1
|
Abd El Hay MY, Kamm GB, Tlaie Boria A, Siemens J. Diverging roles of TRPV1 and TRPM2 in warm-temperature detection. eLife 2025; 13:RP95618. [PMID: 40215103 PMCID: PMC11991700 DOI: 10.7554/elife.95618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025] Open
Abstract
The perception of innocuous temperatures is crucial for thermoregulation. The TRP ion channels TRPV1 and TRPM2 have been implicated in warmth detection, yet their precise roles remain unclear. A key challenge is the low prevalence of warmth-sensitive sensory neurons, comprising fewer than 10% of rodent dorsal root ganglion (DRG) neurons. Using calcium imaging of >20,000 cultured mouse DRG neurons, we uncovered distinct contributions of TRPV1 and TRPM2 to warmth sensitivity. TRPV1's absence - and to a lesser extent absence of TRPM2 - reduces the number of neurons responding to warmth. Additionally, TRPV1 mediates the rapid, dynamic response to a warmth challenge. Behavioural tracking in a whole-body thermal preference assay revealed that these cellular differences shape nuanced thermal behaviours. Drift diffusion modelling of decision-making in mice exposed to varying temperatures showed that TRPV1 deletion impairs evidence accumulation, reducing the precision of thermal choice, while TRPM2 deletion increases overall preference for warmer environments that wildtype mice avoid. It remains unclear whether TRPM2 in DRG sensory neurons or elsewhere mediates thermal preference. Our findings suggest that different aspects of thermal information, such as stimulation speed and temperature magnitude, are encoded by distinct TRP channel mechanisms.
Collapse
Affiliation(s)
- Muad Y Abd El Hay
- Department of Pharmacology, Heidelberg UniversityHeidelbergGermany
- Ernst Strüngmann Institute for Neuroscience in Cooperation with the Max Planck SocietyFrankfurt am MainGermany
| | - Gretel B Kamm
- Department of Pharmacology, Heidelberg UniversityHeidelbergGermany
| | - Alejandro Tlaie Boria
- Ernst Strüngmann Institute for Neuroscience in Cooperation with the Max Planck SocietyFrankfurt am MainGermany
| | - Jan Siemens
- Department of Pharmacology, Heidelberg UniversityHeidelbergGermany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL)HeidelbergGermany
| |
Collapse
|
2
|
Bendig J, Aurup C, Blackman SG, McCune EP, Kim S, Konofagou EE. Transcranial Functional Ultrasound Imaging Detects Focused Ultrasound Neuromodulation Induced Hemodynamic Changes In Vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.03.08.583971. [PMID: 38559149 PMCID: PMC10979885 DOI: 10.1101/2024.03.08.583971] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background Focused ultrasound (FUS) is an emerging non-invasive technique for neuromodulation in the central nervous system (CNS). Functional ultrasound imaging (fUSI) leverages ultrafast Power Doppler Imaging (PDI) to detect changes in cerebral blood volume (CBV), which correlate well with neuronal activity and thus hold promise to monitor brain responses to FUS. Objective Investigate the immediate and short-term effects of transcranial FUS neuromodulation in the brain with fUSI by characterizing hemodynamic responses. Methods We designed a setup that aligns a FUS transducer with a linear array to allow immediate subsequent monitoring of the hemodynamic response with fUSI during and after FUS neuromodulation (FUS-fUSI) in lightly anesthetized mice. We investigated the effects of varying pressures and transducer positions on the hemodynamic responses. Results We found that higher FUS pressures increase the size of the activated brain area, as well as the magnitude of change in CBV and could show that sham sonications did not produce hemodynamic responses. Unilateral sonications resulted in bilateral hemodynamic changes with a significantly stronger response on the ipsilateral side. FUS neuromodulation in mice with a cranial window showed distinct activation patterns that were frequency-dependent and different from the activation patterns observed in the transcranial model. Conclusion fUSI is hereby shown capable of transcranially monitoring online and short-term hemodynamic effects in the brain during and following FUS neuromodulation.
Collapse
Affiliation(s)
- Jonas Bendig
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Christian Aurup
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Samuel G. Blackman
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Erica P. McCune
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Seongyeon Kim
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Elisa E. Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Radiology, Columbia University, New York, NY, USA
- Department of Neurosurgery, Columbia University, New York, NY, USA
| |
Collapse
|
3
|
Huang J, Xue S, Teixeira AP, Fussenegger M. A mediator-free sonogenetic switch for therapeutic protein expression in mammalian cells. Nucleic Acids Res 2025; 53:gkaf191. [PMID: 40114374 PMCID: PMC11925730 DOI: 10.1093/nar/gkaf191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/28/2025] [Accepted: 03/19/2025] [Indexed: 03/22/2025] Open
Abstract
An ultrasound-responsive transgene circuit can provide non-invasive, spatiotemporally precise remote control of gene expression and cellular behavior in synthetic biology applications. However, current ultrasound-based systems often rely on nanoparticles or harness ultrasound's thermal effects, posing risks of tissue damage and cellular stress that limit their therapeutic potential. Here, we present Spatiotemporal Ultrasound-induced Protein Expression Regulator (SUPER), a novel gene switch enabling mediator-free, non-invasive and direct regulation of protein expression via ultrasound in mammalian cells. SUPER leverages the mammalian reactive oxygen species (ROS) sensing system, featuring KEAP1 (Kelch-like ECH-associated protein 1), NRF2 (nuclear factor erythroid 2-related factor 2), and antioxidant response element (ARE) as its core components. We demonstrate that low-intensity (1.5 W/cm2, ∼45 kHz), brief (40 s) ultrasound exposure generates non-toxic levels of ROS, activating the KEAP1/NRF2 pathway in engineered cells and leading to the controlled expression of target gene(s) via a synthetic ARE promoter. The system exhibits robust expression dynamics, excellent reversibility, and functionality in various cell types, including human mesenchymal stem cell-derived lines (hMSC-TERT). In a proof-of-concept study, ultrasound stimulation of subcutaneously implanted microencapsulated engineered cells stably expressing the sonogenetic circuit in a type 1 diabetic mouse model triggered sufficient insulin production to restore normoglycemia. Our work highlights ultrasound's potential as a precise and non-invasive tool for advancing cell and gene therapies in personalized medicine.
Collapse
Affiliation(s)
- Jinbo Huang
- Department of Biosystems Science and Engineering, ETH Zurich, Klingelbergstrasse 48, CH-4056 Basel, Switzerland
| | - Shuai Xue
- Department of Biosystems Science and Engineering, ETH Zurich, Klingelbergstrasse 48, CH-4056 Basel, Switzerland
| | - Ana Palma Teixeira
- Department of Biosystems Science and Engineering, ETH Zurich, Klingelbergstrasse 48, CH-4056 Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Klingelbergstrasse 48, CH-4056 Basel, Switzerland
- Faculty of Science, University of Basel, Klingelbergstrasse 48, CH-4056 Basel, Switzerland
| |
Collapse
|
4
|
Bader KB, Padilla F, Haworth KJ, Ellens N, Dalecki D, Miller DL, Wear KA. Overview of Therapeutic Ultrasound Applications and Safety Considerations: 2024 Update. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2025; 44:381-433. [PMID: 39526313 PMCID: PMC11796337 DOI: 10.1002/jum.16611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/11/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
A 2012 review of therapeutic ultrasound was published to educate researchers and physicians on potential applications and concerns for unintended bioeffects (doi: 10.7863/jum.2012.31.4.623). This review serves as an update to the parent article, highlighting advances in therapeutic ultrasound over the past 12 years. In addition to general mechanisms for bioeffects produced by therapeutic ultrasound, current applications, and the pre-clinical and clinical stages are outlined. An overview is provided for image guidance methods to monitor and assess treatment progress. Finally, other topics relevant for the translation of therapeutic ultrasound are discussed, including computational modeling, tissue-mimicking phantoms, and quality assurance protocols.
Collapse
Affiliation(s)
| | - Frederic Padilla
- Gene Therapy ProgramFocused Ultrasound FoundationCharlottesvilleVirginiaUSA
- Department of RadiologyUniversity of Virginia Health SystemCharlottesvilleVirginiaUSA
| | - Kevin J. Haworth
- Department of PediatricsUniversity of CincinnatiCincinnatiOhioUnited States
- Department of Internal MedicineUniversity of CincinnatiCincinnatiOhioUSA
- Department of Biomedical EngineeringUniversity of CincinnatiCincinnatiOhioUSA
| | | | - Diane Dalecki
- Department of Biomedical EngineeringUniversity of RochesterRochesterNew YorkUSA
| | - Douglas L. Miller
- Department of RadiologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| | - Keith A. Wear
- Center for Devices and Radiological HealthU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| |
Collapse
|
5
|
Jayne L, Lavin-Peter A, Roessler J, Tyshkovskiy A, Antoszewski M, Ren E, Markovski A, Sun S, Yao H, Sankaran VG, Gladyshev VN, Brooke RT, Horvath S, Griffith EC, Hrvatin S. A torpor-like state in mice slows blood epigenetic aging and prolongs healthspan. NATURE AGING 2025; 5:437-449. [PMID: 40055478 PMCID: PMC11922754 DOI: 10.1038/s43587-025-00830-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 02/03/2025] [Indexed: 03/12/2025]
Abstract
Torpor and hibernation are extreme physiological adaptations of homeotherms associated with pro-longevity effects. Yet the underlying mechanisms of how torpor affects aging, and whether hypothermic and hypometabolic states can be induced to slow aging and increase healthspan, remain unknown. Here we demonstrate that the activity of a spatially defined neuronal population in the preoptic area, which has previously been identified as a torpor-regulating brain region, is sufficient to induce a torpor-like state (TLS) in mice. Prolonged induction of TLS slows epigenetic aging across multiple tissues and improves healthspan. We isolate the effects of decreased metabolic rate, long-term caloric restriction, and decreased core body temperature (Tb) on blood epigenetic aging and find that the decelerating effect of TLSs on aging is mediated by decreased Tb. Taken together, our findings provide novel mechanistic insight into the decelerating effects of torpor and hibernation on aging and support the growing body of evidence that Tb is an important mediator of the aging processes.
Collapse
Affiliation(s)
- Lorna Jayne
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
| | - Aurora Lavin-Peter
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Julian Roessler
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mateusz Antoszewski
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Erika Ren
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Aleksandar Markovski
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Senmiao Sun
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Hanqi Yao
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Steve Horvath
- Epigenetic Clock Development Foundation, Torrance, CA, USA
- Altos Labs, Cambridge, UK
| | - Eric C Griffith
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Sinisa Hrvatin
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
6
|
Cerri M. Cold is hot for slowing aging. NATURE AGING 2025; 5:344-345. [PMID: 40055477 DOI: 10.1038/s43587-025-00817-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Affiliation(s)
- Matteo Cerri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
7
|
Kashio M. Thermosensitive TRPM2: The regulatory mechanisms of its temperature sensitivity and physiological functions. J Physiol Sci 2025; 75:100008. [PMID: 39919606 PMCID: PMC11979660 DOI: 10.1016/j.jphyss.2025.100008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/25/2025] [Indexed: 02/09/2025]
Abstract
Transient receptor potential melastatin 2 (TRPM2) is a non-selective cation channel with high Ca2+ permeability. TRPM2 exhibits temperature sensitivity, detecting warm to noxious high temperatures. This temperature sensitivity is regulated by several endogenous factors, including reactive oxygen species, adenosine diphosphate ribose, Ca2+ ions, and TRPM2 phosphorylation by protein kinase C, which alter TRPM2 activity at body temperature. Consequently, at core body temperature, TRPM2 regulates the physiological functions of TRPM2-expressing cells and tissues, such as immunocytes, pancreatic β cells, and the brain. In contrast, TRPM2 in sensory neurons detects warm temperatures. The current review summarizes the regulatory mechanisms of TRPM2 and its roles in physiological processes, focusing on temperature-dependent phenomena.
