1
|
Hu Z, Li S, Pan W, Wu H, Peng X. Design, synthesis and bioevaluation of novel hydrazide derivatives as enhancers of immunotherapy and DNA-damage response in antitumor therapy. Eur J Med Chem 2025; 291:117601. [PMID: 40233424 DOI: 10.1016/j.ejmech.2025.117601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/29/2025] [Accepted: 04/03/2025] [Indexed: 04/17/2025]
Abstract
We have designed and synthesized a series of novel hydrazide-based HDAC3 inhibitors, with the representative compound 8ae demonstrating potent HDAC3 inhibitory activity, having an IC50 value of 311 nM (with a selectivity index SI greater than 32 over other HDACs). Compound 8ae also exhibited significant anti-proliferative activity against five types of cancer cells, with an average inhibitory rate IC50 value of 5.036 μM, and was capable of inhibiting the migration, invasion, and wound healing activities of B16-F10 cells. Further studies revealed that 8ae effectively modulates the expression of Ac-H3 within tumor cells and can degrade PD-L1 in tumor cells through the lysosome pathway mediated by cathepsin B (CTSB). Notably, 8ae also possesses favorable pharmacokinetic properties. In in vivo experiments, the combination of 8ae with the PD-L1 inhibitor NP-19 activated the immune system in melanoma-bearing mice, leading to an enhanced anti-tumor immune response (TGI = 65 %). When combined with olaparib, 8ae significantly enhanced tumor suppressive activity (TGI = 88 %) in a breast cancer mouse model and displayed a favorable safety profile. Collectively, 8ae is a promising HDAC3 inhibitor that warrants further exploration in cancer therapeutic strategies.
Collapse
Affiliation(s)
- Zhihao Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease, Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), College of Pharmacy, Gannan Medical University, Ganzhou, 314000, China
| | - Shuqing Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease, Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), College of Pharmacy, Gannan Medical University, Ganzhou, 314000, China
| | - Wanyi Pan
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease, Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), College of Pharmacy, Gannan Medical University, Ganzhou, 314000, China
| | - Haiyan Wu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease, Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), College of Pharmacy, Gannan Medical University, Ganzhou, 314000, China
| | - Xiaopeng Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease, Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), College of Pharmacy, Gannan Medical University, Ganzhou, 314000, China.
| |
Collapse
|
2
|
Wang J, Tao X, Zhu J, Dai Z, Du Y, Xie Y, Chu X, Fu G, Lei Z. Tumor organoid-immune co-culture models: exploring a new perspective of tumor immunity. Cell Death Discov 2025; 11:195. [PMID: 40268893 PMCID: PMC12019369 DOI: 10.1038/s41420-025-02407-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/20/2025] [Accepted: 03/18/2025] [Indexed: 04/25/2025] Open
Abstract
Recent advancements in technology have significantly expanded the scope of tumor research, progressing from the study of individual cells to more intricate tissue and organ-level analyses. Tumor organoids have emerged as a highly realistic platform for investigating tumor growth, development, and their interactions with the surrounding microenvironment. However, a notable limitation of these organoids is their lack of the diverse cellular composition typically observed in actual tumors, which hinders their ability to fully replicate the complexity of the tumor microenvironment. Immune cells play a pivotal role, and tumor immunology has become a major research hotspot. Research in tumor immunology aims to elucidate how the immune system recognizes and attacks tumor cells, as well as how tumor cells evade immune surveillance. In recent years, there has been growing interest in co-culturing immune cells with tumor organoids, an approach that has yielded valuable insights into the intricate interactions between tumors and the immune system. The aim of this paper is to review and discuss the progress achieved in co-culturing tumor organoids with immune cells. By doing so, we hope to offer a new perspective and enhance our understanding of the complexity and diversity inherent in the tumor microenvironment.
Collapse
Affiliation(s)
- Jing Wang
- Department of Oncology, Jinling Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Xiaoyue Tao
- Department of Oncology, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jialong Zhu
- Department of Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhe Dai
- Department of Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yuanyang Du
- Department of Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yiyang Xie
- Department of Oncology, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoyuan Chu
- Department of Oncology, Jinling Clinical Medical College, Nanjing Medical University, Nanjing, China.
- Department of Oncology, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China.
- Department of Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- Department of Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China.
| | - Gongbo Fu
- Department of Oncology, Jinling Clinical Medical College, Nanjing Medical University, Nanjing, China.
- Department of Oncology, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China.
- Department of Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- Department of Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China.
| | - Zengjie Lei
- Department of Oncology, Jinling Clinical Medical College, Nanjing Medical University, Nanjing, China.
- Department of Oncology, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China.
- Department of Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- Department of Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China.
| |
Collapse
|
3
|
Ticha P, Northey JJ, Kersten K, Velozo HG, Ironside AJ, Zidek M, Drain A, Lakins JN, Chen YY, Tsai KK, Weaver VM. NCOR2 represses MHC class I molecule expression to drive metastatic progression of breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642060. [PMID: 40161756 PMCID: PMC11952456 DOI: 10.1101/2025.03.10.642060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Metastatic progression depends upon the ability of disseminated tumor cells to evade immune surveillance. MHC molecule expression facilitates T cell recognition and activation to permit the eradication of metastatic tumor cells. We identified nuclear corepressor 2 (NCOR2) as a key epigenetic regulator of MHC class I molecule expression on breast tumor cells. Patients with triple negative breast cancers (TNBC) that expressed high levels of NCOR2 also exhibited reduced metastasis free survival and decreased MHC class I expression, and the metastatic lesions in patients with TNBC had high nuclear NCOR2 and reduced CD8 T cell levels and activity. Genetically and experimentally reducing NCOR2 expression in tumor cells permitted interferon gamma upregulation of MHC class I, and potentiated CD8 T cell activity and induction of apoptosis to repress metastatic progression of disseminated breast cancer cells. These studies provide evidence to support NCOR2 as a targetable epigenetic regulator of metastasis towards which therapies could be developed to reduce patient mortality.
Collapse
Affiliation(s)
- Pavla Ticha
- Department of Surgery and Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143, USA
- Current address: Department of Plastic Surgery, 3rd Faculty of Medicine and University Hospital Kralovske Vinohrady, Charles University in Prague, Srobarova 50, 10034, Praha 10, Czech Republic
| | - Jason J. Northey
- Department of Surgery and Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kelly Kersten
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
- Current address: Cancer Metabolism and Microenvironment Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Hugo González Velozo
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
- Laboratory of Tumor Microenvironment and Metastasis, Centro Ciencia & Vida, Santiago, Chile
| | | | - Martin Zidek
- Department of Surgery and Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Allison Drain
- Department of Surgery and Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jonathan N. Lakins
- Department of Surgery and Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yunn-Yi Chen
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kelvin K. Tsai
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
| | - Valerie M. Weaver
- Department of Surgery and Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Radiation Oncology, Department of Bioengineering and Therapeutic Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
4
|
Yang Z, Zhou Y, Liu X, Ren L, Liu X, Yun R, Jia L, Ren X, Wang Y, Sun Y, Li J, Gao D, Tian Z. Mitochondrial-uncoupling nanomedicine for self-heating and immunometabolism regulation in cancer cells. Biomaterials 2025; 314:122883. [PMID: 39405827 DOI: 10.1016/j.biomaterials.2024.122883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 11/10/2024]
Abstract
Developing endogenous hyperthermia offers a promising strategy to address challenges with current exogenous hyperthermia techniques in clinics. Herein, a CD44-targeted and thermal-responsive nanocarrier was developed for the simultaneous delivery of 2,4-dinitrophenol and syrosingopine. The objective was to induce endogenous hyperthermia and regulate immunometabolism, ultimately augmenting anti-tumour immune responses. Dinitrophenol as mitochondrial uncoupler can convert electrochemical potential energy of inner mitochondrial membrane into heat, facilitating endogenous hyperthermia. Meanwhile, syrosingopine not only inhibits excessive lactate efflux caused by dinitrophenol but also downregulates tumour cell glycolysis, thus alleviating immunosuppression and heat shock protein (HSP)-dependent thermo-resistance through immunometabolism regulation. The synergistic effects of endogenous hyperthermia and immunometabolism regulation by this nanomedicine have potential to enhance tumor immunogenicity, reshape the tumour immune microenvironment, and effectively suppress the growth of subcutaneous tumours and patient-derived organoids in triple-negative breast cancer. Therefore, the endogenous hyperthermia strategy developed in this study would revolutionize hyperthermia for cancer treatment.
