1
|
Hammi I, Giron-Michel J, Akarid K, Arnoult D. FcRγIIA response duality in leishmaniasis. Microb Pathog 2025; 198:107123. [PMID: 39557223 DOI: 10.1016/j.micpath.2024.107123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/25/2024] [Accepted: 11/14/2024] [Indexed: 11/20/2024]
Abstract
Leishmania is responsible for a neglected tropical disease affecting millions of people around the world and could potentially spread more due to climate change. This disease not only leads to significant morbidity but also imposes substantial social and economic burdens on affected populations, often exacerbating poverty and health disparities. Despite the complexity and effectiveness of the immune response, the parasite has developed various strategies to evade detection and manipulates host cells in favor of its replication. These evasion strategies start at early stages of the infection by hijacking immune receptors to silence critical cellular response that would otherwise limit the pathogen's propagation. Among these receptors, Fc receptors have emerged as a significant player in the immune evasion strategies employed by microorganisms, as they could promote inhibitory pathways. This review explores the potential role of one of these immune receptors, the FcγRIIA, in leishmaniasis and how this parasite may use it and the signaling pathways downstream to evade the host immune response. By understanding the potential interactions between Leishmania and immune receptors such as FcγRIIA, we may identify novel targets for therapeutic intervention aimed to enhance the host immune response and reduce the burden of this disease.
Collapse
Affiliation(s)
- Ikram Hammi
- Health & Environment Laboratory, Ain Chock Faculty of Sciences, Hassan II University of Casablanca (UH2C), Morocco; INSERM UMR-S-MD 1197, Ministère des Armées et Université Paris Saclay, Villejuif, France.
| | - Julien Giron-Michel
- INSERM UMR-S-MD 1197, Ministère des Armées et Université Paris Saclay, Villejuif, France
| | - Khadija Akarid
- Health & Environment Laboratory, Ain Chock Faculty of Sciences, Hassan II University of Casablanca (UH2C), Morocco
| | - Damien Arnoult
- INSERM UMR-S-MD 1197, Ministère des Armées et Université Paris Saclay, Villejuif, France.
| |
Collapse
|
2
|
Xu N, Jiang J, Jiang F, Dong G, Meng L, Wang M, Chen J, Li C, Shi Y, He S, Li R. CircCDC42-encoded CDC42-165aa regulates macrophage pyroptosis in Klebsiella pneumoniae infection through Pyrin inflammasome activation. Nat Commun 2024; 15:5730. [PMID: 38977695 PMCID: PMC11231140 DOI: 10.1038/s41467-024-50154-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 07/02/2024] [Indexed: 07/10/2024] Open
Abstract
The circular RNA (circRNA) family is a group of endogenous non-coding RNAs (ncRNAs) that have critical functions in multiple physiological and pathological processes, including inflammation, cancer, and cardiovascular diseases. However, their roles in regulating innate immune responses remain unclear. Here, we define Cell division cycle 42 (CDC42)-165aa, a protein encoded by circRNA circCDC42, which is overexpressed in Klebsiella pneumoniae (KP)-infected alveolar macrophages. High levels of CDC42-165aa induces the hyperactivation of Pyrin inflammasomes and aggravates alveolar macrophage pyroptosis, while the inhibition of CDC42-165aa reduces lung injury in mice after KP infection by inhibiting Pyrin inflammasome-mediated pyroptosis. Overall, these results demonstrate that CDC42-165aa stimulates Pyrin inflammasome by inhibiting CDC42 GTPase activation and provides a potential clinical target for pathogenic bacterial infection in clinical practice.
