1
|
Nishimura M, Takahashi K, Hosokawa M. Recent advances in single-cell RNA sequencing of bacteria: Techniques, challenges, and applications. J Biosci Bioeng 2025; 139:341-346. [PMID: 39984340 DOI: 10.1016/j.jbiosc.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/23/2025]
Abstract
Single-cell RNA sequencing (scRNA-seq) has revolutionized our understanding of cellular heterogeneity in complex biological systems. While this technology has been widely applied to eukaryotic cells, its adaptation to bacterial systems has been challenging due to the unique characteristics of bacterial transcripts. This review surveys the recent developments in bacterial scRNA-seq techniques, highlighting the technical challenges, methodological innovations, and emerging applications in microbiology. We discuss the key differences between eukaryotic and bacterial RNA-seq approaches, focusing on the strategies to overcome limitations such as the lack of poly-A tails in bacterial mRNAs and the low RNA content in individual bacterial cells. The review covers various bacterial scRNA-seq methods, including plate-based, split-pool barcoding, and droplet-based techniques, comparing their strengths and limitations in terms of sensitivity, throughput, and applicability to different bacterial species. Furthermore, we explore the biological insights gained from these techniques, such as identifying rare cell states, characterization of antibiotic responses, and analysis of bacterial communities. Finally, we discuss future perspectives and potential applications of bacterial scRNA-seq in understanding microbial physiology, host-pathogen interactions, and complex microbial ecosystems. This comprehensive overview aims to provide researchers with a clear understanding of the current state and future directions of single-cell transcriptomics in bacteria.
Collapse
Affiliation(s)
- Mika Nishimura
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Kazuki Takahashi
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Masahito Hosokawa
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan; Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan; Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| |
Collapse
|
2
|
Matsumura E, Kato H, Hara S, Ohbayashi T, Ito K, Shingubara R, Kawakami T, Mitsunobu S, Saeki T, Tsuda S, Minamisawa K, Wagai R. Single-cell genomics of single soil aggregates: methodological assessment and potential implications with a focus on nitrogen metabolism. Front Microbiol 2025; 16:1557188. [PMID: 40260087 PMCID: PMC12010503 DOI: 10.3389/fmicb.2025.1557188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/05/2025] [Indexed: 04/23/2025] Open
Abstract
Soil particles in plant rooting zones are largely clustered to form porous structural units called aggregates where highly diverse microorganisms inhabit and drive biogeochemical cycling. The complete extraction of microbial cells and DNA from soil is a substantial task as certain microorganisms exhibit strong adhesion to soil surfaces and/or inhabit deep within aggregates. However, the degree of aggregate dispersion and the efficacy of extraction have rarely been examined, and thus, adequate cell extraction methods from soil remain unclear. We aimed to develop an optimal method of cell extraction for single-cell genomics (SCG) analysis of single soil aggregates by focusing on water-stable macroaggregates (diameter: 5.6-8.2 mm) from the topsoil of cultivated Acrisol. We postulated that the extraction of microorganisms with distinct taxonomy and functions could be achieved depending on the degree of soil aggregate dispersion. To test this idea, we used six individual aggregates and performed both SCG sequencing and amplicon analysis. While both bead-vortexing and sonication dispersion techniques improved the extractability of bacterial cells compared to previous ones, the sonication technique led to more efficient dispersion and yielded a higher number and more diverse microorganisms than the bead technique. Furthermore, the analyses of nitrogen cycling and exopolysaccharides-related genes suggested that the sonication-assisted extraction led to the greater recovery of microorganisms strongly attached to soil particles and/or inhabited the aggregate subunits that were more physically stable (e.g., aggregate core). Further SCG analysis revealed that all six aggregates held intact microorganisms holding the genes (potentials) to convert nitrate into all possible nitrogen forms while some low-abundance genes showed inter-aggregate heterogeneity. Overall, all six aggregates studied showed similarities in pore characteristics, phylum-level composition, and microbial functional redundancy. Together, these results suggest that water-stable macroaggregates may act as a functional unit in soil and show potential as a useful experimental unit in soil microbial ecology. Our study also suggests that conventional methods employed for the extraction of cells and DNA may not be optimal. The findings of this study emphasize the necessity of advancing extraction methodologies to facilitate a more comprehensive understanding of microbial diversity and function in soil environments.
Collapse
Affiliation(s)
- Emi Matsumura
- Institute for Agro-Environmental Sciences (NIAES), National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Hiromi Kato
- Graduate School of Life Science, Tohoku University, Sendai, Japan
| | - Shintaro Hara
- Institute for Agro-Environmental Sciences (NIAES), National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Tsubasa Ohbayashi
- Institute for Agro-Environmental Sciences (NIAES), National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Koji Ito
- Institute for Agro-Environmental Sciences (NIAES), National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Ryo Shingubara
- Research Center for Advanced Analysis (NAAC), National Agriculture and Food Research Organization (NARO), Sendai, Japan
| | - Tomoya Kawakami
- Institute for Agro-Environmental Sciences (NIAES), National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | | | | | | | | | - Rota Wagai
- Institute for Agro-Environmental Sciences (NIAES), National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| |
Collapse
|
3
|
Jing X, Gong Y, Diao Z, Ma Y, Meng Y, Chen J, Ren Y, Liang Y, Li Y, Sun W, Zhang J, Ji Y, Cong Z, Li S, Ma B, Cui Z, Ma L, Xu J. Phylogeny-metabolism dual-directed single-cell genomics for dissecting and mining ecosystem function by FISH-scRACS-seq. Innovation (N Y) 2025; 6:100759. [PMID: 40098675 PMCID: PMC11910816 DOI: 10.1016/j.xinn.2024.100759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 12/09/2024] [Indexed: 03/19/2025] Open
Abstract
Microbiome-wide association studies (MWASs) have uncovered microbial markers linked to ecosystem traits, but the mechanisms underlying their functions can remain elusive. This is largely due to challenges in validating their in situ metabolic activities and tracing such activities to individual genomes. Here, we introduced a phylogeny-metabolism dual-directed single-cell genomics approach called fluorescence-in situ-hybridization-guided single-cell Raman-activated sorting and sequencing (FISH-scRACS-seq). It directly localizes individual cells from target taxon via an FISH probe for marker organism, profiles their in situ metabolic functions via single-cell Raman spectra, sorts cells of target taxonomy and target metabolism, and produces indexed, high-coverage, and precisely-one-cell genomes. From cyclohexane-contaminated seawater, cells representing the MWAS-derived marker taxon of γ-Proteobacteria and that are actively degrading cyclohexane in situ were directly identified via FISH and Raman, respectively, then sorted and sequenced for one-cell full genomes. In such a Pseudoalteromonas fuliginea cell, we discovered a three-component cytochrome P450 system that can convert cyclohexane to cyclohexanol in vitro, representing a previously unknown group of cyclohexane-degrading enzymes and organisms. Therefore, by unveiling enzymes, pathways, genomes, and their in situ cellular functions specifically for those organisms with ecological relevance at one-cell resolution, FISH-scRACS-seq is a rational and generally applicable approach to dissecting and mining microbiota functions.