Collapse
Affiliation(s)
- Zhe Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Ying Zhou
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaozhen Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; General Surgery, Department of Breast Surgery, Cancer Center, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Liujiao Ren
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xinyang Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Rong Yun
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Liangliang Jia
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xuechun Ren
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ying Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yan Sun
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jia Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Di Gao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Zhongmin Tian
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
5
|
Han R, Luo Y, Gao J, Zhou H, Wang Y, Chen J, Zheng G, Ling C. HDAC3: A Multifaceted Modulator in Immunotherapy Sensitization. Vaccines (Basel) 2025; 13:182. [PMID: 40006729 PMCID: PMC11860249 DOI: 10.3390/vaccines13020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/02/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Histone deacetylase 3 (HDAC3) has emerged as a critical epigenetic regulator in tumor progression and immune modulation, positioning it as a promising target for enhancing cancer immunotherapy. This work comprehensively explores HDAC3's multifaceted roles, focusing on its regulation of key immune-modulatory pathways such as cGAS-STING, ferroptosis, and the Nrf2/HO-1 axis. These pathways are central to tumor immune evasion, antigen presentation, and immune cell activation. Additionally, the distinct effects of HDAC3 on various immune cell types-including its role in enhancing T cell activation, restoring NK cell cytotoxicity, promoting dendritic cell maturation, and modulating macrophage polarization-are thoroughly examined. These findings underscore HDAC3's capacity to reshape the tumor immune microenvironment, converting immunologically "cold tumors" into "hot tumors" and thereby increasing their responsiveness to immunotherapy. The therapeutic potential of HDAC3 inhibitors is highlighted, both as standalone agents and in combination with immune checkpoint inhibitors, to overcome resistance and improve treatment efficacy. Innovative strategies, such as the development of selective HDAC3 inhibitors, advanced nano-delivery systems, and integration with photodynamic or photothermal therapies, are proposed to enhance treatment precision and minimize toxicity. By addressing challenges such as toxicity, patient heterogeneity, and resistance mechanisms, this study provides a forward-looking perspective on the clinical application of HDAC3 inhibitors. It highlights its significant potential in personalized cancer immunotherapy, paving the way for more effective treatments and improved outcomes for cancer patients.
Collapse
Affiliation(s)
- Rui Han
- Oncology Department of Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (R.H.)
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Yujun Luo
- Oncology Department of Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (R.H.)
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Jingdong Gao
- Oncology Department of Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (R.H.)
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
- Oncology Department, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine Suzhou, Suzhou 215009, China
| | - Huiling Zhou
- Oncology Department of Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (R.H.)
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Yuqian Wang
- Oncology Department of Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (R.H.)
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Jiaojiao Chen
- Oncology Department of Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (R.H.)
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Guoyin Zheng
- Oncology Department of Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (R.H.)
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Changquan Ling
- Oncology Department of Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (R.H.)
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
6
|
Narain R, Muncie-Vasic JM, Weaver VM. Forcing the code: tension modulates signaling to drive morphogenesis and malignancy. Genes Dev 2025; 39:163-181. [PMID: 39638568 PMCID: PMC11789492 DOI: 10.1101/gad.352110.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Development and disease are regulated by the interplay between genetics and the signaling pathways stimulated by morphogens, growth factors, and cytokines. Experimental data highlight the importance of mechanical force in regulating embryonic development, tissue morphogenesis, and malignancy. Force not only sculpts tissue movements to drive embryogenesis and morphogenesis but also modifies the context of biochemical signaling and gene expression to regulate cell and tissue fate. Not surprisingly, experiments have demonstrated that perturbations in cell tension drive malignancy and metastasis by altering biochemical signaling and gene expression through modifications in cytoskeletal tension, transmembrane receptor structure and function, and organelle phenotype that enhance cell growth and survival, alter metabolism, and foster cell migration and invasion. At the tissue level, tumor-associated forces disrupt cell-cell adhesions to perturb tissue organization, compromise vascular integrity to induce hypoxia, and interfere with antitumor immunity to foster metastasis and treatment resistance. Exciting new approaches now exist with which to clarify the relationship between mechanotransduction, biochemical signaling, and gene expression in development and disease. Indeed, gaining insight into these interactions is essential to unravel molecular mechanisms that regulate development and clarify the molecular basis of cancer.
Collapse
Affiliation(s)
- Radhika Narain
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, California 94143, USA
- Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, Berkeley, California 94720, USA
| | | | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, California 94143, USA;
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94143, USA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, California 94143
- UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
7
|
Chen H, Qin A, Xu F, Guo S, Zhang G, Zhang A, Li W, Tian F, Zheng Q. HDAC3 inhibitors induce drug resistance by promoting IL-17 A production by T cells. Sci Rep 2024; 14:31937. [PMID: 39738540 PMCID: PMC11685772 DOI: 10.1038/s41598-024-83447-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
HDAC3 has been demonstrated to play a crucial role in the progression of various tumors and the differentiation and development of T cells. However, its impact on peripheral T cells in the development of murine lung cancer remains unclear. In this experiment, a subcutaneous lung tumor model was established in C57BL/6 mice, and tumor-bearing mice were treated with the specific inhibitor of HDAC3, RGFP966, at different doses to observe changes in tumor size. Additionally, a lung tumor model was established using hdac3fl/flcd4cre+/+ mice to investigate its mechanism. Mice injected with 10 mg/kg RGFP966 had the smallest tumor volume, while those injected with 30 mg/kg RGFP966 had the largest tumors. Flow cytometry analysis revealed that the expression of HDAC3 in splenic T cells was reduced in all groups of mice, while IFN-γ and IL-17 A were increased. Moreover, the expression of granzyme B and perforin in splenic CD8+ T cells was increased in all groups of mice. Compared to the use of 30 mg/kg RGFP966 alone, the combination with anti-IL-17 A mAb reduced the infiltration of Neutrophils and exhausted T cells in mouse tumors, thereby impeding tumor development. These findings demonstrate that the use of RGFP966 or T cell-specific loss of hdac3 promotes the expression of IL-17 A in splenic T cells, leading to tumor resistance and providing insights for clinical treatment.