Collapse
Affiliation(s)
- Nana Xu
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Laboratory of Morphology, Xuzhou Medical University, Xuzhou, China
| | - Jiebang Jiang
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Fei Jiang
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Department of Laboratory Medicine, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Guokai Dong
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Laboratory of Morphology, Xuzhou Medical University, Xuzhou, China
| | - Li Meng
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Laboratory of Morphology, Xuzhou Medical University, Xuzhou, China
| | - Meng Wang
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Laboratory of Morphology, Xuzhou Medical University, Xuzhou, China
| | - Jing Chen
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Cong Li
- Xuzhou Key Laboratory of Emergency Medicine, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yongping Shi
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou, China.
| | - Sisi He
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Rongpeng Li
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou, China.
| |
Collapse
|
3
|
Chu E, Mychasiuk R, Tsantikos E, Raftery AL, L’Estrange-Stranieri E, Dill LK, Semple BD, Hibbs ML. Regulation of Microglial Signaling by Lyn and SHIP-1 in the Steady-State Adult Mouse Brain. Cells 2023; 12:2378. [PMID: 37830592 PMCID: PMC10571795 DOI: 10.3390/cells12192378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023] Open
Abstract
Chronic neuroinflammation and glial activation are associated with the development of many neurodegenerative diseases and neuropsychological disorders. Recent evidence suggests that the protein tyrosine kinase Lyn and the lipid phosphatase SH2 domain-containing inositol 5' phosphatase-1 (SHIP-1) regulate neuroimmunological responses, but their homeostatic roles remain unclear. The current study investigated the roles of Lyn and SHIP-1 in microglial responses in the steady-state adult mouse brain. Young adult Lyn-/- and SHIP-1-/- mice underwent a series of neurobehavior tests and postmortem brain analyses. The microglial phenotype and activation state were examined by immunofluorescence and flow cytometry, and neuroimmune responses were assessed using gene expression analysis. Lyn-/- mice had an unaltered behavioral phenotype, neuroimmune response, and microglial phenotype, while SHIP-1-/- mice demonstrated reduced explorative activity and exhibited microglia with elevated activation markers but reduced granularity. In addition, expression of several neuroinflammatory genes was increased in SHIP-1-/- mice. In response to LPS stimulation ex vivo, the microglia from both Lyn-/- and SHIP-1-/- showed evidence of hyper-activity with augmented TNF-α production. Together, these findings demonstrate that both Lyn and SHIP-1 have the propensity to control microglial responses, but only SHIP-1 regulates neuroinflammation and microglial activation in the steady-state adult brain, while Lyn activity appears dispensable for maintaining brain homeostasis.
Collapse
Affiliation(s)
- Erskine Chu
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; (E.T.); (A.L.R.); (E.L.-S.)
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia
| | - Evelyn Tsantikos
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; (E.T.); (A.L.R.); (E.L.-S.)
| | - April L. Raftery
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; (E.T.); (A.L.R.); (E.L.-S.)
| | - Elan L’Estrange-Stranieri
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; (E.T.); (A.L.R.); (E.L.-S.)
| | - Larissa K. Dill
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Bridgette D. Semple
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Margaret L. Hibbs
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; (E.T.); (A.L.R.); (E.L.-S.)
| |
Collapse
|
4
|
Weng H, Xiong KP, Wang W, Qian KY, Yuan S, Wang G, Yu F, Luo J, Lu MX, Yang ZH, Liu T, Huang X, Zheng H, Wang XH. Aspartoacylase suppresses prostate cancer progression by blocking LYN activation. Mil Med Res 2023; 10:25. [PMID: 37271807 PMCID: PMC10240701 DOI: 10.1186/s40779-023-00460-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/14/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND Globally, despite prostate cancer (PCa) representing second most prevalent malignancy in male, the precise molecular mechanisms implicated in its pathogenesis remain unclear. Consequently, elucidating the key molecular regulators that govern disease progression could substantially contribute to the establishment of novel therapeutic strategies, ultimately advancing the management of PCa. METHODS A total of 49 PCa tissues and 43 adjacent normal tissues were collected from January 2017 to December 2021 at Zhongnan Hospital of Wuhan University. The advanced transcriptomic methodologies were employed to identify differentially expressed mRNAs in PCa. The expression of aspartoacylase (ASPA) in PCa was thoroughly evaluated using quantitative real-time PCR and Western blotting techniques. To elucidate the inhibitory role of ASPA in PCa cell proliferation and metastasis, a comprehensive set of in vitro and in vivo assays were conducted, including