1
|
Jin G, Wang X, Cui R, Yuan S, Wang M, Chen Z. Comprehensive assessment of antibiotic impacts and risk thresholds on aquatic microbiomes and resistomes. WATER RESEARCH 2025; 276:123262. [PMID: 39978123 DOI: 10.1016/j.watres.2025.123262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/02/2025] [Accepted: 02/08/2025] [Indexed: 02/22/2025]
Abstract
Understanding the impacts of environmentally relevant low-level antibiotics on aquatic microbiomes and resistomes is crucial for risk assessment of anthropogenic antibiotic contamination. Here, we investigated the effects of seven subinhibitory concentrations of trimethoprim and lincomycin (10 ng/L to 10 mg/L), individually and in combination, on surface water microcosms over 1 and 7 days, using unspiked samples as controls. Metagenomic sequencing revealed a decrease in bacterial community α-diversity and an increase in resistome α-diversity with rising antibiotic concentrations upon 7 days of exposure. Notably, the β-diversity of both bacterial communities and resistomes exhibited a biphasic response, decreasing and then increasing with breakpoint concentrations of 2.73 µg/L and 0.68 µg/L, respectively. We also observed concentration-dependent increases in certain metagenome-assembled antibiotic-resistant bacteria (MAARB) and antibiotic resistance genes (ARGs), with minimum selective concentrations (MSCs) of 2.28 µg/L for trimethoprim targeting OXA-21 and 32.4 µg/L for lincomycin targeting erm(F). Among various metrics for identifying risk thresholds that induce significant changes in microbial taxa, resistomes, individual ARGs, and MAARB, the breakpoint concentration derived from resistome β-diversity was the most conservative. We propose integrating this metric into environmental risk assessment frameworks for antibiotics. Our study provides a systematic evaluation of antibiotic impacts on aquatic microbiomes and resistomes, offering key insights for refining risk assessments of antibiotic contamination in aquatic environments.
Collapse
Affiliation(s)
- Guomin Jin
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, PR China
| | - Xingshuo Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, PR China
| | - Rongxin Cui
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, PR China
| | - Shengyu Yuan
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, PR China
| | - Meilun Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, PR China
| | - Zeyou Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
2
|
Zhou T, Liu G, Jin R, Zhou J. Altered Cell Viability, Morphology, and Motility under Ciprofloxacin Stress Influence the Transport and Resistance of Bacteria in Saturated Porous Media. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40265891 DOI: 10.1021/acs.est.5c00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
The ubiquitous occurrence of antibiotics in the environment induces various stress responses of microbes and increases the risk of the emergence and spread of antimicrobial resistance (AMR). In this study, the transport and retention of Shewanella oneidensis cells in saturated porous media was investigated under different levels of ciprofloxacin (CIP) stress. Exposing to lethal CIP stress caused significant viability loss and stimulated cell transport due to increasing hydrophilicity and decreasing surface roughness. While exposure to sublethal CIP stress did not affect MR-1's viability, elongation of cells promoted their retention in sand columns via straining and orientation effects. The elongated cells likely adopted an end-on configuration to minimize repulsive interaction energy when approaching sand surfaces and deposited in a side-on position due to local surface roughness and charge heterogeneity of sands. The more diminished breakthrough of MR-1 cells in redox-active media was ascribed to their improving extracellular electron transfer and energy taxis activities under sublethal CIP stress. Moreover, the retention of elongated cells in porous media facilitated the de novo emergence of a resistant gyrase mutant, whose remobilization might exacerbate the AMR dissemination.