Collapse
Affiliation(s)
- Xiaoyan Jing
- Single-Cell Center, CAS Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266000, China
- University of Chinese Academy of Sciences, Beijing 100000, China
- Shandong Energy Institute, Qingdao 266000, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266000, China
| | - Yanhai Gong
- Single-Cell Center, CAS Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266000, China
- University of Chinese Academy of Sciences, Beijing 100000, China
- Shandong Energy Institute, Qingdao 266000, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266000, China
| | - Zhidian Diao
- Single-Cell Center, CAS Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266000, China
- University of Chinese Academy of Sciences, Beijing 100000, China
- Shandong Energy Institute, Qingdao 266000, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266000, China
| | - Yan Ma
- Single-Cell Center, CAS Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266000, China
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yu Meng
- Single-Cell Center, CAS Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266000, China
- University of Chinese Academy of Sciences, Beijing 100000, China
- Shandong Energy Institute, Qingdao 266000, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266000, China
| | - Jie Chen
- Single-Cell Center, CAS Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266000, China
- University of Chinese Academy of Sciences, Beijing 100000, China
- Shandong Energy Institute, Qingdao 266000, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266000, China
| | - Yishang Ren
- Single-Cell Center, CAS Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266000, China
- University of Chinese Academy of Sciences, Beijing 100000, China
- Shandong Energy Institute, Qingdao 266000, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266000, China
| | - Yuting Liang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 211300, China
| | - Yinchao Li
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources of China, Qingdao 266000, China
| | - Weihan Sun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266000, China
| | - Jia Zhang
- Single-Cell Center, CAS Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266000, China
- University of Chinese Academy of Sciences, Beijing 100000, China
- Shandong Energy Institute, Qingdao 266000, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266000, China
| | - Yuetong Ji
- Qingdao Single-Cell Biotechnology, Co., Ltd., Qingdao 266000, China
| | - Zhiqi Cong
- Single-Cell Center, CAS Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266000, China
- University of Chinese Academy of Sciences, Beijing 100000, China
- Shandong Energy Institute, Qingdao 266000, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266000, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266000, China
| | - Bo Ma
- Single-Cell Center, CAS Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266000, China
- University of Chinese Academy of Sciences, Beijing 100000, China
- Shandong Energy Institute, Qingdao 266000, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266000, China
| | - Zhisong Cui
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources of China, Qingdao 266000, China
| | - Li Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266000, China
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266000, China
- University of Chinese Academy of Sciences, Beijing 100000, China
- Shandong Energy Institute, Qingdao 266000, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266000, China
| |
Collapse
|
4
|
Xiao C, Ide K, Matsunaga H, Kogawa M, Wagatsuma R, Takeyama H. Metagenomic profiling of antibiotic resistance genes and their associations with the bacterial community along the Kanda River, an urban river in Japan. J Biosci Bioeng 2025; 139:147-155. [PMID: 39488451 DOI: 10.1016/j.jbiosc.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 11/04/2024]
Abstract
Antibiotic resistance genes (ARGs) present in urban rivers have the potential to disseminate antibiotic-resistant bacteria into other environments, posing significant threats to both ecological and public health. Although metagenomic analyses have been widely employed to detect ARGs in rivers, our understanding of their dynamics across different seasons in diverse watersheds remains limited. In this study, we performed a comprehensive genomic analysis of the Kanda River in Japan at 11 sites from upstream to estuary throughout the year to assess the spread of ARGs and their associations with bacterial communities. Analysis of 110 water samples using the 16S rRNA gene revealed variations in bacterial composition corresponding to seasonal changes in environmental parameters along the river. Shotgun metagenomics-based profiling of ARGs in 44 water samples indicated higher ARG abundance downstream, particularly during the summer. Weighted gene co-expression network analysis (WGCNA) linking bacterial lineages and ARGs revealed that 12 ARG subtypes co-occurred with 128 amplicon sequence variants (ASVs). WGCNA suggested potential hosts for ErmB, ErmF, ErmG, tetQ, tet (W/N/W), aadA2, and adeF, including gut-associated bacteria (e.g., Prevotella, Bacteroides, Arcobacter) and indigenous aquatic microbes (e.g., Limnohabitans and C39). In addition, Pseudarcobacter (a later synonym of Arcobater) was identified as a host for adeF, which was also confirmed by single cell genomics. This study shows that ARG distribution in urban rivers is affected by seasonal and geographical factors and demonstrates the importance of monitoring rivers using multiple types of genome sequencing, including 16S rRNA gene sequencing, metagenomics, and single cell genomics.
Collapse
Affiliation(s)
- Chang Xiao
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Keigo Ide
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Research Organization for Nano & Life Innovation, Waseda University, 513 Waseda tsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Hiroko Matsunaga
- Research Organization for Nano & Life Innovation, Waseda University, 513 Waseda tsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Masato Kogawa
- Research Organization for Nano & Life Innovation, Waseda University, 513 Waseda tsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Ryota Wagatsuma
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Haruko Takeyama
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Research Organization for Nano & Life Innovation, Waseda University, 513 Waseda tsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan; Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| |
Collapse
|
5
|
Kawano-Sugaya T, Arikawa K, Saeki T, Endoh T, Kamata K, Matsuhashi A, Hosokawa M. A single amplified genome catalog reveals the dynamics of mobilome and resistome in the human microbiome. MICROBIOME 2024; 12:188. [PMID: 39358771 PMCID: PMC11446047 DOI: 10.1186/s40168-024-01903-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 08/07/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND The increase in metagenome-assembled genomes (MAGs) has advanced our understanding of the functional characterization and taxonomic assignment within the human microbiome. However, MAGs, as population consensus genomes, often aggregate heterogeneity among species and strains, thereby obfuscating the precise relationships between microbial hosts and mobile genetic elements (MGEs). In contrast, single amplified genomes (SAGs) derived via single-cell genome sequencing can capture individual genomic content, including MGEs. RESULTS We introduce the first substantial SAG dataset (bbsag20) from the human oral and gut microbiome, comprising 17,202 SAGs above medium-quality without co-assembly. This collection unveils a diversity of bacterial lineages across 312 oral and 647 gut species, demonstrating different taxonomic compositions from MAGs. Moreover, the SAGs showed cellular-level evidence of the translocation of oral bacteria to the gut. We also identified broad-host-range MGEs harboring antibiotic resistance genes (ARGs), which were not detected in the MAGs. CONCLUSIONS The difference in taxonomic composition between SAGs and MAGs indicates that combining both methods would be effective in expanding the genome catalog. By connecting mobilomes and resistomes in individual samples, SAGs could meticulously chart a dynamic network of ARGs on MGEs, pinpointing potential ARG reservoirs and their spreading patterns in the microbial community. Video Abstract.
