1
|
Martina Perez S, Sailem H, Baker RE. Efficient Bayesian inference for mechanistic modelling with high-throughput data. PLoS Comput Biol 2022; 18:e1010191. [PMID: 35727839 PMCID: PMC9249175 DOI: 10.1371/journal.pcbi.1010191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/01/2022] [Accepted: 05/09/2022] [Indexed: 11/19/2022] Open
Abstract
Bayesian methods are routinely used to combine experimental data with detailed mathematical models to obtain insights into physical phenomena. However, the computational cost of Bayesian computation with detailed models has been a notorious problem. Moreover, while high-throughput data presents opportunities to calibrate sophisticated models, comparing large amounts of data with model simulations quickly becomes computationally prohibitive. Inspired by the method of Stochastic Gradient Descent, we propose a minibatch approach to approximate Bayesian computation. Through a case study of a high-throughput imaging scratch assay experiment, we show that reliable inference can be performed at a fraction of the computational cost of a traditional Bayesian inference scheme. By applying a detailed mathematical model of single cell motility, proliferation and death to a data set of 118 gene knockdowns, we characterise functional subgroups of gene knockdowns, each displaying its own typical combination of local cell density-dependent and -independent motility and proliferation patterns. By comparing these patterns to experimental measurements of cell counts and wound closure, we find that density-dependent interactions play a crucial role in the process of wound healing. During wound healing, cells work together to close a wound to restore tissue integrity. Thousands of different genes play a role in wound healing, and scratch assay experiments are routinely used to investigate the role of these genes by analysing how a wound closes when each of these is not expressed, i.e. knocked down. So far, the impact of knocking down genes on wound healing has been determined by comparing the size of the wound before and after a given time period, but these measurements do not elucidate the fine-scale mechanisms that determine how cells behave in the presence of their neighbours. By combining a detailed mathematical model with experimental imaging of wound healing, we identify how cells respond to and work together with their neighbours during wound healing. Applying this method to a large number of gene knockdowns, we identify three well-defined functional subgroups of knockdowns, each displaying its own typical behaviours of movement and proliferation to close the wound. These observations explain the role of each of the knockdowns on wound healing and further our understanding of cell-cell interactions in wound healing.
Collapse
Affiliation(s)
- Simon Martina Perez
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
- * E-mail:
| | - Heba Sailem
- Institute of Biomedical Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Ruth E. Baker
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Bekisz S, Baudin L, Buntinx F, Noël A, Geris L. In Vitro, In Vivo, and In Silico Models of Lymphangiogenesis in Solid Malignancies. Cancers (Basel) 2022; 14:1525. [PMID: 35326676 PMCID: PMC8946816 DOI: 10.3390/cancers14061525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/24/2022] [Accepted: 03/08/2022] [Indexed: 12/04/2022] Open
Abstract
Lymphangiogenesis (LA) is the formation of new lymphatic vessels by lymphatic endothelial cells (LECs) sprouting from pre-existing lymphatic vessels. It is increasingly recognized as being involved in many diseases, such as in cancer and secondary lymphedema, which most often results from cancer treatments. For some cancers, excessive LA is associated with cancer progression and metastatic dissemination to the lymph nodes (LNs) through lymphatic vessels. The study of LA through in vitro, in vivo, and, more recently, in silico models is of paramount importance in providing novel insights and identifying the key molecular actors in the biological dysregulation of this process under pathological conditions. In this review, the different biological (in vitro and in vivo) models of LA, especially in a cancer context, are explained and discussed, highlighting their principal modeled features as well as their advantages and drawbacks. Imaging techniques of the lymphatics, complementary or even essential to in vivo models, are also clarified and allow the establishment of the link with computational approaches. In silico models are introduced, theoretically described, and illustrated with examples specific to the lymphatic system and the LA. Together, these models constitute a toolbox allowing the LA research to be brought to the next level.
Collapse
Affiliation(s)
- Sophie Bekisz
- Biomechanics Research Unit, GIGA In silico Medicine, ULiège, 4000 Liège, Belgium;
| | - Louis Baudin
- Laboratory of Biology of Tumor and Development, GIGA Cancer, ULiège, 4000 Liège, Belgium; (L.B.); (F.B.); (A.N.)
| | - Florence Buntinx
- Laboratory of Biology of Tumor and Development, GIGA Cancer, ULiège, 4000 Liège, Belgium; (L.B.); (F.B.); (A.N.)
| | - Agnès Noël
- Laboratory of Biology of Tumor and Development, GIGA Cancer, ULiège, 4000 Liège, Belgium; (L.B.); (F.B.); (A.N.)