Collapse
Affiliation(s)
- Tianao Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Guangfei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ruofei Jin
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
3
|
Alav I, Buckner MMC. Non-antibiotic compounds associated with humans and the environment can promote horizontal transfer of antimicrobial resistance genes. Crit Rev Microbiol 2024; 50:993-1010. [PMID: 37462915 PMCID: PMC11523920 DOI: 10.1080/1040841x.2023.2233603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/23/2023] [Accepted: 06/30/2023] [Indexed: 02/15/2024]
Abstract
Horizontal gene transfer plays a key role in the global dissemination of antimicrobial resistance (AMR). AMR genes are often carried on self-transmissible plasmids, which are shared amongst bacteria primarily by conjugation. Antibiotic use has been a well-established driver of the emergence and spread of AMR. However, the impact of commonly used non-antibiotic compounds and environmental pollutants on AMR spread has been largely overlooked. Recent studies found common prescription and over-the-counter drugs, artificial sweeteners, food preservatives, and environmental pollutants, can increase the conjugative transfer of AMR plasmids. The potential mechanisms by which these compounds promote plasmid transmission include increased membrane permeability, upregulation of plasmid transfer genes, formation of reactive oxygen species, and SOS response gene induction. Many questions remain around the impact of most non-antibiotic compounds on AMR plasmid conjugation in clinical isolates and the long-term impact on AMR dissemination. By elucidating the role of routinely used pharmaceuticals, food additives, and pollutants in the dissemination of AMR, action can be taken to mitigate their impact by closely monitoring use and disposal. This review will discuss recent progress on understanding the influence of non-antibiotic compounds on plasmid transmission, the mechanisms by which they promote transfer, and the level of risk they pose.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Michelle M. C. Buckner
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
4
|
Serwecińska L, Font-Nájera A, Strapagiel D, Lach J, Tołoczko W, Bołdak M, Urbaniak M. Sewage sludge fertilization affects microbial community structure and its resistome in agricultural soils. Sci Rep 2024; 14:21034. [PMID: 39251745 PMCID: PMC11385149 DOI: 10.1038/s41598-024-71656-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024] Open
Abstract
Global sewage sludge production is rapidly increasing, and its safe disposal is becoming an increasingly serious issue. One of the main methods of municipal sewage sludge management is based on its agricultural use. The wastewater and sewage sludge contain numerous antibiotic resistance genes (ARGs), and its microbiome differs significantly from the soil microbial community. The aim of the study was to assess the changes occurring in the soil microbial community and resistome after the addition of sewage sludge from municipal wastewater treatment plant (WWTP) in central Poland, from which the sludge is used for fertilizing agricultural soils on a regular basis. This study used a high-throughput shotgun metagenomics approach to compare the microbial communities and ARGs present in two soils fertilized with sewage sludge. The two soils represented different land uses and different physicochemical and granulometric properties. Both soils were characterized by a similar taxonomic composition of the bacterial community, despite dissimilarities between soils properties. Five phyla predominated, viz. Planctomycetes, Actinobacteria, Proteobacteria, Chloroflexi and Firmicutes, and they were present in comparable proportions in both soils. Network analysis revealed that the application of sewage sludge resulted in substantial qualitative and quantitative changes in bacterial taxonomic profile, with most abundant phyla being considerably depleted and replaced by Proteobacteria and Spirochaetes. In addition, the ratio of oligotrophic to copiotrophic bacteria substantially decreased in both amended soils. Furthermore, fertilized soils demonstrated greater diversity and richness of ARGs compared to control soils. The increased abundance concerned mainly genes of resistance to antibiotics most commonly used in human and animal medicine. The level of heavy metals in sewage sludge was low and did not exceed the standards permitted in Poland for sludge used in agriculture, and their level in fertilized soils was still inconsiderable.
Collapse
Affiliation(s)
- Liliana Serwecińska
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90‑364, Lodz, Poland.
