li
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Yang Liu
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zifeng Ruan
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zihuang Liu
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zichao Liu
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yifan Zhao
- grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Jianghuan Lu
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Junwei Wang
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Wai-Yee Chan
- grid.10784.3a0000 0004 1937 0482CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xingguo Liu
- grid.410737.60000 0000 8653 1072GMU-GIBH Joint School of Life Sciences, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530 China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China ,grid.9227.e0000000119573309Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| |
Collapse
|
21
|
Huan C, Gao J. A novel cuproptosis-related lncRNA prognostic signature for predicting treatment and immune environment of head and neck squamous cell carcinoma. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:12127-12145. [PMID: 36653989 DOI: 10.3934/mbe.2022564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is an urgent public health issue due to its poor prognosis and resistance to anti-cancer agents. However, the role of cuproptosis, a newly identified form cell death, in applications of HNSCC is still not a known. In this study, single-cell RNA sequencing data was used to explore cuproptosis-related gene expression in the tumour microenvironment. A prognostic model was constructed based on the cuproptosis-related lncRNA. Various methods were performed to predict the overall survival (OS) of different risk score patients and explore difference in enrichment function and pathways between the risk score patients. Finally, a series of immunogenomic landscape analyses were performed and evaluated the immune function, immune infiltration and sensitivity to chemotherapeutic agents. Cancer cell cluster expressed the essential cuproptosis-related gene. As the risk score increased of HNSCC patients, a significant decrease in survival status and time occurred for patients in the high-risk score patient. The AUC for predicting 1-, 3-, and 5-years OS were 0.679, 0.713 and 0.656, indicating that the model regarded as an independent prognostic signature in comparison with the clinical-pathological characteristics. As a results of GO, the immune function and immune infiltration of different risk score patients were assessed, revealing significant differences in T cell function and abundance of different types of T cells. Low-risk score patients are relatively insensitive to chemotherapy agents such as docetaxel and cisplatin, and easily resistant to immunotherapy. A cuproptosis-related lncRNA prognostic model was constructed to predict OS of HNSCC patients and provided the newly therapeutic strategies.
Collapse
Affiliation(s)
- Changxiang Huan
- Zhongshan Clinical College, Dalian University, Dalian 116000, China
| | - Jiaxin Gao
- Medical College, Guangxi University, Nanning 530000, China
| |
Collapse
|