| | - Liesbet Geris
- Biomechanics Research Unit, GIGA In silico Medicine, ULiège, 4000 Liège, Belgium;
- Biomechanics Section, KU Leuven, 3000 Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
3
|
Senchukova MA. Issues of origin, morphology and clinical significance of tumor microvessels in gastric cancer. World J Gastroenterol 2021; 27:8262-8282. [PMID: 35068869 PMCID: PMC8717017 DOI: 10.3748/wjg.v27.i48.8262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/02/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) remains a serious oncological problem, ranking third in the structure of mortality from malignant neoplasms. Improving treatment outcomes for this pathology largely depends on understanding the pathogenesis and biological characteristics of GC, including the identification and characterization of diagnostic, prognostic, predictive, and therapeutic biomarkers. It is known that the main cause of death from malignant neoplasms and GC, in particular, is tumor metastasis. Given that angiogenesis is a critical process for tumor growth and metastasis, it is now considered an important marker of disease prognosis and sensitivity to anticancer therapy. In the presented review, modern concepts of the mechanisms of tumor vessel formation and the peculiarities of their morphology are considered; data on numerous factors influencing the formation of tumor microvessels and their role in GC progression are summarized; and various approaches to the classification of tumor vessels, as well as the methods for assessing angiogenesis activity in a tumor, are highlighted. Here, results from studies on the prognostic and predictive significance of tumor microvessels in GC are also discussed, and a new classification of tumor microvessels in GC, based on their morphology and clinical significance, is proposed for consideration.
Collapse
Affiliation(s)
- Marina A Senchukova
- Department of Oncology, Orenburg State Medical University, Orenburg 460021, Russia
| |
Collapse
|
4
|
From imaging a single cell to implementing precision medicine: an exciting new era. Emerg Top Life Sci 2021; 5:837-847. [PMID: 34889448 PMCID: PMC8786301 DOI: 10.1042/etls20210219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022]
Abstract
In the age of high-throughput, single-cell biology, single-cell imaging has evolved not only in terms of technological advancements but also in its translational applications. The synchronous advancements of imaging and computational biology have produced opportunities of merging the two, providing the scientific community with tools towards observing, understanding, and predicting cellular and tissue phenotypes and behaviors. Furthermore, multiplexed single-cell imaging and machine learning algorithms now enable patient stratification and predictive diagnostics of clinical specimens. Here, we provide an overall summary of the advances in single-cell imaging, with a focus on high-throughput microscopy phenomics and multiplexed proteomic spatial imaging platforms. We also review various computational tools that have been developed in recent years for image processing and downstream applications used in biomedical sciences. Finally, we discuss how harnessing systems biology approaches and data integration across disciplines can further strengthen the exciting applications and future implementation of single-cell imaging on precision medicine.
Collapse
|
5
|
Tsuzuki K, Shimizu Y, Suzuki J, Pu Z, Yamaguchi S, Fujikawa Y, Kato K, Ohashi K, Takefuji M, Bando YK, Ouchi N, Calvert JW, Shibata R, Murohara T. Adverse Effect of Circadian Rhythm Disorder on Reparative Angiogenesis in Hind Limb Ischemia. J Am Heart Assoc 2021; 10:e020896. [PMID: 34348468 PMCID: PMC8475022 DOI: 10.1161/jaha.121.020896] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022]
Abstract
Background Circadian rhythm disorders, often seen in modern lifestyles, are a major social health concern. The aim of this study was to examine whether circadian rhythm disorders would influence angiogenesis and blood perfusion recovery in a mouse model of hind limb ischemia. Methods and Results A jet-lag model was established in C57BL/6J mice using a light-controlled isolation box. Control mice were kept at a light/dark 12:12 (12-hour light and 12-hour dark) condition. Concentrations of plasma vascular endothelial growth factor and circulating endothelial progenitor cells in control mice formed a circadian rhythm, which was diminished in the jet-lag model (P<0.05). The jet-lag condition deteriorated tissue capillary formation (P<0.001) and tissue blood perfusion recovery (P<0.01) in hind limb ischemia, which was associated with downregulation of vascular endothelial growth factor expression in local ischemic tissue and in the plasma. Although the expression of clock genes (ie, Clock, Bmal1, and Cry) in local tissues was upregulated after ischemic injury, the expression levels of cryptochrome (Cry) 1 and Cry2 were inhibited by the jet-lag condition. Next, Cry1 and Cry2 double-knockout mice were examined for blood perfusion recoveries and a reparative angiogenesis. Cry1 and Cry2 double-knockout mice revealed suppressed capillary density (P<0.001) and suppressed tissue blood perfusion recovery (P<0.05) in the hind limb ischemia model. Moreover, knockdown of CRY1/2 in human umbilical vein endothelial cells was accompanied by increased expression of WEE1 and decreased expression of HOXC5. This was associated with decreased proliferative capacity, migration ability, and tube formation ability of human umbilical vein endothelial cells, respectively, leading to impairment of angiogenesis. Conclusions Our data suggest that circadian rhythm disorder deteriorates reparative ischemia-induced angiogenesis and that maintenance of circadian rhythm plays an important role in angiogenesis.
