1
|
Zheng W, Lin X, Chen H, Yang Z, Zhao H, Li S, Song T, Sun Y. Gut microbiota and endometrial cancer: research progress on the pathogenesis and application. Ann Med 2025; 57:2451766. [PMID: 39810645 PMCID: PMC11737052 DOI: 10.1080/07853890.2025.2451766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/02/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
As one of the three major malignant tumors in women, the morbidity of endometrial cancer is second only to that of cervical cancer and is increasing yearly. Its etiological mechanism is not clear, and the risk factors are numerous and common and are closely related to obesity, hypertension, diabetes, etc. The gut microbiota has many strains, which play a considerable part in normal digestion and absorption in the human body and the regulation of the immune response. In the last few years, research on the gut microbiota has been unprecedentedly popular, and it has been confirmed that the gut microbiota closely correlates with the occurrence and development of all kinds of benign and malignant diseases. In this article, the effects of the gut microbiota and its metabolites on the occurrence and development of endometrial cancer is reviewed, and its application in the prevention, diagnosis and treatment of endometrial cancer is explored.
Collapse
Affiliation(s)
- Weiqin Zheng
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaowen Lin
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huixin Chen
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ziling Yang
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Han Zhao
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shibo Li
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tao Song
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuhui Sun
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
2
|
Chen Z, Wang X, Tan M, Hu W, Wang J, Jin Z. Overexpressed Rv0222 in M. smegmatis suppresses host innate immunity by downregulating miR-9 target SIRT1. Microb Pathog 2025; 204:107525. [PMID: 40180236 DOI: 10.1016/j.micpath.2025.107525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 04/05/2025]
Abstract
Tuberculosis (TB) remains one of the most fatal infectious diseases, the pathogenic bacterium Mycobacterium tuberculosis (Mtb) has a thick wall to resist the invasion of extracellular substances and secretes a variety of virulence proteins to antagonize host innate immunity. Rv0222, a protein encoded by the gene Rv0222 in the RD4 region of Mtb, is a critical virulence factor in the pathogenicity of Mtb. However, the mechanism of its regulation of miRNAs during bacterial infection is unclear. We used Rv0222 gene and Mycobacterium smegmatis (M. smegmatis), which is highly homologous to Mtb, to construct Rv0222 recombinant M. smegmatis Ms_Rv0222. Ms_Rv0222 induced down-regulation of miR-9 expression and up-regulation of SIRT1 in RAW264.7 cells and mice post-infection. Up-regulation of SIRT1 caused down-regulation of p65 activity and decreased the expression of pro-inflammatory cytokine, which increased the intracellular survival of M. smegmatis. Si-SIRT1 induced up-regulation of p65 activity and increased the expression of pro-inflammatory cytokine, then decreased the intracellular survival of M. smegmatis. This study reveals that Mtb Rv0222 mediates the suppression of host innate immunity by miR-9 and its target SIRT1, and may provide a potential site for the development of new anti-TB drugs targeting Rv0222.
Collapse
Affiliation(s)
- Zonghai Chen
- School of Medicine, Taizhou University, Taizhou, Zhejiang, China; Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| | - Xianghu Wang
- School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - Ming Tan
- School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - Wenxu Hu
- School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - Jinsuan Wang
- School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - Zixuan Jin
- School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| |
Collapse
|
3
|
Liao K, Chen R, Zhang J, Ruan Y, Huang X, Huang Y, Xia J, Zhao D, Chen L, Zhao Y, Yang F, Xu JF, Shen L, Pi J. cGAS-mediated antibacterial immunotherapy against tuberculosis by macrophage-targeted manganese dioxide nanoagonist. Acta Biomater 2025; 196:471-486. [PMID: 40044101 DOI: 10.1016/j.actbio.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/05/2025] [Accepted: 03/02/2025] [Indexed: 03/09/2025]
Abstract
Tuberculosis (TB), induced by Mycobacterium tuberculosis (Mtb) infection, remains one of the top killers among infectious diseases. The pathogenesis hallmarks for TB are complex immune escape mechanisms of Mtb and low targeting effects of anti-TB drugs. cGAS signaling, which is responsible for triggering host antibacterial immunity against Mtb infection, has shown potentials to serve as targets for anti-TB immunotherapy. As cGAS agonist manganese ions (Mn2+) can activate cGAS-mediated autophagy to inhibit intracellular Mtb in macrophages, we constructed a functional nanoagonist targeting cGAS signaling based on manganese dioxide nanoparticles, naming Tuf-Rif@HA-MnO2 NPs, for synergistic macrophage-targeted drug delivery and anti-TB immuno-therapeutics. Tuf-Rif@HA-MnO2 NPs can actively target macrophages for rifampicin delivery and react with intracellular glutathione (GSH) to release Mn2+ for cGAS-STING signaling activation, which further promote autophagy and antibacterial M1 polarization of Mtb infected macrophages to achieve synergistic intracellular Mtb clearance. Furthermore, Tuf-Rif@HA-MnO2 NPs can potentiate dendritic cell maturation, CD4+ Th1 cell and CD8+ cytotoxic T cell activation in vivo, which collectively attribute to reduced Mtb burdens and alleviated tissue inflammations in lung of Mtb-infected mice without systemic toxicity. This macrophage targeted drug delivery nanoagonist system is expected to develop rational immunotherapy strategy targeting cGAS signaling against TB and drug-resistant TB. STATEMENT OF SIGNIFICANCE: cGAS-mediated autophagy plays a critical role in Mtb clearance in macrophages. Tuf-Rif@HA-MnO2 NPs specifically deliver rifampicin into macrophage for Mtb clearance. Tuf-Rif@HA-MnO2 NPs activate cGAS-mediated macrophage autophagy for Mtb clearance. Tuf-Rif@HA-MnO2 NPs synergize cGAS-mediated immunotherapy with targeted drug delivery for more effective anti-TB treatment.