Collapse
Affiliation(s)
- Hao Chen
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Anqi Qin
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Fan Xu
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Shuai Guo
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Ge Zhang
- School of Basic Medical, Xingtai Medical College, Xingtai, 054000, China
| | - Aihong Zhang
- Department of ICU, The Affiliated Hospital of North China University of Science and Technology, Tangshan, 063000, China
| | - WenTing Li
- Department of Laboratory Animal Science, Health Science Center, Peking University, Beijing, 100083, China
| | - Feng Tian
- Department of Laboratory Animal Science, Health Science Center, Peking University, Beijing, 100083, China
| | - Quanhui Zheng
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China.
| |
Collapse
|
8
|
Sui J, Guo D, Wen X, Zhou L, Huang Y, Yu H, Chen J, Liu Z. Systematic Characterization of Splicing Dysregulation in Pan Solid Tumor Transcriptome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2405626. [PMID: 39639731 DOI: 10.1002/advs.202405626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 11/22/2024] [Indexed: 12/07/2024]
Abstract
Splicing dysregulation arising from spliceosomal mutations contributes to disease progression and treatment resistance, mostly in hematologic malignancy. Whereas spliceosomal mutations are less common in solid tumors, splicing disorders are pervasive and proven to promote tumorigenesis. However, there is a lack of systematic understanding of the overall splicing dysregulation patterns and how widespread different patterns occur within or across solid tumor lineage. To address these questions, a computational method called SMNPLS (Sparse Multi-Network Regularized Partial Least Squares) is developed to uncover the pan-cancer splicing dysregulation landscape by extracting joint modular patterns from paired matrices of splicing factors (SFs) expressions and alternative splicing events (ASEs). Six unique patterns illustrated by ASE-SF co-modules are summarized, which involve 1,570 ASEs and altered expression of 170 SFs, covering 40% of TCGA solid tumors. Cross-cancer commonalities of splicing dysregulation are observed among digestive system neoplasms, renal-associated tumors, and urogenital tumors. By contrast, brain tumors demonstrate a distinct splicing pattern with the highest ASE-SF correlation. In addition, some new splicing regulatory relationships are identified that are potentially oncogenic. Overall, the study characterizes the full spectrum of splicing dysregulation patterns, indicating the similarity and specificity of splicing-derived pathogenesis across 31 human solid tumors.
Collapse
Affiliation(s)
- Jingru Sui
- China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Guo
- China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiao Wen
- China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lei Zhou
- China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Huang
- China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haoyu Yu
- School of Life Science, Inner Mongolia University, Hohhot, 010021, China
| | - Jinyu Chen
- School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing, 100124, China
| | - Zhaoqi Liu
- China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
9
|
Tang DW, Chen IC, Chou PY, Lai MJ, Liu ZY, Tsai KK, Cheng LH, Zhao JX, Cho EC, Chang HH, Lin TE, Hsu KC, Chen MC, Liou JP. HSP90/LSD1 dual inhibitors against prostate cancer as well as patient-derived colorectal organoids. Eur J Med Chem 2024; 278:116801. [PMID: 39241481 DOI: 10.1016/j.ejmech.2024.116801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/09/2024]
Abstract
The rational installation of pharmacophores targeting HSP90 and LSD1 axes has achieved significant anti-cancer capacity in prostate and colorectal cancer. Among the series of hybrids, inhibitor 6 exhibited remarkable anti-proliferative activity against prostate cancer cell lines PC-3 and DU145, with GI50 values of 0.24 and 0.30 μM, respectively. It demonstrated notable efficacy in combinatorial attack and cell death initiation towards apoptosis. The cell death process was mediated by PARP induction and γH2AX signaling, and was also characterized as caspase-dependent and Bcl-xL/Bax-independent. Notably, no difference in eye size or morphology was observed in the zebrafish treated with compound 6 compared to the reference group (AUY922). The profound treatment response in docetaxel-resistant PC-3 cells highlighted the dual inhibitory ability in improving docetaxel sensitivity. Additionally, at a minimum concentration of 1.25 μM, compound 6 effectively inhibited the growth of patient-derived colorectal cancer (CRC) organoids for up to 10 days in vitro. Together, the designed HSP90/LSD1 inhibitors present a novel route and significant clinical value for anti-cancer drug therapy.
Collapse
Affiliation(s)
- Di-Wei Tang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - I-Chung Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Po-Yu Chou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Mei-Jung Lai
- TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Zheng-Yang Liu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Kelvin K Tsai
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Organoids Technology Core, Taipei Medical University, Taipei, Taiwan
| | - Li-Hsin Cheng
- Organoids Technology Core, Taipei Medical University, Taipei, Taiwan
| | - Jian-Xun Zhao
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Er-Chieh Cho
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Master Program in Clinical Genomics and Proteomics, Taipei Medical University, Taipei, Taiwan
| | - Hung-Hsuan Chang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Tony Eight Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Mei-Chuan Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Traditional Herbal Medicine Research, Center of Taipei Medical University Hospital, Taipei, Taiwan; Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
10
|
McGuire CK, Meehan AS, Couser E, Bull L, Minor AC, Kuhlmann-Hogan A, Kaech SM, Shaw RJ, Eichner LJ. Transcriptional repression by HDAC3 mediates T cell exclusion from Kras mutant lung tumors. Proc Natl Acad Sci U S A 2024; 121:e2317694121. [PMID: 39388266 PMCID: PMC11494357 DOI: 10.1073/pnas.2317694121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 07/29/2024] [Indexed: 10/12/2024] Open
Abstract
Histone Deacetylase 3 (HDAC3) function in vivo is nuanced and directed in a tissue-specific fashion. The importance of HDAC3 in Kras mutant lung tumors has recently been identified, but HDAC3 function in this context remains to be fully elucidated. Here, we identified HDAC3 as a lung tumor cell-intrinsic transcriptional regulator of the tumor immune microenvironment. In Kras mutant lung cancer cells, we found that HDAC3 is a direct transcriptional repressor of a cassette of secreted chemokines, including Cxcl10. Genetic and pharmacological inhibition of HDAC3 robustly up-regulated this gene set in human and mouse Kras, LKB1 (KL) and Kras, p53 (KP) mutant lung cancer cells through an NF-κB/p65-dependent mechanism. Using genetically engineered mouse models, we found that HDAC3 inactivation in vivo induced expression of this gene set selectively in lung tumors and resulted in enhanced T cell recruitment at least in part via Cxcl10. Furthermore, we found that inhibition of HDAC3 in the presence of Kras pathway inhibitors dissociated Cxcl10 expression from that of immunosuppressive chemokines and that combination treatment of entinostat with trametinib enhanced T cell recruitment into lung tumors in vivo. Finally, we showed that T cells contribute to in vivo tumor growth control in the presence of entinostat and trametinib combination treatment. Together, our findings reveal that HDAC3 is a druggable endogenous repressor of T cell recruitment into Kras mutant lung tumors.
Collapse
Affiliation(s)
- Caroline K. McGuire
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL60611
| | - Ambryn S. Meehan
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL60611
| | - Evan Couser
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL60611
| | - Lois Bull
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL60611
| | - Allegra C. Minor
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL60611
| | - Alexandra Kuhlmann-Hogan
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA92037
| | - Susan M. Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA92037
| | - Reuben J. Shaw
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La JollaCA92037
| | - Lillian J. Eichner
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL60611
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La JollaCA92037
| |
Collapse
|
11
|
Chou PY, Lai MJ, Tsai KK, Cheng LH, Wu YW, Chen MC, Pan SL, Ho HO, Nepali K, Liou JP. Syntheses of LSD1/HDAC Inhibitors with Demonstrated Efficacy against Colorectal Cancer: In Vitro and In Vivo Studies Including Patient-Derived Organoids. J Med Chem 2024; 67:17207-17225. [PMID: 39320444 PMCID: PMC11472331 DOI: 10.1021/acs.jmedchem.4c01098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/07/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024]
Abstract
Precedential evidence ascertaining the overexpression of LSD1 and HDACs in colorectal cancer spurred us to design a series of dual LSD1-HDAC inhibitors. Capitalizing on the modular nature of the three-component HDAC inhibitory model, tranylcypromine as a surface recognition motif was appended to zinc-binding motifs via diverse linkers. A compendium of hydroxamic acids was generated and evaluated for in vitro cytotoxicity against HCT-116 cells (human colorectal cancer cell lines). The most potent cell growth inhibitor 2 (GI50 = 0.495 μMm HCT-116 cells) shows promising anticancer effects by reducing colony formation and inducing cell cycle arrest in HCT-116 cells. It exhibits preferential inhibition of HDAC6, along with potent inhibition of LSD1 compared to standard inhibitors. Moreover, Compound 2 upregulates acetyl-tubulin, acetyl-histone H3, and H3K4me2, indicative of LSD1 and HDAC inhibition. In vivo, it demonstrates significant antitumor activity against colorectal cancer, better than irinotecan, and effectively inhibits growth in patient-derived CRC organoids.
