1
|
Guo X, Yu P, Guo J, Zhao HP, Lai CY. Viral auxiliary roles in hydrolytic and biosynthetic metabolism regulate prokaryotic microbial interactions in anaerobic digestion. WATER RESEARCH 2025; 274:123140. [PMID: 39824023 DOI: 10.1016/j.watres.2025.123140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/02/2025] [Accepted: 01/12/2025] [Indexed: 01/20/2025]
Abstract
Anaerobic digestion (AD) viruses have gained recognition as significant regulators of microbial interactions within AD communities, yet their ecological roles remain largely unexplored. In this study, we investigated the ecological roles of AD viruses in regulating microbial interactions among syntrophic hosts. We recovered 3921 diverse viral sequences from four full-scale anaerobic digesters and confirmed their widespread presence across 127 global metagenomic sampling sites (with >95 % sequence similarity), underscoring the ubiquity of prokaryotic viruses in AD-related systems. Through the construction of virus-prokaryote interactions (66.8 % validated at the transcriptional level) and analysis of viral-host transcriptional abundances, we identified significant associations between AD viruses and key processes, including hydrolysis, acidogenesis, and methanogenesis. Notably, polyvalent viruses were found to interact with both hydrolytic and fermentative communities. We further characterized viral auxiliary metabolism, hydrolytic substrate spectra, and microbial auxotrophy, showing that viruses not only could enhance the breakdown of complex substrates (e.g., cellulose, chitin, peptidoglycan) but also potentially supported the biosynthesis of essential nutrients (e.g., cysteine, methionine, heme, and cobalamin). These activities were proposed to regulate resource fluxes through alternating lysogenic and lytic cycles. Phylogenetic analysis of viral gene and horizontal gene transfer (HGT) identification suggest that AD viruses employ promiscuous infection on syntrophic hosts, potentially as an adaptive evolutionary strategy in the AD ecosystem. This study provides new insights into the ecological roles of AD viruses, highlighting their potential impact on the stability and functionality of AD systems.
Collapse
Affiliation(s)
- Xu Guo
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Pingfeng Yu
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), the University of Queensland, St. Lucia, Queensland 4072, Australia
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Chun-Yu Lai
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Xiong Z, Qiu X, Xiang X, Cai L, Wang N, Huang X, Wang H. Distance to the water table shapes the diversity and activity of DNA and RNA viruses in a subalpine peatland. ENVIRONMENT INTERNATIONAL 2025; 197:109363. [PMID: 40080958 DOI: 10.1016/j.envint.2025.109363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/17/2025] [Accepted: 03/01/2025] [Indexed: 03/15/2025]
Abstract
Peatlands are essential reservoirs of carbon and critical zones for the cycling of greenhouse gases on Earth. Their ecological functions are primarily governed by the microbial communities inhabiting them, which vary with hydrological conditions. However, the roles of viruses in peatland ecosystems remain poorly understood despite their abundance and ubiquity. To address this gap, viral communities, their ecological roles, and their responses to environmental factors were explored using viromics, metatranscriptomics, and physicochemical property analyses of nine peat sediments collected from various layers of three profiles with different water table levels in the Dajiuhu Peatland, central China. This study revealed that the distance to the water table (DWT) significantly influenced the composition and function of viral communities by altering the levels of redox potential and total organic carbon, which in turn affected methane (CH4) concentrations in pore water. Furthermore, a notable abundance of putative auxiliary metabolic genes associated with methane, nitrogen, and sulfur metabolism was identified in peatland DNA viruses, with their community composition strongly regulated by DWT. Additionally, functional genes related to oxidative phosphorylation and cysteine synthesis were detected for the first time in peatland RNA viruses. This study advances our comprehension of how hydrological conditions affect viral communities in peatlands, provides new insights into the impact of viruses on the CH4 cycle, and serves as a crucial reference for future investigations into the ecological roles of viruses.