Collapse
Affiliation(s)
- Kangsheng Liao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, PR China; Research Center of Nano Technology and Application Engineering, Dongguan Innovation Institute, School of Medical Technology, Guangdong Medical University, Dongguan 523808, PR China
| | - Ruihong Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, PR China; Research Center of Nano Technology and Application Engineering, Dongguan Innovation Institute, School of Medical Technology, Guangdong Medical University, Dongguan 523808, PR China
| | - Jinwei Zhang
- Department of Dermatology, Chongqing General Hospital, Chongqing 401147, PR China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, PR China
| | - Xueqin Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, PR China; Research Center of Nano Technology and Application Engineering, Dongguan Innovation Institute, School of Medical Technology, Guangdong Medical University, Dongguan 523808, PR China
| | - Yuhe Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, PR China; Research Center of Nano Technology and Application Engineering, Dongguan Innovation Institute, School of Medical Technology, Guangdong Medical University, Dongguan 523808, PR China
| | - Jiaojiao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming 650032, PR China
| | - Daina Zhao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, PR China; Research Center of Nano Technology and Application Engineering, Dongguan Innovation Institute, School of Medical Technology, Guangdong Medical University, Dongguan 523808, PR China
| | - Lingming Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, PR China; Research Center of Nano Technology and Application Engineering, Dongguan Innovation Institute, School of Medical Technology, Guangdong Medical University, Dongguan 523808, PR China
| | - Yi Zhao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, PR China; Research Center of Nano Technology and Application Engineering, Dongguan Innovation Institute, School of Medical Technology, Guangdong Medical University, Dongguan 523808, PR China
| | - Fen Yang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, PR China; Research Center of Nano Technology and Application Engineering, Dongguan Innovation Institute, School of Medical Technology, Guangdong Medical University, Dongguan 523808, PR China.
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, PR China; Research Center of Nano Technology and Application Engineering, Dongguan Innovation Institute, School of Medical Technology, Guangdong Medical University, Dongguan 523808, PR China.
| | - Ling Shen
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, PR China; Research Center of Nano Technology and Application Engineering, Dongguan Innovation Institute, School of Medical Technology, Guangdong Medical University, Dongguan 523808, PR China.
| |
Collapse
|
4
|
Bao D, Maity S, Zhan L, Seo S, Shu Q, Lyon CJ, Ning B, Zelazny A, Hu TY, Fan J. Precise mycobacterial species and subspecies identification using the PEP-TORCH peptidome algorithm. EMBO Mol Med 2025; 17:841-861. [PMID: 40038396 PMCID: PMC11982334 DOI: 10.1038/s44321-025-00207-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/12/2025] [Accepted: 02/19/2025] [Indexed: 03/06/2025] Open
Abstract
Mycobacterial infections pose a significant global health concern, requiring precise identification for effective treatment. However, diagnosing them is challenging due to inaccurate identifications and prolonged times. In this study, we aimed to develop a novel peptidome-based method using mycobacterial growth indicator tube (MGIT) cultures for faster and more accurate identification. We created the PEPtide Taxonomy/ORganism CHecking (PEP-TORCH), an algorithm that analyzes tryptic peptides identified by mass spectrometry to diagnose species and subspecies with predominance scores. PEP-TORCH demonstrated 100% accuracy in identifying mycobacterial species, subspecies, and co-infections in 81 individuals suspected of mycobacterial infections, eliminating the need for a sub-solid culture procedure, the gold standard in clinical practice. A notable strength of PEP-TORCH is its ability to provide information on species and subspecies simultaneously, a process conventionally achieved sequentially. This capability significantly expedites pathogen identification. Furthermore, a targeted proteomics method was validated in 63 clinical samples using the taxa-specific peptides selected by PEP-TORCH, making them suitable as biomarkers in more clinically friendly settings. This comprehensive identification approach holds promise for streamlining treatment strategies in clinical practice.
Collapse
Affiliation(s)
- Duran Bao
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Sudipa Maity
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Lingpeng Zhan
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Seungyeon Seo
- Department of Laboratory Medicine, NIH Clinical Center, NIH, Bethesda, MD, 20892, USA
| | - Qingbo Shu
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Christopher J Lyon
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Bo Ning
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Adrian Zelazny
- Department of Laboratory Medicine, NIH Clinical Center, NIH, Bethesda, MD, 20892, USA
| | - Tony Y Hu
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Jia Fan
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
5
|
Druszczynska M, Sadowska B, Kulesza J, Gąsienica-Gliwa N, Kulesza E, Fol M. The Intriguing Connection Between the Gut and Lung Microbiomes. Pathogens 2024; 13:1005. [PMID: 39599558 PMCID: PMC11597816 DOI: 10.3390/pathogens13111005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Recent advances in microbiome research have uncovered a dynamic and complex connection between the gut and lungs, known as the gut-lung axis. This bidirectional communication network plays a critical role in modulating immune responses and maintaining respiratory health. Mediated by immune interactions, metabolic byproducts, and microbial communities in both organs, this axis demonstrates how gut-derived signals, such as metabolites and immune modulators, can reach the lung tissue via systemic circulation, influencing respiratory function and disease susceptibility. To explore the implications of this connection, we conducted a systematic review of studies published between 2001 and 2024 (with as much as nearly 60% covering the period 2020-2024), using keywords such as "gut-lung axis", "microbiome", "respiratory disease", and "immune signaling". Studies were selected based on their relevance to gut-lung communication mechanisms, the impact of dysbiosis, and the role of the gut microbiota in respiratory diseases. This review provides a comprehensive overview of the gut-lung microbiome axis, emphasizing its importance in regulating inflammatory and immune responses linked to respiratory health. Understanding this intricate pathway opens new avenues for microbiota-targeted therapeutic strategies, which could offer promising interventions for respiratory diseases like asthma, chronic obstructive pulmonary disease, and even infections. The insights gained through this research underscore the potential of the gut-lung axis as a novel target for preventative and therapeutic approaches in respiratory medicine, with implications for enhancing both gut and lung health.