orthotopic and tumor-bearing mouse models (n = 8 for each group). A combination of experimental approaches, such as Western blotting, luciferase assays, immunoprecipitation assays, mass spectrometry, glutathione S-transferase pull-down experiments, and rescue studies, were employed to investigate the underlying molecular mechanisms of ASPA's action in PCa. The Student's t-test was employed to assess the statistical significance between two distinct groups, while one-way analysis of variance was utilized for comparisons involving more than two groups. A two-sided P value of less than 0.05 was deemed to indicate statistical significance. RESULTS ASPA was identified as a novel inhibitor of PCa progression. The expression of ASPA was found to be significantly down-regulated in PCa tissue samples, and its decreased expression was independently associated with patients' prognosis (HR = 0.60, 95% CI 0.40-0.92, P = 0.018). Our experiments demonstrated that modulation of ASPA activity, either through gain- or loss-of-function, led to the suppression or enhancement of PCa cell proliferation, migration, and invasion, respectively. The inhibitory role of ASPA in PCa was further confirmed using orthotopic and tumor-bearing mouse models. Mechanistically, ASPA was shown to directly interact with the LYN and inhibit the phosphorylation of LYN as well as its downstream targets, JNK1/2 and C-Jun, in both PCa cells and mouse models, in an enzyme-independent manner. Importantly, the inhibition of LYN activation by bafetinib abrogated the promoting effect of ASPA knockdown on PCa progression in both in vitro and in vivo models. Moreover, we observed an inverse relationship between ASPA expression and LYN activity in clinical PCa samples, suggesting a potential regulatory role of ASPA in modulating LYN signaling. CONCLUSION Our findings provide novel insights into the tumor-suppressive function of ASPA in PCa and highlight its potential as a prognostic biomarker and therapeutic target for the management of this malignancy.
Collapse
Affiliation(s)
- Hong Weng
- Department of Urology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071 China
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071 China
| | - Kang-Ping Xiong
- Department of Urology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071 China
| | - Wang Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071 China
| | - Kai-Yu Qian
- Department of Urology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071 China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071 China
| | - Shuai Yuan
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
| | - Gang Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071 China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
| | - Fang Yu
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
- Center for Pathology and Molecular Diagnostics, Wuhan University, Wuhan, 430071 China
| | - Jun Luo
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
- Center for Pathology and Molecular Diagnostics, Wuhan University, Wuhan, 430071 China
| | - Meng-Xin Lu
- Department of Urology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071 China
| | - Zhong-Hua Yang
- Department of Urology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071 China
| | - Tao Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071 China
| | - Xing Huang
- Department of Urology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071 China
| | - Hang Zheng
- Department of Urology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071 China
| | - Xing-Huan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071 China
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071 China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071 China
| |
Collapse
|
5
|
Li N, Lin G, Zhang H, Sun J, Gui M, Liu Y, Li W, Zhan Z, Li Y, Pan S, Liu J, Tang J. Lyn attenuates sepsis-associated acute kidney injury by inhibition of phospho-STAT3 and apoptosis. Biochem Pharmacol 2023; 211:115523. [PMID: 37003346 DOI: 10.1016/j.bcp.2023.115523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023]
Abstract
Sepsis-associated acute kidney injury (SA-AKI) is a life-threatening condition associated with high mortality and morbidity. However, the underlying pathogenesis of SA-AKI is still unclear. Lyn belongs to Src family kinases (SFKs), which exert numerous biological functions including modulation in receptor-mediated intracellular signaling and intercellular communication. Previous studies demonstrated that Lyn gene deletion obviously aggravates LPS-induced lung inflammation, but the role and possible mechanism of Lyn in SA-AKI have not been reported yet. Here, we found that Lyn protected against renal tubular injury in cecal ligation and puncture (CLP) induced AKI mouse model by inhibition of signal transducer and activator of transcription 3 (STAT3) phosphorylation and cell apoptosis. Moreover, Lyn agonist MLR-1023 pretreatment improved renal function, inhibited STAT3 phosphorylation and decreased cell apoptosis. Thus, Lyn appears to play a crucial role in orchestrating STAT3-mediated inflammation and cell apoptosis in SA-AKI. Hence, Lyn kinase may be a promising therapeutic target for SA-AKI.