Collapse
Affiliation(s)
| | - Koji Arikawa
- bitBiome, Inc., 513 Wasedatsurumaki-Cho, Shinjuku-Ku, Tokyo, 162-0041, Japan
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-Cho, Shinjuku-Ku, Tokyo, 162-8480, Japan
| | - Tatsuya Saeki
- bitBiome, Inc., 513 Wasedatsurumaki-Cho, Shinjuku-Ku, Tokyo, 162-0041, Japan
| | - Taruho Endoh
- bitBiome, Inc., 513 Wasedatsurumaki-Cho, Shinjuku-Ku, Tokyo, 162-0041, Japan
| | - Kazuma Kamata
- bitBiome, Inc., 513 Wasedatsurumaki-Cho, Shinjuku-Ku, Tokyo, 162-0041, Japan
| | - Ayumi Matsuhashi
- bitBiome, Inc., 513 Wasedatsurumaki-Cho, Shinjuku-Ku, Tokyo, 162-0041, Japan
| | - Masahito Hosokawa
- bitBiome, Inc., 513 Wasedatsurumaki-Cho, Shinjuku-Ku, Tokyo, 162-0041, Japan.
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-Cho, Shinjuku-Ku, Tokyo, 162-8480, Japan.
- Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-Ku, Tokyo, 169-8555, Japan.
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, 3-4-1 Okubo, Shinjuku-Ku, Tokyo, 169-8555, Japan.
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-Cho, Shinjuku-Ku, Tokyo, 162-0041, Japan.
| |
Collapse
|
6
|
Myeong NR, Choe YH, Shin SC, Kim J, Sul WJ, Kim M. Genomic profiling of Antarctic geothermal microbiomes using long-read, Hi-C, and single-cell techniques. Sci Data 2024; 11:1023. [PMID: 39300163 PMCID: PMC11413225 DOI: 10.1038/s41597-024-03875-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
Geothermal features in Antarctica provide favorable conditions for diverse microorganisms, yet their genomic diversity remains poorly understood. Here, we present an integrated dataset comprising PacBio HiFi and Hi-C metagenomic sequencing, along with single-cell amplified genomes (SAGs) from two high-altitude geothermal sites, Mount Melbourne and Mount Rittmann, in Antarctica. The long-read HiFi sequencing, coupled with Hi-C, enhances the understanding of microbiome diversity and functionality in this unique ecosystem by providing more complete and accurate genomic information. SAGs complement this by recovering rare microbial taxa and offering a strain-resolved perspective. This dataset aims to deepen our understanding of microbial evolution and ecology in Antarctic geothermal environments, and facilitate cross-comparison with other geothermal environments globally.
Collapse
Affiliation(s)
- Nu Ri Myeong
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Yong-Hoe Choe
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Seung Chul Shin
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Jinhyun Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Woo Jun Sul
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Mincheol Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea.
| |
Collapse
|
7
|
Yoda T, Matsuhashi A, Matsushita A, Shibagaki S, Sasakura Y, Aoki K, Hosokawa M, Tsuda S. Uncovering Endolysins against Methicillin-Resistant Staphylococcus aureus Using a Microbial Single-Cell Genome Database. ACS Infect Dis 2024; 10:2679-2689. [PMID: 38906534 PMCID: PMC11320564 DOI: 10.1021/acsinfecdis.4c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/18/2024] [Accepted: 05/22/2024] [Indexed: 06/23/2024]
Abstract
Endolysins, peptidoglycan hydrolases derived from bacteriophages (phages), are being developed as a promising alternative to conventional antibiotics. To obtain highly active endolysins, a diverse library of these endolysins is vital. We propose here microbial single-cell genome sequencing as an efficient tool to discover dozens of previously unknown endolysins, owing to its culture-independent sequencing method. As a proof of concept, we analyzed and recovered endolysin genes within prophage regions of Staphylococcus single-amplified genomes in human skin microbiome samples. We constructed a library of chimeric endolysins by shuffling domains of the natural endolysins and performed high-throughput screening against Staphylococcus aureus. One of the lead endolysins, bbst1027, exhibited desirable antimicrobial properties, such as rapid bactericidal activity, no detectable resistance development, and in vivo efficacy. We foresee that this endolysin discovery pipeline is in principle applicable to any bacterial target and boost the development of novel antimicrobial agents.
Collapse
Affiliation(s)
- Takuya Yoda
- bitBiome,
Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Ayumi Matsuhashi
- bitBiome,
Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Ai Matsushita
- bitBiome,
Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Shohei Shibagaki
- bitBiome,
Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Yukie Sasakura
- bitBiome,
Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Kazuteru Aoki
- bitBiome,
Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Masahito Hosokawa
- bitBiome,
Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
- Department
of Life Science and Medical Bioscience, Waseda University, 2-2
Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
- Research
Organization for Nano and Life Innovation, Waseda University, 513
Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
- Institute
for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Soichiro Tsuda
- bitBiome,
Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| |
Collapse
|
8
|
Chen L, Chen A, Zhang XD, Saenz Robles MT, Han HS, Xiao Y, Xiao G, Pipas JM, Weitz DA. Targeted whole-genome recovery of single viral species in a complex environmental sample. Proc Natl Acad Sci U S A 2024; 121:e2404727121. [PMID: 39052829 PMCID: PMC11295033 DOI: 10.1073/pnas.2404727121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/07/2024] [Indexed: 07/27/2024] Open
Abstract
Characterizing unknown viruses is essential for understanding viral ecology and preparing against viral outbreaks. Recovering complete genome sequences from environmental samples remains computationally challenging using metagenomics, especially for low-abundance species with uneven coverage. We present an experimental method for reliably recovering complete viral genomes from complex environmental samples. Individual genomes are encapsulated into droplets and amplified using multiple displacement amplification. A unique gene detection assay, which employs an RNA-based probe and an exonuclease, selectively identifies droplets containing the target viral genome. Labeled droplets are sorted using a microfluidic sorter, and genomes are extracted for sequencing. We demonstrate this method's efficacy by spiking two known viral genomes, Simian virus 40 (SV40, 5,243 bp) and Human Adenovirus 5 (HAd5, 35,938 bp), into a sewage sample with a final abundance in the droplets of around 0.1% and 0.015%, respectively. We achieve 100% recovery of the complete sequence of the spiked-in SV40 genome with uniform coverage distribution. For the larger HAd5 genome, we cover approximately 99.4% of its sequence. Notably, genome recovery is achieved with as few as one sorted droplet, which enables the recovery of any desired genomes in complex environmental samples, regardless of their abundance. This method enables single-genome whole-genome amplification and targeting characterizations of rare viral species and will facilitate our ability to access the mutational profile in single-virus genomes and contribute to an improved understanding of viral ecology.
Collapse
Affiliation(s)
- Liyin Chen
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | - Anqi Chen
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | - Xinge Diana Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | | | - Hee-Sun Han
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Yi Xiao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | - Gao Xiao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | - James M. Pipas
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA15260
| | - David A. Weitz
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
- Department of Physics, Harvard University, Cambridge, MA02138
| |
Collapse
|
9
|
Kifushi M, Nishikawa Y, Hosokawa M, Ide K, Kogawa M, Anai T, Takeyama H. Analysis of microbial dynamics in the soybean root-associated environments from community to single-cell levels. J Biosci Bioeng 2024; 137:429-436. [PMID: 38570219 DOI: 10.1016/j.jbiosc.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/04/2024] [Accepted: 02/20/2024] [Indexed: 04/05/2024]
Abstract
Plant root-associated environments such as the rhizosphere, rhizoplane, and endosphere, are notably different from non-root-associated soil environments. However, the microbial dynamics in these spatially divided compartments remain unexplored. In this study, we propose a combinational analysis of single-cell genomics with 16S rRNA gene sequencing. This method enabled us to understand the entire soil microbiome and individual root-associated microorganisms. We applied this method to soybean microbiomes and revealed that their composition was different between the rhizoplane and rhizosphere in the early growth stages, but became more similar as growth progressed. In addition, a total of 610 medium- to high-quality single-amplified genomes (SAGs) were acquired, including plant growth-promoting rhizobacteria (PGPR) candidates while genomes with high GC content tended to be missed by SAGs. The whole-genome analyses of the SAGs suggested that rhizoplane-enriched Flavobacterium solubilizes organophosphate actively and Bacillus colonizes roots more efficiently. Single-cell genomics, together with 16S rRNA gene sequencing, enabled us to connect microbial taxonomy and function, and assess microorganisms at a strain resolution even in the complex soil microbiome.