Collapse
Affiliation(s)
- Ziye Xiong
- State Key Laboratory of Geomicrobiology and Environmental Changes, China University of Geosciences (Wuhan), Wuhan 430078, China
| | - Xuan Qiu
- State Key Laboratory of Geomicrobiology and Environmental Changes, China University of Geosciences (Wuhan), Wuhan 430078, China.
| | - Xing Xiang
- College of Life Science, Shangrao Normal University, Shangrao 334099, China
| | - Lanlan Cai
- Earth, Ocean and Atmospheric Sciences Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511453, China
| | | | - Xianyu Huang
- State Key Laboratory of Geomicrobiology and Environmental Changes, China University of Geosciences (Wuhan), Wuhan 430078, China
| | - Hongmei Wang
- State Key Laboratory of Geomicrobiology and Environmental Changes, China University of Geosciences (Wuhan), Wuhan 430078, China
| |
Collapse
|
3
|
Zhou Z, Liu S, Saleem M, Liu F, Hu R, Su H, Dong D, Luo Z, Wu Y, Zhang Y, He Z, Wang C. Unraveling phase-dependent variations of viral community, virus-host linkage, and functional potential during manure composting process. BIORESOURCE TECHNOLOGY 2025; 419:132081. [PMID: 39826761 DOI: 10.1016/j.biortech.2025.132081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
The temporal dynamics of bacterial and fungal communities significantly impact the manure composting process, yet viral communities are often underexplored. Bulk metagenomes, viromes, metatranscriptomes, and metabolomes were integrated to investigate dynamics of double-stranded DNA (dsDNA) virus and virus-host interactions throughout a 63-day composting process. A total of 473 viral operational taxonomic units (vOTUs), predominantly Caudoviricetes, showed distinct phase-dependent differentiation. In phase I (initial-mesophilic), viruses targeted Gammaproteobacteria and Firmicutes, utilizing restriction-modification (RM) systems. In phase II (thermophilic-maturing), viruses infected Alphaproteobacteria, Chloroflexi, and Planctomycetes, employing CRISPR-Cas systems. Lysogenic and lytic viruses exerting differential effects on bacterial pathogens across phases. Additionally, six types of auxiliary metabolic genes (AMGs) related to galactose and cysteine metabolisms were identified. The homologous lineages of AMGs with bacterial genes, along with the significant temporal correlation observed between virus-host-metabolite interactions, underscore the critical yet often overlooked role of viral communities in modulating microbial metabolisms and pathogenesis within composting ecosystems.
Collapse
Affiliation(s)
- Zhengyuan Zhou
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Songfeng Liu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA
| | - Fei Liu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Ruiwen Hu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Hualong Su
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
| | - Da Dong
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Lin'an 311300, China
| | - Zhiwen Luo
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, China
| | - Yongjie Wu
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, China
| | - Yan Zhang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Cheng Wang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
4
|
Butturini A, Benaiges-Fernandez R, Fors O, García-Castellanos D. Potential Habitability of Present-Day Martian Subsurface for Earth-Like Methanogens. ASTROBIOLOGY 2025; 25:253-268. [PMID: 40047175 DOI: 10.1089/ast.2024.0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
The intense debate about the presence of methane in the martian atmosphere has stimulated the study of methanogenic species that are adapted to terrestrial habitats that resemble martian environments. We examined the environmental conditions, energy sources, and ecology of terrestrial methanogens that thrive in deep crystalline fractures, subsea hypersaline lakes, and subglacial water bodies, considered analogs of a hypothetical habitable martian subsurface. We combined this information with recent data on the distribution of buried water/ice and radiogenic elements on Mars, and with models of the subsurface thermal regime of this planet, we identified a 4.3-8.8 km-deep regolith habitat at the midlatitude location of Acidalia Planitia that might fit the requirements for hosting putative martian methanogens analogous to the methanogenic families, Methanosarcinaceae and Methanomicrobiaceae.