Collapse
Affiliation(s)
- Magdalena Druszczynska
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, 90-237 Lodz, Poland; (B.S.); (N.G.-G.); (M.F.)
| | - Beata Sadowska
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, 90-237 Lodz, Poland; (B.S.); (N.G.-G.); (M.F.)
| | - Jakub Kulesza
- Department of Internal Diseases and Clinical Pharmacology, Medical University of Lodz, 91-347 Lodz, Poland;
| | - Nikodem Gąsienica-Gliwa
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, 90-237 Lodz, Poland; (B.S.); (N.G.-G.); (M.F.)
| | - Ewelina Kulesza
- Department of Rheumatology and Internal Diseases, Medical University of Lodz, 90-549 Lodz, Poland;
| | - Marek Fol
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, 90-237 Lodz, Poland; (B.S.); (N.G.-G.); (M.F.)
| |
Collapse
|
6
|
Lin J, Chen D, Yan Y, Pi J, Xu J, Chen L, Zheng B. Gut microbiota: a crucial player in the combat against tuberculosis. Front Immunol 2024; 15:1442095. [PMID: 39502685 PMCID: PMC11534664 DOI: 10.3389/fimmu.2024.1442095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024] Open
Abstract
The mammalian gastrointestinal tract quickly becomes densely populated with foreign microorganisms shortly after birth, thereby establishing a lifelong presence of a microbial community. These commensal gut microbiota serve various functions, such as providing nutrients, processing ingested compounds, maintaining gut homeostasis, and shaping the intestinal structure in the host. Dysbiosis, which is characterized by an imbalance in the microbial community, is closely linked to numerous human ailments and has recently emerged as a key factor in health prognosis. Tuberculosis (TB), a highly contagious and potentially fatal disease, presents a pressing need for improved methods of prevention, diagnosis, and treatment strategies. Thus, we aim to explore the latest developments on how the host's immune defenses, inflammatory responses, metabolic pathways, and nutritional status collectively impact the host's susceptibility to or resilience against Mycobacterium tuberculosis infection. The review addresses how the fluctuations in the gut microbiota not only affect the equilibrium of these physiological processes but also indirectly influence the host's capacity to resist M. tuberculosis. This work highlights the central role of the gut microbiota in the host-microbe interactions and provides novel insights for the advancement of preventative and therapeutic approaches against tuberculosis.
Collapse
Affiliation(s)
- Jie Lin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Dongli Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Yongen Yan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Junfa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Lingming Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Biying Zheng
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| |
Collapse
|
7
|
Fan S, Zhao D, Wang J, Ma Y, Chen D, Huang Y, Zhang T, Liu Y, Xia J, Huang X, Lu Y, Ruan Y, Xu JF, Shen L, Yang F, Pi J. Photothermal and host immune activated therapy of cutaneous tuberculosis using macrophage targeted mesoporous polydopamine nanoparticles. Mater Today Bio 2024; 28:101232. [PMID: 39315396 PMCID: PMC11418140 DOI: 10.1016/j.mtbio.2024.101232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/25/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
Tuberculosis (TB) remains the leading cause of deaths among infectious diseases worldwide. Cutaneous Tuberculosis (CTB), caused by Mycobacterium tuberculosis (Mtb) infection in the skin, is still a harmful public health issue that requires more effective treatment strategy. Herein, we introduced mannose-modified mesoporous polydopamine nanosystems (Man-mPDA NPs) as the macrophage-targeted vectors to deliver anti-TB drug rifampicin and as photothermal agent to facilitate photothermal therapy (PTT) against Mtb infected macrophages for synergistic treatment of CTB. Based on the selective macrophage targeting effects, the proposed Rif@Man-mPDA NPs also showed excellent photothermal properties to develop Rif@Man-mPDA NPs-mediated PTT for intracellular Mtb killings in macrophages. Importantly, Rif@Man-mPDA NPs could inhibit the immune escape of Mtb by effectively chelating intracellular Fe2+ and inhibiting lipid peroxidation, and up-regulating GPX4 expression to inhibit ferroptosis of Mtb infected macrophages through activating Nrf2/HO-1 signaling. Moreover, Rif@Man-mPDA NPs-mediated PTT could effectively activate host cell immune responses by promoting autophagy of Mtb infected macrophages, which thus synergizes targeted drug delivery and ferroptosis inhibition for more effective intracellular Mtb clearance. This Rif@Man-mPDA NPs-mediated PTT strategy could also effectively inhibit the Mtb burdens and alleviate the pathological lesions induced by Mtb infection without significant systemic side effects in mouse CTB model. These results indicate that Rif@Man-mPDA NPs-mediated PTT can be served as a novel anti-TB strategy against CTB by synergizing macrophage targeted photothermal therapy and host immune defenses, thus holding promise for more effective treatment strategy development against CTB.