Collapse
Affiliation(s)
- Kazuhito Tsuzuki
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Yuuki Shimizu
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Junya Suzuki
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Zhongyue Pu
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Shukuro Yamaguchi
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Yusuke Fujikawa
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Katsuhiro Kato
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Koji Ohashi
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Mikito Takefuji
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Yasuko K. Bando
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Noriyuki Ouchi
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - John W. Calvert
- Division of Cardiothoracic SurgeryDepartment of SurgeryCarlyle Fraser Heart CenterEmory University School of MedicineAtlantaGA
| | - Rei Shibata
- Department of Advanced Cardiovascular TherapeuticsNagoya University Graduate School of MedicineNagoyaJapan
| | - Toyoaki Murohara
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
6
|
Pal J, Becker AC, Dhamija S, Seiler J, Abdelkarim M, Sharma Y, Behr J, Meng C, Ludwig C, Kuster B, Diederichs S. Systematic analysis of migration factors by MigExpress identifies essential cell migration control genes in non-small cell lung cancer. Mol Oncol 2021; 15:1797-1817. [PMID: 33934493 PMCID: PMC8253088 DOI: 10.1002/1878-0261.12973] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 11/07/2022] Open
Abstract
Cell migration is an essential process in health and in disease, including cancer metastasis. A comprehensive inventory of migration factors is nonetheless lacking-in part due to the difficulty in assessing migration using high-throughput technologies. Hence, there are currently very few screens that systematically reveal factors controlling cell migration. Here, we introduce MigExpress as a platform for the 'identification of Migration control genes by differential Expression'. MigExpress exploits the combination of in-depth molecular profiling and the robust quantitative analysis of migration capacity in a broad panel of samples and identifies migration-associated genes by their differential expression in slow- versus fast-migrating cells. We applied MigExpress to investigate non-small cell lung cancer (NSCLC), which is the most frequent cause of cancer mortality mainly due to metastasis. In 54 NSCLC cell lines, we comprehensively determined mRNA and protein expression. Correlating the transcriptome and proteome profiles with the quantified migration properties led to the discovery and validation of FLNC, DSE, CPA4, TUBB6, and BICC1 as migration control factors in NSCLC cells, which were also negatively correlated with patient survival. Notably, FLNC was the least expressed filamin in NSCLC, but the only one controlling cell migration and correlating with patient survival and metastatic disease stage. In our study, we present MigExpress as a new method for the systematic analysis of migration factors and provide a comprehensive resource of transcriptomic and proteomic data of NSCLC cell lines related to cell migration.
Collapse
Affiliation(s)
- Jagriti Pal
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) - Partner Site Freiburg, Germany
| | - Andrea C Becker
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) - Partner Site Freiburg, Germany
| | - Sonam Dhamija
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) - Partner Site Freiburg, Germany.,Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| | - Jeanette Seiler
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mahmoud Abdelkarim
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) - Partner Site Freiburg, Germany
| | - Yogita Sharma
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) - Partner Site Freiburg, Germany
| | - Jürgen Behr
- Leibniz Institute for Food Systems, Technical University of Munich, Freising, Germany.,Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Freising, Germany
| | - Chen Meng
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Freising, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Freising, Germany
| | - Bernhard Kuster
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Freising, Germany.,Chair of Proteomics and Bioanalytics, DKTK Partner Site Munich, Freising, Germany
| | - Sven Diederichs
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) - Partner Site Freiburg, Germany.,Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
7
|
Smith LK, Parmenter T, Gould CM, Madhamshettiwar PB, Sheppard KE, Simpson KJ, McArthur GA. Genome-wide RNAi screen for genes regulating glycolytic response to vemurafenib in BRAF V600 melanoma cells. Sci Data 2020; 7:339. [PMID: 33046726 PMCID: PMC7550327 DOI: 10.1038/s41597-020-00683-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/11/2020] [Indexed: 11/24/2022] Open
Abstract
Identification of mechanisms underlying sensitivity and response to targeted therapies, such as the BRAF inhibitor vemurafenib, is critical in order to improve efficacy of these therapies in the clinic and delay onset of resistance. Glycolysis has emerged as a key feature of the BRAF inhibitor response in melanoma cells, and importantly, the metabolic response to vemurafenib in melanoma patients can predict patient outcome. Here, we present a multiparameter genome-wide siRNA screening dataset of genes that when depleted improve the viability and glycolytic response to vemurafenib in BRAFV600 mutated melanoma cells. These datasets are suitable for analysis of genes involved in cell viability and glycolysis in steady state conditions and following treatment with vemurafenib, as well as computational approaches to identify gene regulatory networks that mediate response to BRAF inhibition in melanoma.