Collapse
Affiliation(s)
- Nannan Li
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Guoxin Lin
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Jian Sun
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Ming Gui
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Yan Liu
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Wei Li
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Zishun Zhan
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Yisu Li
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Shiqi Pan
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Jishi Liu
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Juan Tang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha 410013, China.
| |
Collapse
|
6
|
Septin barriers protect mammalian host cells against Pseudomonas aeruginosa invasion. Cell Rep 2022; 41:111510. [DOI: 10.1016/j.celrep.2022.111510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/29/2022] [Accepted: 09/23/2022] [Indexed: 11/24/2022] Open
|
7
|
Src Family Kinases: A Potential Therapeutic Target for Acute Kidney Injury. Biomolecules 2022; 12:biom12070984. [PMID: 35883540 PMCID: PMC9312434 DOI: 10.3390/biom12070984] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Src family kinases (SFKs) are non-receptor tyrosine kinases and play a key role in regulating signal transduction. The mechanism of SFKs in various tumors has been widely studied, and there are more and more studies on its role in the kidney. Acute kidney injury (AKI) is a disease with complex pathogenesis, including oxidative stress (OS), inflammation, endoplasmic reticulum (ER) stress, autophagy, and apoptosis. In addition, fibrosis has a significant impact on the progression of AKI to developing chronic kidney disease (CKD). The mortality rate of this disease is very high, and there is no effective treatment drug at present. In recent years, some studies have found that SFKs, especially Src, Fyn, and Lyn, are involved in the pathogenesis of AKI. In this paper, the structure, function, and role of SFKs in AKI are discussed. SFKs play a crucial role in the occurrence and development of AKI, making them promising molecular targets for the treatment of AKI.
Collapse
|
8
|
Wang B, Zhou C, Wu Q, Lin P, Pu Q, Qin S, Gao P, Wang Z, Liu Y, Arel J, Chen Y, Chen T, Wu M. cGAS modulates cytokine secretion and bacterial burdens by altering the release of mitochondrial DNA in Pseudomonas pulmonary infection. Immunology 2022; 166:408-423. [PMID: 35420160 DOI: 10.1111/imm.13482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/06/2022] [Accepted: 03/15/2022] [Indexed: 11/28/2022] Open
Abstract
Cyclic GMP-AMP synthase (cGAS) is essential for fighting against viruses and bacteria, but how cGAS is involved in host immune response remains largely elusive. Here, we uncover the crucial role of cGAS in host immunity based on a Pseudomonas aeruginosa pulmonary infection model. cGAS-/- mice showed more heavy bacterial burdens and serious lung injury accompanied with exorbitant proinflammatory cytokines than wild-type mice. cGAS deficiency caused an accumulation of mitochondrial DNA in cytoplasm, which in turn induced excessive secretion of proinflammatory factors by activating inflammasome and TLR9 signaling. Mechanistically, cGAS deficiency inhibited the recruitment of LC3 by reducing the binding capacity of TBK-1 to p62, leading to impaired mitophagy and augmented release of mitochondrial DNA. Importantly, cytoplasmic mitochondrial DNA also acted as a feedback signal that induced the activation of cGAS. Altogether, these findings identify protective and homeostasis functions of cGAS against Pseudomonas aeruginosa infection, adding significant insight into the pathogenesis of bacterial infectious diseases.