Collapse
Affiliation(s)
- Masako Kifushi
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Yohei Nishikawa
- Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan; Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Masahito Hosokawa
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan; Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan; Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Keigo Ide
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Masato Kogawa
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Toyoaki Anai
- Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Haruko Takeyama
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan; Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan; Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| |
Collapse
|
10
|
Park J, Kadam PS, Atiyas Y, Chhay B, Tsourkas A, Eberwine JH, Issadore DA. High-Throughput Single-Cell, Single-Mitochondrial DNA Assay Using Hydrogel Droplet Microfluidics. Angew Chem Int Ed Engl 2024; 63:e202401544. [PMID: 38470412 DOI: 10.1002/anie.202401544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
There is growing interest in understanding the biological implications of single cell heterogeneity and heteroplasmy of mitochondrial DNA (mtDNA), but current methodologies for single-cell mtDNA analysis limit the scale of analysis to small cell populations. Although droplet microfluidics have increased the throughput of single-cell genomic, RNA, and protein analysis, their application to sub-cellular organelle analysis has remained a largely unsolved challenge. Here, we introduce an agarose-based droplet microfluidic approach for single-cell, single-mtDNA analysis, which allows simultaneous processing of hundreds of individual mtDNA molecules within >10,000 individual cells. Our microfluidic chip encapsulates individual cells in agarose beads, designed to have a sufficiently dense hydrogel network to retain mtDNA after lysis and provide a robust scaffold for subsequent multi-step processing and analysis. To mitigate the impact of the high viscosity of agarose required for mtDNA retention on the throughput of microfluidics, we developed a parallelized device, successfully achieving ~95 % mtDNA retention from single cells within our microbeads at >700,000 drops/minute. To demonstrate utility, we analyzed specific regions of the single-mtDNA using a multiplexed rolling circle amplification (RCA) assay. We demonstrated compatibility with both microscopy, for digital counting of individual RCA products, and flow cytometry for higher throughput analysis.
Collapse
Affiliation(s)
- Juhwan Park
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Parnika S Kadam
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Yasemin Atiyas
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Bonirath Chhay
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Andrew Tsourkas
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - James H Eberwine
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - David A Issadore
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| |
Collapse
|
11
|
Li X, Xu L, Demaree B, Noecker C, Bisanz JE, Weisgerber DW, Modavi C, Turnbaugh PJ, Abate AR. Microbiome single cell atlases generated with a commercial instrument. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.08.551713. [PMID: 37609281 PMCID: PMC10441329 DOI: 10.1101/2023.08.08.551713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Single cell sequencing is useful for resolving complex systems into their composite cell types and computationally mining them for unique features that are masked in pooled sequencing. However, while commercial instruments have made single cell analysis widespread for mammalian cells, analogous tools for microbes are limited. Here, we present EASi-seq (Easily Accessible Single microbe sequencing). By adapting the single cell workflow of the commercial Mission Bio Tapestri instrument, this method allows for efficient sequencing of individual microbes' genomes. EASi-seq allows thousands of microbes to be sequenced per run and, as we show, can generate detailed atlases of human and environmental microbiomes. The ability to capture large shotgun genome datasets from thousands of single microbes provides new opportunities in discovering and analyzing species subpopulations. To facilitate this, we develop a companion bioinformatic pipeline that clusters microbes by similarity, improving whole genome assembly, strain identification, taxonomic classification, and gene annotation. In addition, we demonstrate integration of metagenomic contigs with the EASi-seq datasets to reduce capture bias and increase coverage. Overall, EASi-seq enables high quality single cell genomic data for microbiome samples using an accessible workflow that can be run on a commercially available platform.
Collapse
|
12
|
Hosokawa M, Nishikawa Y. Tools for microbial single-cell genomics for obtaining uncultured microbial genomes. Biophys Rev 2024; 16:69-77. [PMID: 38495448 PMCID: PMC10937852 DOI: 10.1007/s12551-023-01124-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/23/2023] [Indexed: 03/19/2024] Open
Abstract
The advent of next-generation sequencing technologies has facilitated the acquisition of large amounts of DNA sequence data at a relatively low cost, leading to numerous breakthroughs in decoding microbial genomes. Among the various genome sequencing activities, metagenomic analysis, which entails the direct analysis of uncultured microbial DNA, has had a profound impact on microbiome research and has emerged as an indispensable technology in this field. Despite its valuable contributions, metagenomic analysis is a "bulk analysis" technique that analyzes samples containing a wide diversity of microbes, such as bacteria, yielding information that is averaged across the entire microbial population. In order to gain a deeper understanding of the heterogeneous nature of the microbial world, there is a growing need for single-cell analysis, similar to its use in human cell biology. With this paradigm shift in mind, comprehensive single-cell genomics technology has become a much-anticipated innovation that is now poised to revolutionize microbiome research. It has the potential to enable the discovery of differences at the strain level and to facilitate a more comprehensive examination of microbial ecosystems. In this review, we summarize the current state-of-the-art in microbial single-cell genomics, highlighting the potential impact of this technology on our understanding of the microbial world. The successful implementation of this technology is expected to have a profound impact in the field, leading to new discoveries and insights into the diversity and evolution of microbes.
Collapse
Affiliation(s)
- Masahito Hosokawa
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-Cho, Shinjuku-Ku, Tokyo, 162-8480 Japan
- Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-Ku, Tokyo, 169-8555 Japan
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-Cho, Shinjuku-Ku, Tokyo, 162-0041 Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, 3-4-1 Okubo, Shinjuku-Ku, Tokyo, 169-8555 Japan
- bitBiome, Inc., 513 Wasedatsurumaki-Cho, Shinjuku-Ku, Tokyo, 162-0041 Japan
| | - Yohei Nishikawa
- Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-Ku, Tokyo, 169-8555 Japan
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-Cho, Shinjuku-Ku, Tokyo, 162-0041 Japan
| |
Collapse
|
13
|
Park J, Kadam PS, Atiyas Y, Chhay B, Tsourkas A, Eberwine JH, Issadore DA. High-throughput single-cell, single-mitochondrial DNA assay using hydrogel droplet microfluidics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577854. [PMID: 38352577 PMCID: PMC10862758 DOI: 10.1101/2024.01.29.577854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
There is growing interest in understanding the biological implications of single cell heterogeneity and intracellular heteroplasmy of mtDNA, but current methodologies for single-cell mtDNA analysis limit the scale of analysis to small cell populations. Although droplet microfluidics have increased the throughput of single-cell genomic, RNA, and protein analysis, their application to sub-cellular organelle analysis has remained a largely unsolved challenge. Here, we introduce an agarose-based droplet microfluidic approach for single-cell, single-mtDNA analysis, which allows simultaneous processing of hundreds of individual mtDNA molecules within >10,000 individual cells. Our microfluidic chip encapsulates individual cells in agarose beads, designed to have a sufficiently dense hydrogel network to retain mtDNA after lysis and provide a robust scaffold for subsequent multi-step processing and analysis. To mitigate the impact of the high viscosity of agarose required for mtDNA retention on the throughput of microfluidics, we developed a parallelized device, successfully achieving ~95% mtDNA retention from single cells within our microbeads at >700,000 drops/minute. To demonstrate utility, we analyzed specific regions of the single mtDNA using a multiplexed rolling circle amplification (RCA) assay. We demonstrated compatibility with both microscopy, for digital counting of individual RCA products, and flow cytometry for higher throughput analysis.