Collapse
Affiliation(s)
- Lorey K Smith
- Cancer Research Division, Peter MacCallum Cancer Centre, Parkville, Australia.
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Parkville, Australia.
| | - Tiffany Parmenter
- Cancer Research Division, Peter MacCallum Cancer Centre, Parkville, Australia
| | - Cathryn M Gould
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Parkville, Australia
| | | | - Karen E Sheppard
- Cancer Research Division, Peter MacCallum Cancer Centre, Parkville, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Kaylene J Simpson
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Parkville, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Grant A McArthur
- Cancer Research Division, Peter MacCallum Cancer Centre, Parkville, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
8
|
Zhang J, Luo W, Chi X, Zhang L, Ren Q, Wang H, Zhang W. IGF2BP1 silencing inhibits proliferation and induces apoptosis of high glucose-induced non-small cell lung cancer cells by regulating Netrin-1. Arch Biochem Biophys 2020; 693:108581. [PMID: 32926844 DOI: 10.1016/j.abb.2020.108581] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/28/2020] [Accepted: 09/07/2020] [Indexed: 11/30/2022]
Abstract
Non-small cell lung cancer (NSCLC) accompanied by diabetes is an important risk factor affecting the prognosis of patients with NSCLC in clinical practice. However, the effect of high glucose (HG) in the pathogenesis of NSCLC remains elusive. It has been found that the RNA-binding protein Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) plays important roles in various diseases, including NSCLC and diabetes. The aim of this study was to explore the role of IGF2BP1 in HG-treated NSCLC cells, and further investigate its underlying molecular mechanism. Results showed that IGF2BP1 was highly expressed in HG-treated NSCLC cells. Knockdown of IGF2BP1 inhibited cancer cell proliferation, migration and invasion, as well as induced cell cycle arrest and apoptosis. Besides, IGF2BP1 silencing decreased the Netrin-1 level in HG-treated NSCLC cells. Reintroduction of Netrin-1 expression rescued IGF2BP1 deficiency-induced cell proliferation reduction, migration suppression, cell cycle arrest and apoptosis. These findings suggest that IGF2BP1 silencing inhibits the occurrence of tumor events through down-regulating Netrin-1 expression, indicating that the IGF2BP1/Netrin-1 axis exerts an oncogenic role in HG-treated NSCLC cells.
Collapse
Affiliation(s)
- Jiawen Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Wen Luo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Xiaowen Chi
- Department of Pediatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Lijuan Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Qiu Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Hui Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Wei Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China.
| |
Collapse
|
9
|
Bröer S. Amino Acid Transporters as Targets for Cancer Therapy: Why, Where, When, and How. Int J Mol Sci 2020; 21:ijms21176156. [PMID: 32859034 PMCID: PMC7503255 DOI: 10.3390/ijms21176156] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Amino acids are indispensable for the growth of cancer cells. This includes essential amino acids, the carbon skeleton of which cannot be synthesized, and conditionally essential amino acids, for which the metabolic demands exceed the capacity to synthesize them. Moreover, amino acids are important signaling molecules regulating metabolic pathways, protein translation, autophagy, defense against reactive oxygen species, and many other functions. Blocking uptake of amino acids into cancer cells is therefore a viable strategy to reduce growth. A number of studies have used genome-wide silencing or knock-out approaches, which cover all known amino acid transporters in a large variety of cancer cell lines. In this review, these studies are interrogated together with other databases to identify vulnerabilities with regard to amino acid transport. Several themes emerge, such as synthetic lethality, reduced redundancy, and selective vulnerability, which can be exploited to stop cancer cell growth.