| | - Arnoldo Font-Nájera
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90‑364, Lodz, Poland
| | - Dominik Strapagiel
- Biobank Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 139, 90-235, Lodz, Poland
| | - Jakub Lach
- Biobank Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 139, 90-235, Lodz, Poland
| | - Wojciech Tołoczko
- Department of Physical Geography, Faculty of Geographical Sciences, University of Lodz, Narutowicza 88, 90-139, Lodz, Poland
| | - Małgorzata Bołdak
- Department of Agriculture and Environmental Chemistry, University of Agriculture in Krakow, Mickiewicza 21, 31-120, Kraków, Poland
| | - Magdalena Urbaniak
- UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90‑237, Lodz, Poland
| |
Collapse
|
5
|
Joannard B, Sanchez-Cid C. Bacterial dynamics of the plastisphere microbiome exposed to sub-lethal antibiotic pollution. MICROBIOME 2024; 12:97. [PMID: 38790062 PMCID: PMC11127405 DOI: 10.1186/s40168-024-01803-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/27/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Antibiotics and microplastics are two major aquatic pollutants that have been associated to antibiotic resistance selection in the environment and are considered a risk to human health. However, little is known about the interaction of these pollutants at environmental concentrations and the response of the microbial communities in the plastisphere to sub-lethal antibiotic pollution. Here, we describe the bacterial dynamics underlying this response in surface water bacteria at the community, resistome and mobilome level using a combination of methods (next-generation sequencing and qPCR), sequencing targets (16S rRNA gene, pre-clinical and clinical class 1 integron cassettes and metagenomes), technologies (short and long read sequencing), and assembly approaches (non-assembled reads, genome assembly, bacteriophage and plasmid assembly). RESULTS Our results show a shift in the microbial community response to antibiotics in the plastisphere microbiome compared to surface water communities and describe the bacterial subpopulations that respond differently to antibiotic and microplastic pollution. The plastisphere showed an increased tolerance to antibiotics and selected different antibiotic resistance bacteria (ARB) and antibiotic resistance genes (ARGs). Several metagenome assembled genomes (MAGs) derived from the antibiotic-exposed plastisphere contained ARGs, virulence factors, and genes involved in plasmid conjugation. These include Comamonas, Chryseobacterium, the opportunistic pathogen Stenotrophomonas maltophilia, and other MAGs belonging to genera that have been associated to human infections, such as Achromobacter. The abundance of the integron-associated ciprofloxacin resistance gene aac(6')-Ib-cr increased under ciprofloxacin exposure in both freshwater microbial communities and in the plastisphere. Regarding the antibiotic mobilome, although no significant changes in ARG load in class 1 integrons and plasmids were observed in polluted samples, we identified three ARG-containing viral contigs that were integrated into MAGs as prophages. CONCLUSIONS This study illustrates how the selective nature of the plastisphere influences bacterial response to antibiotics at sub-lethal selective pressure. The microbial changes identified here help define the selective role of the plastisphere and its impact on the maintenance of environmental antibiotic resistance in combination with other anthropogenic pollutants. This research highlights the need to evaluate the impact of aquatic pollutants in environmental microbial communities using complex scenarios with combined stresses. Video Abstract.
Collapse
Affiliation(s)
- Brune Joannard
- Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5557, UMR INRAe 1418, VetAgro Sup, Ecologie Microbienne, 69622, Villeurbanne, France
| | - Concepcion Sanchez-Cid
- Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5557, UMR INRAe 1418, VetAgro Sup, Ecologie Microbienne, 69622, Villeurbanne, France.