Collapse
|
14
|
Jitsuno K, Hoshino T, Nishikawa Y, Kogawa M, Mineta K, Strasser M, Ikehara K, Everest J, Maeda L, Inagaki F, Takeyama H, IODP Expedition 386 Scientists BellanovaPieroBrunetMorganeCaiZhirongCattaneoAntonioHochmuthKatharinaHsiungKanhsiIshizawaTakashiItakiTakuyaJitsunoKanaJohnsonJoelKanamatsuToshiyaKeepMyraKiokaArataMaerzChristianMcHughCeciliaMicallefAaronMinLuoPandeyDhananjaiProustJean NoelRasburyTroyRiedingerNataschaBaoRuiSatoguchiYasufumiSawyerDerekSeibertChloeSilverMaxwellStraubSusanneVirtasaloJoonasWangYonghongWuTing-WeiZellersSarahKöllingMartinHuangJyh-Jaan StevenNagahashiYoshitaka. Comparative single-cell genomics of Atribacterota JS1 in the Japan Trench hadal sedimentary biosphere. mSphere 2024; 9:e0033723. [PMID: 38170974 PMCID: PMC10826368 DOI: 10.1128/msphere.00337-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Deep-sea and subseafloor sedimentary environments host heterotrophic microbial communities that contribute to Earth's carbon cycling. However, the potential metabolic functions of individual microorganisms and their biogeographical distributions in hadal ocean sediments remain largely unexplored. In this study, we conducted single-cell genome sequencing on sediment samples collected from six sites (7,445-8,023 m water depth) along an approximately 500 km transect of the Japan Trench during the International Ocean Discovery Program Expedition 386. A total of 1,886 single-cell amplified genomes (SAGs) were obtained, offering comprehensive genetic insights into sedimentary microbial communities in surface sediments (<1 m depth) above the sulfate-methane transition zone along the Japan Trench. Our genome data set included 269 SAGs from Atribacterota JS1, the predominant bacterial clade in these hadal environments. Phylogenetic analysis classified SAGs into nine distinct phylotypes, whereas metagenome-assembled genomes were categorized into only two phylotypes, advancing JS1 diversity coverage through a single cell-based approach. Comparative genomic analysis of JS1 lineages from different habitats revealed frequent detection of genes related to organic carbon utilization, such as extracellular enzymes like clostripain and α-amylase, and ABC transporters of oligopeptide from Japan Trench members. Furthermore, specific JS1 phylotypes exhibited a strong correlation with in situ methane concentrations and contained genes involved in glycine betaine metabolism. These findings suggest that the phylogenomically diverse and novel Atribacterota JS1 is widely distributed in Japan Trench sediment, playing crucial roles in carbon cycling within the hadal sedimentary biosphere.IMPORTANCEThe Japan Trench represents tectonically active hadal environments associated with Pacific plate subduction beneath the northeastern Japan arc. This study, for the first time, documented a large-scale single-cell and metagenomic survey along an approximately 500 km transect of the Japan Trench, obtaining high-quality genomic information on hadal sedimentary microbial communities. Single-cell genomics revealed the predominance of diverse JS1 lineages not recoverable through conventional metagenomic binning. Their metabolic potential includes genes related to the degradation of organic matter, which contributes to methanogenesis in the deeper layers. Our findings enhance understanding of sedimentary microbial communities at water depths exceeding 7,000 m and provide new insights into the ecological role of biogeochemical carbon cycling in the hadal sedimentary biosphere.
Collapse
Affiliation(s)
- Kana Jitsuno
- Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
- CBBD-OIL, AIST-Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Tatsuhiko Hoshino
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi, Japan
| | - Yohei Nishikawa
- CBBD-OIL, AIST-Waseda University, Shinjuku-ku, Tokyo, Japan
- Research organization for Nano and Life Innovation, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Masato Kogawa
- Research organization for Nano and Life Innovation, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Katsuhiko Mineta
- CBBD-OIL, AIST-Waseda University, Shinjuku-ku, Tokyo, Japan
- Research organization for Nano and Life Innovation, Waseda University, Shinjuku-ku, Tokyo, Japan
- Marine Open Innovation Institute, Shizuoka, Japan
| | - Michael Strasser
- Department of Geology, University of Innsbruck, Innsbruck, Austria
| | - Ken Ikehara
- Research Institute of Geology and Geoinformation, AIST Geological Survey of Japan, Tsukuba, Japan
| | | | - Lena Maeda
- Advanced Institute for Marine Ecosystem Change (WPI-AIMEC), JAMSTEC, Yokohama, Japan
| | - Fumio Inagaki
- Research organization for Nano and Life Innovation, Waseda University, Shinjuku-ku, Tokyo, Japan
- Advanced Institute for Marine Ecosystem Change (WPI-AIMEC), JAMSTEC, Yokohama, Japan
- Department of Earth Sciences, Graduate School of Science, Tohoku University, Sendai, Japan
| | - Haruko Takeyama
- Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
- CBBD-OIL, AIST-Waseda University, Shinjuku-ku, Tokyo, Japan
- Research organization for Nano and Life Innovation, Waseda University, Shinjuku-ku, Tokyo, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
| | - IODP Expedition 386 ScientistsBellanovaPieroBrunetMorganeCaiZhirongCattaneoAntonioHochmuthKatharinaHsiungKanhsiIshizawaTakashiItakiTakuyaJitsunoKanaJohnsonJoelKanamatsuToshiyaKeepMyraKiokaArataMaerzChristianMcHughCeciliaMicallefAaronMinLuoPandeyDhananjaiProustJean NoelRasburyTroyRiedingerNataschaBaoRuiSatoguchiYasufumiSawyerDerekSeibertChloeSilverMaxwellStraubSusanneVirtasaloJoonasWangYonghongWuTing-WeiZellersSarahKöllingMartinHuangJyh-Jaan StevenNagahashiYoshitaka
- Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
- CBBD-OIL, AIST-Waseda University, Shinjuku-ku, Tokyo, Japan
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi, Japan
- Research organization for Nano and Life Innovation, Waseda University, Shinjuku-ku, Tokyo, Japan
- Marine Open Innovation Institute, Shizuoka, Japan
- Department of Geology, University of Innsbruck, Innsbruck, Austria
- Research Institute of Geology and Geoinformation, AIST Geological Survey of Japan, Tsukuba, Japan
- British Geological Survey, Edinburgh, United Kingdom
- Advanced Institute for Marine Ecosystem Change (WPI-AIMEC), JAMSTEC, Yokohama, Japan
- Department of Earth Sciences, Graduate School of Science, Tohoku University, Sendai, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
15
|
Nishikawa Y, Wagatsuma R, Tsukada Y, Chia-ling L, Chijiiwa R, Hosokawa M, Takeyama H. Large-scale single-virus genomics uncovers hidden diversity of river water viruses and diversified gene profiles. THE ISME JOURNAL 2024; 18:wrae124. [PMID: 38976038 PMCID: PMC11283719 DOI: 10.1093/ismejo/wrae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/18/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
Environmental viruses (primarily bacteriophages) are widely recognized as playing an important role in ecosystem homeostasis through the infection of host cells. However, the majority of environmental viruses are still unknown as their mosaic structure and frequent mutations in their sequences hinder genome construction in current metagenomics. To enable the large-scale acquisition of environmental viral genomes, we developed a new single-viral genome sequencing platform with microfluidic-generated gel beads. Amplification of individual DNA viral genomes in mass-produced gel beads allows high-throughput genome sequencing compared to conventional single-virus genomics. The sequencing analysis of river water samples yielded 1431 diverse viral single-amplified genomes, whereas viral metagenomics recovered 100 viral metagenome-assembled genomes at the comparable sequence depth. The 99.5% of viral single-amplified genomes were determined novel at the species level, most of which could not be recovered by a metagenomic assembly. The large-scale acquisition of diverse viral genomes identified protein clusters commonly detected in different viral strains, allowing the gene transfer to be tracked. Moreover, comparative genomics within the same viral species revealed that the profiles of various methyltransferase subtypes were diverse, suggesting an enhanced escape from host bacterial internal defense mechanisms. Our use of gel bead-based single-virus genomics will contribute to exploring the nature of viruses by accelerating the accumulation of draft genomes of environmental DNA viruses.