Collapse
Affiliation(s)
- Stefan Bröer
- Research School of Biology, Australian National University, Canberra ACT 2600, Australia
| |
Collapse
|
10
|
Shan QL, Chen NN, Meng GZ, Qu F. Overexpression of lncRNA MT1JP Mediates Apoptosis and Migration of Hepatocellular Carcinoma Cells by Regulating miR-24-3p. Cancer Manag Res 2020; 12:4715-4724. [PMID: 32606962 PMCID: PMC7308148 DOI: 10.2147/cmar.s249582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/23/2020] [Indexed: 12/24/2022] Open
Abstract
Objective This study aimed to determine the effects of the long non-coding (lnc) RNA MT1JP on the apoptosis and migration of hepatocellular carcinoma cells. Patients and Methods Patients with liver cancer admitted to the Second People’s Hospital of Liaocheng were included in this study. We transfected hepatocellular carcinoma cells with MT1JP and miR-24-3p and assessed their expression and effects on apoptosis and migration. Correlations were verified using a dual-luciferase reporter and RNA-binding protein coimmunoprecipitation. Results The expression of MT1JP was downregulated (P < 0.05), whereas that of miR-24-3p was upregulated in liver cancer. Serum MT1JP levels were correlated with tumor size, alpha-fetoprotein (AFP), TNM stage, differentiation, and lymph node metastasis. Both MT1JP overexpression and miR-24-3p inhibition inhibited cellular proliferation and migration and increased apoptosis rates. They significantly downregulated expression of the cell migration-associated proteins matrix metalloproteinase -2, -9 (MMP-2, MMP-9) (P < 0.05). They upregulated the expression of Bcl-2-related X protein (Bax) and cysteinyl aspartate-specific proteinases (Caspase-3 and -9) proteins that are involved in apoptosis. They decreased expression of B-cell lymphoma/leukemia-2 (Bcl-2; P < 0.05). A target relationship between MT1JP and miR-24-3p was identified using dual-luciferase gene reporter assays and RNA-binding protein coimmunoprecipitations. MT1JP overexpression significantly downregulated miR-24-3p expression (P < 0.05). MT1JP and miR-24-3p expression were negatively correlated in liver cancer tissues (r = −0.561, P < 0.001; Pearson χ2 tests). Rescue experiments showed that upregulating miR-24-3p expression could counteract MT1JP overexpression in hepatocellular carcinoma cells. Conclusion MT1JP, even when expressed at low levels, participates in the proliferation, apoptosis, and migration of liver cancer cells by regulating miR-24-3p.
Collapse
Affiliation(s)
- Qiu-Li Shan
- College of Biological Science and Technology, University of Jinan, Jinan, Shandong Province 250022, People's Republic of China
| | - Ning-Ning Chen
- College of Biological Science and Technology, University of Jinan, Jinan, Shandong Province 250022, People's Republic of China
| | - Gui-Zhi Meng
- Department of Pediatrics, The Second People's Hospital of Liaocheng, Liaocheng City, Shandong Province, People's Republic of China
| | - Fan Qu
- College of Biological Science and Technology, University of Jinan, Jinan, Shandong Province 250022, People's Republic of China
| |
Collapse
|
11
|
Zucchelli E, Majid QA, Foldes G. New artery of knowledge: 3D models of angiogenesis. VASCULAR BIOLOGY 2019; 1:H135-H143. [PMID: 32923965 PMCID: PMC7439835 DOI: 10.1530/vb-19-0026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022]
Abstract
Angiogenesis and vasculogenesis are complex processes by which new blood vessels are formed and expanded. They play a pivotal role not only in physiological development and growth and tissue and organ repair, but also in a range of pathological conditions, from tumour formation to chronic inflammation and atherosclerosis. Understanding the multistep cell-differentiation programmes and identifying the key molecular players of physiological angiogenesis/vasculogenesis are critical to tackle pathological mechanisms. While many questions are yet to be answered, increasingly sophisticated in vitro, in vivo and ex vivo models of angiogenesis/vasculogenesis, together with cutting-edge imaging techniques, allowed for recent major advances in the field. This review aims to summarise the three-dimensional models available to study vascular network formation and to discuss advantages and limitations of the current systems.
Collapse
Affiliation(s)
| | - Qasim A Majid
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Gabor Foldes
- National Heart and Lung Institute, Imperial College London, London, UK.,Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| |
Collapse
|
12
|
Chessel A, Carazo Salas RE. From observing to predicting single-cell structure and function with high-throughput/high-content microscopy. Essays Biochem 2019; 63:197-208. [PMID: 31243141 PMCID: PMC6610450 DOI: 10.1042/ebc20180044] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 02/08/2023]
Abstract
In the past 15 years, cell-based microscopy has evolved its focus from observing cell function to aiming to predict it. In particular-powered by breakthroughs in computer vision, large-scale image analysis and machine learning-high-throughput and high-content microscopy imaging have enabled to uniquely harness single-cell information to systematically discover and annotate genes and regulatory pathways, uncover systems-level interactions and causal links between cellular processes, and begin to clarify and predict causal cellular behaviour and decision making. Here we review these developments, discuss emerging trends in the field, and describe how single-cell 'omics and single-cell microscopy are imminently in an intersecting trajectory. The marriage of these two fields will make possible an unprecedented understanding of cell and tissue behaviour and function.