Collapse
Affiliation(s)
- A Butturini
- Departament de Biologia Evolutiva, Ecologia y Ciències Ambientals, Universitat de Barcelona, Barcelona, Spain
| | - R Benaiges-Fernandez
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - O Fors
- Departament de Física Quàntica i Astrofísica, Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, Barcelona, Spain
| | - D García-Castellanos
- Geosciences Barcelona (GEO3BCN), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
5
|
Wang Y, Tong D, Yu H, Zhou Y, Tang C, Dahlgren RA, Xu J. Viral involvement in microbial anaerobic methane oxidation-mediated arsenic mobilization in paddy soil. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136758. [PMID: 39644851 DOI: 10.1016/j.jhazmat.2024.136758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Anaerobic oxidation of methane (AOM) facilitates arsenic (As) mobilization, posing a significant environmental risk. Soil viruses potentially participate in the microbial AOM process, yet their roles in methane-mediated As mobilization of paddy soil remain elusive. Here, an anaerobic microcosm study was conducted by inoculating microbial suspension with extracellular free virus and mitomycin C (MC)-induced virus, along with 13CH4 injection. The results showed that extracellular free virus enhanced while MC-induced virus suppressed 13CH4-mediated As mobilization. During the AOM process, both viruses inhibited 13CH4 oxidation to 13CO2. However, the extracellular free virus suppressed whereas the MC-induced virus enhanced 13CH4 consumption, likely attributed to the viral influence on the ANME-2d abundance. The methane consumption differences were inferred to influence As reduction, as evidenced by a strong correlation between As(III) and 13CH4 consumption concentrations. Moreover, virus-mediated methane assimilation into microbial biomass carbon influenced the overall microbial population. An increased abundance of Geobacter in the extracellular free virus treatment elevated net As(III) concentrations (up to 260 %) relative to treatment without virus in the presence of 13CH4. In contrast, MC-induced virus led to a net 122 % reduction in As(III) concentration due to decreased Geobacter abundance. These findings provide new insights into soil viruses in microbial AOM-driven As mobilization, highlighting their crucial functions in soil ecosystems.
Collapse
Affiliation(s)
- Youjing Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Di Tong
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Haodan Yu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Yujie Zhou
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Caixian Tang
- La Trobe Institute for Sustainable Agriculture and Food, Department of Animal, Plant & Soil Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Wang W, Wang H, Zou X, Liu Y, Zheng K, Chen X, Wang X, Sun S, Yang Y, Wang M, Shao H, Liang Y. A novel virus potentially evolved from the N4-like viruses represents a unique viral family: Poorviridae. Appl Environ Microbiol 2024; 90:e0155924. [PMID: 39570022 DOI: 10.1128/aem.01559-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/27/2024] [Indexed: 11/22/2024] Open
Abstract
Pseudoalteromonas are widely distributed in marine extreme habitats and exhibit diverse extracellular protease activity, which is essential for marine biogeochemical cycles. However, our understanding of viruses that infect Pseudoalteromonas remains limited. This study isolated a virus infecting Pseudoalteromonas nigrifaciens from Xiaogang in Qingdao, China. vB_PunP_Y3 comprises a linear, double-strand DNA genome with a length of 48,854 bp, encoding 52 putative open reading frames. Transmission electron microscopy demonstrates the short-tailed morphology of vB_PunP_Y3. Phylogenetic and genome-content-based analysis indicate that vB_PunP_Y3 represents a novel virus family named as Poorviridae, along with three high-quality uncultivated viral genomes. Biogeographical analyses show that Poorviridae is distributed across five viral ecological zones, and is predominantly detected in the Antarctic, Arctic, and bathypelagic zones. Comparative genomics analyses identified three of the seven hallmark proteins of N4-like viruses (DNA polymerase, major capsid protein, and virion-encapsulated RNA polymerase) from vB_PunP_Y3, combing with the protein tertiary structures of the major capsid protein, suggesting that vB_PunP_Y3 might evolve from the N4-like viruses. IMPORTANCE vB_PunP_Y3 is a unique strain containing three of the seven hallmark proteins of N4-like viruses, but is grouped into a novel family-level viral cluster with three uncultured viruses from metagenomics, named Poorviridae. This study enhanced the understanding about the genetic diversity, evolution, and distribution of Pseudoalteromonas viruses and provided insights into the novel evolution mechanism of marine viruses.