Collapse
Affiliation(s)
- Makiko Kashio
- Department of Cell Physiology, Faculty of Life Sciences, Kumamoto University, Japan.
| |
Collapse
|
8
|
Mirg S, Samanta K, Chen H, Jiang J, Turner KL, Salehi F, Ramiah KM, Drew PJ, Kothapalli SR. Integrated Ultrasound Neuromodulation and Optical Neuroimaging in Awake Mice using a Transparent Ultrasound Transducer Cranial Window. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.638722. [PMID: 40060492 PMCID: PMC11888234 DOI: 10.1101/2025.02.19.638722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
Ultrasound neuromodulation is a rapidly advancing, non-invasive technique with significant therapeutic potential for treating various neurological disorders. Although extensive in vitro and in vivo studies have provided valuable insights into its modulatory effects, the underlying mechanisms remain poorly understood, limiting its clinical translation. Optical neuroimaging techniques can help investigate these mechanisms; however, the opacity and bulkiness of conventional ultrasound transducers pose significant challenges for their integration with in vivo ultrasound neuromodulation studies, particularly in awake rodents. To address these limitations, we propose a straightforward solution: a miniaturized lithium niobate-based transparent ultrasound transducer (TUT) integrated as a thinned-skull cranial window for ultrasound stimulation while facilitating multimodal optical neuroimaging in awake mice brain. Using laser speckle contrast imaging and intrinsic optical signal imaging, we studied changes in brain hemodynamics in response to various ultrasound stimulation sequences. Our experiments demonstrated that TUT cranial window can robustly induce neuromodulatory effects with observed increase in both cerebral blood flow and total hemoglobin, with peak and cumulative hemodynamic changes directionally correlated with ultrasound stimulation duration and intensity. Overall, these findings highlight that TUT cranial window can seamlessly integrate ultrasound stimulation and optical neuroimaging in awake mouse brain models, offering promising prospects for uncovering the underlying mechanisms of ultrasound neuromodulation.
Collapse
Affiliation(s)
- Shubham Mirg
- Department of Biomedical Engineering, Pennsylvania State University, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, PA 16802,USA
| | - Krishnendu Samanta
- Department of Biomedical Engineering, Pennsylvania State University, PA 16802, USA
| | - Haoyang Chen
- Department of Biomedical Engineering, Pennsylvania State University, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, PA 16802,USA
| | - Jin Jiang
- Department of Biomedical Engineering, Pennsylvania State University, PA 16802, USA
| | - Kevin L Turner
- Department of Biomedical Engineering, Pennsylvania State University, PA 16802, USA
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Fatemeh Salehi
- Department of Biomedical Engineering, Pennsylvania State University, PA 16802, USA
| | - Kathiravan M Ramiah
- Department of Biomedical Engineering, Pennsylvania State University, PA 16802, USA
| | - Patrick J Drew
- Department of Biomedical Engineering, Pennsylvania State University, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, PA 16802,USA
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Neurosurgery, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sri-Rajasekhar Kothapalli
- Department of Biomedical Engineering, Pennsylvania State University, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, PA 16802,USA
- Penn State Cancer Institute, Hershey, PA, 17033, USA
- Graduate Program in Acoustics, Pennsylvania State University, PA 16802, USA
| |
Collapse
|
9
|
Tinajero A, Merchant W, Khan A, Surbhi, Caron A, Reynolds R, Jia L, Gautron L. Spontaneous and pharmacologically induced hypothermia protect mice against endotoxic shock. Br J Pharmacol 2025. [PMID: 39987925 DOI: 10.1111/bph.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/17/2024] [Accepted: 01/03/2025] [Indexed: 02/25/2025] Open
Abstract
BACKGROUND AND PURPOSE Despite the well-known occurrence of hypothermia during sepsis, its underlying biological nature and adaptive value remain debated. EXPERIMENTAL APPROACH Using indirect calorimetry, telemetry, thermal gradient studies and pharmacological studies, we examined the thermal and metabolic responses of mice treated with a shock-inducing lethal dose of lipopolysaccharide (LPS). KEY RESULTS We report that LPS-treated mice undergo spontaneous hypothermia, driven by hypometabolism and cold-seeking behaviours, even when animals approach the end of life. Conversely, rewarming LPS-treated mice at 30°C delayed hypothermia but worsened mortality, thus highlighting the adaptive importance of hypothermia. Additionally, we show that LPS-induced hypothermia was partly mediated by peripheral neurotensin expressed in response to vascular toll-like receptor 4 (TLR4) signalling. The administration of a neurotensin analogue (JMV449) induced pharmacological hypothermia and significantly ameliorated the clinical presentation and lethality rates in LPS-treated mice. Moreover, the therapeutic benefits of pharmacological hypothermia were prevented when LPS-treated mice were switched to 30°C. Lastly, these beneficial outcomes were attributed to a reduction in oxygen consumption, metabolic stress and cytopathic hypoxia, rather than the modulation of the cytokine storm. CONCLUSION AND IMPLICATIONS Collectively, our findings indicate that spontaneous and pharmacologically-induced hypothermia protect against endotoxic shock.
Collapse
Affiliation(s)
- Arely Tinajero
- Department of Internal Medicine and Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Warda Merchant
- Department of Internal Medicine and Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Adan Khan
- Department of Internal Medicine and Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Surbhi
- Department of Internal Medicine and Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Alexandre Caron
- Department of Internal Medicine and Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Ryan Reynolds
- Department of Internal Medicine and Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Lin Jia
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Laurent Gautron
- Department of Internal Medicine and Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
10
|
Ohba A, Yamaguchi H. The Art of Chilling Out: How Neurons Regulate Torpor. Bioessays 2025; 47:e202400190. [PMID: 39600072 PMCID: PMC11755697 DOI: 10.1002/bies.202400190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/29/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Endothermic animals expend significant energy to maintain high body temperatures, which offers adaptability to varying environmental conditions. However, this high metabolic rate requires increased food intake. In conditions of low environmental temperature and scarce food resources, some endothermic animals enter a hypometabolic state known as torpor to conserve energy. Torpor involves a marked reduction in body temperature, heart rate, respiratory rate, and locomotor activity, enabling energy conservation. Despite their biological significance and potential medical applications, the neuronal mechanisms regulating torpor still need to be fully understood. Recent studies have focused on fasting-induced daily torpor in mice due to their suitability for advanced neuroscientific techniques. In this review, we highlight recent advances that extend our understanding of neuronal mechanisms regulating torpor. We also discuss unresolved issues in this research field and future directions.
Collapse
Affiliation(s)
- Akinobu Ohba
- Department of Cell PhysiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Hiroshi Yamaguchi
- Division of Multicellular Circuit DynamicsNational Institute for Physiological SciencesOkazakiJapan
| |
Collapse
|
11
|
Ambroziak W, Nencini S, Pohle J, Zuza K, Pino G, Lundh S, Araujo-Sousa C, Goetz LIL, Schrenk-Siemens K, Manoj G, Herrera MA, Acuna C, Siemens J. Thermally induced neuronal plasticity in the hypothalamus mediates heat tolerance. Nat Neurosci 2025; 28:346-360. [PMID: 39653806 PMCID: PMC11802458 DOI: 10.1038/s41593-024-01830-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/25/2024] [Indexed: 12/19/2024]
Abstract
Heat acclimation is an adaptive process that improves physiological performance and supports survival in the face of increasing environmental temperatures, but the underlying mechanisms are not well understood. Here we identified a discrete group of neurons in the mouse hypothalamic preoptic area (POA) that rheostatically increase their activity over the course of heat acclimation, a property required for mice to become heat tolerant. In non-acclimated mice, peripheral thermoafferent pathways via the parabrachial nucleus activate POA neurons and mediate acute heat-defense mechanisms. However, long-term heat exposure promotes the POA neurons to gain intrinsically warm-sensitive activity, independent of thermoafferent parabrachial input. This newly gained cell-autonomous warm sensitivity is required to recruit peripheral heat tolerance mechanisms in acclimated animals. This pacemaker-like, warm-sensitive activity is driven by a combination of increased sodium leak current and enhanced utilization of the NaV1.3 ion channel. We propose that this salient neuronal plasticity mechanism adaptively drives acclimation to promote heat tolerance.
Collapse
Affiliation(s)
- Wojciech Ambroziak
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Department of Translational Disease Understanding, Grünenthal GmbH, Aachen, Germany
| | - Sara Nencini
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Istituto Italiano di Tecnologia, Genoa, Italy
| | - Jörg Pohle
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Department of Translational Disease Understanding, Grünenthal GmbH, Aachen, Germany
| | - Kristina Zuza
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Gabriela Pino
- Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Sofia Lundh
- Department of Pathology and Imaging, Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - Carolina Araujo-Sousa
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Larissa I L Goetz
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | | | - Gokul Manoj
- Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Mildred A Herrera
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Claudio Acuna
- Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Jan Siemens
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| |
Collapse
|
12
|
Zhi W, Li Y, Wang L, Hu X. Advancing Neuroscience and Therapy: Insights into Genetic and Non-Genetic Neuromodulation Approaches. Cells 2025; 14:122. [PMID: 39851550 PMCID: PMC11763439 DOI: 10.3390/cells14020122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/31/2024] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Neuromodulation stands as a cutting-edge approach in the fields of neuroscience and therapeutic intervention typically involving the regulation of neural activity through physical and chemical stimuli. The purpose of this review is to provide an overview and evaluation of different neuromodulation techniques, anticipating a clearer understanding of the future developmental trajectories and the challenges faced within the domain of neuromodulation that can be achieved. This review categorizes neuromodulation techniques into genetic neuromodulation methods (including optogenetics, chemogenetics, sonogenetics, and magnetogenetics) and non-genetic neuromodulation methods (including deep brain stimulation, transcranial magnetic stimulation, transcranial direct current stimulation, transcranial ultrasound stimulation, photobiomodulation therapy, infrared neuromodulation, electromagnetic stimulation, sensory stimulation therapy, and multi-physical-factor stimulation techniques). By systematically evaluating the principles, mechanisms, advantages, limitations, and efficacy in modulating neuronal activity and the potential applications in interventions of neurological disorders of these neuromodulation techniques, a comprehensive picture is gradually emerging regarding the advantages and challenges of neuromodulation techniques, their developmental trajectory, and their potential clinical applications. This review highlights significant advancements in applying these techniques to treat neurological and psychiatric disorders. Genetic methods, such as sonogenetics and magnetogenetics, have demonstrated high specificity and temporal precision in targeting neuronal populations, while non-genetic methods, such as transcranial magnetic stimulation and photobiomodulation therapy, offer noninvasive and versatile clinical intervention options. The transformative potential of these neuromodulation techniques in neuroscience research and clinical practice is underscored, emphasizing the need for integration and innovation in technologies, the optimization of delivery methods, the improvement of mediums, and the evaluation of toxicity to fully harness their therapeutic potential.
Collapse
Affiliation(s)
- Weijia Zhi
- Beijing Institute of Radiation Medicine, Beijing 100850, China;
| | - Ying Li
- School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Lifeng Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China;
| | - Xiangjun Hu
- Beijing Institute of Radiation Medicine, Beijing 100850, China;
| |
Collapse
|
13
|
Huang J, Fussenegger M. Programming mammalian cell behaviors by physical cues. Trends Biotechnol 2025; 43:16-42. [PMID: 39179464 DOI: 10.1016/j.tibtech.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/26/2024]
Abstract
In recent decades, the field of synthetic biology has witnessed remarkable progress, driving advances in both research and practical applications. One pivotal area of development involves the design of transgene switches capable of precisely regulating specified outputs and controlling cell behaviors in response to physical cues, which encompass light, magnetic fields, temperature, mechanical forces, ultrasound, and electricity. In this review, we delve into the cutting-edge progress made in the field of physically controlled protein expression in engineered mammalian cells, exploring the diverse genetic tools and synthetic strategies available for engineering targeting cells to sense these physical cues and generate the desired outputs accordingly. We discuss the precision and efficiency limitations inherent in these tools, while also highlighting their immense potential for therapeutic applications.