Collapse
Affiliation(s)
- Shuhao Fan
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Daina Zhao
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Jiajun Wang
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yuhe Ma
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Dongsheng Chen
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yuhe Huang
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Tangxin Zhang
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yilin Liu
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Jiaojiao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Xueqin Huang
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yujia Lu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yongdui Ruan
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, China
| | - Jun-Fa Xu
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Ling Shen
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | - Fen Yang
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Jiang Pi
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| |
Collapse
|
8
|
Pi J, Chen D, Wang J, Yang E, Yang J, Liu Y, Yu J, Xia J, Huang X, Chen L, Ruan Y, Xu JF, Yang F, Shen L. Macrophage targeted graphene oxide nanosystem synergize antibiotic killing and host immune defense for Tuberculosis Therapy. Pharmacol Res 2024; 208:107379. [PMID: 39218421 DOI: 10.1016/j.phrs.2024.107379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Tuberculosis (TB), a deadly disease caused by Mycobacterium tuberculosis (Mtb) infection, remains one of the top killers among infectious diseases worldwide. How to increase targeting effects of current anti-TB chemotherapeutics and enhance anti-TB immunological responses remains a big challenge in TB and drug-resistant TB treatment. Here, mannose functionalized and polyetherimide protected graphene oxide system (GO-PEI-MAN) was designed for macrophage-targeted antibiotic (rifampicin) and autophagy inducer (carbamazepine) delivery to achieve more effective Mtb killings by combining targeted drug killing and host immunological clearance. GO-PEI-MAN system demonstrated selective uptake by in vitro macrophages and ex vivo macrophages from macaques. The endocytosed GO-PEI-MAN system would be transported into lysosomes, where the drug loaded Rif@Car@GO-PEI-MAN system would undergo accelerated drug release in acidic lysosomal conditions. Rif@Car@GO-PEI-MAN could significantly promote autophagy and apoptosis in Mtb infected macrophages, as well as induce anti-bacterial M1 polarization of Mtb infected macrophages to increase anti-bacterial IFN-γ and nitric oxide production. Collectively, Rif@Car@GO-PEI-MAN demonstrated effectively enhanced intracellular Mtb killing effects than rifampicin, carbamazepine or GO-PEI-MAN alone in Mtb infected macrophages, and could significantly reduce mycobacterial burdens in the lung of infected mice with alleviated pathology and inflammation without systemic toxicity. This macrophage targeted nanosystem synergizing increased drug killing efficiency and enhanced host immunological defense may be served as more effective therapeutics against TB and drug-resistant TB.
Collapse
Affiliation(s)
- Jiang Pi
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, Dongguan Innovation Institute, Guangdong Medical University, China; Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China.
| | - Dongsheng Chen
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, Dongguan Innovation Institute, Guangdong Medical University, China
| | - Jiajun Wang
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, Dongguan Innovation Institute, Guangdong Medical University, China
| | - Enzhuo Yang
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA; Clinic and Research Center of Tuberculosis, Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiayi Yang
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, Dongguan Innovation Institute, Guangdong Medical University, China; Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Yilin Liu
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, Dongguan Innovation Institute, Guangdong Medical University, China; Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jiaqi Yu
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, Dongguan Innovation Institute, Guangdong Medical University, China; Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jiaojiao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Xueqin Huang
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, Dongguan Innovation Institute, Guangdong Medical University, China; Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Lingming Chen
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, Dongguan Innovation Institute, Guangdong Medical University, China; Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Yongdui Ruan
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, Dongguan Innovation Institute, Guangdong Medical University, China
| | - Jun-Fa Xu
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, Dongguan Innovation Institute, Guangdong Medical University, China; Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Fen Yang
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, Dongguan Innovation Institute, Guangdong Medical University, China; Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China.
| | - Ling Shen
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
9
|
Mo C, Lou X, Xue J, Shi Z, Zhao Y, Wang F, Chen G. The influence of Akkermansia muciniphila on intestinal barrier function. Gut Pathog 2024; 16:41. [PMID: 39097746 PMCID: PMC11297771 DOI: 10.1186/s13099-024-00635-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/20/2024] [Indexed: 08/05/2024] Open
Abstract
Intestinal barriers play a crucial role in human physiology, both in homeostatic and pathological conditions. Disruption of the intestinal barrier is a significant factor in the pathogenesis of gastrointestinal inflammatory diseases, such as inflammatory bowel disease. The profound influence of the gut microbiota on intestinal diseases has sparked considerable interest in manipulating it through dietary interventions, probiotics, and fecal microbiota transplantation as potential approaches to enhance the integrity of the intestinal barrier. Numerous studies have underscored the protective effects of specific microbiota and their associated metabolites. In recent years, an increasing body of research has demonstrated that Akkermansia muciniphila (A. muciniphila, Am) plays a beneficial role in various diseases, including diabetes, obesity, aging, cancer, and metabolic syndrome. It is gaining popularity as a regulator that influences the intestinal flora and intestinal barrier and is recognized as a 'new generation of probiotics'. Consequently, it may represent a potential target and promising therapy option for intestinal diseases. This article systematically summarizes the role of Am in the gut. Specifically, we carefully discuss key scientific issues that need resolution in the future regarding beneficial bacteria represented by Am, which may provide insights for the application of drugs targeting Am in clinical treatment.