Collapse
Affiliation(s)
- Biao Wang
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, P. R. China.,Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Chuanmin Zhou
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA.,Wuhan University School of Health Sciences, Wuhan, Hubei Province, P. R. China
| | - Qun Wu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Ping Lin
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Qinqin Pu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Shugang Qin
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Pan Gao
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Zhihan Wang
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Yingying Liu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Jacob Arel
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Yanjiong Chen
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, P. R. China
| | - Teng Chen
- Forensic Medicine College of Xi'an Jiaotong University, Key Laboratory of the Health Ministry for Forensic Medicine, Xi'an, P. R. China
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| |
Collapse
|
9
|
Dopamine D3 receptor signaling alleviates mouse rheumatoid arthritis by promoting Toll-like receptor 4 degradation in mast cells. Cell Death Dis 2022; 13:240. [PMID: 35292659 PMCID: PMC8924203 DOI: 10.1038/s41419-022-04695-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 12/21/2022]
Abstract
AbstractDopamine receptors are involved in several immunological diseases. We previously found that dopamine D3 receptor (D3R) on mast cells showed a high correlation with disease activity in patients with rheumatoid arthritis, but the mechanism remains largely elusive. In this study, a murine collagen-induced arthritis (CIA) model was employed in both DBA/1 mice and D3R knockout mice. Here, we revealed that D3R-deficient mice developed more severe arthritis than wild-type mice. D3R suppressed mast cell activation in vivo and in vitro via a Toll-like receptor 4 (TLR4)-dependent pathway. Importantly, D3R promoted LC3 conversion to accelerate ubiquitin-labeled TLR4 degradation. Mechanistically, D3R inhibited mTOR and AKT phosphorylation while enhancing AMPK phosphorylation in activated mast cells, which was followed by autophagy-dependent protein degradation of TLR4. In total, we found that D3R on mast cells alleviated inflammation in mouse rheumatoid arthritis through the mTOR/AKT/AMPK-LC3-ubiquitin-TLR4 signaling axis. These findings identify a protective function of D3R against excessive inflammation in mast cells, expanding significant insight into the pathogenesis of rheumatoid arthritis and providing a possible target for future treatment.
Collapse
|
10
|
AKT Isoforms in Macrophage Activation, Polarization, and Survival. Curr Top Microbiol Immunol 2022; 436:165-196. [PMID: 36243844 DOI: 10.1007/978-3-031-06566-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Pu Q, Guo K, Lin P, Wang Z, Qin S, Gao P, Combs C, Khan N, Xia Z, Wu M. Bitter receptor TAS2R138 facilitates lipid droplet degradation in neutrophils during Pseudomonas aeruginosa infection. Signal Transduct Target Ther 2021; 6:210. [PMID: 34083514 PMCID: PMC8175399 DOI: 10.1038/s41392-021-00602-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 03/04/2021] [Accepted: 04/01/2021] [Indexed: 02/05/2023] Open
Abstract
Bitter receptors function primarily in sensing taste, but may also have other functions, such as detecting pathogenic organisms due to their agile response to foreign objects. The mouse taste receptor type-2 member 138 (TAS2R138) is a member of the G-protein-coupled bitter receptor family, which is not only found in the tongue and nasal cavity, but also widely distributed in other organs, such as the respiratory tract, gut, and lungs. Despite its diverse functions, the role of TAS2R138 in host defense against bacterial infection is largely unknown. Here, we show that TAS2R138 facilitates the degradation of lipid droplets (LDs) in neutrophils during Pseudomonas aeruginosa infection through competitive binding with PPARG (peroxisome proliferator-activated receptor gamma) antagonist: N-(3-oxododecanoyl)-L-homoserine lactone (AHL-12), which coincidently is a virulence-bound signal produced by this bacterium (P. aeruginosa). The released PPARG then migrates from nuclei to the cytoplasm to accelerate the degradation of LDs by binding PLIN2 (perilipin-2). Subsequently, the TAS2R138-AHL-12 complex targets LDs to augment their degradation, and thereby facilitating the clearance of AHL-12 in neutrophils to maintain homeostasis in the local environment. These findings reveal a crucial role for TAS2R138 in neutrophil-mediated host immunity against P. aeruginosa infection.