Collapse
Affiliation(s)
- Jinbo Huang
- Department of Biosystems Science and Engineering, ETH Zurich, Klingelbergstrasse 48, CH-4056 Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Klingelbergstrasse 48, CH-4056 Basel, Switzerland; Faculty of Science, University of Basel, Klingelbergstrasse 48, CH-4056 Basel, Switzerland.
| |
Collapse
|
14
|
Liu Y, Cao X, Zhou Q, Deng C, Yang Y, Huang D, Luo H, Zhang S, Li Y, Xu J, Chen H. Mechanisms and Countermeasures for Muscle Atrophy in Microgravity. Cells 2024; 13:2120. [PMID: 39768210 PMCID: PMC11727360 DOI: 10.3390/cells13242120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025] Open
Abstract
Previous studies have revealed that muscle atrophy emerges as a significant challenge faced by astronauts during prolonged missions in space. A loss in muscle mass results in a weakening of skeletal muscle strength and function, which will not only contribute to a decline in overall physical performance but also elevate the risk of various age-related diseases. Skeletal muscle atrophy in the microgravity environment is thought to be associated with changes in energy metabolism, protein metabolism, calcium ion homeostasis, myostatin levels, and apoptosis. Modulating some pathways could be a promising approach to mitigating muscle atrophy in the microgravity environment. This review serves as a comprehensive summary of research on the impact of microgravity on skeletal muscle, with the aim of providing insights into its pathogenesis and the development of effective treatments.
Collapse
Affiliation(s)
- Yizhou Liu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.L.); (X.C.); (Q.Z.); (C.D.); (Y.Y.); (D.H.); (H.L.); (S.Z.); (Y.L.); (J.X.)
| | - Xiaojian Cao
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.L.); (X.C.); (Q.Z.); (C.D.); (Y.Y.); (D.H.); (H.L.); (S.Z.); (Y.L.); (J.X.)
| | - Qiuzhi Zhou
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.L.); (X.C.); (Q.Z.); (C.D.); (Y.Y.); (D.H.); (H.L.); (S.Z.); (Y.L.); (J.X.)
- Stem Cell Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chunchu Deng
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.L.); (X.C.); (Q.Z.); (C.D.); (Y.Y.); (D.H.); (H.L.); (S.Z.); (Y.L.); (J.X.)
| | - Yujie Yang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.L.); (X.C.); (Q.Z.); (C.D.); (Y.Y.); (D.H.); (H.L.); (S.Z.); (Y.L.); (J.X.)
| | - Danxia Huang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.L.); (X.C.); (Q.Z.); (C.D.); (Y.Y.); (D.H.); (H.L.); (S.Z.); (Y.L.); (J.X.)
| | - Hongmei Luo
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.L.); (X.C.); (Q.Z.); (C.D.); (Y.Y.); (D.H.); (H.L.); (S.Z.); (Y.L.); (J.X.)
| | - Song Zhang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.L.); (X.C.); (Q.Z.); (C.D.); (Y.Y.); (D.H.); (H.L.); (S.Z.); (Y.L.); (J.X.)
| | - Yajie Li
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.L.); (X.C.); (Q.Z.); (C.D.); (Y.Y.); (D.H.); (H.L.); (S.Z.); (Y.L.); (J.X.)
- Stem Cell Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jia Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.L.); (X.C.); (Q.Z.); (C.D.); (Y.Y.); (D.H.); (H.L.); (S.Z.); (Y.L.); (J.X.)
- Stem Cell Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hong Chen
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.L.); (X.C.); (Q.Z.); (C.D.); (Y.Y.); (D.H.); (H.L.); (S.Z.); (Y.L.); (J.X.)
- Stem Cell Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
15
|
Lai Y, Tao W, Wang L, Liu Z, Wu P, Yang G, Yuan L. Medical Ultrasound Application Beyond Diagnosis: Insights From Ultrasound Sensing and Biological Response. Biotechnol J 2024; 19:e202400561. [PMID: 39726053 DOI: 10.1002/biot.202400561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/09/2024] [Accepted: 11/30/2024] [Indexed: 12/28/2024]
Abstract
Ultrasound (US) can easily penetrate media with excellent spatial precision corresponding to its wavelength. Naturally, US plays a pivotal role in the echolocation abilities of certain mammals such as bats and dolphins. In addition, medical US generated by transducers interact with tissues via delivering ultrasonic energy in the modes of heat generation, exertion of acoustic radiation force (ARF), and acoustic cavitation. Based on the principle of echolocation, various assistive devices for visual impairment people have been developed. High-Intensity Focused Ultrasound (HIFU) are developed for targeted ablation and tissue destruction. Besides thermal ablation, histotripsy with US is designed to damage tissue purely via mechanical effect without thermal coagulation. Low-Intensity Focused Ultrasound (LIFU) has been proven to be an effective stimulation method for neuromodulation. Furthermore, US has been reported to transiently increase the permeability of biological membranes, enabling acoustic transfection and blood-brain barrier open. All of these advances in US are changing the clinic. This review mainly introduces the advances in these aspects, focusing on the physical and biological principles, challenges, and future direction.
Collapse
Affiliation(s)
- Yubo Lai
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wenxin Tao
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lantian Wang
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhaoyou Liu
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Pengying Wu
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Guodong Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University Xi'an, Xi'an, Shaanxi, China
| | - Lijun Yuan
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
16
|
Chen X, Han W, Yang R, Zhu X, Li S, Wang Y, Sun X, Li Y, Bao L, Zhang L, Wang S, Wang J. Transcriptome Analysis Reveals the lncRNA-mRNA Co-expression Network Regulating the Aestivation of Sea Cucumber. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 27:15. [PMID: 39611876 DOI: 10.1007/s10126-024-10388-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/03/2024] [Indexed: 11/30/2024]
Abstract
LncRNAs are long non-coding RNAs that are widely recognized as crucial regulators of gene expression and metabolic control, involved in numerous dormancy-related processes. Aestivation is a common hypometabolism strategy of sea cucumber (Apostichopus japonicus) in response to high-temperature conditions and is typically characterized by the degradation of the intestine and respiratory tree. Although the aestivation process has been extensively studied in sea cucumbers, the role of lncRNAs in the context of aestivation states remains a conspicuous knowledge gap. Here, we identified and characterized 14,711 lncRNAs in A. japonicus and analyzed their differential expression patterns during the aestivation process in the intestine and respiratory tree. The results revealed the physiological differences, especially the metabolic processes, between the intestine and respiratory tree during the aestivation. The co-expression network of lncRNA-mRNA suggested the dominant role of lncRNA in regulating the differential response of the intestine and respiratory trees. Differentially co-expressed factors were significantly enriched in the deep-aestivation stage-specific modules. Conserved co-expressed factors included several transcription factors known to be involved in rhythm regulation, such as Klf2 and Egr1. Furthermore, a specific trans-acting lncRNA (lncrna.1393.1) was identified as a potential regulator of Klf2 and Egr1. Overall, the systematic identification, characterization, and expression analysis of lncRNAs in A. japonicus enhanced our knowledge of long non-coding regulation of aestivation in sea cucumber and provided new clues for understanding the common "toolkit" of dormancy regulatory mechanisms.
Collapse
Affiliation(s)
- Xiaomei Chen
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Wentao Han
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Rui Yang
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Xuan Zhu
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Shengwen Li
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yangfan Wang
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Xue Sun
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Yuli Li
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Lisui Bao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Lingling Zhang
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Shi Wang
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China
| | - Jing Wang
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
17
|
Salucci S, Hitrec T, Piscitiello E, Occhinegro A, Alberti L, Taddei L, Burattini S, Luppi M, Tupone D, Amici R, Faenza I, Cerri M. Multiorgan ultrastructural changes in rats induced in synthetic torpor. Front Physiol 2024; 15:1451644. [PMID: 39628940 PMCID: PMC11611833 DOI: 10.3389/fphys.2024.1451644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/29/2024] [Indexed: 12/06/2024] Open
Abstract
Torpor is a state used by several mammals to survive harsh winters and avoid predation, characterized by a drastic reduction in metabolic rate followed by a decrease in body temperature, heart rate, and many physiological variables. During torpor, all organs and systems must adapt to the new low-energy expenditure conditions to preserve physiological homeostasis. These adaptations may be exploited in a translational perspective in several fields. Recently, many features of torpor were shown to be mimicked in non-hibernators by the inhibition of neurons within the brainstem region of the Raphe Pallidus. The physiological resemblance of this artificial state, called synthetic torpor, with natural torpor has so far been described only in physiological terms, but no data have been shown regarding the induced morphological changes. Here, we show the first description of the ultrastructural changes in the liver, kidney, lung, skeletal muscle, and testis induced by a 6-hours inhibition of Raphe Pallidus neurons in a non-hibernating species, the rat.
Collapse
Affiliation(s)
- Sara Salucci
- Department of Biomedical and Neuromotor Sciences – University of Bologna, Bologna, Italy
| | - Timna Hitrec
- Department of Biomedical and Neuromotor Sciences – University of Bologna, Bologna, Italy
| | - Emiliana Piscitiello
- Department of Biomedical and Neuromotor Sciences – University of Bologna, Bologna, Italy
| | - Alessandra Occhinegro
- Department of Biomedical and Neuromotor Sciences – University of Bologna, Bologna, Italy
| | - Luca Alberti
- Department of Biomedical and Neuromotor Sciences – University of Bologna, Bologna, Italy
| | - Ludovico Taddei
- Department of Biomedical and Neuromotor Sciences – University of Bologna, Bologna, Italy
| | - Sabrina Burattini
- Department of Biomolecular Sciences, Carlo Bo Urbino University, Urbino, Italy
| | - Marco Luppi
- Department of Biomedical and Neuromotor Sciences – University of Bologna, Bologna, Italy
| | - Domenico Tupone
- Department of Biomedical and Neuromotor Sciences – University of Bologna, Bologna, Italy
| | - Roberto Amici
- Department of Biomedical and Neuromotor Sciences – University of Bologna, Bologna, Italy
| | - Irene Faenza
- Department of Biomedical and Neuromotor Sciences – University of Bologna, Bologna, Italy
| | - Matteo Cerri
- Department of Biomedical and Neuromotor Sciences – University of Bologna, Bologna, Italy
| |
Collapse
|
18
|
Zheng H, He J, Mok GSP, Qiu Z. Ultrasound Neuromodulation for Sleep and Neurological Disorder Therapy: A Path to Clinical Translation. ACS Chem Neurosci 2024; 15:3797-3799. [PMID: 39448062 DOI: 10.1021/acschemneuro.4c00687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
Ultrasound neuromodulation is a promising noninvasive technique capable of penetrating the skull and precisely targeting deep brain regions with millimeter accuracy. Recent studies have demonstrated that transcranial ultrasound stimulation (TUS) of sleep-related brain areas can induce sleep in mice and even trigger a reversible, hibernation-like state without causing damage. Beyond its utility in preclinical models of central nervous system diseases, such as epilepsy, tremors, Alzheimer's disease, and depression, TUS holds significant potential for clinical translation. Given that many neurological disorders, including Alzheimer's and Parkinson's disease, are associated with sleep abnormalities, leveraging clinical TUS applications for these diseases also creates a pathway for translating this technology to sleep modulation in human use. These findings highlight the potential for ultrasound neuromodulation to advance neuroscience research and clinical applications in sleep control.