Collapse
Affiliation(s)
- Anatole Chessel
- École polytechnique, Université Paris-Saclay, 91128 Palaiseau Cedex, France
| | | |
Collapse
|
13
|
Farnsworth RH, Karnezis T, Maciburko SJ, Mueller SN, Stacker SA. The Interplay Between Lymphatic Vessels and Chemokines. Front Immunol 2019; 10:518. [PMID: 31105685 PMCID: PMC6499173 DOI: 10.3389/fimmu.2019.00518] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/26/2019] [Indexed: 12/21/2022] Open
Abstract
Chemokines are a family of small protein cytokines that act as chemoattractants to migrating cells, in particular those of the immune system. They are categorized functionally as either homeostatic, constitutively produced by tissues for basal levels of cell migration, or inflammatory, where they are generated in association with a pathological inflammatory response. While the extravasation of leukocytes via blood vessels is a key step in cells entering the tissues, the lymphatic vessels also serve as a conduit for cells that are recruited and localized through chemoattractant gradients. Furthermore, the growth and remodeling of lymphatic vessels in pathologies is influenced by chemokines and their receptors expressed by lymphatic endothelial cells (LECs) in and around the pathological tissue. In this review we summarize the diverse role played by specific chemokines and their receptors in shaping the interaction of lymphatic vessels, immune cells, and other pathological cell types in physiology and disease.
Collapse
Affiliation(s)
- Rae H Farnsworth
- Tumor Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Tara Karnezis
- Lymphatic and Regenerative Medicine Laboratory, O'Brien Institute Department, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Simon J Maciburko
- Lymphatic and Regenerative Medicine Laboratory, O'Brien Institute Department, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.,The Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Melbourne, VIC, Australia
| | - Steven A Stacker
- Tumor Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
14
|
Nowak-Sliwinska P, Alitalo K, Allen E, Anisimov A, Aplin AC, Auerbach R, Augustin HG, Bates DO, van Beijnum JR, Bender RHF, Bergers G, Bikfalvi A, Bischoff J, Böck BC, Brooks PC, Bussolino F, Cakir B, Carmeliet P, Castranova D, Cimpean AM, Cleaver O, Coukos G, Davis GE, De Palma M, Dimberg A, Dings RPM, Djonov V, Dudley AC, Dufton NP, Fendt SM, Ferrara N, Fruttiger M, Fukumura D, Ghesquière B, Gong Y, Griffin RJ, Harris AL, Hughes CCW, Hultgren NW, Iruela-Arispe ML, Irving M, Jain RK, Kalluri R, Kalucka J, Kerbel RS, Kitajewski J, Klaassen I, Kleinmann HK, Koolwijk P, Kuczynski E, Kwak BR, Marien K, Melero-Martin JM, Munn LL, Nicosia RF, Noel A, Nurro J, Olsson AK, Petrova TV, Pietras K, Pili R, Pollard JW, Post MJ, Quax PHA, Rabinovich GA, Raica M, Randi AM, Ribatti D, Ruegg C, Schlingemann RO, Schulte-Merker S, Smith LEH, Song JW, Stacker SA, Stalin J, Stratman AN, Van de Velde M, van Hinsbergh VWM, Vermeulen PB, Waltenberger J, Weinstein BM, Xin H, Yetkin-Arik B, Yla-Herttuala S, Yoder MC, Griffioen AW. Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis 2018; 21:425-532. [PMID: 29766399 PMCID: PMC6237663 DOI: 10.1007/s10456-018-9613-x] [Citation(s) in RCA: 458] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference.
Collapse
Affiliation(s)
- Patrycja Nowak-Sliwinska
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, Faculty of Sciences, University of Geneva, University of Lausanne, Rue Michel-Servet 1, CMU, 1211, Geneva 4, Switzerland.
- Translational Research Center in Oncohaematology, University of Geneva, Geneva, Switzerland.