Collapse
Affiliation(s)
- Po-Yu Chou
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 110, Taiwan
| | - Mei-Jung Lai
- TMU
Research Center for Drug Discovery, Taipei
Medical University, Taipei 110, Taiwan
| | - Kelvin K. Tsai
- Laboratory
of Advanced Molecular Therapeutics, Graduate Institute of Clinical
Medicine, College of Medicine, Taipei Medical
University, Taipei 110, Taiwan
- Organoids
Technology Core, Taipei Medical University, Taipei 110, Taiwan
| | - Li-Hsin Cheng
- Organoids
Technology Core, Taipei Medical University, Taipei 110, Taiwan
| | - Yi-Wen Wu
- Graduate
Institute of Cancer Biology and Drug Discovery, College of Medical
Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Mei-Chuan Chen
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 110, Taiwan
- TMU
Research Center for Drug Discovery, Taipei
Medical University, Taipei 110, Taiwan
- Ph.D.
Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
- Clinical
Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Traditional
Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Shiow-Lin Pan
- TMU
Research Center for Drug Discovery, Taipei
Medical University, Taipei 110, Taiwan
- Graduate
Institute of Cancer Biology and Drug Discovery, College of Medical
Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- TMU Research
Center of Cancer Translational Medicine, Taipei 110, Taiwan
- Ph.D.
Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
- Ph.D.
Program for Cancer Molecular Biology and Drug Discovery, College of
Medical Science and Technology, Taipei Medical
University, Taipei 110, Taiwan
| | - Hsiu-O Ho
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 110, Taiwan
| | - Kunal Nepali
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 110, Taiwan
- TMU
Research Center for Drug Discovery, Taipei
Medical University, Taipei 110, Taiwan
- Ph.D.
Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
| | - Jing-Ping Liou
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 110, Taiwan
- TMU
Research Center for Drug Discovery, Taipei
Medical University, Taipei 110, Taiwan
- TMU Research
Center of Cancer Translational Medicine, Taipei 110, Taiwan
- Ph.D.
Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
| |
Collapse
|
12
|
Ennis CS, Seen M, Chen A, Kang H, Ilinski A, Mahdaviani K, Ko N, Monti S, Denis GV. Plasma exosomes from individuals with type 2 diabetes drive breast cancer aggression in patient-derived organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612950. [PMID: 39345362 PMCID: PMC11429695 DOI: 10.1101/2024.09.13.612950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Women with obesity-driven diabetes are predisposed to more aggressive breast cancers. However, patient metabolic status does not fully inform the current standard of care. We previously identified plasma exosomes as functionally critical actors in intercellular communication and drivers of tumor progression. Here, we generated patient-derived organoids (PDOs) from breast tumor resections to model signaling within the tumor microenvironment (TME). Novel techniques and a short (1-week) culture preserved native tumor-infiltrating lymphocytes for the first time in breast tumor PDOs. After 3-day exosome treatment, we measured the impact of exosomal signaling on PDOs via single-cell RNA sequencing. Exosomes derived from Type 2 diabetic patient plasma significantly upregulated pathways associated with epithelial-to-mesenchymal transition, invasiveness, and cancer stemness, compared to non-diabetic exosome controls. Intratumoral heterogeneity and immune evasion increased in the diabetic context, consistent with enhanced tumor aggressiveness and metastatic potential of these PDOs. Our model of systemic metabolic dysregulation and perturbed transcriptional networks enhances understanding of dynamic interactions within the TME in obesity-driven diabetes and offers new insights into novel exosomal communication.
Collapse
|
13
|
Wu YJ, Chiao CC, Chuang PK, Hsieh CB, Ko CY, Ko CC, Chang CF, Chen TY, Nguyen NUN, Hsu CC, Chu TH, Fang CC, Tsai HY, Tsai HC, Anuraga G, Ta HDK, Xuan DTM, Kumar S, Dey S, Wulandari FS, Manalu RT, Ly NP, Wang CY, Lee YK. Comprehensive analysis of bulk and single-cell RNA sequencing data reveals Schlafen-5 (SLFN5) as a novel prognosis and immunity. Int J Med Sci 2024; 21:2348-2364. [PMID: 39310264 PMCID: PMC11413889 DOI: 10.7150/ijms.97975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024] Open
Abstract
Recent advancements have elucidated the multifaceted roles of the Schlafen (SLFN) family, including SLFN5, SLFN11, SLFN12, SLFN13, and SLFN14, which are implicated in immunological responses. However, little is known about the roles of this gene family in relation to malignancy development. The current study aimed to explore the diagnostic and prognostic potential of Schlafen family genes in colorectal adenocarcinoma (COAD) through bioinformatics analysis. Leveraging advanced bioinformatics tools of bulk RNA-sequencing and single-cell sequencing, we conducted in-depth analyses of gene expressions, functional enrichment, and survival patterns of patients with colorectal cancer compared to normal tissue. Among Schlafen family genes, the transcription levels of SLFN5 in COAD tissues were significantly elevated and correlated with poor survival outcomes. Furthermore, SLFN5 regulated the immune response via Janus kinase (JAK)/signal transduction and activator of transcription (STAT)/interferon (IFN)-alpha/beta signaling. These chemokines in inflammation are associated with diabetes and metabolism, suggesting their involvement in altered cellular energetics for COAD progress. In addition, an immune cell deconvolution analysis indicated a correlation between SLFN5 expression and immune-related cell populations, such as regulatory T cells (Tregs). These findings highlighted the potential clinical significance of SLFN5 in COAD and provided insights into its involvement in the tumor microenvironment and immune regulation. Meanwhile, the drug discovery data of SFLN5 with potential targeted small molecules suggested its therapeutic potential for COAD. Collectively, the current research demonstrated that SFLN5 play crucial roles in tumor development and serve as a prospective biomarker for COAD.