Collapse
Affiliation(s)
- Hanming Zheng
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, University of Macau, Taipa, Macau 999078, China
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong 519031, China
| | - Jiaru He
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong 519031, China
| | - Greta S P Mok
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, University of Macau, Taipa, Macau 999078, China
- Center for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Taipa, Macau 999078, China
| | - Zhihai Qiu
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong 519031, China
| |
Collapse
|
19
|
Fregin B, Hossain MF, Biedenweg D, Friedrichs V, Balkema-Buschmann A, Bokelmann M, Lehnert K, Mokbel D, Aland S, Scholz CC, Lehmann P, Otto O, Kerth G. Thermomechanical properties of bat and human red blood cells-Implications for hibernation. Proc Natl Acad Sci U S A 2024; 121:e2405169121. [PMID: 39401351 PMCID: PMC11513926 DOI: 10.1073/pnas.2405169121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/27/2024] [Indexed: 10/30/2024] Open
Abstract
Hibernation is a widespread and highly efficient mechanism to save energy in mammals. However, one major challenge of hibernation is maintaining blood circulation at low body temperatures, which strongly depends on the viscoelastic properties of red blood cells (RBCs). Here, we examined at physiologically relevant timescales the thermomechanical properties of hundreds of thousands of individual RBCs from the hibernating common noctule bat (Nyctalus noctula), the nonhibernating Egyptian fruit bat (Rousettus aegyptiacus), and humans (Homo sapiens). We exposed RBCs to temperatures encountered during normothermia and hibernation and found a significant increase in elasticity and viscosity with decreasing temperatures. Our data demonstrate that temperature adjustment of RBCs is mainly driven by membrane properties and not the cytosol while viscous dissipation in the membrane of both bat species exceeds the one in humans by a factor of 15. Finally, our results show that RBCs from both bat species reveal a transition to a more viscous-like state when temperature decreases. This process on a minute timescale has an effect size that is comparable with fluctuations in RBC viscoelasticity over the course of the year, implying that environmental factors, such as diets, have a lower impact on the capability of RBCs to respond to different temperatures than general physical properties of the cell membrane. In summary, our findings suggest membrane viscoelasticity as a promising target for identifying mechanisms that could be manipulated to ensure blood circulation at low body temperatures in humans, which may be one first step toward safe synthetic torpor in medicine and space flight.
Collapse
Affiliation(s)
- Bob Fregin
- Institute of Physics, University of Greifswald, Greifswald17489, Germany
- German Center for Cardiovascular Research, Partner Site Greifswald, Greifswald17489, Germany
| | - Mohammed Faruq Hossain
- Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald17489, Germany
| | - Doreen Biedenweg
- Institute of Physics, University of Greifswald, Greifswald17489, Germany
| | | | | | - Marcel Bokelmann
- Friedrich-Loeffler-Institut, Greifswald-Insel Riems17493, Germany
| | - Kristin Lehnert
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald17475, Germany
| | - Dominic Mokbel
- Institute of Numerical Mathematics and Optimisation, Technical University Bergakademie Freiberg, Freiberg09599, Germany
- Center for Systems Biology Dresden, Dresden01307, Germany
| | - Sebastian Aland
- Institute of Numerical Mathematics and Optimisation, Technical University Bergakademie Freiberg, Freiberg09599, Germany
- Center for Systems Biology Dresden, Dresden01307, Germany
| | - Carsten C. Scholz
- Institute of Physiology, University Medicine Greifswald, Greifswald17489, Germany
| | - Philipp Lehmann
- Animal Physiology, Zoological Institute and Museum, University of Greifswald, Greifswald17489, Germany
| | - Oliver Otto
- Institute of Physics, University of Greifswald, Greifswald17489, Germany
- German Center for Cardiovascular Research, Partner Site Greifswald, Greifswald17489, Germany
| | - Gerald Kerth
- Applied Zoology and Nature Conservation, Zoological Institute and Museum, University of Greifswald, Greifswald17489, Germany
| |
Collapse
|
20
|
Weir K, Vega N, Busa VF, Sajdak B, Kallestad L, Merriman D, Palczewski K, Carroll J, Blackshaw S. Identification of shared gene expression programs activated in multiple modes of torpor across vertebrate clades. Sci Rep 2024; 14:24360. [PMID: 39420030 PMCID: PMC11487170 DOI: 10.1038/s41598-024-74324-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Torpor encompasses diverse adaptations to extreme environmental stressors such as hibernation, aestivation, brumation, and daily torpor. Here we introduce StrokeofGenus, an analytic pipeline that identifies distinct transcriptomic states and shared gene expression patterns across studies, tissues, and species. We use StrokeofGenus to study multiple and diverse forms of torpor from publicly-available RNA-seq datasets that span eight species and two classes. We identify three transcriptionally distinct states during the cycle of heterothermia: euthermia, torpor, and interbout arousal. We also identify torpor-specific gene expression patterns that are shared both across tissues and between species with over three hundred million years of evolutionary divergence. We further demonstrate the general sharing of gene expression patterns in multiple forms of torpor, implying a common evolutionary origin for this process. Although here we apply StrokeofGenus to analysis of torpor, it can be used to interrogate any other complex physiological processes defined by transient transcriptomic states.
Collapse
Affiliation(s)
- Kurt Weir
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Genome Biology Unit, European Molecular Biology Laboratories, Heidelberg, Germany
| | - Natasha Vega
- Department of Biology, Johns Hopkins University Krieger School of Arts and Sciences, Baltimore, MD, USA
| | | | - Ben Sajdak
- Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
- Fauna Bio, Emeryville, CA, USA
- Biology, University of Wisconsin Oshkosh, Oshkosh, WI, USA
| | - Les Kallestad
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, 92697, USA
| | - Dana Merriman
- Biology, University of Wisconsin Oshkosh, Oshkosh, WI, USA
| | - Krzysztof Palczewski
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, 92697, USA
- Department of Chemistry, University of California Irvine, Irvine, CA, 92697, USA
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, 92697, USA
| | - Joseph Carroll
- Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Seth Blackshaw
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
21
|
Murphy KR, Farrell JS, Bendig J, Mitra A, Luff C, Stelzer IA, Yamaguchi H, Angelakos CC, Choi M, Bian W, DiIanni T, Pujol EM, Matosevich N, Airan R, Gaudillière B, Konofagou EE, Butts-Pauly K, Soltesz I, de Lecea L. Optimized ultrasound neuromodulation for non-invasive control of behavior and physiology. Neuron 2024; 112:3252-3266.e5. [PMID: 39079529 PMCID: PMC11709124 DOI: 10.1016/j.neuron.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/09/2024] [Accepted: 07/02/2024] [Indexed: 08/09/2024]
Abstract
Focused ultrasound can non-invasively modulate neural activity, but whether effective stimulation parameters generalize across brain regions and cell types remains unknown. We used focused ultrasound coupled with fiber photometry to identify optimal neuromodulation parameters for four different arousal centers of the brain in an effort to yield overt changes in behavior. Applying coordinate descent, we found that optimal parameters for excitation or inhibition are highly distinct, the effects of which are generally conserved across brain regions and cell types. Optimized stimulations induced clear, target-specific behavioral effects, whereas non-optimized protocols of equivalent energy resulted in substantially less or no change in behavior. These outcomes were independent of auditory confounds and, contrary to expectation, accompanied by a cyclooxygenase-dependent and prolonged reduction in local blood flow and temperature with brain-region-specific scaling. These findings demonstrate that carefully tuned and targeted ultrasound can exhibit powerful effects on complex behavior and physiology.
Collapse
Affiliation(s)
- Keith R Murphy
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Jordan S Farrell
- Department of Neurosurgery, Stanford University, Stanford, CA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, USA; F.M. Kirby Neurobiology Center, Harvard Medical School, Boston, MA, USA
| | - Jonas Bendig
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Anish Mitra
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Charlotte Luff
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Ina A Stelzer
- Department of Anesthesia, Stanford University, Stanford, CA, USA
| | - Hiroshi Yamaguchi
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA; Department of Neuroscience, Nagoya University, Nagoya, Japan
| | | | - Mihyun Choi
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Wenjie Bian
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Tommaso DiIanni
- Department of Radiology, Stanford University, Stanford, CA, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Esther Martinez Pujol
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Noa Matosevich
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Raag Airan
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Brice Gaudillière
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Elisa E Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Kim Butts-Pauly
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
| |
Collapse
|
22
|
Xu T, Zhang Y, Li D, Lai C, Wang S, Zhang S. Mechanosensitive Ion Channels Piezo1 and Piezo2 Mediate Motor Responses In Vivo During Transcranial Focused Ultrasound Stimulation of the Rodent Cerebral Motor Cortex. IEEE Trans Biomed Eng 2024; 71:2900-2910. [PMID: 38748529 DOI: 10.1109/tbme.2024.3401136] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
OBJECTIVE Transcranial focused ultrasound (tFUS) neuromodulation offers a noninvasive, safe, deep brain stimulation with high precision, presenting potential in understanding neural circuits and treating brain disorders. This in vivo study investigated the mechanism of tFUS in activating the opening of the mechanosensitive ion channels Piezo1 and Piezo2 in the mouse motor cortex to induce motor responses. METHODS Piezo1 and Piezo2 were knocked down separately in the mouse motor cortex, followed by EMG and motor cortex immunofluorescence comparisons before and after knockdown under tFUS stimulation. RESULTS The results demonstrated that the stimulation-induced motor response success rates in Piezo knockdown mice were lower compared to the control group (Piezo1 knockdown: 57.63% ± 14.62%, Piezo2 knockdown: 73.71% ± 13.10%, Control mice: 85.69% ± 10.23%). Both Piezo1 and Piezo2 knockdowns showed prolonged motor response times (Piezo1 knockdown: 0.62 ± 0.19 s, Piezo2 knockdown: 0.60 ± 0.13 s, Control mice: 0.44 ± 0.12 s) compared to controls. Additionally, Piezo knockdown animals subjected to tFUS showed reduced immunofluorescent c-Fos expression in the target area when measured in terms of cells per unit area compared to the control group. CONCLUSION This in vivo study confirms the pivotal role of Piezo channels in tFUS-induced neuromodulation, highlighting their influence on motor response efficacy and timing. SIGNIFICANCE This study provides insights into the mechanistic underpinnings of noninvasive brain stimulation techniques and opens avenues for developing targeted therapies for neural disorders.