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Elizabeth Allen
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, VIB-Center for Cancer Biology, KU Leuven, Louvain, Belgium
| | - Andrey Anisimov
- Wihuri Research Institute and Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Alfred C Aplin
- Department of Pathology, University of Washington, Seattle, WA, USA
| | | | - Hellmut G Augustin
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Division of Vascular Oncology and Metastasis Research, German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, Heidelberg, Germany
| | - David O Bates
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Judy R van Beijnum
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - R Hugh F Bender
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Gabriele Bergers
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, VIB-Center for Cancer Biology, KU Leuven, Louvain, Belgium
- Department of Neurological Surgery, Brain Tumor Research Center, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Andreas Bikfalvi
- Angiogenesis and Tumor Microenvironment Laboratory (INSERM U1029), University Bordeaux, Pessac, France
| | - Joyce Bischoff
- Vascular Biology Program and Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Barbara C Böck
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Division of Vascular Oncology and Metastasis Research, German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, Heidelberg, Germany
| | - Peter C Brooks
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Federico Bussolino
- Department of Oncology, University of Torino, Turin, Italy
- Candiolo Cancer Institute-FPO-IRCCS, 10060, Candiolo, Italy
| | - Bertan Cakir
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Daniel Castranova
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Anca M Cimpean
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Ondine Cleaver
- Department of Molecular Biology, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - George Coukos
- Ludwig Institute for Cancer Research, Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - George E Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, School of Medicine and Dalton Cardiovascular Center, Columbia, MO, USA
| | - Michele De Palma
- School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ruud P M Dings
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Andrew C Dudley
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Emily Couric Cancer Center, The University of Virginia, Charlottesville, VA, USA
| | - Neil P Dufton
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute, Leuven, Belgium
| | | | - Marcus Fruttiger
- Institute of Ophthalmology, University College London, London, UK
| | - Dai Fukumura
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bart Ghesquière
- Metabolomics Expertise Center, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Oncology, Metabolomics Expertise Center, KU Leuven, Leuven, Belgium
| | - Yan Gong
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Robert J Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Adrian L Harris
- Molecular Oncology Laboratories, Oxford University Department of Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK
| | - Christopher C W Hughes
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Nan W Hultgren
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | | | - Melita Irving
- Ludwig Institute for Cancer Research, Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joanna Kalucka
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Robert S Kerbel
- Department of Medical Biophysics, Biological Sciences Platform, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Jan Kitajewski
- Department of Physiology and Biophysics, University of Illinois, Chicago, IL, USA
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Hynda K Kleinmann
- The George Washington University School of Medicine, Washington, DC, USA
| | - Pieter Koolwijk
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Elisabeth Kuczynski
- Department of Medical Biophysics, Biological Sciences Platform, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Brenda R Kwak
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | | - Juan M Melero-Martin
- Department of Cardiac Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Lance L Munn
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Roberto F Nicosia
- Department of Pathology, University of Washington, Seattle, WA, USA
- Pathology and Laboratory Medicine Service, VA Puget Sound Health Care System, Seattle, WA, USA
| | - Agnes Noel
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Jussi Nurro
- Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Tatiana V Petrova
- Department of oncology UNIL-CHUV, Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Kristian Pietras
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund, Sweden
| | - Roberto Pili
- Genitourinary Program, Indiana University-Simon Cancer Center, Indianapolis, IN, USA
| | - Jeffrey W Pollard
- Medical Research Council Centre for Reproductive Health, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Mark J Post
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Paul H A Quax
- Einthoven Laboratory for Experimental Vascular Medicine, Department Surgery, LUMC, Leiden, The Netherlands
| | - Gabriel A Rabinovich
- Laboratory of Immunopathology, Institute of Biology and Experimental Medicine, National Council of Scientific and Technical Investigations (CONICET), Buenos Aires, Argentina
| | - Marius Raica
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Anna M Randi
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
- National Cancer Institute "Giovanni Paolo II", Bari, Italy
| | - Curzio Ruegg
- Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Reinier O Schlingemann
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Stefan Schulte-Merker
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU, Münster, Germany
| | - Lois E H Smith
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Steven A Stacker
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre and The Sir Peter MacCallum, Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Jimmy Stalin
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU, Münster, Germany
| | - Amber N Stratman
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Maureen Van de Velde
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Victor W M van Hinsbergh
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Peter B Vermeulen
- HistoGeneX, Antwerp, Belgium
- Translational Cancer Research Unit, GZA Hospitals, Sint-Augustinus & University of Antwerp, Antwerp, Belgium
| | - Johannes Waltenberger
- Medical Faculty, University of Münster, Albert-Schweitzer-Campus 1, Münster, Germany
| | - Brant M Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Hong Xin
- University of California, San Diego, La Jolla, CA, USA
| | - Bahar Yetkin-Arik
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Seppo Yla-Herttuala
- Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Mervin C Yoder
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
15
|
Emerging Roles for VEGF-D in Human Disease. Biomolecules 2018; 8:biom8010001. [PMID: 29300337 PMCID: PMC5871970 DOI: 10.3390/biom8010001] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/22/2017] [Accepted: 12/28/2017] [Indexed: 12/21/2022] Open
Abstract
Blood vessels and lymphatic vessels are located in many tissues and organs throughout the body, and play important roles in a wide variety of prevalent diseases in humans. Vascular endothelial growth factor-D (VEGF-D) is a secreted protein that can promote the remodeling of blood vessels and lymphatics in development and disease. Recent fundamental and translational studies have provided insight into the molecular mechanisms by which VEGF-D exerts its effects in human disease. Hence this protein is now of interest as a therapeutic and/or diagnostic target, or as a potential therapeutic agent, in a diversity of indications in cardiovascular medicine, cancer and the devastating pulmonary condition lymphangioleiomyomatosis. This has led to clinical trial programs to assess the effect of targeting VEGF-D signaling pathways, or delivering VEGF-D, in angina, cancer and ocular indications. This review summarizes our understanding of VEGF-D signaling in human disease, which is largely based on animal disease models and clinicopathological studies, and provides information about the outcomes of recent clinical trials testing agonists or antagonists of VEGF-D signaling.