Collapse
Affiliation(s)
- Chunyan Mo
- Medical School, Kunming University of Science and Technology, 727 Jingming South Road, Chenggong District, Kunming, 650500, China
| | - Xiran Lou
- Medical School, Kunming University of Science and Technology, 727 Jingming South Road, Chenggong District, Kunming, 650500, China
| | - Jinfang Xue
- Medical School, Kunming University of Science and Technology, 727 Jingming South Road, Chenggong District, Kunming, 650500, China
| | - Zhuange Shi
- Department of Emergency Medicine, The First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, 650034, China
| | - Yifang Zhao
- Department of Emergency Medicine, The First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, 650034, China
| | - Fuping Wang
- Department of Emergency Medicine, The First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, 650034, China
| | - Guobing Chen
- Department of Emergency Medicine, The First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, 650034, China.
| |
Collapse
|
10
|
Ge Z, Chen C, Chen J, Jiang Z, Chen L, Wei Y, Chen H, He L, Zou Y, Long X, Zhan H, Wang H, Wang H, Lu Y. Gut Microbiota-Derived 3-Hydroxybutyrate Blocks GPR43-Mediated IL6 Signaling to Ameliorate Radiation Proctopathy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306217. [PMID: 38742466 PMCID: PMC11267371 DOI: 10.1002/advs.202306217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 04/23/2024] [Indexed: 05/16/2024]
Abstract
Radiation proctopathy (RP) is a common complication of radiotherapy for pelvic malignancies with high incidence. RP accompanies by microbial dysbiosis. However, how the gut microbiota affects the disease remains unclear. Here, metabolomics reveals that the fecal and serous concentrations of microbiota-derived 3-hydroxybutyrate (3HB) are significantly reduced in RP mice and radiotherapeutic patients. Moreover, the concentration of 3HB is negatively associated with the expression of proinflammatory IL6 that is increased along with the severity of radiation damage. 3HB treatment significantly downregulates IL6 expression and alleviates IL6-mediated radiation damage. Irradiated cell-fecal microbiota co-culture experiments and in vivo assays show that such a radioprotection of 3HB is mediated by GPR43. Microbiome analysis reveals that radiation leads to a distinct bacterial community compared to untreated controls, in which Akkermansia muciniphila is significantly reduced in RP mice and radiotherapeutic patients and is associated with lower 3HB concentration. Gavage of A. muciniphila significantly increases 3HB concentration, downregulates GPR43 and IL6 expression, and ameliorates radiation damage. Collectively, these results demonstrate that the gut microbiota, including A. muciniphila, induce higher concentrations of 3HB to block GPR43-mediated IL6 signaling, thereby conferring radioprotection. The findings reveal a novel implication of the gut-immune axis in radiation pathophysiology, with potential therapeutic applications.
Collapse
Affiliation(s)
- Zhenhuang Ge
- Run Ze Laboratory for Gastrointestinal Microbiome Study, School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Chun Chen
- Department of Colorectal Surgery, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Shanghai General Hospital, School of MedicineShanghai Jiao Tong UniversityShanghai201620China
| | - Junyi Chen
- Run Ze Laboratory for Gastrointestinal Microbiome Study, School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Zhou Jiang
- Run Ze Laboratory for Gastrointestinal Microbiome Study, School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Lingming Chen
- School of Medical TechnologyGuangdong Medical UniversityDongguan523808China
| | - Yingqi Wei
- Department of Colorectal Surgery, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Haiyang Chen
- Department of Radiation Oncology, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Lei He
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhou510095China
- Key Laboratory for Cell HomeostasisCancer Research of Guangdong Higher Education InstitutesGuangzhou510095China
| | - Yi Zou
- Run Ze Laboratory for Gastrointestinal Microbiome Study, School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Xiaoxuan Long
- Run Ze Laboratory for Gastrointestinal Microbiome Study, School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Hongyu Zhan
- Run Ze Laboratory for Gastrointestinal Microbiome Study, School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Huaiming Wang
- Department of Colorectal Surgery, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesSupported by National Key Clinical DisciplineGuangzhou510655China
| | - Hui Wang
- Department of Colorectal Surgery, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesSupported by National Key Clinical DisciplineGuangzhou510655China
| | - Yongjun Lu
- Run Ze Laboratory for Gastrointestinal Microbiome Study, School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| |
Collapse
|
11
|
Liu Z, Deligen B, Han Z, Gerile C, Da A. Integrated sequence-based genomic, transcriptomic, and methylation characterization of the susceptibility to tuberculosis in monozygous twins. Heliyon 2024; 10:e31712. [PMID: 38845983 PMCID: PMC11153169 DOI: 10.1016/j.heliyon.2024.e31712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 05/08/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