Collapse
Affiliation(s)
- Wei Wang
- College of Marine Life Sciences, MoE Key Laboratory of Evolution & Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Hongmin Wang
- College of Marine Life Sciences, MoE Key Laboratory of Evolution & Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Xiao Zou
- Xiangdong Hospital, Hunan Normal University, Liling, China
| | - Yundan Liu
- College of Marine Life Sciences, MoE Key Laboratory of Evolution & Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Kaiyang Zheng
- College of Marine Life Sciences, MoE Key Laboratory of Evolution & Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Xin Chen
- College of Marine Life Sciences, MoE Key Laboratory of Evolution & Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Xinyi Wang
- College of Marine Life Sciences, MoE Key Laboratory of Evolution & Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Shujuan Sun
- College of Marine Life Sciences, MoE Key Laboratory of Evolution & Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Yang Yang
- College of Marine Life Sciences, MoE Key Laboratory of Evolution & Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Min Wang
- College of Marine Life Sciences, MoE Key Laboratory of Evolution & Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Haide College, Ocean University of China, Qingdao, China
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongbing Shao
- College of Marine Life Sciences, MoE Key Laboratory of Evolution & Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Yantao Liang
- College of Marine Life Sciences, MoE Key Laboratory of Evolution & Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| |
Collapse
|
7
|
Huang X, Braga LPP, Ding C, Yang B, Ge T, Di H, He Y, Xu J, Philippot L, Li Y. Impact of Viruses on Prokaryotic Communities and Greenhouse Gas Emissions in Agricultural Soils. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407223. [PMID: 39373699 DOI: 10.1002/advs.202407223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/09/2024] [Indexed: 10/08/2024]
Abstract
Viruses are abundant and ubiquitous in soil, but their importance in modulating greenhouse gas (GHG) emissions in terrestrial ecosystems remains largely unknown. Here, various loads of viral communities are introduced into paddy soils with different fertilization histories via a reciprocal transplant approach to study the role of viruses in regulating greenhouse gas emissions and prokaryotic communities. The results showed that the addition of viruses has a strong impact on methane (CH4) and nitrous oxide (N2O) emissions and, to a minor extent, carbon dioxide (CO2) emissions, along with dissolved carbon and nitrogen pools, depending on soil fertilization history. The addition of a high viral load resulted in a decrease in microbial biomass carbon (MBC) by 31.4%, with changes in the relative abundance of 16.6% of dominant amplicon sequence variants (ASVs) in comparison to control treatments. More specifically, large effects of viral pressure are observed on some specific microbial communities with decreased relative abundance of prokaryotes that dissimilate sulfur compounds and increased relative abundance of Nanoarchaea. Structural equation modeling further highlighted the differential direct and indirect effects of viruses on CO2, N2O, and CH4 emissions. These findings underpin the understanding of the complex microbe-virus interactions and advance current knowledge on soil virus ecology.
Collapse
Affiliation(s)
- Xing Huang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lucas P P Braga
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Chenxiao Ding
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bokai Yang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tida Ge
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Hongjie Di
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan He
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Laurent Philippot
- Université Bourgogne, INRAE, Institut Agro Dijon, Agroécologie, Dijon, 21000, France
| | - Yong Li
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
8
|
Robinson D, Morgan-Kiss RM, Wang Z, Takacs-Vesbach C. Antarctic lake viromes reveal potential virus associated influences on nutrient cycling in ice-covered lakes. Front Microbiol 2024; 15:1422941. [PMID: 39318431 PMCID: PMC11421388 DOI: 10.3389/fmicb.2024.1422941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/15/2024] [Indexed: 09/26/2024] Open
Abstract
The McMurdo Dry Valleys (MDVs) of Antarctica are a mosaic of extreme habitats which are dominated by microbial life. The MDVs include glacial melt holes, streams, lakes, and soils, which are interconnected through the transfer of energy and flux of inorganic and organic material via wind and hydrology. For the first time, we provide new data on the viral community structure and function in the MDVs through metagenomics of the planktonic and benthic mat communities of Lakes Bonney and Fryxell. Viral taxonomic diversity was compared across lakes and ecological function was investigated by characterizing auxiliary metabolic genes (AMGs) and predicting viral hosts. Our data suggest that viral communities differed between the lakes and among sites: these differences were connected to microbial host communities. AMGs were associated with the potential augmentation of multiple biogeochemical processes in host, most notably with phosphorus acquisition, organic nitrogen acquisition, sulfur oxidation, and photosynthesis. Viral genome abundances containing AMGs differed between the lakes and microbial mats, indicating site specialization. Using procrustes analysis, we also identified significant coupling between viral and bacterial communities (p = 0.001). Finally, host predictions indicate viral host preference among the assembled viromes. Collectively, our data show that: (i) viruses are uniquely distributed through the McMurdo Dry Valley lakes, (ii) their AMGs can contribute to overcoming host nutrient limitation and, (iii) viral and bacterial MDV communities are tightly coupled.