Collapse
|
23
|
Sherman J, Bortz E, Antonio ES, Tseng HA, Raiff L, Han X. Ultrasound pulse repetition frequency preferentially activates different neuron populations independent of cell type. J Neural Eng 2024; 21:056008. [PMID: 39178904 PMCID: PMC11381926 DOI: 10.1088/1741-2552/ad731c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/18/2024] [Accepted: 08/23/2024] [Indexed: 08/26/2024]
Abstract
Objective. Transcranial ultrasound (US) stimulation serves as an external input to a neuron, and thus the evoked response relies on neurons' intrinsic properties. Neural activity is limited to a couple hundred hertz and often exhibits preference to input frequencies. Accordingly, US pulsed at specific physiologic pulse repetition frequencies (PRFs) may selectively engage neurons with the corresponding input frequency preference. However, most US parametric studies examine the effects of supraphysiologic PRFs. It remains unclear whether pulsing US at different physiologic PRFs could activate distinct neurons in the awake mammalian brain.Approach. We recorded cellular calcium responses of individual motor cortex neurons to US pulsed at PRFs of 10, 40, and 140 Hz in awake mice. We compared the evoked responses across these PRFs in the same neurons. To further understand the cell-type dependent effects, we categorized the recorded neurons as parvalbumin positive fast spiking interneurons or putative excitatory neurons and analyzed single-cell mechanosensitive channel expression in mice and humans using the Allen Brain Institute's RNA-sequencing databases.Main results. We discovered that many neurons were preferentially activated by only one PRF and different PRFs selectively engaged distinct neuronal populations. US-evoked cellular calcium responses exhibited the same characteristics as those naturally occurring during spiking, suggesting that US increases intrinsic neuronal activity. Furthermore, evoked responses were similar between fast-spiking inhibitory neurons and putative excitatory neurons. Thus, variation in individual neuron's cellular properties dominates US-evoked response heterogeneity, consistent with our observed cell-type independent expression patterns of mechanosensitive channels across individual neurons in mice and humans. Finally, US transiently increased network synchrony without producing prolonged over-synchronization that could be detrimental to neural circuit functions.Significance. These results highlight the feasibility of activating distinct neuronal subgroups by varying PRF and the potential to improve neuromodulation effects by combining physiologic PRFs.
Collapse
Affiliation(s)
- Jack Sherman
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
- Department of Pharmacology and Experimental Therapeutics, Boston University, Boston, MA, United States of America
| | - Emma Bortz
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
| | - Erynne San Antonio
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
| | - Hua-an Tseng
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
| | - Laura Raiff
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
| | - Xue Han
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
| |
Collapse
|
24
|
McKenzie AT, Zeleznikow-Johnston A, Sparks JS, Nnadi O, Smart J, Wiley K, Cerullo MA, de Wolf A, Minerva F, Risco R, Church GM, de Magalhães JP, Kendziorra EF. Structural brain preservation: a potential bridge to future medical technologies. FRONTIERS IN MEDICAL TECHNOLOGY 2024; 6:1400615. [PMID: 39315362 PMCID: PMC11416988 DOI: 10.3389/fmedt.2024.1400615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
When faced with the prospect of death, some people would prefer a form of long-term preservation that may allow them to be restored to healthy life in the future, if technology ever develops to the point that this is feasible and humane. Some believe that we may have the capacity to perform this type of experimental preservation today-although it has never been proven-using contemporary methods to preserve the structure of the brain. The idea is that the morphomolecular organization of the brain encodes the information required for psychological properties such as personality and long-term memories. If these structures in the brain can be maintained intact over time, this could theoretically provide a bridge to access restorative technologies in the future. To consider this hypothesis, we first describe possible metrics that can be used to assess structural brain preservation quality. We next explore several possible methods to preserve structural information in the brain, including the traditional cryonics method of cryopreservation, as well as aldehyde-stabilized cryopreservation and fluid preservation. We focus in-depth on fluid preservation, which relies on aldehyde fixation to induce chemical gel formation in a wide set of biomolecules and appears to be a cost-effective method. We describe two theoretical recovery technologies, alongside several of the ethical and legal complexities of brain preservation, all of which will require a prudent approach. We believe contemporary structural brain preservation methods have a non-negligible chance of allowing successful restoration in the future and that this deserves serious research efforts by the scientific community.
Collapse
Affiliation(s)
| | - Ariel Zeleznikow-Johnston
- School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | | | - Oge Nnadi
- Brain Preservation Foundation, Ashburn, VA, United States
| | - John Smart
- Brain Preservation Foundation, Ashburn, VA, United States
| | - Keith Wiley
- Brain Preservation Foundation, Ashburn, VA, United States
| | | | | | | | - Ramón Risco
- Escuela Superior de Ingeniería, Universidad de Sevilla & National Accelerators Center, CNA-CSIC, Seville, Spain
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, MA, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - João Pedro de Magalhães
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- Oxford Uehiro Centre for Practical Ethics, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
25
|
Jin J, Pei G, Ji Z, Liu X, Yan T, Li W, Suo D. Transcranial focused ultrasound precise neuromodulation: a review of focal size regulation, treatment efficiency and mechanisms. Front Neurosci 2024; 18:1463038. [PMID: 39301015 PMCID: PMC11410768 DOI: 10.3389/fnins.2024.1463038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024] Open
Abstract
Ultrasound is a mechanical wave that can non-invasively penetrate the skull to deep brain regions to activate neurons. Transcranial focused ultrasound neuromodulation is a promising approach, with the advantages of noninvasiveness, high-resolution, and deep penetration, which developed rapidly over the past years. However, conventional transcranial ultrasound's spatial resolution is low-precision which hinders its use in precision neuromodulation. Here we focus on methods that could increase the spatial resolution, gain modulation efficiency at the focal spot, and potential mechanisms of ultrasound neuromodulation. In this paper, we summarize strategies to enhance the precision of ultrasound stimulation, which could potentially improve the ultrasound neuromodulation technic.
Collapse
Affiliation(s)
- Jie Jin
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Guangying Pei
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Zhenxiang Ji
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| | - Xinze Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Tianyi Yan
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Wei Li
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Dingjie Suo
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
26
|
Kim MG, Yu K, Yeh CY, Fouda R, Argueta D, Kiven S, Ni Y, Niu X, Chen Q, Kim K, Gupta K, He B. Low-intensity transcranial focused ultrasound suppresses pain by modulating pain-processing brain circuits. Blood 2024; 144:1101-1115. [PMID: 38976875 PMCID: PMC11406192 DOI: 10.1182/blood.2023023718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/10/2024] Open
Abstract
ABSTRACT There is an urgent and unmet clinical need to develop nonpharmacological interventions for chronic pain management because of the critical side effects of opioids. Low-intensity transcranial focused ultrasound (tFUS) is an emerging noninvasive neuromodulation technology with high spatial specificity and deep brain penetration. Here, we developed a tightly focused 128-element ultrasound transducer to specifically target small mouse brains using dynamic focus steering. We demonstrate that tFUS stimulation at pain-processing brain circuits can significantly alter pain-associated behaviors in mouse models in vivo. Our findings indicate that a single-session focused ultrasound stimulation to the primary somatosensory cortex (S1) significantly attenuates heat pain sensitivity in wild-type mice and modulates heat and mechanical hyperalgesia in a humanized mouse model of chronic pain in sickle cell disease. Results further revealed a sustained behavioral change associated with heat hypersensitivity by targeting deeper cortical structures (eg, insula) and multisession focused ultrasound stimulation to S1 and insula. Analyses of brain electrical rhythms through electroencephalography demonstrated a significant change in noxious heat hypersensitivity-related and chronic hyperalgesia-associated neural signals after focused ultrasound treatment. Validation of efficacy was carried out through control experiments, tuning ultrasound parameters, adjusting interexperiment intervals, and investigating effects on age, sex, and genotype in a head-fixed awake model. Importantly, tFUS was found to be safe, causing no adverse effects on motor function or the brain's neuropathology. In conclusion, the validated proof-of-principle experimental evidence demonstrates the translational potential of novel focused ultrasound neuromodulation for next-generation pain treatment without adverse effects.
Collapse
Affiliation(s)
- Min Gon Kim
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA
| | - Kai Yu
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA
| | - Chih-Yu Yeh
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA
| | - Raghda Fouda
- Department of Medicine, University of California, Irvine, Irvine, CA
| | - Donovan Argueta
- Department of Medicine, University of California, Irvine, Irvine, CA
| | - Stacy Kiven
- Department of Medicine, University of California, Irvine, Irvine, CA
| | - Yunruo Ni
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA
| | - Xiaodan Niu
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA
| | - Qiyang Chen
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Kang Kim
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | - Kalpna Gupta
- Department of Medicine, University of California, Irvine, Irvine, CA
| | - Bin He
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA
| |
Collapse
|
27
|
Plaza Oliver M, Gardner E, Lin T, Sheehan K, Sperry MM, Lightbown S, Martínez MR, del Campo D, Fotowat H, Lewandowski M, Takeda T, C. Pauer A, Kaushal S, Gnyawali V, Lozano MV, Santander Ortega MJ, Novak R, Super M, Ingber DE. Donepezil Nanoemulsion Induces a Torpor-like State with Reduced Toxicity in Nonhibernating Xenopus laevis Tadpoles. ACS NANO 2024; 18:23991-24003. [PMID: 39167921 PMCID: PMC11375763 DOI: 10.1021/acsnano.4c02012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 08/23/2024]
Abstract
Achieving a reversible decrease of metabolism and other physiological processes in the whole organism, as occurs in animals that experience torpor or hibernation, could contribute to increased survival after serious injury. Using a Bayesian network tool with transcriptomic data and chemical structure similarity assessments, we predicted that the Alzheimer's disease drug donepezil (DNP) could be a promising candidate for a small molecule drug that might induce a torpor-like state. This was confirmed in a screening study with Xenopus laevis tadpoles, a nonhibernator whole animal model. To improve the therapeutic performance of the drug and minimize its toxicity, we encapsulated DNP in a nanoemulsion formulated with low-toxicity materials. This formulation is composed of emulsified droplets <200 nm in diameter that contain 1.250 mM DNP, representing ≥95% encapsulation efficiency. The DNP nanoemulsion induced comparable torpor-like effects to those produced by the free drug in tadpoles, as indicated by reduced swimming motion, cardiac beating frequency, and oxygen consumption, but with an improved biodistribution. Use of the nanoemulsion resulted in a more controlled increase of DNP concentration in the whole organism compared to free DNP, and to a higher concentration in the brain, which reduced DNP toxicity and enabled induction of a longer torpor-like state that was fully reversible. These studies also demonstrate the potential use of Xenopus tadpoles as a high-throughput in vivo screen to assess the efficacy, biodistribution, and toxicity of drug-loaded nanocarriers.