Background Tuberculosis (TB) is a complex disease with a spectrum of outcomes for more than six decades; however, the genomic and epigenetic mechanisms underlying the highly heritable susceptibility to TB remain unclear. Methods Integrated sequence-based genomic, transcriptomic, and methylation analyses were conducted to identity the genetic factors associated with susceptibility to TB in two pairs of Mongolian monozygous twins. In this study, whole-genome sequencing was employed to analyze single nucleotide polymorphisms (SNPs), insertions and deletions (InDels), and copy number variations (CNVs). Gene expression was assessed through RNA sequencing, and methylation patterns were examined using the Illumina Infinium Methylation EPIC BeadChip. The gene-gene interaction network was analyzed using differentially expressed genes. Results Our study revealed no significant difference in SNP and InDel profiles between participants with and without TB. Genes with CNVs were involved in human immunity (human leukocyte antigen [HLA] family and interferon [IFN] pathway) and the inflammatory response. Different DNA methylation patterns and mRNA expression profiles were observed in genes participating in immunity (HLA family) and inflammatory responses (IFNA, interleukin 10 receptor [IL-10R], IL-12B, Toll-like receptor, and IL-1B). Conclusions The results of this study suggested that susceptibility to TB is associated with transcriptional and epigenetic alternations of genes involved in immune and inflammatory responses. The genes in the HLA family (HLA-A, HLA-B, and HLA-DRB1) and IFN pathway (IFN-α and IFN-γ) may play major roles in susceptibility to TB.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, 028007, Inner Mongolia, China
| | - Batu Deligen
- Institute of Mongolian Medicine Pharmacology, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, 028007, Inner Mongolia, China
| | - Zhiqiang Han
- Institute of Mongolian Medicine Pharmacology, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, 028007, Inner Mongolia, China
| | - Chaolumen Gerile
- Department of Internal Medicine, Xilinguole Meng Mongolian General Hospital, Xilinhaote, 026000, Inner Mongolia, China
| | - An Da
- Institute of Mongolian Medicine Pharmacology, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, 028007, Inner Mongolia, China
| |
Collapse
|
12
|
Marrella V, Nicchiotti F, Cassani B. Microbiota and Immunity during Respiratory Infections: Lung and Gut Affair. Int J Mol Sci 2024; 25:4051. [PMID: 38612860 PMCID: PMC11012346 DOI: 10.3390/ijms25074051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Bacterial and viral respiratory tract infections are the most common infectious diseases, leading to worldwide morbidity and mortality. In the past 10 years, the importance of lung microbiota emerged in the context of pulmonary diseases, although the mechanisms by which it impacts the intestinal environment have not yet been fully identified. On the contrary, gut microbial dysbiosis is associated with disease etiology or/and development in the lung. In this review, we present an overview of the lung microbiome modifications occurring during respiratory infections, namely, reduced community diversity and increased microbial burden, and of the downstream consequences on host-pathogen interaction, inflammatory signals, and cytokines production, in turn affecting the disease progression and outcome. Particularly, we focus on the role of the gut-lung bidirectional communication in shaping inflammation and immunity in this context, resuming both animal and human studies. Moreover, we discuss the challenges and possibilities related to novel microbial-based (probiotics and dietary supplementation) and microbial-targeted therapies (antibacterial monoclonal antibodies and bacteriophages), aimed to remodel the composition of resident microbial communities and restore health. Finally, we propose an outlook of some relevant questions in the field to be answered with future research, which may have translational relevance for the prevention and control of respiratory infections.
Collapse
Affiliation(s)
- Veronica Marrella
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, 20138 Milan, Italy;
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Federico Nicchiotti
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, 20089 Milan, Italy;
| | - Barbara Cassani
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, 20089 Milan, Italy;
| |
Collapse
|
13
|
Xu C, Hao M, Zai X, Song J, Huang Y, Gui S, Chen J. A new perspective on gut-lung axis affected through resident microbiome and their implications on immune response in respiratory diseases. Arch Microbiol 2024; 206:107. [PMID: 38368569 DOI: 10.1007/s00203-024-03843-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/19/2024]
Abstract
The highly diverse microbial ecosystem of the human body colonizes the gastrointestinal tract has a profound impact on the host's immune, metabolic, endocrine, and other physiological processes, which are all interconnected. Specifically, gut microbiota has been found to play a crucial role in facilitating the adaptation and initiation of immune regulatory response through the gastrointestinal tract affecting the other distal mucosal sites such as lungs. A tightly regulated lung-gut axis during respiratory ailments may influence the various molecular patterns that instructs priming the disease severity to dysregulate the normal function. This review provides a comprehensive summary of current research on gut microbiota dysbiosis in respiratory diseases including asthma, pneumonia, bronchopneumonia, COPD during infections and cancer. A complex-interaction among gut microbiome, associated metabolites, cytokines, and chemokines regulates the protective immune response activating the mucosal humoral and cellular response. This potential mechanism bridges the regulation patterns through the gut-lung axis. This paper aims to advance the understanding of the crosstalk of gut-lung microbiome during infection, could lead to strategize to modulate the gut microbiome as a treatment plan to improve bad prognosis in various respiratory diseases.
Collapse
Affiliation(s)
- Cong Xu
- A. P. College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Mengqi Hao
- A. P. College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Xiaohu Zai
- A. P. College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Jing Song
- A. P. College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Yuzhe Huang
- A. P. College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, Anhui, China
| | - Shuangying Gui
- A. P. College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, Anhui, China
| | - Juan Chen
- A. P. College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, Anhui, China.