Collapse
Affiliation(s)
- Yueh-Jung Wu
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | - Chung-Chieh Chiao
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Po-Kai Chuang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Chung-Bao Hsieh
- Division of General Surgery, Department of Surgery, Tri-Service General Hospital, Taipei 114202, Taiwan
- Division of General Surgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | - Chou-Yuan Ko
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | - Ching-Chung Ko
- Department of Medical Imaging, Chi-Mei Medical Center, Tainan, Taiwan
- Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chuan-Fa Chang
- Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Tung-Yuan Chen
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | - Ngoc Uyen Nhi Nguyen
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas TX 75390, USA
| | - Ching-Cheng Hsu
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas TX 75390, USA
| | - Tian-Huei Chu
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | - Cheng-Chieh Fang
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | - Hsuan-Yen Tsai
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taiwan
| | - Hsien-Chun Tsai
- Department of Life Sciences, National University of Kaohsiung, Taiwan
| | - Gangga Anuraga
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Department of Statistics, Faculty of Science and Technology, PGRI Adi Buana University, East Java, Surabaya 60234, Indonesia
| | - Hoang Dang Khoa Ta
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Do Thi Minh Xuan
- Faculty of Pharmacy, Van Lang University, 69/68 Dang Thuy Tram Street, Ward 13, Binh Thanh District, Ho Chi Minh City 70000, Vietnam
| | - Sachin Kumar
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Faculty of Biotechnology and Applied Sciences, Shoolini University of Biotechnology and Management Sciences, Himachal Pradesh, India
| | - Sanskriti Dey
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Fitria Sari Wulandari
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Rosario Trijuliamos Manalu
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Department of Pharmacy, Faculty of Pharmacy, National Institute of Science and Technology, Jakarta, 12640, Indonesia
| | - Ngoc Phung Ly
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Chih-Yang Wang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Yung-Kuo Lee
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| |
Collapse
|
14
|
Huang S, Mei Z, Wan A, Zhao M, Qi X. Application and prospect of organoid technology in breast cancer. Front Immunol 2024; 15:1413858. [PMID: 39253075 PMCID: PMC11381393 DOI: 10.3389/fimmu.2024.1413858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/06/2024] [Indexed: 09/11/2024] Open
Abstract
Breast cancer is the most common malignant tumor in women. Due to the high heterogeneity of breast cancer cells, traditional in vitro research models still have major limitations. Therefore, it is urgent to establish an experimental model that can accurately simulate the characteristics of human breast cancer. Breast cancer organoid technology emerged as the times required, that is, to construct tissue analogs with organ characteristics by using a patient's tumor tissue through 3D culture in vitro. Since the breast cancer organoid can fully preserve the histology and genetic characteristics of the original tumor, it provides a reliable model for preclinical drug screening, establishment of breast cancer organoid biobanks, research into the mechanisms of tumor development, and determination of cancer targets. It has promoted personalized treatment for clinical breast cancer patients. This article mainly focuses on recent research progress and applications of organoid technology in breast cancer, discussing the current limitations and prospects of breast cancer organoid technology.
Collapse
Affiliation(s)
- Shanlin Huang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis and Treatment of Breast cancer, Southwest Hospital, Army Medical University, Chongqing, China
| | - Zifan Mei
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis and Treatment of Breast cancer, Southwest Hospital, Army Medical University, Chongqing, China
| | - Andi Wan
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis and Treatment of Breast cancer, Southwest Hospital, Army Medical University, Chongqing, China
| | - Min Zhao
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis and Treatment of Breast cancer, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xiaowei Qi
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis and Treatment of Breast cancer, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
15
|
Xie H, Wang L, Yu X, Zhou T, Wang M, Yang J, Gao T, Li G. Synthesis of a COF-on-MOF hybrid nanomaterial for enhanced colorimetric biosensing. Talanta 2024; 274:126071. [PMID: 38604045 DOI: 10.1016/j.talanta.2024.126071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/29/2024] [Accepted: 04/06/2024] [Indexed: 04/13/2024]
Abstract
The construction of hybrid materials is significant for the exploration of functionalities in colorimetric biosensing due to its structural designability and synergy effects. In this work, a COF-on-MOF hybrid nanomaterial has been newly synthesized for colorimetric biosensing. Experimental results reveal that on-surface synthesis of COF on MOF brings nanoscale proximity between COF and MOF, which exhibits more than two folds of peroxidase-like activity as compared to single Fe-MOF. Therefore, by using the MCA@Fe-MOF nanomaterial with the assist of a specific acetyl-peptide, MCA@Fe-MOF can serve as an efficient signal reporter for colorimetric assay of histone deacetylase (HDAC), and the limit of detection (LOD) can be as low as 0.261 nM. Looking forward, the demand for diverse and promising COF-on-MOF nanomaterials with varied functionalities is anticipated, propelling further exploration of their role in colorimetric biosensing.
Collapse
Affiliation(s)
- Haojie Xie
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Lin Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Xiaomeng Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Tianci Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Minghui Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Science, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Jie Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China.
| | - Tao Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China.
| | - Genxi Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China; Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
16
|
Xiang D, He A, Zhou R, Wang Y, Xiao X, Gong T, Kang W, Lin X, Wang X, Liu L, Chen YG, Gao S, Liu Y. Building consensus on the application of organoid-based drug sensitivity testing in cancer precision medicine and drug development. Theranostics 2024; 14:3300-3316. [PMID: 38855182 PMCID: PMC11155402 DOI: 10.7150/thno.96027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Patient-derived organoids (PDOs) have emerged as a promising platform for clinical and translational studies. A strong correlation exists between clinical outcomes and the use of PDOs to predict the efficacy of chemotherapy and/or radiotherapy. To standardize interpretation and enhance scientific communication in the field of cancer precision medicine, we revisit the concept of PDO-based drug sensitivity testing (DST). We present an expert consensus-driven approach for medication selection aimed at predicting patient responses. To further standardize PDO-based DST, we propose guidelines for clarification and characterization. Additionally, we identify several major challenges in clinical prediction when utilizing PDOs.
Collapse
Affiliation(s)
- Dongxi Xiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200232, PRC
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200127, PRC
| | - Aina He
- Department of Oncology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233 PRC
| | - Rong Zhou
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200125, PRC
- National Center of Stomatology, National Clinical Research Center for Oral Disease, Shanghai 200011, PRC
| | - Yonggang Wang
- Department of Oncology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233 PRC
| | - Xiuying Xiao
- Department of Oncology, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, PRC
| | - Ting Gong
- Department of Oncology, Tianjin Medical University General Hospital, Tianjin 300052, PRC
| | - Wenyan Kang
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200025, PRC
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine (Boao Research Hospital), Hainan 571434, PRC
| | - Xiaolin Lin
- Department of Oncology, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, PRC
| | - Xiaochen Wang
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou, Zhejiang 310009, PRC
| | | | - Lianxin Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui 230001, PRC
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui 230001, PRC
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100190, PRC
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330047, China
| | - Shaorong Gao
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, PRC
- Frontier Science Center for Stem Cell Research, Tongji University, 1239 Siping Road, Shanghai 200092, PRC
- Shanghai Key Laboratory of Maternal-Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, PRC
| | - Yingbin Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200232, PRC
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200127, PRC
| |
Collapse
|
17
|
Mo H, Chang H, Zhao G, Hu G, Luo X, Jia X, Xu Z, Ren G, Feng L, Wendel JF, Chen X, Ren M, Li F. iJAZ-based approach to engineer lepidopteran pest resistance in multiple crop species. NATURE PLANTS 2024; 10:771-784. [PMID: 38684916 DOI: 10.1038/s41477-024-01682-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 04/03/2024] [Indexed: 05/02/2024]
Abstract
The fall armyworm (FAW) poses a significant threat to global crop production. Here we showed that overexpression of jasmonate ZIM-domain (JAZ) protein GhJAZ24 confers resistance to cotton bollworm and FAW, while also causing sterility in transgenic cotton by recruiting TOPLESS and histone deacetylase 6. We identified the NGR motif of GhJAZ24 that recognizes and binds the aminopeptidase N receptor, enabling GhJAZ24 to enter cells and disrupt histone deacetylase 3, leading to cell death. To overcome plant sterility associated with GhJAZ24 overexpression, we developed iJAZ (i, induced), an approach involving damage-induced expression and a switch from intracellular to extracellular localization of GhJAZ24. iJAZ transgenic cotton maintained fertility and showed insecticidal activity against cotton bollworm and FAW. In addition, iJAZ transgenic rice, maize and tobacco plants showed insecticidal activity against their lepidopteran pests, resulting in an iJAZ-based approach for generating alternative insecticidal proteins with distinctive mechanisms of action, thus holding immense potential for future crop engineering.
Collapse
Affiliation(s)
- Huijuan Mo
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Huimin Chang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Ge Zhao
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Guanjing Hu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiumei Luo
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Xue Jia
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhenlu Xu
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Guangming Ren
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Li Feng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Jonathan F Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA.
| | - Xiaoya Chen
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China.
| | - Maozhi Ren
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.
| | - Fuguang Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.