| |
Collapse
|
6
|
Naudin SA, Ferran AA, Imazaki PH, Arpaillange N, Marcuzzo C, Vienne M, Demmou S, Bousquet-Mélou A, Ramon-Portugal F, Lacroix MZ, Hoede C, Barret M, Dupouy V, Bibbal D. Development of an in vitro biofilm model for the study of the impact of fluoroquinolones on sewer biofilm microbiota. Front Microbiol 2024; 15:1377047. [PMID: 38601931 PMCID: PMC11004435 DOI: 10.3389/fmicb.2024.1377047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024] Open
Abstract
Sewer biofilms are likely to constitute hotspots for selecting and accumulating antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). This study aimed to optimize culture conditions to obtain in vitro biofilms, mimicking the biofilm collected in sewers, to study the impact of fluoroquinolones (FQs) on sewer biofilm microbiota. Biofilms were grown on coupons in CDC Biofilm Reactors®, continuously fed with nutrients and inoculum (1/100 diluted wastewater). Different culture conditions were tested: (i) initial inoculum: diluted wastewater with or without sewer biofilm, (ii) coupon material: concrete vs. polycarbonate, and (iii) time of culture: 7 versus 14 days. This study found that the biomass was highest when in vitro biofilms were formed on concrete coupons. The biofilm taxonomic diversity was not affected by adding sewer biofilm to the initial inoculum nor by the coupon material. Pseudomonadales, Burkholderiales and Enterobacterales dominated in the sewer biofilm composition, whereas in vitro biofilms were mainly composed of Enterobacterales. The relative abundance of qnrA, B, D and S genes was higher in in vitro biofilms than sewer biofilm. The resistome of sewer biofilm showed the highest Shannon diversity index compared to wastewater and in vitro biofilms. A PCoA analysis showed differentiation of samples according to the nature of the sample, and a Procrustes analysis showed that the ARG changes observed were linked to changes in the microbial community. The following growing conditions were selected for in vitro biofilms: concrete coupons, initial inoculation with sewer biofilm, and a culture duration of 14 days. Then, biofilms were established under high and low concentrations of FQs to validate our in vitro biofilm model. Fluoroquinolone exposure had no significant impact on the abundance of qnr genes, but high concentration exposure increased the proportion of mutations in gyrA (codons S83L and D87N) and parC (codon S80I). In conclusion, this study allowed the determination of the culture conditions to develop an in vitro model of sewer biofilm; and was successfully used to investigate the impact of FQs on sewer microbiota. In the future, this setup could be used to clarify the role of sewer biofilms in disseminating resistance to FQs in the environment.
Collapse
Affiliation(s)
- Sarah A. Naudin
- INTHERES, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Aude A. Ferran
- INTHERES, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | | | | | | | - Maïna Vienne
- Université de Toulouse, INRAE, BioinfOmics, GenoToul Bioinformatics Facility, Castanet-Tolosan, France
- Université de Toulouse, INRAE, UR 875 MIAT, Castanet-Tolosan, France
| | - Sofia Demmou
- Centre de Recherche sur la Biodiversité et l’Environnement, Université de Toulouse, CNRS, IRD, Toulouse INP, Université de Toulouse, Toulouse, France
| | | | | | | | - Claire Hoede
- Université de Toulouse, INRAE, BioinfOmics, GenoToul Bioinformatics Facility, Castanet-Tolosan, France
- Université de Toulouse, INRAE, UR 875 MIAT, Castanet-Tolosan, France
| | - Maialen Barret
- Centre de Recherche sur la Biodiversité et l’Environnement, Université de Toulouse, CNRS, IRD, Toulouse INP, Université de Toulouse, Toulouse, France
| | | | - Delphine Bibbal
- INTHERES, Université de Toulouse, INRAE, ENVT, Toulouse, France
| |
Collapse
|
7
|
Stelmaszyk L, Stange C, Hügler M, Sidhu JP, Horn H, Tiehm A. Quantification of β-lactamase producing bacteria in German surface waters with subsequent MALDI-TOF MS-based identification and β-lactamase activity assay. Heliyon 2024; 10:e27384. [PMID: 38486766 PMCID: PMC10937694 DOI: 10.1016/j.heliyon.2024.e27384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