Collapse
Affiliation(s)
- Maria Plaza Oliver
- Wyss
Institute for Biologically Engineering at Harvard University, Boston, Massachusetts 02215, United States
- Development
and Evaluation of Nanodrugs (DEVANA) Group, Faculty of Pharmacy and Biomedicine Institute at University of Castilla-La
Mancha, 02008 Albacete, Spain
- Castilla-La
Mancha Health Research Institute (IDISCAM), 02071 Albacete, Spain
| | - Erica Gardner
- Wyss
Institute for Biologically Engineering at Harvard University, Boston, Massachusetts 02215, United States
| | - Tiffany Lin
- Wyss
Institute for Biologically Engineering at Harvard University, Boston, Massachusetts 02215, United States
| | - Katherine Sheehan
- Wyss
Institute for Biologically Engineering at Harvard University, Boston, Massachusetts 02215, United States
| | - Megan M. Sperry
- Wyss
Institute for Biologically Engineering at Harvard University, Boston, Massachusetts 02215, United States
| | - Shanda Lightbown
- Wyss
Institute for Biologically Engineering at Harvard University, Boston, Massachusetts 02215, United States
| | - Manuel Ramsés Martínez
- Wyss
Institute for Biologically Engineering at Harvard University, Boston, Massachusetts 02215, United States
| | - Daniela del Campo
- Wyss
Institute for Biologically Engineering at Harvard University, Boston, Massachusetts 02215, United States
| | - Haleh Fotowat
- Wyss
Institute for Biologically Engineering at Harvard University, Boston, Massachusetts 02215, United States
| | - Michael Lewandowski
- Wyss
Institute for Biologically Engineering at Harvard University, Boston, Massachusetts 02215, United States
| | - Takako Takeda
- Wyss
Institute for Biologically Engineering at Harvard University, Boston, Massachusetts 02215, United States
| | - Alexander C. Pauer
- Wyss
Institute for Biologically Engineering at Harvard University, Boston, Massachusetts 02215, United States
| | - Shruti Kaushal
- Wyss
Institute for Biologically Engineering at Harvard University, Boston, Massachusetts 02215, United States
| | - Vaskar Gnyawali
- Wyss
Institute for Biologically Engineering at Harvard University, Boston, Massachusetts 02215, United States
| | - Maria V. Lozano
- Development
and Evaluation of Nanodrugs (DEVANA) Group, Faculty of Pharmacy and Biomedicine Institute at University of Castilla-La
Mancha, 02008 Albacete, Spain
- Castilla-La
Mancha Health Research Institute (IDISCAM), 02071 Albacete, Spain
| | - Manuel J. Santander Ortega
- Development
and Evaluation of Nanodrugs (DEVANA) Group, Faculty of Pharmacy and Biomedicine Institute at University of Castilla-La
Mancha, 02008 Albacete, Spain
- Castilla-La
Mancha Health Research Institute (IDISCAM), 02071 Albacete, Spain
| | - Richard Novak
- Wyss
Institute for Biologically Engineering at Harvard University, Boston, Massachusetts 02215, United States
| | - Michael Super
- Wyss
Institute for Biologically Engineering at Harvard University, Boston, Massachusetts 02215, United States
| | - Donald E. Ingber
- Wyss
Institute for Biologically Engineering at Harvard University, Boston, Massachusetts 02215, United States
- Vascular
Biology Program & Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Boston, Massachusetts 02134, United States
| |
Collapse
|
28
|
Wu P, Liu Z, Tao W, Lai Y, Yang G, Yuan L. The principles and promising future of sonogenetics for precision medicine. Theranostics 2024; 14:4806-4821. [PMID: 39239514 PMCID: PMC11373633 DOI: 10.7150/thno.98476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/29/2024] [Indexed: 09/07/2024] Open
Abstract
Sonogenetics is an emerging medical technology that uses acoustic waves to control cells through sonosensitive mediators (SSMs) that are genetically encoded, thus remotely and non-invasively modulating specific molecular events and/or biomolecular functions. Sonogenetics has opened new opportunities for targeted spatiotemporal manipulation in the field of gene and cell-based therapies due to its inherent advantages, such as its noninvasive nature, high level of safety, and deep tissue penetration. Sonogenetics holds impressive potential in a wide range of applications, from tumor immunotherapy and mitigation of Parkinsonian symptoms to the modulation of neural reward pathway, and restoration of vision. This review provides a detailed overview of the mechanisms and classifications of established sonogenetics systems and summarizes their applications in disease treatment and management. The review concludes by highlighting the challenges that hinder the further progress of sonogenetics, paving the way for future advances.
Collapse
Affiliation(s)
- Pengying Wu
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Shaanxi 710038, China
| | - Zhaoyou Liu
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Shaanxi 710038, China
| | - Wenxin Tao
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Shaanxi 710038, China
| | - Yubo Lai
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Shaanxi 710038, China
| | - Guodong Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Lijun Yuan
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Shaanxi 710038, China
| |
Collapse
|
29
|
Pellow C, Pichardo S, Pike GB. A systematic review of preclinical and clinical transcranial ultrasound neuromodulation and opportunities for functional connectomics. Brain Stimul 2024; 17:734-751. [PMID: 38880207 DOI: 10.1016/j.brs.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/21/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Low-intensity transcranial ultrasound has surged forward as a non-invasive and disruptive tool for neuromodulation with applications in basic neuroscience research and the treatment of neurological and psychiatric conditions. OBJECTIVE To provide a comprehensive overview and update of preclinical and clinical transcranial low intensity ultrasound for neuromodulation and emphasize the emerging role of functional brain mapping to guide, better understand, and predict responses. METHODS A systematic review was conducted by searching the Web of Science and Scopus databases for studies on transcranial ultrasound neuromodulation, both in humans and animals. RESULTS 187 relevant studies were identified and reviewed, including 116 preclinical and 71 clinical reports with subjects belonging to diverse cohorts. Milestones of ultrasound neuromodulation are described within an overview of the broader landscape. General neural readouts and outcome measures are discussed, potential confounds are noted, and the emerging use of functional magnetic resonance imaging is highlighted. CONCLUSION Ultrasound neuromodulation has emerged as a powerful tool to study and treat a range of conditions and its combination with various neural readouts has significantly advanced this platform. In particular, the use of functional magnetic resonance imaging has yielded exciting inferences into ultrasound neuromodulation and has the potential to advance our understanding of brain function, neuromodulatory mechanisms, and ultimately clinical outcomes. It is anticipated that these preclinical and clinical trials are the first of many; that transcranial low intensity focused ultrasound, particularly in combination with functional magnetic resonance imaging, has the potential to enhance treatment for a spectrum of neurological conditions.
Collapse
Affiliation(s)
- Carly Pellow
- Department of Radiology, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada; Hotchkiss Brain Institute, University of Calgary, Alberta, T2N 4N1, Canada.
| | - Samuel Pichardo
- Department of Radiology, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada; Hotchkiss Brain Institute, University of Calgary, Alberta, T2N 4N1, Canada; Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada
| | - G Bruce Pike
- Department of Radiology, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada; Hotchkiss Brain Institute, University of Calgary, Alberta, T2N 4N1, Canada; Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
30
|
Kosnoff J, Yu K, Liu C, He B. Transcranial focused ultrasound to V5 enhances human visual motion brain-computer interface by modulating feature-based attention. Nat Commun 2024; 15:4382. [PMID: 38862476 PMCID: PMC11167030 DOI: 10.1038/s41467-024-48576-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/02/2024] [Indexed: 06/13/2024] Open
Abstract
A brain-computer interface (BCI) enables users to control devices with their minds. Despite advancements, non-invasive BCIs still exhibit high error rates, prompting investigation into the potential reduction through concurrent targeted neuromodulation. Transcranial focused ultrasound (tFUS) is an emerging non-invasive neuromodulation technology with high spatiotemporal precision. This study examines whether tFUS neuromodulation can improve BCI outcomes, and explores the underlying mechanism of action using high-density electroencephalography (EEG) source imaging (ESI). As a result, V5-targeted tFUS significantly reduced the error in a BCI speller task. Source analyses revealed a significantly increase in theta and alpha activities in the tFUS condition at both V5 and downstream in the dorsal visual processing pathway. Correlation analysis indicated that the connection within the dorsal processing pathway was preserved during tFUS stimulation, while the ventral connection was weakened. These findings suggest that V5-targeted tFUS enhances feature-based attention to visual motion.
Collapse
Affiliation(s)
- Joshua Kosnoff
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15237, USA
| | - Kai Yu
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15237, USA
| | - Chang Liu
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15237, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Bin He
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15237, USA.
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, 15237, USA.
| |
Collapse
|
31
|
Li B, Zhao A, Tian T, Yang X. Mechanobiological insight into brain diseases based on mechanosensitive channels: Common mechanisms and clinical potential. CNS Neurosci Ther 2024; 30:e14809. [PMID: 38923822 PMCID: PMC11197048 DOI: 10.1111/cns.14809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/15/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND As physical signals, mechanical cues regulate the neural cells in the brain. The mechanosensitive channels (MSCs) perceive the mechanical cues and transduce them by permeating specific ions or molecules across the plasma membrane, and finally trigger a series of intracellular bioelectrical and biochemical signals. Emerging evidence supports that wide-distributed, high-expressed MSCs like Piezo1 play important roles in several neurophysiological processes and neurological disorders. AIMS To systematically conclude the functions of MSCs in the brain and provide a novel mechanobiological perspective for brain diseases. METHOD We summarized the mechanical cues and MSCs detected in the brain and the research progress on the functional roles of MSCs in physiological conditions. We then concluded the pathological activation and downstream pathways triggered by MSCs in two categories of brain diseases, neurodegenerative diseases and place-occupying damages. Finally, we outlined the methods for manipulating MSCs and discussed their medical potential with some crucial outstanding issues. RESULTS The MSCs present underlying common mechanisms in different brain diseases by acting as the "transportation hubs" to transduce the distinct signal patterns: the upstream mechanical cues and the downstream intracellular pathways. Manipulating the MSCs is feasible to alter the complicated downstream processes, providing them promising targets for clinical treatment. CONCLUSIONS Recent research on MSCs provides a novel insight into brain diseases. The common mechanisms mediated by MSCs inspire a wide range of therapeutic potentials targeted on MSCs in different brain diseases.
Collapse
Affiliation(s)
- Bolong Li
- Shenzhen Key Laboratory of Translational Research for Brain Diseases, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdongChina
- College of Life SciencesUniversity of Chinese Academy of ScienceBeijingChina
| | - An‐ran Zhao
- Shenzhen Key Laboratory of Translational Research for Brain Diseases, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdongChina
- College of Life SciencesUniversity of Chinese Academy of ScienceBeijingChina
- Faculty of Life and Health SciencesShenzhen University of Advanced TechnologyShenzhenGuangdongChina
| | - Tian Tian
- Shenzhen Key Laboratory of Translational Research for Brain Diseases, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdongChina
- Faculty of Life and Health SciencesShenzhen University of Advanced TechnologyShenzhenGuangdongChina
| | - Xin Yang
- Shenzhen Key Laboratory of Translational Research for Brain Diseases, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdongChina
- Faculty of Life and Health SciencesShenzhen University of Advanced TechnologyShenzhenGuangdongChina
| |
Collapse
|
32
|
Lu G, Gong C, Sun Y, Qian X, Rajendran Nair DS, Li R, Zeng Y, Ji J, Zhang J, Kang H, Jiang L, Chen J, Chang CF, Thomas BB, Humayun MS, Zhou Q. Noninvasive imaging-guided ultrasonic neurostimulation with arbitrary 2D patterns and its application for high-quality vision restoration. Nat Commun 2024; 15:4481. [PMID: 38802397 PMCID: PMC11130148 DOI: 10.1038/s41467-024-48683-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
Retinal degeneration, a leading cause of irreversible low vision and blindness globally, can be partially addressed by retina prostheses which stimulate remaining neurons in the retina. However, existing electrode-based treatments are invasive, posing substantial risks to patients and healthcare providers. Here, we introduce a completely noninvasive ultrasonic retina prosthesis, featuring a customized ultrasound two-dimensional array which allows for simultaneous imaging and stimulation. With synchronous three-dimensional imaging guidance and auto-alignment technology, ultrasonic retina prosthesis can generate programmed ultrasound waves to dynamically and precisely form arbitrary wave patterns on the retina. Neuron responses in the brain's visual center mirrored these patterns, evidencing successful artificial vision creation, which was further corroborated in behavior experiments. Quantitative analysis of the spatial-temporal resolution and field of view demonstrated advanced performance of ultrasonic retina prosthesis and elucidated the biophysical mechanism of retinal stimulation. As a noninvasive blindness prosthesis, ultrasonic retina prosthesis could lead to a more effective, widely acceptable treatment for blind patients. Its real-time imaging-guided stimulation strategy with a single ultrasound array, could also benefit ultrasound neurostimulation in other diseases.