Collapse
Affiliation(s)
- Yohei Nishikawa
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST-Waseda University, 3-4-1 Okubo, Tokyo 169-0082, Japan
- Research Organization for Nano & Life Innovation, Waseda University, 513 Waseda Tsurumaki-cho, Tokyo 162–0041, Japan
| | - Ryota Wagatsuma
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST-Waseda University, 3-4-1 Okubo, Tokyo 169-0082, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yuko Tsukada
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Lin Chia-ling
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Rieka Chijiiwa
- Research Organization for Nano & Life Innovation, Waseda University, 513 Waseda Tsurumaki-cho, Tokyo 162–0041, Japan
| | - Masahito Hosokawa
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST-Waseda University, 3-4-1 Okubo, Tokyo 169-0082, Japan
- Research Organization for Nano & Life Innovation, Waseda University, 513 Waseda Tsurumaki-cho, Tokyo 162–0041, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Haruko Takeyama
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST-Waseda University, 3-4-1 Okubo, Tokyo 169-0082, Japan
- Research Organization for Nano & Life Innovation, Waseda University, 513 Waseda Tsurumaki-cho, Tokyo 162–0041, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
16
|
Chen L, Chen A, Zhang XD, Robles MST, Han HS, Xiao Y, Xiao G, Pipas JM, Weitz DA. High-sensitivity whole-genome recovery of single viral species in environmental samples. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566948. [PMID: 38014300 PMCID: PMC10680796 DOI: 10.1101/2023.11.13.566948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Characterizing unknown viruses is essential for understanding viral ecology and preparing against viral outbreaks. Recovering complete genome sequences from environmental samples remains computationally challenging using metagenomics, especially for low-abundance species with uneven coverage. This work presents a method for reliably recovering complete viral genomes from complex environmental samples. Individual genomes are encapsulated into droplets and amplified using multiple displacement amplification. A novel gene detection assay, which employs an RNA-based probe and an exonuclease, selectively identifies droplets containing the target viral genome. Labeled droplets are sorted using a microfluidic sorter, and genomes are extracted for sequencing. Validation experiments using a sewage sample spiked with two known viruses demonstrate the method's efficacy. We achieve 100% recovery of the spiked-in SV40 (Simian virus 40, 5243bp) genome sequence with uniform coverage distribution, and approximately 99.4% for the larger HAd5 genome (Human Adenovirus 5, 35938bp). Notably, genome recovery is achieved with as few as one sorted droplet, which enables the recovery of any desired genomes in complex environmental samples, regardless of their abundance. This method enables targeted characterizations of rare viral species and whole-genome amplification of single genomes for accessing the mutational profile in single virus genomes, contributing to an improved understanding of viral ecology.
Collapse
Affiliation(s)
- Liyin Chen
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Anqi Chen
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Xinge Diana Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Maria Saenz T Robles
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260, USA
| | - Hee-Sun Han
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yi Xiao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Gao Xiao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - James M Pipas
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260, USA
| | - David A Weitz
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
17
|
Arikawa K, Hosokawa M. Uncultured prokaryotic genomes in the spotlight: An examination of publicly available data from metagenomics and single-cell genomics. Comput Struct Biotechnol J 2023; 21:4508-4518. [PMID: 37771751 PMCID: PMC10523443 DOI: 10.1016/j.csbj.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/10/2023] [Accepted: 09/10/2023] [Indexed: 09/30/2023] Open
Abstract
Owing to the ineffectiveness of traditional culture techniques for the vast majority of microbial species, culture-independent analyses utilizing next-generation sequencing and bioinformatics have become essential for gaining insight into microbial ecology and function. This mini-review focuses on two essential methods for obtaining genetic information from uncultured prokaryotes, metagenomics and single-cell genomics. We analyzed the registration status of uncultured prokaryotic genome data from major public databases and assessed the advantages and limitations of both the methods. Metagenomics generates a significant quantity of sequence data and multiple prokaryotic genomes using straightforward experimental procedures. However, in ecosystems with high microbial diversity, such as soil, most genes are presented as brief, disconnected contigs, and lack association of highly conserved genes and mobile genetic elements with individual species genomes. Although technically more challenging, single-cell genomics offers valuable insights into complex ecosystems by providing strain-resolved genomes, addressing issues in metagenomics. Recent technological advancements, such as long-read sequencing, machine learning algorithms, and in silico protein structure prediction, in combination with vast genomic data, have the potential to overcome the current technical challenges and facilitate a deeper understanding of uncultured microbial ecosystems and microbial dark matter genes and proteins. In light of this, it is imperative that continued innovation in both methods and technologies take place to create high-quality reference genome databases that will support future microbial research and industrial applications.