Collapse
Affiliation(s)
- David Robinson
- Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | | | - Zhong Wang
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- School of Natural Sciences, University of California, Merced, Merced, CA, United States
| | | |
Collapse
|
9
|
Sun CL, Pratama AA, Gazitúa MC, Cronin D, McGivern BB, Wainaina JM, Vik DR, Zayed AA, Bolduc B, Wrighton KC, Rich VI, Sullivan MB. Virus ecology and 7-year temporal dynamics across a permafrost thaw gradient. Environ Microbiol 2024; 26:e16665. [PMID: 39101434 DOI: 10.1111/1462-2920.16665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/16/2024] [Indexed: 08/06/2024]
Abstract
Soil microorganisms are pivotal in the global carbon cycle, but the viruses that affect them and their impact on ecosystems are less understood. In this study, we explored the diversity, dynamics, and ecology of soil viruses through 379 metagenomes collected annually from 2010 to 2017. These samples spanned the seasonally thawed active layer of a permafrost thaw gradient, which included palsa, bog, and fen habitats. We identified 5051 virus operational taxonomic units (vOTUs), doubling the known viruses for this site. These vOTUs were largely ephemeral within habitats, suggesting a turnover at the vOTU level from year to year. While the diversity varied by thaw stage and depth-related patterns were specific to each habitat, the virus communities did not significantly change over time. The abundance ratios of virus to host at the phylum level did not show consistent trends across the thaw gradient, depth, or time. To assess potential ecosystem impacts, we predicted hosts in silico and found viruses linked to microbial lineages involved in the carbon cycle, such as methanotrophy and methanogenesis. This included the identification of viruses of Candidatus Methanoflorens, a significant global methane contributor. We also detected a variety of potential auxiliary metabolic genes, including 24 carbon-degrading glycoside hydrolases, six of which are uniquely terrestrial. In conclusion, these long-term observations enhance our understanding of soil viruses in the context of climate-relevant processes and provide opportunities to explore their role in terrestrial carbon cycling.
Collapse
Affiliation(s)
- Christine L Sun
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
- National Science Foundation EMERGE Biology Integration Institute, The Ohio State University, Columbus, USA
| | - Akbar Adjie Pratama
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
- National Science Foundation EMERGE Biology Integration Institute, The Ohio State University, Columbus, USA
| | | | - Dylan Cronin
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
- National Science Foundation EMERGE Biology Integration Institute, The Ohio State University, Columbus, USA
| | - Bridget B McGivern
- National Science Foundation EMERGE Biology Integration Institute, The Ohio State University, Columbus, USA
- Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - James M Wainaina
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
| | - Dean R Vik
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
- National Science Foundation EMERGE Biology Integration Institute, The Ohio State University, Columbus, USA
| | - Ahmed A Zayed
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
- National Science Foundation EMERGE Biology Integration Institute, The Ohio State University, Columbus, USA
| | - Benjamin Bolduc
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
- National Science Foundation EMERGE Biology Integration Institute, The Ohio State University, Columbus, USA
| | - Kelly C Wrighton
- National Science Foundation EMERGE Biology Integration Institute, The Ohio State University, Columbus, USA
- Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Virginia I Rich
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
- National Science Foundation EMERGE Biology Integration Institute, The Ohio State University, Columbus, USA
- Byrd Polar and Climate Research Center, The Ohio State University, Columbus, Ohio, USA
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
- National Science Foundation EMERGE Biology Integration Institute, The Ohio State University, Columbus, USA
- Byrd Polar and Climate Research Center, The Ohio State University, Columbus, Ohio, USA
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
10
|
Demin KA, Prazdnova EV, Minkina TM, Gorovtsov AV. Sulfate-reducing bacteria unearthed: ecological functions of the diverse prokaryotic group in terrestrial environments. Appl Environ Microbiol 2024; 90:e0139023. [PMID: 38551370 PMCID: PMC11022543 DOI: 10.1128/aem.01390-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024] Open
Abstract
Sulfate-reducing prokaryotes (SRPs) are essential microorganisms that play crucial roles in various ecological processes. Even though SRPs have been studied for over a century, there are still gaps in our understanding of their biology. In the past two decades, a significant amount of data on SRP ecology has been accumulated. This review aims to consolidate that information, focusing on SRPs in soils, their relation to the rare biosphere, uncultured sulfate reducers, and their interactions with other organisms in terrestrial ecosystems. SRPs in soils form part of the rare biosphere and contribute to various processes as a low-density population. The data reveal a diverse range of sulfate-reducing taxa intricately involved in terrestrial carbon and sulfur cycles. While some taxa like Desulfitobacterium and Desulfosporosinus are well studied, others are more enigmatic. For example, members of the Acidobacteriota phylum appear to hold significant importance for the terrestrial sulfur cycle. Many aspects of SRP ecology remain mysterious, including sulfate reduction in different bacterial phyla, interactions with bacteria and fungi in soils, and the existence of soil sulfate-reducing archaea. Utilizing metagenomic, metatranscriptomic, and culture-dependent approaches will help uncover the diversity, functional potential, and adaptations of SRPs in the global environment.