- The Shennong Laboratory, Zhengzhou, China.
| |
Collapse
|
18
|
Patton A, Ilaslan H, Armstrong SM, Bakhshwin A, Cheng YW, Minhas F, Fritchie KJ. Keratin-Positive Giant Cell-Rich Tumor of Bone Harboring an HMGA2::NCOR2 Fusion: Two Cases, Including a Patient With Metastatic Disease, and Review of the Literature. Int J Surg Pathol 2024; 32:556-564. [PMID: 37461232 DOI: 10.1177/10668969231185076] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Giant cell-rich lesions of bone represent a heterogeneous group of entities which classically include giant cell tumor of bone, aneurysmal bone cyst, nonossifying fibroma, and Brown tumor of hyperparathyroidism. A recently described subset of giant cell-rich tumors involving bone and soft tissue has been characterized by recurrent HMGA2::NCOR2 fusions and keratin expression. The overlapping clinical, radiographic, and morphological features of these giant cell-rich lesions provide a unique diagnostic challenge, particularly on biopsy. We present 2 additional cases of keratin-positive giant cell-rich tumor of bone with HMGA2::NCOR2 fusions, including 1 patient who developed metastatic disease.
Collapse
Affiliation(s)
- Ashley Patton
- Department of Pathology & Laboratory Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Hakan Ilaslan
- Department of Musculoskeletal Radiology, Cleveland Clinic, Cleveland, OH, USA
| | - Susan M Armstrong
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, OH, USA
| | - Ahmed Bakhshwin
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, OH, USA
| | - Yu-Wei Cheng
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, OH, USA
| | - Farooq Minhas
- Department of Pathology, Ascension Providence Hospital, Southfield, MI, USA
| | - Karen J Fritchie
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
19
|
Li Y, Han M, Wei H, Huang W, Chen Z, Zhang T, Qian M, Jing L, Nan G, Sun X, Dai S, Wang K, Jiang J, Zhu P, Chen L. Id2 epigenetically controls CD8 + T-cell exhaustion by disrupting the assembly of the Tcf3-LSD1 complex. Cell Mol Immunol 2024; 21:292-308. [PMID: 38287103 PMCID: PMC10902300 DOI: 10.1038/s41423-023-01118-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/01/2023] [Indexed: 01/31/2024] Open
Abstract
CD8+ T-cell exhaustion is a state of dysfunction that promotes tumor progression and is marked by the generation of Slamf6+ progenitor exhausted (Texprog) and Tim-3+ terminally exhausted (Texterm) subpopulations. Inhibitor of DNA binding protein 2 (Id2) has been shown to play important roles in T-cell development and CD8+ T-cell immunity. However, the role of Id2 in CD8+ T-cell exhaustion is unclear. Here, we found that Id2 transcriptionally and epigenetically regulates the generation of Texprog cells and their conversion to Texterm cells. Genetic deletion of Id2 dampens CD8+ T-cell-mediated immune responses and the maintenance of stem-like CD8+ T-cell subpopulations, suppresses PD-1 blockade and increases tumor susceptibility. Mechanistically, through its HLH domain, Id2 binds and disrupts the assembly of the Tcf3-Tal1 transcriptional regulatory complex, and thus modulates chromatin accessibility at the Slamf6 promoter by preventing the interaction of Tcf3 with the histone lysine demethylase LSD1. Therefore, Id2 increases the abundance of the permissive H3K4me2 mark on the Tcf3-occupied E-boxes in the Slamf6 promoter, modulates chromatin accessibility at the Slamf6 promoter and epigenetically regulates the generation of Slamf6+ Texprog cells. An LSD1 inhibitor GSK2879552 can rescue the Id2 knockout phenotype in tumor-bearing mice. Inhibition of LSD1 increases the abundance of Slamf6+Tim-3- Texprog cells in tumors and the expression level of Tcf1 in Id2-deleted CD8+ T cells. This study demonstrates that Id2-mediated transcriptional and epigenetic modification drives hierarchical CD8+ T-cell exhaustion, and the mechanistic insights gained may have implications for therapeutic intervention with tumor immune evasion.
Collapse
Affiliation(s)
- Yiming Li
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Ganzhou, Jiangxi, 341000, Xi'an, Shaanxi, 710032, China
| | - Mingwei Han
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Ganzhou, Jiangxi, 341000, Xi'an, Shaanxi, 710032, China
| | - Haolin Wei
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Ganzhou, Jiangxi, 341000, Xi'an, Shaanxi, 710032, China
| | - Wan Huang
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Ganzhou, Jiangxi, 341000, Xi'an, Shaanxi, 710032, China
| | - Zhinan Chen
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Ganzhou, Jiangxi, 341000, Xi'an, Shaanxi, 710032, China
| | - Tianjiao Zhang
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Ganzhou, Jiangxi, 341000, Xi'an, Shaanxi, 710032, China
| | - Meirui Qian
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Ganzhou, Jiangxi, 341000, Xi'an, Shaanxi, 710032, China
| | - Lin Jing
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Ganzhou, Jiangxi, 341000, Xi'an, Shaanxi, 710032, China
| | - Gang Nan
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Ganzhou, Jiangxi, 341000, Xi'an, Shaanxi, 710032, China
| | - Xiuxuan Sun
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Ganzhou, Jiangxi, 341000, Xi'an, Shaanxi, 710032, China
| | - Shuhui Dai
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Ganzhou, Jiangxi, 341000, Xi'an, Shaanxi, 710032, China
| | - Kun Wang
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Ganzhou, Jiangxi, 341000, Xi'an, Shaanxi, 710032, China
| | - Jianli Jiang
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Ganzhou, Jiangxi, 341000, Xi'an, Shaanxi, 710032, China.
| | - Ping Zhu
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Ganzhou, Jiangxi, 341000, Xi'an, Shaanxi, 710032, China.
| | - Liang Chen
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Ganzhou, Jiangxi, 341000, Xi'an, Shaanxi, 710032, China.
- School of Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
20
|
Rao X, Qiao Z, Yang Y, Deng Y, Zhang Z, Yu X, Guo X. Unveiling Epigenetic Vulnerabilities in Triple-Negative Breast Cancer through 3D Organoid Drug Screening. Pharmaceuticals (Basel) 2024; 17:225. [PMID: 38399440 PMCID: PMC10892330 DOI: 10.3390/ph17020225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/16/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Triple-negative breast cancer (TNBC) poses a therapeutic challenge due to its aggressive nature and lack of targeted therapies. Epigenetic modifications contribute to TNBC tumorigenesis and drug resistance, offering potential therapeutic targets. Recent advancements in three-dimensional (3D) organoid cultures, enabling precise drug screening, hold immense promise for identifying novel compounds targeting TNBC. In this study, we established two patient-derived TNBC organoids and implemented a high-throughput drug screening system using these organoids and two TNBC cell lines. Screening a library of 169 epigenetic compounds, we found that organoid-based systems offer remarkable precision in drug response assessment compared to cell-based models. The top 30 compounds showing the highest drug sensitivity in the initial screening were further assessed in a secondary screen. Four compounds, panobinostat, pacritinib, TAK-901, and JIB-04, targeting histone deacetylase, JAK/STAT, histone demethylases, and aurora kinase pathways, respectively, exhibited potent anti-tumor activity in TNBC organoids, surpassing the effect of paclitaxel. Our study highlights the potential of these novel epigenetic drugs as effective therapeutic agents for TNBC and demonstrates the valuable role of patient-derived organoids in advancing drug discovery.