Environmental oligotrophic bacteria are suspected to be highly relevant carriers of antimicrobial resistance (AMR). However, there is a lack of validated methods for monitoring in the aquatic environment. Since extended-spectrum β-lactamases (ESBLs) play a particularly important role in the clinical sector, a culturing method based on R2A-medium spiked with different combinations of β-lactams was applied to quantify β-lactamase-producing environmental bacteria from surface waters. In German surface water samples (n = 28), oligotrophic bacteria ranging from 4.0 × 103 to 1.7 × 104 CFU per 100 mL were detected on the nutrient-poor medium spiked with 3rd generation cephalosporins and carbapenems. These numbers were 3 log10 higher compared to ESBL-producing Enterobacteriales of clinical relevance from the same water samples. A MALDI-TOF MS identification of the isolates demonstrated, that the method leads to the isolation of environmentally relevant strains with Pseudomonas, Flavobacterium, and Janthinobacterium being predominant β-lactam resistant genera. Subsequent micro-dilution antibiotic susceptibility tests (Micronaut-S test) confirmed the expression of β-lactamases. The qPCR analysis of surface waters DNA extracts showed the presence of β-lactamase genes (blaTEM, blaCMY-2, blaOXA-48, blaVIM-2, blaSHV, and blaNDM-1) at concentrations of 3.7 (±1.2) to 1.0 (±1.9) log10 gene copies per 100 mL. Overall, the results demonstrate a widespread distribution of cephalosporinase and carbapenemase enzymes in oligotrophic environmental bacteria that have to be considered as a reservoir of ARGs and contribute to the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Lara Stelmaszyk
- TZW: DVGW Technologiezentrum Wasser, Department of Water Microbiology, Karlsruher Straße 84, Karlsruhe, Germany
| | - Claudia Stange
- TZW: DVGW Technologiezentrum Wasser, Department of Water Microbiology, Karlsruher Straße 84, Karlsruhe, Germany
| | - Michael Hügler
- TZW: DVGW Technologiezentrum Wasser, Department of Water Microbiology, Karlsruher Straße 84, Karlsruhe, Germany
| | - Jatinder P.S. Sidhu
- CSIRO Oceans and Atmosphere, Ecosciences Precinct, 41 Boggo Road, Brisbane, Australia
| | - Harald Horn
- Karlsruher Institut für Technologie, Engler-Bunte Institute, Wasserchemie und Wassertechnologie, Engler-Bunte-Ring 9a, Karlsruhe, Germany
| | - Andreas Tiehm
- TZW: DVGW Technologiezentrum Wasser, Department of Water Microbiology, Karlsruher Straße 84, Karlsruhe, Germany
| |
Collapse
|
8
|
Tang H, Liu Z, Hu B, Zhu L. D-Ring Modifications of Tetracyclines Determine Their Ability to Induce Resistance Genes in the Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1338-1348. [PMID: 38157442 DOI: 10.1021/acs.est.3c07559] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The widespread utilization of tetracyclines (TCs) in agriculture and medicine has led to the borderless spread of tetracycline resistance in humans, animals, and the environment, posing huge risks to both the ecosystem and human society. Changes in the functional group modifications resulted in a higher bacteriostatic efficacy of the new generation of TCs, but their effect on the emergence and evolution of antibiotic resistance genes (ARGs) is not yet known. To this end, four TCs from three generations were chosen to compare their structural effects on influencing the evolution of ARGs in soil microbial communities. The findings revealed that low-generation TCs, such as tetracycline and oxytetracycline, exhibited a greater propensity to stimulate the production and proliferation of ARGs than did high-generation tigecycline. Molecular docking analysis demonstrated that modifications of the D-ring functional group determined the binding capacity of TCs to the substrate-binding pocket of transcriptional regulators and efflux pumps mainly involved in drug resistance. This can be further evidenced by reverse transcription-quantitative polymerase chain reaction quantification and intracellular antibiotic accumulation assessment. This study sheds light on the mechanism of the structural effect of antibiotic-induced ARG production from the perspective of compound-protein binding, therefore providing theoretical support for controlling the dissemination of antibiotic resistance.
Collapse
Affiliation(s)
- Huiming Tang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| | - Zishu Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Baolan Hu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
9
|
Abstract
Antibiotic resistance genes predate the therapeutic uses of antibiotics. However, the current antimicrobial resistance crisis stems from our extensive use of antibiotics and the generation of environmental stressors that impose new selective pressure on microbes and drive the evolution of resistant pathogens that now threaten human health. Similar to climate change, this global threat results from human activities that change habitats and natural microbiomes, which in turn interact with human-associated ecosystems and lead to adverse impacts on human health. Human activities that alter our planet at global scales exacerbate the current resistance crisis and exemplify our central role in large-scale changes in which we are both protagonists and architects of our success but also casualties of unanticipated collateral outcomes. As cognizant participants in this ongoing planetary experiment, we are driven to understand and find strategies to curb the ongoing crises of resistance and climate change.