Collapse
|
11
|
Ni S, Lv W, Ji Z, Wang K, Mei Y, Li Y. Progress of Crude Oil Gasification Technology Assisted by Microorganisms in Reservoirs. Microorganisms 2024; 12:702. [PMID: 38674646 PMCID: PMC11051786 DOI: 10.3390/microorganisms12040702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/17/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Crude oil gasification bacteria, including fermenting bacteria, hydrocarbon-oxidizing bacteria, reducing bacteria, and methanogenic bacteria, participate in multi-step reactions involving initial activation, intermediate metabolism, and the methanogenesis of crude oil hydrocarbons. These bacteria degrade crude oil into smaller molecules such as hydrogen, carbon dioxide, acetic acid, and formic acid. Ultimately, they convert it into methane, which can be utilized or stored as a strategic resource. However, the current challenges in crude oil gasification include long production cycles and low efficiency. This paper provides a summary of the microbial flora involved in crude oil gasification, the gasification metabolism pathways within reservoirs, and other relevant information. It specifically focuses on analyzing the factors that affect the efficiency of crude oil gasification metabolism and proposes suggestions for improving this efficiency. These studies deepen our understanding of the potential of reservoir ecosystems and provide valuable insights for future reservoir development and management.
Collapse
Affiliation(s)
- Shumin Ni
- University of Chinese Academy of Sciences, Beijing 100049, China; (S.N.); (K.W.); (Y.M.); (Y.L.)
- Institute of Porous Flow & Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China;
| | - Weifeng Lv
- Institute of Porous Flow & Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China;
- State Key Laboratory of Enhanced Oil Recovery, Research Institute of Petroleum Exploration and Development, CNPC, Beijing 100083, China
| | - Zemin Ji
- Institute of Porous Flow & Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China;
| | - Kai Wang
- University of Chinese Academy of Sciences, Beijing 100049, China; (S.N.); (K.W.); (Y.M.); (Y.L.)
- Institute of Porous Flow & Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China;
| | - Yuhao Mei
- University of Chinese Academy of Sciences, Beijing 100049, China; (S.N.); (K.W.); (Y.M.); (Y.L.)
- Institute of Porous Flow & Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China;
| | - Yushu Li
- University of Chinese Academy of Sciences, Beijing 100049, China; (S.N.); (K.W.); (Y.M.); (Y.L.)