Collapse
Affiliation(s)
- Gengxi Lu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chen Gong
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yizhe Sun
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Xuejun Qian
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Deepthi S Rajendran Nair
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Runze Li
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yushun Zeng
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Jie Ji
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Junhang Zhang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Haochen Kang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Laiming Jiang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Jiawen Chen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Chi-Feng Chang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Biju B Thomas
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mark S Humayun
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, USA
| | - Qifa Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
33
|
Cooper L, Malinao MG, Hong G. Force-Based Neuromodulation. Acc Chem Res 2024; 57:1384-1397. [PMID: 38657038 PMCID: PMC11401649 DOI: 10.1021/acs.accounts.4c00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Technologies for neuromodulation have rapidly developed in the past decade with a particular emphasis on creating noninvasive tools with high spatial and temporal precision. The existence of such tools is critical in the advancement of our understanding of neural circuitry and its influence on behavior and neurological disease. Existing technologies have employed various modalities, such as light, electrical, and magnetic fields, to interface with neural activity. While each method offers unique advantages, many struggle with modulating activity with high spatiotemporal precision without the need for invasive tools. One modality of interest for neuromodulation has been the use of mechanical force. Mechanical force encapsulates a broad range of techniques, ranging from mechanical waves delivered via focused ultrasound (FUS) to torque applied to the cell membrane.Mechanical force can be delivered to the tissue in two forms. The first form is the delivery of a mechanical force through focused ultrasound. Energy delivery facilitated by FUS has been the foundation for many neuromodulation techniques, owing to its precision and penetration depth. FUS possesses the potential to penetrate deeply (∼centimeters) into tissue while maintaining relatively precise spatial resolution, although there exists a trade-off between the penetration depth and spatial resolution. FUS may work synergistically with ultrasound-responsive nanotransducers or devices to produce a secondary energy, such as light, heat, or an electric field, in the target region. This layered technology, first enabled by noninvasive FUS, overcomes the need for bulky invasive implants and also often improves the spatiotemporal precision of light, heat, electrical fields, or other techniques alone. Conversely, the second form of mechanical force modulation is the generation of mechanical force from other modalities, such as light or magnetic fields, for neuromodulation via mechanosensitive proteins. This approach localizes the mechanical force at the cellular level, enhancing the precision of the original energy delivery. Direct interaction of mechanical force with tissue presents translational potential in its ability to interface with endogenous mechanosensitive proteins without the need for transgenes.In this Account, we categorize force-mediated neuromodulation into two categories: 1) methods where mechanical force is the primary stimulus and 2) methods where mechanical force is generated as a secondary stimulus in response to other modalities. We summarize the general design principles and current progress of each respective approach. We identify the key advantages of the limitations of each technology, particularly noting features in spatiotemporal precision, the need for transgene delivery, and the potential outlook. Finally, we highlight recent technologies that leverage mechanical force for enhanced spatiotemporal precision and advanced applications.
Collapse
Affiliation(s)
- Lauren Cooper
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, California 94305, United States
| | - Marigold Gil Malinao
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, California 94305, United States
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Guosong Hong
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, California 94305, United States
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
34
|
Prieto ML, Maduke M. Towards an ion-channel-centric approach to ultrasound neuromodulation. Curr Opin Behav Sci 2024; 56:101355. [PMID: 38505510 PMCID: PMC10947167 DOI: 10.1016/j.cobeha.2024.101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Ultrasound neuromodulation is a promising technology that could revolutionize study and treatment of brain conditions ranging from mood disorders to Alzheimer's disease and stroke. An understanding of how ultrasound directly modulates specific ion channels could provide a roadmap for targeting specific neurological circuits and achieving desired neurophysiological outcomes. Although experimental challenges make it difficult to unambiguously identify which ion channels are sensitive to ultrasound in vivo, recent progress indicates that there are likely several different ion channels involved, including members of the K2P, Piezo, and TRP channel families. A recent result linking TRPM2 channels in the hypothalamus to induction of torpor by ultrasound in rodents demonstrates the feasibility of targeting a specific ion channel in a specific population of neurons.
Collapse
Affiliation(s)
- Martin Loynaz Prieto
- Department of Molecular and Cellular Physiology, Stanford University, 279 Campus Drive West, B151 Beckman Center, Stanford, CA 94305
| | - Merritt Maduke
- Department of Molecular and Cellular Physiology, Stanford University, 279 Campus Drive West, B155 Beckman Center, Stanford, CA 94305
| |
Collapse
|
35
|
Sherman J, Bortz E, Antonio ES, Tseng HA, Raiff L, Han X. Ultrasound pulse repetition frequency preferentially activates different neuron populations independent of cell type. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586645. [PMID: 38585918 PMCID: PMC10996595 DOI: 10.1101/2024.03.25.586645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Transcranial ultrasound activates mechanosensitive cellular signaling and modulates neural dynamics. Given that intrinsic neuronal activity is limited to a couple hundred hertz and often exhibits frequency preference, we examined whether pulsing ultrasound at physiologic pulse repetition frequencies (PRFs) could selectively influence neuronal activity in the mammalian brain. We performed calcium imaging of individual motor cortex neurons, while delivering 0.35 MHz ultrasound at PRFs of 10, 40, and 140 Hz in awake mice. We found that most neurons were preferentially activated by only one of the three PRFs, highlighting unique cellular effects of physiologic PRFs. Further, ultrasound evoked responses were similar between excitatory neurons and parvalbumin positive interneurons regardless of PRFs, indicating that individual cell sensitivity dominates ultrasound-evoked effects, consistent with the heterogeneous mechanosensitive channel expression we found across single neurons in mice and humans. These results highlight the feasibility of tuning ultrasound neuromodulation effects through varying PRFs.
Collapse
|
36
|
Jayne L, Lavin-Peter A, Roessler J, Tyshkovskiy A, Antoszewski M, Ren E, Markovski A, Sun S, Yao H, Sankaran VG, Gladyshev VN, Brooke RT, Horvath S, Griffith EC, Hrvatin S. A torpor-like state (TLS) in mice slows blood epigenetic aging and prolongs healthspan. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585828. [PMID: 38585858 PMCID: PMC10996477 DOI: 10.1101/2024.03.20.585828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Torpor and hibernation are extreme physiological adaptations of homeotherms associated with pro-longevity effects. Yet the underlying mechanisms of how torpor affects aging, and whether hypothermic and hypometabolic states can be induced to slow aging and increase health span, remain unknown. We demonstrate that the activity of a spatially defined neuronal population in the avMLPA, which has previously been identified as a torpor-regulating brain region, is sufficient to induce a torpor like state (TLS) in mice. Prolonged induction of TLS slows epigenetic aging across multiple tissues and improves health span. We isolate the effects of decreased metabolic rate, long-term caloric restriction, and decreased core body temperature (Tb) on blood epigenetic aging and find that the pro-longevity effect of torpor-like states is mediated by decreased Tb. Taken together, our findings provide novel mechanistic insight into the pro-longevity effects of torpor and hibernation and support the growing body of evidence that Tb is an important mediator of aging processes.
Collapse
Affiliation(s)
- Lorna Jayne
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, 455 Main Street, Cambridge, MA 02142, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
- Present address: Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
| | - Aurora Lavin-Peter
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, 455 Main Street, Cambridge, MA 02142, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Julian Roessler
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, 455 Main Street, Cambridge, MA 02142, USA
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Mateusz Antoszewski
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Erika Ren
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Aleksandar Markovski
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, 455 Main Street, Cambridge, MA 02142, USA
| | - Senmiao Sun
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Hanqi Yao
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Vijay G. Sankaran
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Steve Horvath
- Epigenetic Clock Development Foundation, Torrance, CA, USA
- Altos Labs, Cambridge, UK
| | - Eric C. Griffith
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Sinisa Hrvatin
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, 455 Main Street, Cambridge, MA 02142, USA
| |
Collapse
|
37
|
Bartók Á, Csanády L. TRPM2 - An adjustable thermostat. Cell Calcium 2024; 118:102850. [PMID: 38237549 DOI: 10.1016/j.ceca.2024.102850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 02/27/2024]
Abstract
The Transient Receptor Potential Melastatin 2 (TRPM2) channel is a homotetrameric ligand-gated cation channel opened by the binding of cytosolic ADP ribose (ADPR) and Ca2+. In addition, strong temperature dependence of its activity has lately become a center of attention for both physiological and biophysical studies. TRPM2 temperature sensitivity has been affirmed to play a role in central and peripheral thermosensation, pancreatic insulin secretion, and immune cell function. On the other hand, a number of different underlying mechanisms have been proposed from studies in intact cells. This review summarizes available information on TRPM2 temperature sensitivity, with a focus on recent mechanistic insight obtained in a cell-free system. Those biophysical results outline TRPM2 as a channel with an intrinsically endothermic opening transition, a temperature threshold strongly modulated by cytosolic agonist concentrations, and a response steepness greatly enhanced through a positive feedback loop generated by Ca2+ influx through the channel's pore. Complex observations in intact cells and apparent discrepancies between studies using in vivo and in vitro models are discussed and interpreted in light of the intrinsic biophysical properties of the channel protein.
Collapse
Affiliation(s)
- Ádám Bartók
- Department of Biochemistry, Semmelweis University, Budapest, Hungary; HCEMM-SE Molecular Channelopathies Research Group, Budapest, Hungary; HUN-REN-SE Ion Channel Research Group, Budapest, Hungary
| | - László Csanády
- Department of Biochemistry, Semmelweis University, Budapest, Hungary; HCEMM-SE Molecular Channelopathies Research Group, Budapest, Hungary; HUN-REN-SE Ion Channel Research Group, Budapest, Hungary.
| |
Collapse
|
38
|
Hare MT, Carter ME, Swoap SJ. Activation of oxytocinergic neurons enhances torpor in mice. J Comp Physiol B 2024; 194:95-104. [PMID: 38170253 DOI: 10.1007/s00360-023-01528-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024]
Abstract
Mus musculus enters a torpid state in response to caloric restriction in sub-thermoneutral ambient temperatures. This torpid state is characterized by an adaptive and controlled decrease in metabolic rate, heart rate, body temperature, and activity. Previous research has identified the paraventricular nucleus (PVN) within the hypothalamus, a region containing oxytocin neurons, as a location that is active during torpor onset. We hypothesized that oxytocin neurons within the PVN are part of this neural circuit and that activation of oxytocin neurons would deepen and lengthen torpor bouts. We report that activation of oxytocin neurons alone is not sufficient to induce a torpor-like state in the fed mouse, with no significant difference in body temperature or heart rate upon activation of oxytocin neurons. However, we found that activation of oxytocin neurons prior to the onset of daily torpor both deepens and lengthens the subsequent bout, with a 1.7 ± 0.4 °C lower body temperature and a 135 ± 32 min increase in length. We therefore conclude that oxytocin neurons are involved in the neural circuitry controlling daily torpor in the mouse.
Collapse
Affiliation(s)
- Maia T Hare
- Department of Biology, Williams College, Williamstown, MA, 01267, USA
- Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA
| | - Matthew E Carter
- Department of Biology, Williams College, Williamstown, MA, 01267, USA
| | - Steven J Swoap
- Department of Biology, Williams College, Williamstown, MA, 01267, USA.
| |
Collapse
|
39
|
Eleni Karakatsani M, Estrada H, Chen Z, Shoham S, Deán-Ben XL, Razansky D. Shedding light on ultrasound in action: Optical and optoacoustic monitoring of ultrasound brain interventions. Adv Drug Deliv Rev 2024; 205:115177. [PMID: 38184194 PMCID: PMC11298795 DOI: 10.1016/j.addr.2023.115177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/27/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Monitoring brain responses to ultrasonic interventions is becoming an important pillar of a growing number of applications employing acoustic waves to actuate and cure the brain. Optical interrogation of living tissues provides a unique means for retrieving functional and molecular information related to brain activity and disease-specific biomarkers. The hybrid optoacoustic imaging methods have further enabled deep-tissue imaging with optical contrast at high spatial and temporal resolution. The marriage between light and sound thus brings together the highly complementary advantages of both modalities toward high precision interrogation, stimulation, and therapy of the brain with strong impact in the fields of ultrasound neuromodulation, gene and drug delivery, or noninvasive treatments of neurological and neurodegenerative disorders. In this review, we elaborate on current advances in optical and optoacoustic monitoring of ultrasound interventions. We describe the main principles and mechanisms underlying each method before diving into the corresponding biomedical applications. We identify areas of improvement as well as promising approaches with clinical translation potential.