Collapse
Affiliation(s)
- María Mercedes Zambrano
- Corpogen Research Center, Bogotá, Colombia;
- Dirección de Investigaciones y Transferencia de Conocimiento, Universidad Central, Bogotá, Colombia
| |
Collapse
|
10
|
Lin X, Zhang C, Han R, Li S, Peng H, Zhou X, Huang L, Xu Y. Oxytetracycline and heavy metals promote the migration of resistance genes in the intestinal microbiome by plasmid transfer. THE ISME JOURNAL 2023; 17:2003-2013. [PMID: 37700035 PMCID: PMC10579362 DOI: 10.1038/s41396-023-01514-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023]
Abstract
Horizontal gene transfer (HGT) has been considered the most important pathway to introduce antibiotic resistance genes (ARGs), which seriously threatens human health and biological security. The presence of ARGs in the aquatic environment and their effect on the intestinal micro-ecosystem of aquatic animals can occur easily. To investigate the HGT potential and rule of exogenous ARGs in the intestinal flora, a visual conjugative model was developed, including the donor of dual-fluorescent bacterium and the recipient of Xenopus tropicalis intestinal microbiome. Some common pollutants of oxytetracycline (OTC) and three heavy metals (Zn, Cu and Pb) were selected as the stressor. The multi-techniques of flow cytometry (FCM), scanning electron microscopy (SEM), atomic force microscopy (AFM), single-cell Raman spectroscopy with sorting (SCRSS) and indicator analysis were used in this study. The results showed that ARG transfer could occur more easily under stressors. Moreover, the conjugation efficiency mainly depended on the viability of the intestinal bacteria. The mechanisms of OTC and heavy metal stressing conjugation included the upregulation of ompC, traJ, traG and the downregulation of korA gene. Moreover, the enzymatic activities of SOD, CAT, GSH-PX increased and the bacterial surface appearance also changed. The predominant recipient was identified as Citrobacter freundi by SCRSS, in which the abundance and quantity of ARG after conjugation were higher than those before. Therefore, since the diversity of potential recipients in the intestine are very high, the migration of invasive ARGs in the microbiome should be given more attention to prevent its potential risks to public health.
Collapse
Affiliation(s)
- Xiaojun Lin
- School of Environmental Science and Engineering, Guangdong University of Technology, No. 100 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, PR China
| | - Chaonan Zhang
- School of Environmental Science and Engineering, Guangdong University of Technology, No. 100 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, PR China
| | - Ruiqi Han
- School of Environmental Science and Engineering, Guangdong University of Technology, No. 100 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, PR China
| | - Shoupeng Li
- Analysis and Test Center, Guangdong University of Technology, No. 100 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, PR China
| | - Huishi Peng
- School of Environmental Science and Engineering, Guangdong University of Technology, No. 100 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, PR China
| | - Xiao Zhou
- Analysis and Test Center, Guangdong University of Technology, No. 100 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, PR China
| | - Lu Huang
- Analysis and Test Center, Guangdong University of Technology, No. 100 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, PR China
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, No. 100 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, PR China.