- Institute of Porous Flow & Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China;
| |
Collapse
|
12
|
Zhong ZP, Du J, Köstlbacher S, Pjevac P, Orlić S, Sullivan MB. Viral potential to modulate microbial methane metabolism varies by habitat. Nat Commun 2024; 15:1857. [PMID: 38424049 PMCID: PMC10904782 DOI: 10.1038/s41467-024-46109-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Methane is a potent greenhouse gas contributing to global warming. Microorganisms largely drive the biogeochemical cycling of methane, yet little is known about viral contributions to methane metabolism (MM). We analyzed 982 publicly available metagenomes from host-associated and environmental habitats containing microbial MM genes, expanding the known MM auxiliary metabolic genes (AMGs) from three to 24, including seven genes exclusive to MM pathways. These AMGs are recovered on 911 viral contigs predicted to infect 14 prokaryotic phyla including Halobacteriota, Methanobacteriota, and Thermoproteota. Of those 24, most were encoded by viruses from rumen (16/24), with substantially fewer by viruses from environmental habitats (0-7/24). To search for additional MM AMGs from an environmental habitat, we generate metagenomes from methane-rich sediments in Vrana Lake, Croatia. Therein, we find diverse viral communities, with most viruses predicted to infect methanogens and methanotrophs and some encoding 13 AMGs that can modulate host metabolisms. However, none of these AMGs directly participate in MM pathways. Together these findings suggest that the extent to which viruses use AMGs to modulate host metabolic processes (e.g., MM) varies depending on the ecological properties of the habitat in which they dwell and is not always predictable by habitat biogeochemical properties.
Collapse
Affiliation(s)
- Zhi-Ping Zhong
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
| | - Jingjie Du
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Division of Nutritional Science, Cornell University, Ithaca, NY, USA
| | - Stephan Köstlbacher
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Petra Pjevac
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| | - Sandi Orlić
- Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia.
- Center of Excellence for Science and Technology-Integration of Mediterranean Region, Zagreb, Croatia.
| | - Matthew B Sullivan
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA.
- Department of Microbiology, Ohio State University, Columbus, OH, USA.
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA.
- Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
13
|
Minch B, Chakraborty M, Purkis S, Rodrigue M, Moniruzzaman M. Active prokaryotic and eukaryotic viral ecology across spatial scale in a deep-sea brine pool. ISME COMMUNICATIONS 2024; 4:ycae084. [PMID: 39021441 PMCID: PMC11252502 DOI: 10.1093/ismeco/ycae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/03/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024]
Abstract
Deep-sea brine pools represent rare, extreme environments, providing unique insight into the limits of life on Earth, and by analogy, the plausibility of life beyond it. A distinguishing feature of many brine pools is presence of thick microbial mats that develop at the brine-seawater interface. While these bacterial and archaeal communities have received moderate attention, viruses and their host interactions in these environments remain underexplored. To bridge this knowledge gap, we leveraged metagenomic and metatranscriptomic data from three distinct zones within the NEOM brine pool system (Gulf of Aqaba) to reveal the active viral ecology around the pools. We report a remarkable diversity and activity of viruses infecting microbial hosts in this environment, including giant viruses, RNA viruses, jumbo phages, and Polinton-like viruses. Many of these form distinct clades-suggesting presence of untapped viral diversity in this ecosystem. Brine pool viral communities exhibit zone-specific differences in infection strategy-with lysogeny dominating the bacterial mat further away from the pool's center. We linked viruses to metabolically important prokaryotes-including association between a jumbo phage and a key manganese-oxidizing and arsenic-metabolizing bacterium. These foundational results illuminate the role of viruses in modulating brine pool microbial communities and biogeochemistry through revealing novel viral diversity, host associations, and spatial heterogeneity in viral dynamics.
Collapse
Affiliation(s)
- Benjamin Minch
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL 33149, United States
| | - Morgan Chakraborty
- Department of Marine Geosciences, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL 33149, United States
| | - Sam Purkis
- Department of Marine Geosciences, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL 33149, United States
| | | | - Mohammad Moniruzzaman
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL 33149, United States
| |
Collapse
|
14
|
Abadikhah M, Persson F, Farewell A, Wilén BM, Modin O. Viral diversity and host associations in microbial electrolysis cells. ISME COMMUNICATIONS 2024; 4:ycae143. [PMID: 39660013 PMCID: PMC11629682 DOI: 10.1093/ismeco/ycae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/24/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024]
Abstract
In microbial electrolysis cells (MECs), microbial communities catalyze conversions between dissolved organic compounds, electrical energy, and energy carriers such as hydrogen and methane. Bacteria and archaea, which catalyze reactions on the anode and cathode of MECs, interact with phages; however, phage communities have previously not been examined in MECs. In this study, we used metagenomic sequencing to study prokaryotes and phages in nine MECs. A total of 852 prokaryotic draft genomes representing 278 species, and 1476 phage contigs representing 873 phage species were assembled. Among high quality prokaryotic genomes (>95% completion), 55% carried a prophage, and the three Desulfobacterota spp. that dominated the anode communities all carried prophages. Geobacter anodireducens, one of the bacteria dominating the anode communities, carried a CRISPR spacer showing evidence of a previous infection by a Peduoviridae phage present in the liquid of some MECs. Methanobacteriaceae spp. and an Acetobacterium sp., which dominated the cathodes, had several associations with Straboviridae spp. The results of this study show that phage communities in MECs are diverse and interact with functional microorganisms on both the anode and cathode.