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, Anhui, China.
| |
Collapse
|
14
|
Yuan Z, Kang Y, Mo C, Huang S, Qin F, Zhang J, Wang F, Jiang J, Yang X, Liang H, Ye L. Causal relationship between gut microbiota and tuberculosis: a bidirectional two-sample Mendelian randomization analysis. Respir Res 2024; 25:16. [PMID: 38178098 PMCID: PMC10765819 DOI: 10.1186/s12931-023-02652-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Growing evidence from observational studies and clinical trials suggests that the gut microbiota is associated with tuberculosis (TB). However, it is unclear whether any causal relationship exists between them and whether causality is bidirectional. METHODS A bidirectional two-sample Mendelian randomization (MR) analysis was performed. The genome-wide association study (GWAS) summary statistics of gut microbiota were obtained from the MiBioGen consortium, while the GWAS summary statistics of TB and its specific phenotypes [respiratory tuberculosis (RTB) and extrapulmonary tuberculosis (EPTB)] were retrieved from the UK Biobank and the FinnGen consortium. And 195 bacterial taxa from phylum to genus were analyzed. Inverse variance weighted (IVW), MR-Egger regression, maximum likelihood (ML), weighted median, and weighted mode methods were applied to the MR analysis. The robustness of causal estimation was tested using the heterogeneity test, horizontal pleiotropy test, and leave-one-out method. RESULTS In the UK Biobank database, we found that 11 bacterial taxa had potential causal effects on TB. Three bacterial taxa genus.Akkermansia, family.Verrucomicrobiacea, order.Verrucomicrobiales were validated in the FinnGen database. Based on the results in the FinnGen database, the present study found significant differences in the characteristics of gut microbial distribution between RTB and EPTB. Four bacterial taxa genus.LachnospiraceaeUCG010, genus.Parabacteroides, genus.RuminococcaceaeUCG011, and order.Bacillales were common traits in relation to both RTB and TB, among which order.Bacillales showed a protective effect. Additionally, family.Bacteroidacea and genus.Bacteroides were identified as common traits in relation to both EPTB and TB, positively associating with a higher risk of EPTB. In reverse MR analysis, no causal association was identified. No significant heterogeneity of instrumental variables (IVs) or horizontal pleiotropy was found. CONCLUSION Our study supports a one-way causal relationship between gut microbiota and TB, with gut microbiota having a causal effect on TB. The identification of characteristic gut microbiota provides scientific insights for the potential application of the gut microbiota as a preventive, diagnostic, and therapeutic tool for TB.
Collapse
Affiliation(s)
- Zongxiang Yuan
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Yiwen Kang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Chuye Mo
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Shihui Huang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Fang Qin
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Junhan Zhang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Fengyi Wang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Junjun Jiang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, China.
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Life Science Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Xiaoxiang Yang
- Department of Infectious Diseases in Children, Maternity and Child Health Care of Guangxi Zhuang Autonomous Region, Nanning, 530003, Guangxi, China.
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, China.
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Life Science Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, China.
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Life Science Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
15
|
Panzetta ME, Valdivia RH. Akkermansia in the gastrointestinal tract as a modifier of human health. Gut Microbes 2024; 16:2406379. [PMID: 39305271 PMCID: PMC11418289 DOI: 10.1080/19490976.2024.2406379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024] Open
Abstract
Akkermansia sp are common members of the human gut microbiota. Multiple reports have emerged linking the abundance of A. muciniphila to health benefits and disease risk in humans and animals. This review highlights findings linking Akkermansia species in the gastrointestinal (GI) tract to health outcomes across a spectrum of disorders, encompassing those that affect the digestive, respiratory, urinary, and central nervous systems. The mechanism through which Akkermansia exerts a beneficial versus a detrimental effect on health is likely dependent on the genetic makeup of the host metabolic capacity and immunomodulatory properties of the strain, the competition or cooperation with other members of the host microbiota, as well as synergy with co-administered therapies.
Collapse
Affiliation(s)
- Maria E. Panzetta
- Department of Integrative Immunobiology, Duke University, Durham, NC, USA
| | | |
Collapse
|
16
|
Wen J, He JQ. The Causal Impact of the Gut Microbiota on Respiratory Tuberculosis Susceptibility. Infect Dis Ther 2023; 12:2535-2544. [PMID: 37815754 PMCID: PMC10651823 DOI: 10.1007/s40121-023-00880-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023] Open
Abstract
INTRODUCTION Recent cross-sectional research has demonstrated a substantial link between tuberculosis (TB) and gut microbiota. Nevertheless, the causal impact of the gut microbiota on TB susceptibility in humans remains unknown. METHODS The Mendelian randomization (MR) method was utilized for investigating the causality between them. The main method used for MR analysis was the inverse variance weighted (IVW) test, with the MR-Egger, weighted median, weighted mode, and simple median methods serving as supplements. And several sensitivity tests were carried out to validate the MR findings. RESULTS The IVW outcomes suggested that three bacterial traits exhibited associations with susceptibility to respiratory TB after Bonferroni correction, namely Lachnospiraceae UCG010 (odds ratio [OR] 1.73, 95% confidence interval [CI] 1.17-2.55, P = 0.005), Eubacterium (brachy group) (OR 1.33, 95% CI 1.07-1.65, P = 0.009), and Ruminococcaceae UCG005 (OR 0.71, 95% CI 0.52-0.98, P = 0.034). Sensitivity analyses demonstrated that horizontal pleiotropy and heterogeneity were absent, thereby guaranteeing the reliability of the results. CONCLUSION This research sheds light on the causal impact of gut microbiota on respiratory tuberculosis susceptibility, improving our knowledge of therapeutic strategies for managing TB.