Collapse
Affiliation(s)
- Maria Eleni Karakatsani
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Héctor Estrada
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Zhenyue Chen
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Shy Shoham
- Department of Ophthalmology and Tech4Health and Neuroscience Institutes, NYU Langone Health, NY, USA
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland.
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland.
| |
Collapse
|
40
|
Murphy KR, de Lecea L. Cell type specific focused ultrasound neuromodulation in preclinical models of sleep and psychiatric disorders. Neuropsychopharmacology 2024; 49:299-300. [PMID: 37463978 PMCID: PMC10700629 DOI: 10.1038/s41386-023-01662-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Affiliation(s)
- Keith R Murphy
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
41
|
Abstract
Bioadhesives have emerged as transformative and versatile tools in healthcare, offering the ability to attach tissues with ease and minimal damage. These materials present numerous opportunities for tissue repair and biomedical device integration, creating a broad landscape of applications that have captivated clinical and scientific interest alike. However, fully unlocking their potential requires multifaceted design strategies involving optimal adhesion, suitable biological interactions, and efficient signal communication. In this Review, we delve into these pivotal aspects of bioadhesive design, highlight the latest advances in their biomedical applications, and identify potential opportunities that lie ahead for bioadhesives as multifunctional technology platforms.
Collapse
Affiliation(s)
- Sarah J Wu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
42
|
Cheng Z, Deng L, Lin Y, Zeng L, Ji X. Correction of a transcranial acoustic field using a transient ultrasound field visualization technique. OPTICS LETTERS 2023; 48:5915-5918. [PMID: 37966751 DOI: 10.1364/ol.505081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023]
Abstract
Ultrasound, due to its noninvasive nature, has the potential to enhance or suppress neural activity, making it highly promising for regulating intractable brain disorders. Precise ultrasound stimulation is crucial for improving the efficiency of neural modulation and studying its mechanisms. However, the presence of the skull can cause distortion in the ultrasound field, thereby affecting the accuracy of stimulation. Existing correction methods primarily rely on magnetic resonance guidance and numerical simulation. Due to the large size and high cost, the MR-guided transcranial ultrasound is difficult to be widely applied in small animals. The numerical simulation usually requires further validation and optimization before application, and the most effective method is to visualize the excited ultrasound field. However, the ultrasound field correction methods based on acoustic field visualization are still lacking. Therefore, a shadowgraph-based transient ultrasonic field visualization system is developed, and an ex vivo transcranial ultrasound field correction is performed. By visualizing the ultrasound field with or without a rat skull and then calculating the time difference of each element's ultrasound wavefront, the parameters for ultrasound field correction can be achieved. The experimental results show that this method can improve both the shape and the size of the focal spot, as well as enhance the acoustic pressure at the focus. Overall, the results demonstrate that the ultrasonic field visualization technology can effectively improve the transcranial ultrasound focusing effect and provide a new tool for achieving precise ultrasonic neural modulation.
Collapse
|
43
|
Mirabella PN, Fenselau H. Advanced neurobiological tools to interrogate metabolism. Nat Rev Endocrinol 2023; 19:639-654. [PMID: 37674015 DOI: 10.1038/s41574-023-00885-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 09/08/2023]
Abstract
Engineered neurobiological tools for the manipulation of cellular activity, such as chemogenetics and optogenetics, have become a cornerstone of modern neuroscience research. These tools are invaluable for the interrogation of the central control of metabolism as they provide a direct means to establish a causal relationship between brain activity and biological processes at the cellular, tissue and organismal levels. The utility of these methods has grown substantially due to advances in cellular-targeting strategies, alongside improvements in the resolution and potency of such tools. Furthermore, the potential to recapitulate endogenous cellular signalling has been enriched by insights into the molecular signatures and activity dynamics of discrete brain cell types. However, each modulatory tool has a specific set of advantages and limitations; therefore, tool selection and suitability are of paramount importance to optimally interrogate the cellular and circuit-based underpinnings of metabolic outcomes within the organism. Here, we describe the key principles and uses of engineered neurobiological tools. We also highlight inspiring applications and outline critical considerations to be made when using these tools within the field of metabolism research. We contend that the appropriate application of these biotechnological advances will enable the delineation of the central circuitry regulating systemic metabolism with unprecedented potential.
Collapse
Affiliation(s)
- Paul Nicholas Mirabella
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
| | - Henning Fenselau
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Cologne, Germany.
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany.
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
44
|
Di Ianni T, Morrison KP, Yu B, Murphy KR, de Lecea L, Airan RD. High-throughput ultrasound neuromodulation in awake and freely behaving rats. Brain Stimul 2023; 16:1743-1752. [PMID: 38052373 PMCID: PMC10795522 DOI: 10.1016/j.brs.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023] Open
Abstract
Transcranial ultrasound neuromodulation is a promising potential therapeutic tool for the noninvasive treatment of neuropsychiatric disorders. However, the expansive parameter space and difficulties in controlling for peripheral auditory effects make it challenging to identify ultrasound sequences and brain targets that may provide therapeutic efficacy. Careful preclinical investigations in clinically relevant behavioral models are critically needed to identify suitable brain targets and acoustic parameters. However, there is a lack of ultrasound devices allowing for multi-target experimental investigations in awake and unrestrained rodents. We developed a miniaturized 64-element ultrasound array that enables neurointerventional investigations with within-trial active control targets in freely behaving rats. We first characterized the acoustic field with measurements in free water and with transcranial propagation. We then confirmed in vivo that the array can target multiple brain regions via electronic steering, and verified that wearing the device does not cause significant impairments to animal motility. Finally, we demonstrated the performance of our system in a high-throughput neuromodulation experiment, where we found that ultrasound stimulation of the rat central medial thalamus, but not an active control target, promotes arousal and increases locomotor activity.
Collapse
Affiliation(s)
- Tommaso Di Ianni
- Department of Radiology, Stanford University, Stanford, 94305, CA, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, 94158, CA, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, 94158, CA, USA.
| | | | - Brenda Yu
- Department of Radiology, Stanford University, Stanford, 94305, CA, USA
| | - Keith R Murphy
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, 94305, CA, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, 94305, CA, USA
| | - Raag D Airan
- Department of Radiology, Stanford University, Stanford, 94305, CA, USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, 94305, CA, USA; Department of Materials Science and Engineering, Stanford University, Stanford, 94305, CA, USA.
| |
Collapse
|
45
|
Zhang Z, You Y, Ge M, Lin H, Shi J. Functional nanoparticle-enabled non-genetic neuromodulation. J Nanobiotechnology 2023; 21:319. [PMID: 37674191 PMCID: PMC10483742 DOI: 10.1186/s12951-023-02084-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023] Open
Abstract
Stimulating ion channels targeting in neuromodulation by external signals with the help of functionalized nanoparticles, which integrates the pioneering achievements in the fields of neurosciences and nanomaterials, has involved into a novel interdisciplinary field. The emerging technique developed in this field enable simple, remote, non-invasive, and spatiotemporally precise nerve regulations and disease therapeutics, beyond traditional treatment methods. In this paper, we define this emerging field as nano-neuromodulation and summarize the most recent developments of non-genetic nano-neuromodulation (non-genetic NNM) over the past decade based on the innovative design concepts of neuromodulation nanoparticle systems. These nanosystems, which feature diverse compositions, structures and synthesis approaches, could absorb certain exogenous stimuli like light, sound, electric or magnetic signals, and subsequently mediate mutual transformations between above signals, or chemical reactions, to regulate stimuli-sensitive ion channels and ion migrations which play vital roles in the nervous system. We will also discuss the obstacles and challenges in the future development of non-genetic NNM, and propose its future developments, to add the further progress of this promising field.
Collapse
Affiliation(s)
- Zhimin Zhang
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yanling You
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Min Ge
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Han Lin
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, People's Republic of China.
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200331, People's Republic of China.
| | - Jianlin Shi
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, People's Republic of China
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200331, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| |
Collapse
|
46
|
Zhang Z, You Y, Ge M, Lin H, Shi J. Functional nanoparticle-enabled non-genetic neuromodulation. J Nanobiotechnology 2023; 21:319. [DOI: doi.org/10.1186/s12951-023-02084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023] Open
Abstract
AbstractStimulating ion channels targeting in neuromodulation by external signals with the help of functionalized nanoparticles, which integrates the pioneering achievements in the fields of neurosciences and nanomaterials, has involved into a novel interdisciplinary field. The emerging technique developed in this field enable simple, remote, non-invasive, and spatiotemporally precise nerve regulations and disease therapeutics, beyond traditional treatment methods. In this paper, we define this emerging field as nano-neuromodulation and summarize the most recent developments of non-genetic nano-neuromodulation (non-genetic NNM) over the past decade based on the innovative design concepts of neuromodulation nanoparticle systems. These nanosystems, which feature diverse compositions, structures and synthesis approaches, could absorb certain exogenous stimuli like light, sound, electric or magnetic signals, and subsequently mediate mutual transformations between above signals, or chemical reactions, to regulate stimuli-sensitive ion channels and ion migrations which play vital roles in the nervous system. We will also discuss the obstacles and challenges in the future development of non-genetic NNM, and propose its future developments, to add the further progress of this promising field.
Graphical Abstract
Collapse
|
47
|
Haouzi P, Lewis T. Hypothalamus pre-optic area and metabolism regulation in humans. Nat Metab 2023; 5:1442. [PMID: 37524786 DOI: 10.1038/s42255-023-00858-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Affiliation(s)
- Philippe Haouzi
- Department of Pulmonary Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA.
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Tristan Lewis
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
48
|
Fu K, Hui C, Wang X, Ji T, Li X, Sun R, Xing C, Fan X, Gao Y, Su L. Torpor-like Hypothermia Induced by A1 Adenosine Receptor Agonist: A Novel Approach to Protect against Neuroinflammation. Int J Mol Sci 2023; 24:11036. [PMID: 37446216 DOI: 10.3390/ijms241311036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Hypothermia is a promising clinical therapy for acute injuries, including neural damage, but it also faces practical limitations due to the complexities of the equipment and procedures required. This study investigates the use of the A1 adenosine receptor (A1AR) agonist N6-cyclohexyladenosine (CHA) as a more accessible method to induce steady, torpor-like hypothermic states. Additionally, this study investigates the protective potential of CHA against LPS-induced sepsis and neuroinflammation. Our results reveal that CHA can successfully induce a hypothermic state by activating a neuronal circuit similar to the one that induces physiological torpor. This state is characterized by maintaining a steady core body temperature below 28 °C. We further found that this torpor-like state effectively mitigates neuroinflammation and preserves the integrity of the blood-brain barrier during sepsis, thereby limiting the infiltration of inflammatory factors into the central nervous system. Instead of being a direct effect of CHA, this protective effect is attributed to inhibiting pro-inflammatory responses in macrophages and reducing oxidative stress damage in endothelial cells under systemic hypothermia. These results suggest that A1AR agonists such as CHA could potentially be potent neuroprotective agents against neuroinflammation. They also shed light on possible future directions for the application of hypothermia-based therapies in the treatment of sepsis and other neuroinflammatory conditions.
Collapse
Affiliation(s)
- Kang Fu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Chunlei Hui
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Xinyuan Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Tingting Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiuqing Li
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Rui Sun
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Chunlei Xing
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Xi Fan
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yuanqing Gao
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Li Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| |
Collapse
|
49
|
Jastroch M, van Breukelen F. Hypometabolism with the speed of ultrasound. Nat Metab 2023; 5:722-723. [PMID: 37231249 DOI: 10.1038/s42255-023-00795-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| | | |
Collapse
|