Collapse
Affiliation(s)
- Xinxin Rao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (X.R.); (Z.Q.); (Y.Y.); (Y.D.); (Z.Z.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Zhibin Qiao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (X.R.); (Z.Q.); (Y.Y.); (Y.D.); (Z.Z.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Yang Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (X.R.); (Z.Q.); (Y.Y.); (Y.D.); (Z.Z.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Yun Deng
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (X.R.); (Z.Q.); (Y.Y.); (Y.D.); (Z.Z.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Zhen Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (X.R.); (Z.Q.); (Y.Y.); (Y.D.); (Z.Z.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Xiaoli Yu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (X.R.); (Z.Q.); (Y.Y.); (Y.D.); (Z.Z.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Xiaomao Guo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (X.R.); (Z.Q.); (Y.Y.); (Y.D.); (Z.Z.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| |
Collapse
|
21
|
Zhu S, Xu N, Zeng H. Molecular complexity of intraductal carcinoma of the prostate. Cancer Med 2024; 13:e6939. [PMID: 38379333 PMCID: PMC10879723 DOI: 10.1002/cam4.6939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/21/2023] [Accepted: 12/04/2023] [Indexed: 02/22/2024] Open
Abstract
Intraductal carcinoma of the prostate (IDC-P) is an aggressive subtype of prostate cancer characterized by the growth of tumor cells within the prostate ducts. It is often found alongside invasive carcinoma and is associated with poor prognosis. Understanding the molecular mechanisms driving IDC-P is crucial for improved diagnosis, prognosis, and treatment strategies. This review summarizes the molecular characteristics of IDC-P and their prognostic indications, comparing them to conventional prostate acinar adenocarcinoma, to gain insights into its unique behavior and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Sha Zhu
- Department of Urology, Institute of Urology, West China HospitalSichuan UniversityChengduChina
| | - Nanwei Xu
- Department of Urology, Institute of Urology, West China HospitalSichuan UniversityChengduChina
| | - Hao Zeng
- Department of Urology, Institute of Urology, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
22
|
Luca E, Zitzmann K, Bornstein S, Kugelmeier P, Beuschlein F, Nölting S, Hantel C. Three Dimensional Models of Endocrine Organs and Target Tissues Regulated by the Endocrine System. Cancers (Basel) 2023; 15:4601. [PMID: 37760571 PMCID: PMC10526768 DOI: 10.3390/cancers15184601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/28/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Immortalized cell lines originating from tumors and cultured in monolayers in vitro display consistent behavior and response, and generate reproducible results across laboratories. However, for certain endpoints, these cell lines behave quite differently from the original solid tumors. Thereby, the homogeneity of immortalized cell lines and two-dimensionality of monolayer cultures deters from the development of new therapies and translatability of results to the more complex situation in vivo. Organoids originating from tissue biopsies and spheroids from cell lines mimic the heterogeneous and multidimensional characteristics of tumor cells in 3D structures in vitro. Thus, they have the advantage of recapitulating the more complex tissue architecture of solid tumors. In this review, we discuss recent efforts in basic and preclinical cancer research to establish methods to generate organoids/spheroids and living biobanks from endocrine tissues and target organs under endocrine control while striving to achieve solutions in personalized medicine.
Collapse
Affiliation(s)
- Edlira Luca
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Kathrin Zitzmann
- Department of Medicine IV, University Hospital, LMU Munich, 80336 München, Germany
| | - Stefan Bornstein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, 01307 Dresden, Germany
| | | | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, 80336 Munich, Germany
| | - Svenja Nölting
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Department of Medicine IV, University Hospital, LMU Munich, 80336 München, Germany
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, 01307 Dresden, Germany
| |
Collapse
|
23
|
Pi Y, Sun F, Zhang Z, Liu X, Lou G. A Novel Notch-Related Gene Signature for Prognosis and Immune Response Prediction in Ovarian Cancer. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1277. [PMID: 37512088 PMCID: PMC10385113 DOI: 10.3390/medicina59071277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023]
Abstract
Background and Objectives: Notch is a fascinating signaling pathway. It is extensively involved in tumor growth, cancer stem cells, metastasis, and treatment resistance and plays important roles in metabolic regulation, tumor microenvironment, and tumor immunity. However, the role of Notch in ovarian cancer (OC) has yet to be fully understood. Therefore, this study systematically described the expression, mutation, and copy number variation of genes in the Notch signaling pathway in OC and evaluated the relationship between gene mutation and Overall Survival (OS) prognosis. Materials and Methods: Notch risk score (NTRS) was established by univariate Cox regression analysis combined with Lasso regression analysis, and the efficacy of NTRS in predicting prognosis and immunotherapy response in patients with OC was verified. We further assessed the correlations of NTRS with clinical features, immune infiltration level, immune checkpoint expression, and immune characteristics. Additionally, differential expression and functions of the fourteen signature genes were confirmed via vitro assays. Results: The results showed that Notch genes (NTGs) were markedly differentiated between tumor and normal tissues, which may help to explain the high heterogeneity in the biological characteristics and therapeutic outcomes of human OC. A Notch risk (NTR) prognostic model based on 11 key NTGs was successfully constructed. Tumors with high Notch risk scores (NTRS) were independently associated with shorter overall survival and poorer immunotherapy outcomes. We further assessed the correlations of NTRS with immune characteristics. The results showed that NTGs play a key role in regulating the tumor immune microenvironment. Additionally, we validated the baseline and induced expressions of 14 prognosis-related NTGs in our own OC samples. In vitro assays confirmed that the knockdown of NCOR2 and APH1B and overexpression of HEY2 and SKP2 could inhibit the proliferation, invasion, and migration of OC cells. Conclusions: These findings emphasize that Notch multilayer changes are associated with the prognosis of patients with OC and the characteristics of immune cell infiltration. Our predictive signature may predict the prognosis and immunotherapy response of OC patients in an independent manner. NCOR2, APH1B, HEY2, and SKP2 may more prominently represent important indicators to improve patient prognosis.
Collapse
Affiliation(s)
- Yanan Pi
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin 150086, China
| | - Fusheng Sun
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin 150086, China
| | - Zhaocong Zhang
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin 150086, China
| | - Xiaoli Liu
- Harbin Obstetrics and Gynecology Hospital, Harbin Medical University, Harbin 150086, China
| | - Ge Lou
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin 150086, China
| |
Collapse
|
24
|
Smirnov A, Melino G, Candi E. Gene expression in organoids: an expanding horizon. Biol Direct 2023; 18:11. [PMID: 36964575 PMCID: PMC10038780 DOI: 10.1186/s13062-023-00360-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/20/2023] [Indexed: 03/26/2023] Open
Abstract
Recent development of human three-dimensional organoid cultures has opened new doors and opportunities ranging from modelling human development in vitro to personalised cancer therapies. These new in vitro systems are opening new horizons to the classic understanding of human development and disease. However, the complexity and heterogeneity of these models requires cutting-edge techniques to capture and trace global changes in gene expression to enable identification of key players and uncover the underlying molecular mechanisms. Rapid development of sequencing approaches made possible global transcriptome analyses and epigenetic profiling. Despite challenges in organoid culture and handling, these techniques are now being adapted to embrace organoids derived from a wide range of human tissues. Here, we review current state-of-the-art multi-omics technologies, such as single-cell transcriptomics and chromatin accessibility assays, employed to study organoids as a model for development and a platform for precision medicine.