Collapse
Affiliation(s)
- Qinqin Pu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Kai Guo
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Ping Lin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
- Wound Trauma Medical Center, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Zhihan Wang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Shugang Qin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Pan Gao
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Colin Combs
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Nadeem Khan
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA.
| | - Zhenwei Xia
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA.
| |
Collapse
|
12
|
STAT3 Differentially Regulates TLR4-Mediated Inflammatory Responses in Early or Late Phases. Int J Mol Sci 2020; 21:ijms21207675. [PMID: 33081347 PMCID: PMC7589049 DOI: 10.3390/ijms21207675] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/02/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022] Open
Abstract
Toll-like receptor 4 (TLR4) signaling is an important therapeutic target to manage lipopolysaccharide (LPS)-induced inflammation. The transcription factor signal transducer and activator of transcription 3 (STAT3) has been identified as an important regulator of various immune-related diseases and has generated interest as a therapeutic target. Here, we investigated the time-dependent roles of STAT3 in LPS-stimulated RAW264.7 macrophages. STAT3 inhibition induced expression of the pro-inflammatory genes iNOS and COX-2 at early time points. STAT3 depletion resulted in regulation of nuclear translocation of nuclear factor (NF)-κB subunits p50 and p65 and IκBα/Akt/PI3K signaling. Moreover, we found that one Src family kinase, Lyn kinase, was phosphorylated in STAT3 knockout macrophages. In addition to using pharmacological inhibition of NF-κB, we found out that STAT3KO activation of NF-κB subunit p50 and p65 and expression of iNOS was significantly inhibited; furthermore, Akt tyrosine kinase inhibitors also inhibited iNOS and COX-2 gene expression during early time points of LPS stimulation, demonstrating an NF-κB- Akt-dependent mechanism. On the other hand, iNOS expression was downregulated after prolonged treatment with LPS. Activation of NF-κB signaling was also suppressed, and consequently, nitric oxide (NO) production and cell invasion were repressed. Overall, our data indicate that STAT3 differentially regulates early- and late-phase TLR4-mediated inflammatory responses.
Collapse
|
13
|
Qin S, Lin P, Wu Q, Pu Q, Zhou C, Wang B, Gao P, Wang Z, Gao A, Overby M, Yang J, Jiang J, Wilson DL, Tahara YK, Kool ET, Xia Z, Wu M. Small-Molecule Inhibitor of 8-Oxoguanine DNA Glycosylase 1 Regulates Inflammatory Responses during Pseudomonas aeruginosa Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:2231-2242. [PMID: 32929043 PMCID: PMC7541742 DOI: 10.4049/jimmunol.1901533] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 08/17/2020] [Indexed: 02/05/2023]
Abstract
The DNA repair enzyme 8-oxoguanine DNA glycosylase 1 (OGG1), which excises 8-oxo-7,8-dihydroguanine lesions induced in DNA by reactive oxygen species, has been linked to the pathogenesis of lung diseases associated with bacterial infections. A recently developed small molecule, SU0268, has demonstrated selective inhibition of OGG1 activity; however, its role in attenuating inflammatory responses has not been tested. In this study, we report that SU0268 has a favorable effect on bacterial infection both in mouse alveolar macrophages (MH-S cells) and in C57BL/6 wild-type mice by suppressing inflammatory responses, particularly promoting type I IFN responses. SU0268 inhibited proinflammatory responses during Pseudomonas aeruginosa (PA14) infection, which is mediated by the KRAS-ERK1-NF-κB signaling pathway. Furthermore, SU0268 induces the release of type I IFN by the mitochondrial DNA-cGAS-STING-IRF3-IFN-β axis, which decreases bacterial loads and halts disease progression. Collectively, our results demonstrate that the small-molecule inhibitor of OGG1 (SU0268) can attenuate excessive inflammation and improve mouse survival rates during PA14 infection. This strong anti-inflammatory feature may render the inhibitor as an alternative treatment for controlling severe inflammatory responses to bacterial infection.