Collapse
|
16
|
Williams SP, Odell AF, Karnezis T, Farnsworth RH, Gould CM, Li J, Paquet-Fifield S, Harris NC, Walter A, Gregory JL, Lamont SF, Liu R, Takano EA, Nowell CJ, Bower NI, Resnick D, Smyth GK, Coultas L, Hogan BM, Fox SB, Mueller SN, Simpson KJ, Achen MG, Stacker SA. Genome-wide functional analysis reveals central signaling regulators of lymphatic endothelial cell migration and remodeling. Sci Signal 2017; 10:10/499/eaal2987. [DOI: 10.1126/scisignal.aal2987] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
A CDC42-centered signaling unit is a dominant positive regulator of endothelial integrity. Sci Rep 2017; 7:10132. [PMID: 28860633 PMCID: PMC5579287 DOI: 10.1038/s41598-017-10392-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/07/2017] [Indexed: 12/27/2022] Open
Abstract
Endothelial barrier function is carefully controlled to protect tissues from edema and damage inflicted by extravasated leukocytes. RhoGTPases, in conjunction with myriad regulatory proteins, exert both positive and negative effects on the endothelial barrier integrity. Precise knowledge about the relevant mechanisms is currently fragmented and we therefore performed a comprehensive analysis of endothelial barrier regulation by RhoGTPases and their regulators. Combining RNAi with electrical impedance measurements we quantified the relevance of 270 Rho-associated genes for endothelial barrier function. Statistical analysis identified 10 targets of which six promoted- and four reduced endothelial barrier function upon downregulation. We analyzed in more detail two of these which were not previously identified as regulators of endothelial integrity. We found that the Rac1-GEF (Guanine nucleotide Exchange Factor) TIAM2 is a positive regulator and the Cdc42(Rac1)-GAP (GTPase-Activating Protein) SYDE1 is a negative regulator of the endothelial barrier function. Finally, we found that the GAP SYDE1 is part of a Cdc42-centered signaling unit, also comprising the Cdc42-GEF FARP1 and the Cdc42 effector PAK7 which controls the integrity of the endothelial barrier. In conclusion, using a siRNA-based screen, we identified new regulators of barrier function and found that Cdc42 is a dominant positive regulator of endothelial integrity.
Collapse
|
18
|
Simpson KJ, Smith JA. Knocking down the obstacles to functional genomics data sharing. Sci Data 2017; 4:170019. [PMID: 28248922 PMCID: PMC5332007 DOI: 10.1038/sdata.2017.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 01/26/2017] [Indexed: 01/01/2023] Open
Abstract
This week, Scientific Data published a collection of eight papers that describe datasets from high-throughput functional genomics screens, primarily utilizing RNA interference (RNAi). The publications explore host-pathogen dependencies, innate immune response, disease pathways, and cell morphology and motility at the genome-level. All data, including raw images from the high content screens, are publically available in PubChem BioAssay, figshare, Harvard Dataverse or the Image Data Resource (IDR). Detailed data descriptors enable use of these data for analysis algorithm design, machine learning, data comparisons, as well as generating new scientific hypotheses.
Collapse
Affiliation(s)
- Kaylene J Simpson
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne 3000, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, Australia
| | - Jennifer A Smith
- ICCB-Longwood Screening Facility, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
19
|
Gambino TJ, Williams SP, Caesar C, Resnick D, Nowell CJ, Farnsworth RH, Achen MG, Stacker SA, Karnezis T. A Three-Dimensional Lymphatic Endothelial Cell Tube Formation Assay to Identify Novel Kinases Involved in Lymphatic Vessel Remodeling. Assay Drug Dev Technol 2017; 15:30-43. [DOI: 10.1089/adt.2016.764] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- T. Jessica Gambino
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Steven P. Williams
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Carol Caesar
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Daniel Resnick
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Cameron J. Nowell
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Rae H. Farnsworth
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Marc G. Achen
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Steven A. Stacker
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Tara Karnezis
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- O'Brien Institute, a Department of St. Vincent's Institute, Fitzroy, Victoria, Australia
| |
Collapse
|