Collapse
Affiliation(s)
- Artem Smirnov
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00166, Rome, Italy.
| |
Collapse
|
25
|
Tapak L, Hamidi O, Amini P, Afshar S, Salimy S, Dinu I. Identification of Prognostic Biomarkers for Breast Cancer Metastasis
Using Penalized Additive Hazards Regression Model. Cancer Inform 2023; 22:11769351231157942. [PMID: 36968522 PMCID: PMC10034277 DOI: 10.1177/11769351231157942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/30/2023] [Indexed: 03/24/2023] Open
Abstract
Background: Breast cancer (BC) has been reported as one of the most common cancers
diagnosed in females throughout the world. Survival rate of BC patients is
affected by metastasis. So, exploring its underlying mechanisms and
identifying related biomarkers to monitor BC relapse/recurrence using new
statistical methods is essential. This study investigated the
high-dimensional gene-expression profiles of BC patients using penalized
additive hazards regression models. Methods: A publicly available dataset related to the time to metastasis in BC patients
(GSE2034) was used. There was information of 22 283 genes expression
profiles related to 286 BC patients. Penalized additive hazards regression
models with different penalties, including LASSO, SCAD, SICA, MCP and
Elastic net were used to identify metastasis related genes. Results: Five regression models with penalties were applied in the additive hazards
model and jointly found 9 genes including SNU13,
CLINT1, MAPK9, ABCC5,
NKX3-1, NCOR2,
COL2A1, and ZNF219. According the median
of the prognostic index calculated using the regression coefficients of the
penalized additive hazards model, the patients were labeled as high/low risk
groups. A significant difference was detected in the survival curves of the
identified groups. The selected genes were examined using validation data
and were significantly associated with the hazard of metastasis. Conclusion: This study showed that MAPK9, NKX3-1,
NCOR1, ABCC5, and
CD44 are the potential recurrence and metastatic
predictors in breast cancer and can be taken into account as candidates for
further research in tumorigenesis, invasion, metastasis, and
epithelial-mesenchymal transition of breast cancer.
Collapse
Affiliation(s)
- Leili Tapak
- Department of Biostatistics, School of
Public Health and Modeling of Noncommunicable Diseases Research Center, Hamadan
University of Medical Sciences, Hamadan, Iran
| | - Omid Hamidi
- Department of Science, Hamedan
University of Technology, Hamedan, Iran
- Omid Hamidi, Department of Science, Hamedan
University of Technology, Pajouhesh Square, Hamedan 6516717432, Iran.
| | - Payam Amini
- Department of Biostatistics, School of
Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Saeid Afshar
- Research Center for Molecular Medicine,
Hamadan University of Medical Sciences, Hamadan, Iran
| | - Siamak Salimy
- Laboratory of System Biology and
Bioinformatics (LBB), Department of Bioinformatics, University of Tehran, Kish,
Iran
| | - Irina Dinu
- School of Public Health, University of
Alberta, Edmonton, AB, Canada
| |
Collapse
|
26
|
Chai C, Ji P, Xu H, Tang H, Wang Z, Zhang H, Zhou W. Targeting cancer drug resistance utilizing organoid technology. Biomed Pharmacother 2023; 158:114098. [PMID: 36528918 DOI: 10.1016/j.biopha.2022.114098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer organoids generated from 3D in vitro cell cultures have contributed to the study of drug resistance. Maintenance of genomic and transcriptomic similarity between organoids and parental cancer allows organoids to have the ability of accurate prediction in drug resistance testing. Protocols of establishing therapy-sensitive and therapy-resistant organoids are concluded in two aspects, which are generated directly from respective patients' cancer and by induction of anti-cancer drug. Genomic and transcriptomic analyses and gene editing have been applied to organoid studies to identify key targets in drug resistance and FGFR3, KHDRBS3, lnc-RP11-536 K7.3 and FBN1 were found to be key targets. Furthermore, mechanisms contributing to resistance have been identified, including metabolic adaptation, activation of DNA damage response, defects in apoptosis, reduced cellular senescence, cellular plasticity, subpopulation interactions and gene fusions. Additionally, cancer stem cells (CSCs) have been verified to be involved in drug resistance utilizing organoid technology. Reversal of drug resistance can be achieved by targeting key genes and CSCs in cancer organoids. In this review, we summarize applications of organoids to cancer drug resistance research, indicating prospects and limitations.
Collapse
Affiliation(s)
- Changpeng Chai
- The First Hospital of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu, China; The Forth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu, China.
| | - Pengfei Ji
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu, China.
| | - Hao Xu
- The First Hospital of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu, China.
| | - Huan Tang
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu, China.
| | - Zhengfeng Wang
- The First Hospital of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu, China.
| | - Hui Zhang
- The Second Hospital of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu, China.
| | - Wence Zhou
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou 730000, Gansu, China; The Second Hospital of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu, China.
| |
Collapse
|
27
|
Guan X, Huang S. Advances in the application of 3D tumor models in precision oncology and drug screening. Front Bioeng Biotechnol 2022; 10:1021966. [PMID: 36246388 PMCID: PMC9555934 DOI: 10.3389/fbioe.2022.1021966] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Traditional tumor models cannot perfectly simulate the real state of tumors in vivo, resulting in the termination of many clinical trials. 3D tumor models’ technology provides new in vitro models that bridge the gap between in vitro and in vivo findings, and organoids maintain the properties of the original tissue over a long period of culture, which enables extensive research in this area. In addition, they can be used as a substitute for animal and in vitro models, and organoids can be established from patients’ normal and malignant tissues, with unique advantages in clinical drug development and in guiding individualized therapies. 3D tumor models also provide a promising platform for high-throughput research, drug and toxicity testing, disease modeling, and regenerative medicine. This report summarizes the 3D tumor model, including evidence regarding the 3D tumor cell culture model, 3D tumor slice model, and organoid culture model. In addition, it provides evidence regarding the application of 3D tumor organoid models in precision oncology and drug screening. The aim of this report is to elucidate the value of 3D tumor models in cancer research and provide a preclinical reference for the precise treatment of cancer patients.
Collapse
Affiliation(s)
- Xiaoyong Guan
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Shigao Huang
- Department of Radiation Oncology, The First Affiliated Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Shigao Huang,
| |
Collapse
|
28
|
Seliger B, Al-Samadi A, Yang B, Salo T, Wickenhauser C. In vitro models as tools for screening treatment options of head and neck cancer. Front Med (Lausanne) 2022; 9:971726. [PMID: 36160162 PMCID: PMC9489836 DOI: 10.3389/fmed.2022.971726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022] Open
Abstract
Various in vitro models using primary and established 2- and 3-dimensional cultures, multicellular tumor spheroids, standardized tumor slice cultures, tumor organoids, and microfluidic systems obtained from tumor lesions/biopsies of head and neck cancer (HNC) have been employed for exploring and monitoring treatment options. All of these in vitro models are to a different degree able to capture the diversity of tumors, recapitulate the disease genetically, histologically, and functionally and retain their tumorigenic potential upon xenotransplantation. The models were used for the characterization of the malignant features of the tumors and for in vitro screens of drugs approved for the treatment of HNC, including chemotherapy and radiotherapy as well as recently developed targeted therapies and immunotherapies, or for novel treatments not yet licensed for these tumor entities. The implementation of the best suitable model will enlarge our knowledge of the oncogenic properties of HNC, expand the drug repertoire and help to develop individually tailored treatment strategies resulting in the translation of these findings into the clinic. This review summarizes the different approaches using preclinical in vitro systems with their advantages and disadvantages and their implementation as preclinical platforms to predict disease course, evaluate biomarkers and test therapy efficacy.
Collapse
Affiliation(s)
- Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- *Correspondence: Barbara Seliger,
| | - Ahmed Al-Samadi
- Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Translational Immunology Research Program, Research Program Unit, University of Helsinki, Helsinki, Finland
| | - Bo Yang
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Translational Immunology Research Program, Research Program Unit, University of Helsinki, Helsinki, Finland
- Cancer Research and Translational Medicine Research Unit, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|