Collapse
Affiliation(s)
- Shugang Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Ping Lin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, The Third Military Medical University, Chongqing 400042, China
| | - Qun Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qinqin Pu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Chuanmin Zhou
- Wuhan University School of Health Sciences, Wuhan, Hubei Province 430071, China
| | - Biao Wang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Pan Gao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Zhihan Wang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China; and
| | - Ashley Gao
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Madison Overby
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Jinliang Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, The Third Military Medical University, Chongqing 400042, China
| | - David L Wilson
- Department of Chemistry, Stanford Cancer Institute, and Chemistry, Engineering and Medicine for Human Health Institute, Stanford University, Stanford, CA 94305
| | - Yu-Ki Tahara
- Department of Chemistry, Stanford Cancer Institute, and Chemistry, Engineering and Medicine for Human Health Institute, Stanford University, Stanford, CA 94305
| | - Eric T Kool
- Department of Chemistry, Stanford Cancer Institute, and Chemistry, Engineering and Medicine for Human Health Institute, Stanford University, Stanford, CA 94305
| | - Zhenwei Xia
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203;
| |
Collapse
|
14
|
Zhu P, Bu H, Tan S, Liu J, Yuan B, Dong G, Wang M, Jiang Y, Zhu H, Li H, Li Z, Jiang J, Wu M, Li R. A Novel Cochlioquinone Derivative, CoB1, Regulates Autophagy in Pseudomonas aeruginosa Infection through the PAK1/Akt1/mTOR Signaling Pathway. THE JOURNAL OF IMMUNOLOGY 2020; 205:1293-1305. [PMID: 32747503 DOI: 10.4049/jimmunol.1901346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 07/08/2020] [Indexed: 12/31/2022]
Abstract
Owing to multiple antibiotic resistance, Pseudomonas aeruginosa causes the most intractable infections to human beings worldwide, thus exploring novel drugs to defend against this bacterium remains of great importance. In this study, we purified a novel cochlioquinone B derivative (CoB1) from Salvia miltiorrhiza endophytic Bipolaris sorokiniana and reveal its role in host defense against P. aeruginosa infection by activating cytoprotective autophagy in alveolar macrophages (AMs) both in vivo and in vitro. Using a P. aeruginosa infection model, we observed that CoB1-treated mice manifest weakened lung injury, reduced bacterial systemic dissemination, decreased mortality, and dampened inflammatory responses, compared with the wild type littermates. We demonstrate that CoB1-induced autophagy in mouse AMs is associated with decreased PAK1 expression via the ubiquitination-mediated degradation pathway. The inhibition of PAK1 decreases the phosphorylation level of Akt, blocks the Akt/mTOR signaling pathway, and promotes the release of ULK1/2-Atg13-FIP200 complex from mTOR to initiate autophagosome formation, resulting in increased bacterial clearance capacity. Together, our results provide a molecular basis for the use of CoB1 to regulate host immune responses against P. aeruginosa infection and indicate that CoB1 is a potential option for the treatment of infection diseases.
Collapse
Affiliation(s)
- Pengcheng Zhu
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Huimin Bu
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, People's Republic of China.,Department of Physiology, Xuzhou Medical College, Xuzhou 221004, People's Republic of China
| | - Shirui Tan
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Jinjuan Liu
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Bo Yuan
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Guokai Dong
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Meng Wang
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Yuji Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China
| | - Hong Zhu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Hui Li
- Department of Gastroenterology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing Jiangsu 210028, People's Republic of China
| | - Zhenjun Li
- Suzhou Kowloon Hospital, School of Medicine, Shanghai Jiaotong University, Suzhou 215028, People's Republic of China; and
| | - Jihong Jiang
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, People's Republic of China;
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Rongpeng Li
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, People's Republic of China;
| |
Collapse
|
15
|
Gao P, Guo K, Pu Q, Wang Z, Lin P, Qin S, Khan N, Hur J, Liang H, Wu M. oprC Impairs Host Defense by Increasing the Quorum-Sensing-Mediated Virulence of Pseudomonas aeruginosa. Front Immunol 2020; 11:1696. [PMID: 32849593 PMCID: PMC7417366 DOI: 10.3389/fimmu.2020.01696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/25/2020] [Indexed: 02/05/2023] Open
Abstract
Pseudomonas aeruginosa, found widely in the wild, causes infections in the lungs and several other organs in healthy people but more often in immunocompromised individuals. P. aeruginosa infection leads to inflammasome assembly, pyroptosis, and cytokine release in the host. OprC is one of the bacterial porins abundant in the outer membrane vesicles responsible for channel-forming and copper binding. Recent research has revealed that OprC transports copper, an essential trace element involved in various physiological processes, into bacteria during copper deficiency. Here, we found that oprC deletion severely impaired bacterial motility and quorum-sensing systems, as well as lowered levels of lipopolysaccharide and pyocyanin in P. aeruginosa. In addition, oprC deficiency impeded the stimulation of TLR2 and TLR4 and inflammasome activation, resulting in decreases in proinflammatory cytokines and improved disease phenotypes, such as attenuated bacterial loads, lowered lung barrier damage, and longer mouse survival. Moreover, oprC deficiency significantly alleviated pyroptosis in macrophages. Mechanistically, oprC gene may impact quorum-sensing systems in P. aeruginosa to alter pyroptosis and inflammatory responses in cells and mice through the STAT3/NF-κB signaling pathway. Our findings characterize OprC as a critical virulence regulator, providing the groundwork for further dissection of the pathogenic mechanism of OprC as a potential therapeutic target of P. aeruginosa.