Collapse
Affiliation(s)
- Jiayu Wen
- Department of Respiratory and Critical Care Medicine, The Second People's Hospital of Meishan City, 177 Longtan Avenue, Section 1, Huairen Street, Renshou County, Meishan, 620500, China
| | - Jian-Qing He
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, China.
| |
Collapse
|
17
|
Shen L, Liao K, Yang E, Yang F, Lin W, Wang J, Fan S, Huang X, Chen L, Shen H, Jin H, Ruan Y, Liu X, Zeng G, Xu JF, Pi J. Macrophage targeted iron oxide nanodecoys augment innate immunological and drug killings for more effective Mycobacterium Tuberculosis clearance. J Nanobiotechnology 2023; 21:369. [PMID: 37817142 PMCID: PMC10563239 DOI: 10.1186/s12951-023-02103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) infection, is still one of the top killers worldwide among infectious diseases. The escape of Mtb from immunological clearance and the low targeting effects of anti-TB drugs remain the substantial challenges for TB control. Iron is particularly required for Mtb growth but also toxic for Mtb in high dosages, which makes iron an ideal toxic decoy for the 'iron-tropic' Mtb. Here, a macrophage-targeted iron oxide nanoparticles (IONPs)-derived IONPs-PAA-PEG-MAN nanodecoy is designed to augment innate immunological and drug killings against intracellular Mtb. IONPs-PAA-PEG-MAN nanodecoy exhibits preferential uptake in macrophages to significantly increase drug uptake with sustained high drug contents in host cells. Moreover, it can serve as a specific nanodecoy for the 'iron-tropic' Mtb to realize the localization of Mtb contained phagosomes surrounding the drug encapsulated nanodecoys and co-localization of Mtb with the drug encapsulated nanodecoys in lysosomes, where the incorporated rifampicin (Rif) can be readily released under acidic lysosomal condition for enhanced Mtb killing. This drug encapsulated nanodecoy can also polarize Mtb infected macrophages into anti-mycobacterial M1 phenotype and enhance M1 macrophage associated pro-inflammatory cytokine (TNF-α) production to trigger innate immunological responses against Mtb. Collectively, Rif@IONPs-PAA-PEG-MAN nanodecoy can synergistically enhance the killing efficiency of intracellular Mtb in in vitro macrophages and ex vivo monocyte-derived macrophages, and also significantly reduce the mycobacterial burdens in the lung of infected mice with alleviated pathology. These results indicate that Rif@IONPs-PAA-PEG-MAN nanodecoy may have a potential for the development of more effective therapeutic strategy against TB by manipulating augmented innate immunity and drug killings.
Collapse
Affiliation(s)
- Ling Shen
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA.
| | - Kangsheng Liao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, The Marine Biomedical Research Institute of Guangdong Medical University, ZhanJiang, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Enzhuo Yang
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
- Clinic and Research Center of Tuberculosis, Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fen Yang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, The Marine Biomedical Research Institute of Guangdong Medical University, ZhanJiang, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Wensen Lin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Jiajun Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Shuhao Fan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Xueqin Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Lingming Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, The Marine Biomedical Research Institute of Guangdong Medical University, ZhanJiang, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Hongbo Shen
- Clinic and Research Center of Tuberculosis, Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hua Jin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Xing Liu
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Gucheng Zeng
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China.
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, The Marine Biomedical Research Institute of Guangdong Medical University, ZhanJiang, Guangdong, China.
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
18
|
Stable colonization of Akkermansia muciniphila educates host intestinal microecology and immunity to battle against inflammatory intestinal diseases. Exp Mol Med 2023; 55:55-68. [PMID: 36599931 PMCID: PMC9898499 DOI: 10.1038/s12276-022-00911-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 01/06/2023] Open
Abstract
Gut microbial preparations are widely used in treating intestinal diseases but show mixed success. In this study, we found that the therapeutic efficacy of A. muciniphila for dextran sodium sulfate (DSS)-induced colitis as well as intestinal radiation toxicity was ~50%, and mice experiencing a positive prognosis harbored a high frequency of A. muciniphila in the gastrointestinal (GI) tract. Stable GI colonization of A. muciniphila elicited more profound shifts in the gut microbial community structure of hosts. Coexisting with A. muciniphila facilitated proliferation and reprogrammed the gene expression profile of Lactobacillus murinus, a classic probiotic that overtly responded to A. muciniphila addition in a time-dependent manner. Then, a magnetic-drove, mannose-loaded nanophase material was designed and linked to the surface of A. muciniphila. The modified A. muciniphila exhibited enhancements in inflammation targeting and intestinal colonization under an external magnetic field, elevating the positive-response rate and therapeutic efficacy against intestinal diseases. However, the unlinked cocktail containing A. muciniphila and the delivery system only induced negligible improvement of therapeutic efficacy. Importantly, heat-inactivated A. muciniphila lost therapeutic effects on DSS-induced colitis and was even retained in the GI tract for a long time. Further investigations revealed that the modified A. muciniphila was able to drive M2 macrophage polarization by upregulating the protein level of IL-4 at inflammatory loci. Together, our findings demonstrate that stable colonization of live A. muciniphila at lesion sites is essential for its anti-inflammatory function.
Collapse
|
19
|
Gupta MM, Gilhotra R, Deopa D, Bhat AA, Thapa R, Singla N, Kulshrestha R, Gupta G. Epigenetics of Pulmonary Tuberculosis. TARGETING EPIGENETICS IN INFLAMMATORY LUNG DISEASES 2023:127-144. [DOI: 10.1007/978-981-99-4780-5_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
20
|
McGettrick AF, O'Neill LAJ. The itaconate family of immunomodulators grows. Nat Metab 2022; 4:499-500. [PMID: 35655025 DOI: 10.1038/s42255-022-00578-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anne F McGettrick
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland.
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland.
| |
Collapse
|