Collapse
Affiliation(s)
- Marie Abadikhah
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Sven Hultins gata 6, SE-412 96 Gothenburg, Sweden
| | - Frank Persson
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Sven Hultins gata 6, SE-412 96 Gothenburg, Sweden
| | - Anne Farewell
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Britt-Marie Wilén
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Sven Hultins gata 6, SE-412 96 Gothenburg, Sweden
| | - Oskar Modin
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Sven Hultins gata 6, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
15
|
Aryee G, Luecke SM, Dahlen CR, Swanson KC, Amat S. Holistic View and Novel Perspective on Ruminal and Extra-Gastrointestinal Methanogens in Cattle. Microorganisms 2023; 11:2746. [PMID: 38004757 PMCID: PMC10673468 DOI: 10.3390/microorganisms11112746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Despite the extensive research conducted on ruminal methanogens and anti-methanogenic intervention strategies over the last 50 years, most of the currently researched enteric methane (CH4) abatement approaches have shown limited efficacy. This is largely because of the complex nature of animal production and the ruminal environment, host genetic variability of CH4 production, and an incomplete understanding of the role of the ruminal microbiome in enteric CH4 emissions. Recent sequencing-based studies suggest the presence of methanogenic archaea in extra-gastrointestinal tract tissues, including respiratory and reproductive tracts of cattle. While these sequencing data require further verification via culture-dependent methods, the consistent identification of methanogens with relatively greater frequency in the airway and urogenital tract of cattle, as well as increasing appreciation of the microbiome-gut-organ axis together highlight the potential interactions between ruminal and extra-gastrointestinal methanogenic communities. Thus, a traditional singular focus on ruminal methanogens may not be sufficient, and a holistic approach which takes into consideration of the transfer of methanogens between ruminal, extra-gastrointestinal, and environmental microbial communities is of necessity to develop more efficient and long-term ruminal CH4 mitigation strategies. In the present review, we provide a holistic survey of the methanogenic archaea present in different anatomical sites of cattle and discuss potential seeding sources of the ruminal methanogens.
Collapse
Affiliation(s)
- Godson Aryee
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA; (G.A.); (S.M.L.)
| | - Sarah M. Luecke
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA; (G.A.); (S.M.L.)
| | - Carl R. Dahlen
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58102, USA; (C.R.D.); (K.C.S.)
| | - Kendall C. Swanson
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58102, USA; (C.R.D.); (K.C.S.)
| | - Samat Amat
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA; (G.A.); (S.M.L.)
| |
Collapse
|
16
|
Zhang X, Zhang C, Liu Y, Zhang R, Li M. Non-negligible roles of archaea in coastal carbon biogeochemical cycling. Trends Microbiol 2022; 31:586-600. [PMID: 36567186 DOI: 10.1016/j.tim.2022.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 12/25/2022]
Abstract
Coastal zones are among the world's most productive ecosystems. They store vast amounts of organic carbon, as 'blue carbon' reservoirs, and impact global climate change. Archaeal communities are integral components of coastal microbiomes but their ecological roles are often overlooked. However, archaeal diversity, metabolism, evolution, and interactions, revealed by recent studies using rapidly developing cutting-edge technologies, place archaea as important players in coastal carbon biogeochemical cycling. We here summarize the latest advances in the understanding of archaeal carbon cycling processes in coastal ecosystems, specifically, archaeal involvement in CO2 fixation, organic biopolymer transformation, and methane metabolism. We also showcase the potential to use of archaeal communities to increase carbon sequestration and reduce methane production, with implications for mitigating climate change.
Collapse
Affiliation(s)
- Xinxu Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Cuijing Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Yang Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Rui Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China.
| |
Collapse
|