Collapse
Affiliation(s)
- Koji Arikawa
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
- bitBiome, Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Masahito Hosokawa
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
- bitBiome, Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
18
|
Nishimura M, Takeyama H, Hosokawa M. Enhancing the sensitivity of bacterial single-cell RNA sequencing using RamDA-seq and Cas9-based rRNA depletion. J Biosci Bioeng 2023; 136:152-158. [PMID: 37311684 DOI: 10.1016/j.jbiosc.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/01/2023] [Accepted: 05/18/2023] [Indexed: 06/15/2023]
Abstract
Bacterial populations exhibit heterogeneity in gene expression, which facilitates their survival and adaptation to unstable and unpredictable environments through the bet-hedging strategy. However, unraveling the rare subpopulations and heterogeneity in gene expression using population-level gene expression analysis remains a challenging task. Single-cell RNA sequencing (scRNA-seq) has the potential to identify rare subpopulations and capture heterogeneity in bacterial populations, but standard methods for scRNA-seq in bacteria are still under development, mainly due to differences in mRNA abundance and structure between eukaryotic and prokaryotic organisms. In this study, we present a hybrid approach that combines random displacement amplification sequencing (RamDA-seq) with Cas9-based rRNA depletion for scRNA-seq in bacteria. This approach allows cDNA amplification and subsequent sequencing library preparation from low-abundance bacterial RNAs. We evaluated its sequenced read proportion, gene detection sensitivity, and gene expression patterns from the dilution series of total RNA or the sorted single Escherichia coli cells. Our results demonstrated the detection of more than 1000 genes, about 24% of the genes in the E. coli genome, from single cells with less sequencing effort compared to conventional methods. We observed gene expression clusters between different cellular proliferation states or heat shock treatment. The approach demonstrated high detection sensitivity in gene expression analysis compared to current bacterial scRNA-seq methods and proved to be an invaluable tool for understanding the ecology of bacterial populations and capturing the heterogeneity of bacterial gene expression.
Collapse
Affiliation(s)
- Mika Nishimura
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Haruko Takeyama
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan; Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan; Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Masahito Hosokawa
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan; Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan; Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| |
Collapse
|
19
|
Vitalis C, Wenzel T. Leveraging interactions in microfluidic droplets for enhanced biotechnology screens. Curr Opin Biotechnol 2023; 82:102966. [PMID: 37390513 DOI: 10.1016/j.copbio.2023.102966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 07/02/2023]
Abstract
Microfluidic droplet screens serve as an innovative platform for high-throughput biotechnology, enabling significant advancements in discovery, product optimization, and analysis. This review sheds light on the emerging trends of interaction assays in microfluidic droplets, underscoring the unique suitability of droplets for these applications. Encompassing a diverse range of biological entities such as antibodies, enzymes, DNA, RNA, various microbial and mammalian cell types, drugs, and other molecules, these assays demonstrate their versatility and scope. Recent methodological breakthroughs have escalated these screens to novel scales of bioanalysis and biotechnological product design. Moreover, we highlight pioneering advancements that extend droplet-based screens into new domains: cargo delivery within human bodies, application of synthetic gene circuits in natural environments, 3D printing, and the development of droplet structures responsive to environmental signals. The potential of this field is profound and only set to increase.
Collapse
Affiliation(s)
- Carolus Vitalis
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul 7820244, Santiago, Chile
| | - Tobias Wenzel
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul 7820244, Santiago, Chile.
| |
Collapse
|
20
|
Arai H, Anbutsu H, Nishikawa Y, Kogawa M, Ishii K, Hosokawa M, Lin SR, Ueda M, Nakai M, Kunimi Y, Harumoto T, Kageyama D, Takeyama H, Inoue MN. Combined actions of bacteriophage-encoded genes in Wolbachia-induced male lethality. iScience 2023; 26:106842. [PMID: 37250803 PMCID: PMC10209535 DOI: 10.1016/j.isci.2023.106842] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/24/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
Some Wolbachia endosymbionts induce male killing, whereby male offspring of infected females are killed during development; however, the origin and diversity of the underlying mechanisms remain unclear. In this study, we identified a 76 kbp prophage region specific to male-killing Wolbachia hosted by the moth Homona magnanima. The prophage encoded a homolog of the male-killing gene oscar in Ostrinia moths and the wmk gene that induces various toxicities in Drosophila melanogaster. Upon overexpressing these genes in D. melanogaster, wmk-1 and wmk-3 killed all males and most females, whereas Hm-oscar, wmk-2, and wmk-4 had no impact on insect survival. Strikingly, co-expression of tandemly arrayed wmk-3 and wmk-4 killed 90% of males and restored 70% of females, suggesting their conjugated functions for male-specific lethality. While the male-killing gene in the native host remains unknown, our findings highlight the role of bacteriophages in male-killing evolution and differences in male-killing mechanisms among insects.
Collapse
Affiliation(s)
- Hiroshi Arai
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
- National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki 305-0851, Japan
| | - Hisashi Anbutsu
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Bioproduction Research Institute, AIST, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Yohei Nishikawa
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Masato Kogawa
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Kazuo Ishii
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - Masahito Hosokawa
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Shiou-Ruei Lin
- Tea Research and Extension Station, 326011 Chung-Hsing RD, Yangmei, Taoyuan, Taiwan, R.O.C
| | - Masatoshi Ueda
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - Madoka Nakai
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - Yasuhisa Kunimi
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - Toshiyuki Harumoto
- Hakubi Center for Advanced Research, Kyoto University. Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
- Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Daisuke Kageyama
- National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki 305-0851, Japan
| | - Haruko Takeyama
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Maki N. Inoue
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
21
|
Hosokawa M, Iwai N, Arikawa K, Saeki T, Endoh T, Kamata K, Yoda T, Tsuda S, Takeyama H. Target enrichment of uncultured human oral bacteria with phage-derived molecules found by single-cell genomics. J Biosci Bioeng 2023:S1389-1723(23)00116-0. [PMID: 37188549 DOI: 10.1016/j.jbiosc.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023]
Abstract
Advances in culture-independent microbial analysis, such as metagenomics and single-cell genomics, have significantly increased our understanding of microbial lineages. While these methods have uncovered a large number of novel microbial taxa, many remain uncultured, and their function and mode of existence in the environment are still unknown. This study aims to explore the use of bacteriophage-derived molecules as probes for detecting and isolating uncultured bacteria. Here, we proposed multiplex single-cell sequencing to obtain massive uncultured oral bacterial genomes and searched prophage sequences from over 450 obtained human oral bacterial single-amplified genomes (SAGs). The focus was on the cell wall binding domain (CBD) in phage endolysin, and fluorescent protein-fused CBDs were generated based on several CBD gene sequences predicted from Streptococcus SAGs. The ability of the Streptococcus prophage-derived CBDs to detect and enrich specific Streptococcus species from human saliva while maintaining cell viability was confirmed by magnetic separation and flow cytometry. The approach to phage-derived molecule generation based on uncultured bacterial SAG is expected to improve the process of designing molecules that selectively capture or detect specific bacteria, notably from uncultured gram-positive bacteria, and will have applications in isolation and in situ detection of beneficial or pathogenic bacteria.