| |
Collapse
|
11
|
Gionchetta G, Snead D, Semerad S, Beck K, Pruden A, Bürgmann H. Dynamics of antibiotic resistance markers and Escherichia coli invasion in riverine heterotrophic biofilms facing increasing heat and flow stagnation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 893:164658. [PMID: 37321511 DOI: 10.1016/j.scitotenv.2023.164658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
As motivation to address environmental dissemination of antimicrobial resistance (AMR) is mounting, there is a need to characterize mechanisms by which AMR can propagate under environmental conditions. Here we investigated the effect of temperature and stagnation on the persistence of wastewater-associated antibiotic resistance markers in riverine biofilms and the invasion success of genetically-tagged Escherichia coli. Biofilms grown on glass slides incubated in-situ downstream of a wastewater treatment plant effluent discharge point were transferred to laboratory-scale flumes fed with filtered river water under potentially stressful temperature and flow conditions: recirculation flow at 20 °C, stagnation at 20 °C, and stagnation at 30 °C. After 14 days, quantitative PCR and amplicon sequencing were used to quantify bacteria, biofilms diversity, resistance markers (sul1, sul2, ermB, tetW, tetM, tetB, blaCTX-M-1, intI1) and E. coli. Resistance markers significantly decreased over time regardless of the treatment applied. Although invading E. coli were initially able to colonize the biofilms, its abundance subsequently declined. Stagnation was associated with a shift in biofilm taxonomic composition, but there was no apparent effect of flow conditions or the simulated river-pool warming (30 °C) on AMR persistence or invasion success of E. coli. Results however indicated that antibiotic resistance markers in the riverine biofilms decreased under the experimental conditions in the absence of exposure to external inputs of antibiotics and AMR.
Collapse
Affiliation(s)
- G Gionchetta
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Surface Waters - Research and Management, 6047 Kastanienbaum, Switzerland
| | - D Snead
- Department of Civil & Environmental Engineering, University of Michigan, Ann Arbor, MI, USA; Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - S Semerad
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Surface Waters - Research and Management, 6047 Kastanienbaum, Switzerland
| | - K Beck
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Surface Waters - Research and Management, 6047 Kastanienbaum, Switzerland
| | - A Pruden
- Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - H Bürgmann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Surface Waters - Research and Management, 6047 Kastanienbaum, Switzerland.
| |
Collapse
|
12
|
Flores-Vargas G, Korber DR, Bergsveinson J. Sub-MIC antibiotics influence the microbiome, resistome and structure of riverine biofilm communities. Front Microbiol 2023; 14:1194952. [PMID: 37593545 PMCID: PMC10427767 DOI: 10.3389/fmicb.2023.1194952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
The effects of sub-minimum inhibitory concentrations (sub-MICs) of antibiotics on aquatic environments is not yet fully understood. Here, we explore these effects by employing a replicated microcosm system fed with river water where biofilm communities were continuously exposed over an eight-week period to sub-MIC exposure (1/10, 1/50, and 1/100 MIC) to a mix of common antibiotics (ciprofloxacin, streptomycin, and oxytetracycline). Biofilms were examined using a structure-function approach entailing microscopy and metagenomic techniques, revealing details on the microbiome, resistome, virulome, and functional prediction. A comparison of three commonly used microbiome and resistome databases was also performed. Differences in biofilm architecture were observed between sub-MIC antibiotic treatments, with an overall reduction of extracellular polymeric substances and autotroph (algal and cyanobacteria) and protozoan biomass, particularly at the 1/10 sub-MIC condition. While metagenomic analyses demonstrated that microbial diversity was lowest at the sub-MIC 1/10 antibiotic treatment, resistome diversity was highest at sub-MIC 1/50. This study also notes the importance of benchmarking analysis tools and careful selection of reference databases, given the disparity in detected antimicrobial resistance genes (ARGs) identity and abundance across methods. Ultimately, the most detected ARGs in sub-MICs exposed biofilms were those that conferred resistance to aminoglycosides, tetracyclines, β-lactams, sulfonamides, and trimethoprim. Co-occurrence of microbiome and resistome features consistently showed a relationship between Proteobacteria genera and aminoglycoside ARGs. Our results support the hypothesis that constant exposure to sub-MICs antibiotics facilitate the transmission and promote prevalence of antibiotic resistance in riverine biofilms communities, and additionally shift overall microbial community metabolic function.
Collapse
Affiliation(s)
| | - Darren R. Korber
- Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jordyn Bergsveinson
- Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, Saskatoon, SK, Canada
| |
Collapse
|
13
|
Sanchez-Cid C, Ghaly TM, Gillings MR, Vogel TM. Sub-inhibitory gentamicin pollution induces gentamicin resistance gene integration in class 1 integrons in the environment. Sci Rep 2023; 13:8612. [PMID: 37244902 PMCID: PMC10224954 DOI: 10.1038/s41598-023-35074-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/12/2023] [Indexed: 05/29/2023] Open
Abstract
Antibiotics at sub-inhibitory concentrations are often found in the environment. Here they could impose selective pressure on bacteria, leading to the selection and dissemination of antibiotic resistance, despite being under the inhibitory threshold. The goal of this study was to evaluate the effects of sub-inhibitory concentrations of gentamicin on environmental class 1 integron cassettes in natural river microbial communities. Gentamicin at sub-inhibitory concentrations promoted the integration and selection of gentamicin resistance genes (GmRG) in class 1 integrons after only a one-day exposure. Therefore, sub-inhibitory concentrations of gentamicin induced integron rearrangements, increasing the mobilization potential of gentamicin resistance genes and potentially increasing their dissemination in the environment. This study demonstrates the effects of antibiotics at sub-inhibitory concentrations in the environment and supports concerns about antibiotics as emerging pollutants.
Collapse
Affiliation(s)
- Concepcion Sanchez-Cid
- Environmental Microbial Genomics, UMR 5005 Laboratoire Ampère, CNRS, École Centrale de Lyon, Université de Lyon, Écully, France.
| | - Timothy M Ghaly
- School of Natural Sciences, Macquarie University, NSW, 2109, Australia
| | - Michael R Gillings
- School of Natural Sciences, Macquarie University, NSW, 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, NSW, 2109, Australia
| | - Timothy M Vogel
- Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5557, UMR INRAe 1418, VetAgro Sup, Ecologie Microbienne, F-69622, Villeurbanne, France
| |
Collapse
|
14
|
Adenaya A, Berger M, Brinkhoff T, Ribas-Ribas M, Wurl O. Usage of antibiotics in aquaculture and the impact on coastal waters. MARINE POLLUTION BULLETIN 2023; 188:114645. [PMID: 36724669 DOI: 10.1016/j.marpolbul.2023.114645] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
For decades, coastal marine ecosystems have been threatened by a wide range of anthropogenic pollutants. Recently, there has been increasing concern about the accumulation and impacts of antibiotic compounds on marine ecosystems. However, information regarding the accumulation of antibiotics and the impacts they may have on microbial communities in coastal water bodies and on human health is sparse in literature. Antibiotics from aquacultures are constantly discharged into marine environments via rivers. Large rivers transport tons of antibiotics every year into coastal waters, e.g., 12 tons of sulfonamide by the river Mekong. Here, we discuss a potential influence of such imported antibiotics on bacterial communities in coastal waters. Potential accumulation of antibiotics in the uppermost surface layer of aquatic ecosystems, the so-called sea surface microlayer (SML), is of interest. Because of the ability of the SML to accumulate anthropogenic pollutants, it may serve as a pool for antibiotics and correspondingly also for resistant organisms. Also, due to its biofilm-like structure, the SML could serve as a hotspot for horizontal gene transfer, speeding up the spread of antibiotic resistant strains to encompassing marine environments. The emergence of antibiotic resistant bacteria is a global threat and scientists projected that it could pave the way for the next pandemic that could ravage the world in the next decades. For this reason, it is time to focus research on understanding and minimizing the impact of antibiotics on the sustainability of coastal waters and on the health of humans who depend on coastal resources for food and recreational purposes. Also, knowledge about antibiotics in the SML is necessary to understand the effects they are likely to have on bacterial abundance, diversity, and metabolic activities in coastal water bodies.
Collapse
Affiliation(s)
- Adenike Adenaya
- Center for Marine Sensors, Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Wilhelmshaven, Germany; Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany.
| | - Martine Berger
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Mariana Ribas-Ribas
- Center for Marine Sensors, Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Wilhelmshaven, Germany
| | - Oliver Wurl
- Center for Marine Sensors, Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Wilhelmshaven, Germany.
| |
Collapse
|