Collapse
Affiliation(s)
- Masahito Hosokawa
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; bitBiome, Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan; Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan; Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan; Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| | - Naoya Iwai
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Koji Arikawa
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; bitBiome, Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Tatsuya Saeki
- bitBiome, Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Taruho Endoh
- bitBiome, Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Kazuma Kamata
- bitBiome, Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Takuya Yoda
- bitBiome, Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Soichiro Tsuda
- bitBiome, Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Haruko Takeyama
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan; Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan; Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
22
|
Kogawa M, Nishikawa Y, Saeki T, Yoda T, Arikawa K, Takeyama H, Hosokawa M. Revealing within-species diversity in uncultured human gut bacteria with single-cell long-read sequencing. Front Microbiol 2023; 14:1133917. [PMID: 36910196 PMCID: PMC9998913 DOI: 10.3389/fmicb.2023.1133917] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/06/2023] [Indexed: 03/14/2023] Open
Abstract
Obtaining complete and accurate bacterial genomes is vital for studying the characteristics of uncultured bacteria. Single-cell genomics is a promising approach for the culture-independent recovery of bacterial genomes from individual cells. However, single-amplified genomes (SAGs) often have fragmented and incomplete sequences due to chimeric and biased sequences introduced during the genome amplification process. To address this, we developed a single-cell amplified genome long-read assembly (scALA) workflow to construct complete circular SAGs (cSAGs) from long-read single-cell sequencing data of uncultured bacteria. We used the SAG-gel platform, which is both cost-effective and high-throughput, to obtain hundreds of short-read and long-read sequencing data for specific bacterial strains. The scALA workflow generated cSAGs by repeated in silico processing for sequence bias reduction and contig assembly. From 12 human fecal samples, including two cohabitant groups, scALA generated 16 cSAGs of three specifically targeted bacterial species: Anaerostipes hadrus, Agathobacter rectalis, and Ruminococcus gnavus. We discovered strain-specific structural variations shared among cohabiting hosts, while all cSAGs of the same species showed high homology in aligned genomic regions. A. hadrus cSAGs exhibited 10 kbp-long phage insertions, various saccharide metabolic capabilities, and different CRISPR-Cas systems in each strain. The sequence similarity of A. hadrus genomes did not necessarily correspond with orthologous functional genes, while host geographical regionality seemed to be highly related to gene possession. scALA allowed us to obtain closed circular genomes of specifically targeted bacteria from human microbiota samples, leading to an understanding of within-species diversities, including structural variations and linking mobile genetic elements, such as phages, to hosts. These analyses provide insight into microbial evolution, the adaptation of the community to environmental changes, and interactions with hosts. cSAGs constructed using this method can expand bacterial genome databases and our understanding of within-species diversities in uncultured bacteria.
Collapse
Affiliation(s)
- Masato Kogawa
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
| | - Yohei Nishikawa
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
- Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | | | | | | | - Haruko Takeyama
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
- Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Tokyo, Japan
| | - Masahito Hosokawa
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
- Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
- bitBiome, Inc., Tokyo, Japan
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Tokyo, Japan
| |
Collapse
|
23
|
Ide K, Nishikawa Y, Maruyama T, Tsukada Y, Kogawa M, Takeda H, Ito H, Wagatsuma R, Miyaoka R, Nakano Y, Kinjo K, Ito M, Hosokawa M, Yura K, Suda S, Takeyama H. Targeted single-cell genomics reveals novel host adaptation strategies of the symbiotic bacteria Endozoicomonas in Acropora tenuis coral. MICROBIOME 2022; 10:220. [PMID: 36503599 PMCID: PMC9743535 DOI: 10.1186/s40168-022-01395-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/13/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Endozoicomonas bacteria symbiosis with various marine organisms is hypothesized as a potential indicator of health in corals. Although many amplicon analyses using 16S rRNA gene have suggested the diversity of Endozoicomonas species, genome analysis has been limited due to contamination of host-derived sequences and difficulties in culture and metagenomic analysis. Therefore, the evolutionary and functional potential of individual Endozoicomonas species symbiotic with the same coral species remains unresolved. RESULTS In this study, we applied a novel single-cell genomics technique using droplet microfluidics to obtain single-cell amplified genomes (SAGs) for uncultured coral-associated Endozoicomonas spp. We obtained seven novel Endozoicomonas genomes and quantitative bacterial composition from Acropora tenuis corals at four sites in Japan. Our quantitative 16S rRNA gene and comparative genomic analysis revealed that these Endozoicomonas spp. belong to different lineages (Clade A and Clade B), with widely varying abundance among individual corals. Furthermore, each Endozoicomonas species possessed various eukaryotic-like genes in clade-specific genes. It was suggested that these eukaryotic-like genes might have a potential ability of different functions in each clade, such as infection of the host coral or suppression of host immune pathways. These Endozoicomonas species may have adopted different host adaptation strategies despite living symbiotically on the same coral. CONCLUSIONS This study suggests that coral-associated Endozoicomonas spp. on the same species of coral have different evolutional strategies and functional potentials in each species and emphasizes the need to analyze the genome of each uncultured strain in future coral-Endozoicomonas relationships studies. Video Abstract.
Collapse
Affiliation(s)
- Keigo Ide
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
| | - Yohei Nishikawa
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
| | - Toru Maruyama
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Yuko Tsukada
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Masato Kogawa
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
| | - Hiroki Takeda
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Haruka Ito
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Ryota Wagatsuma
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Rimi Miyaoka
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Yoshikatsu Nakano
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
- Marine Science Section, Research Support Division, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | | | - Michihiro Ito
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Masahito Hosokawa
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Tokyo, Japan
| | - Kei Yura
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Shoichiro Suda
- Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Haruko Takeyama
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan.
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, Tokyo, Japan.
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan.
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Tokyo, Japan.
| |
Collapse
|
24
|
Aoki W, Kogawa M, Matsuda S, Matsubara K, Hirata S, Nishikawa Y, Hosokawa M, Takeyama H, Matoh T, Ueda M. Massively parallel single-cell genomics of microbiomes in rice paddies. Front Microbiol 2022; 13:1024640. [PMID: 36406415 PMCID: PMC9669790 DOI: 10.3389/fmicb.2022.1024640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Plant growth-promoting microbes (PGPMs) have attracted increasing attention because they may be useful in increasing crop yield in a low-input and sustainable manner to ensure food security. Previous studies have attempted to understand the principles underlying the rhizosphere ecology and interactions between plants and PGPMs using ribosomal RNA sequencing, metagenomic sequencing, and genome-resolved metagenomics; however, these approaches do not provide comprehensive genomic information for individual species and do not facilitate detailed analyses of plant-microbe interactions. In the present study, we developed a pipeline to analyze the genomic diversity of the rice rhizosphere microbiome at single-cell resolution. We isolated microbial cells from paddy soil and determined their genomic sequences by using massively parallel whole-genome amplification in microfluidic-generated gel capsules. We successfully obtained 3,237 single-amplified genomes in a single experiment, and these genomic sequences provided insights into microbial functions in the paddy ecosystem. Our approach offers a promising platform for gaining novel insights into the roles of microbes in the rice rhizomicrobiome and to develop microbial technologies for improved and sustainable rice production.
Collapse
Affiliation(s)
- Wataru Aoki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masato Kogawa
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
| | | | | | | | - Yohei Nishikawa
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
- Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Masahito Hosokawa
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
- Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Tokyo, Japan
| | - Haruko Takeyama
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
- Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Tokyo, Japan
| | - Toru Matoh
- Kyoto Agriculture Research Institute KARI, Kyoto, Japan
| | - Mitsuyoshi Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|