Collapse
Affiliation(s)
- Pan Gao
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Kai Guo
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Qinqin Pu
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Zhihan Wang
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States.,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Ping Lin
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Shugang Qin
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Nadeem Khan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Haihua Liang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| |
Collapse
|
16
|
Qin S, Li J, Zhou C, Privratsky B, Schettler J, Deng X, Xia Z, Zeng Y, Wu H, Wu M. SHIP-1 Regulates Phagocytosis and M2 Polarization Through the PI3K/Akt-STAT5-Trib1 Circuit in Pseudomonas aeruginosa Infection. Front Immunol 2020; 11:307. [PMID: 32256487 PMCID: PMC7093384 DOI: 10.3389/fimmu.2020.00307] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/06/2020] [Indexed: 02/05/2023] Open
Abstract
SHIP-1 is an inositol phosphatase that hydrolyzes phosphatidylinositol 3-kinase (PI3K) products and negatively regulates protein kinase B (Akt) activity, thereby modulating a variety of cellular processes in mammals. However, the role of SHIP-1 in bacterial-induced sepsis is largely unknown. Here, we show that SHIP-1 regulates inflammatory responses during Gram-negative bacterium Pseudomonas aeruginosa infection. We found that infected-SHIP-1-/- mice exhibited decreased survival rates, increased inflammatory responses, and susceptibility owing to elevated expression of PI3K than wild-type (WT) mice. Inhibiting SHIP-1 via siRNA silencing resulted in lipid raft aggregates, aggravated oxidative damage, and bacterial burden in macrophages after PAO1 infection. Mechanistically, SHIP-1 deficiency augmented phosphorylation of PI3K and nuclear transcription of signal transducer and activator of transcription 5 (STAT5) to induce the expression of Trib1, which is critical for differentiation of M2 but not M1 macrophages. These findings reveal a previously unrecognized role of SHIP-1 in inflammatory responses and macrophage homeostasis during P. aeruginosa infection through a PI3K/Akt-STAT5-Trib1 axis.
Collapse
Affiliation(s)
- Shugang Qin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaxin Li
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chuanmin Zhou
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Breanna Privratsky
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Jacob Schettler
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Xin Deng
- Department of Pediatrics and Department of Pulmonary & Critical Care Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenwei Xia
- Department of Pediatrics and Department of Pulmonary & Critical Care Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Zeng
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Wu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| |
Collapse
|
17
|
Wu Q, Wang B, Zhou C, Lin P, Qin S, Gao P, Wang Z, Xia Z, Wu M. Bacterial Type I CRISPR-Cas systems influence inflammasome activation in mammalian host by promoting autophagy. Immunology 2019; 158:240-251. [PMID: 31429483 DOI: 10.1111/imm.13108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 07/21/2019] [Accepted: 08/13/2019] [Indexed: 12/15/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated systems (CRISPR-Cas) systems in prokaryotes function at defending against foreign DNAs, providing adaptive immunity to maintain homeostasis. CRISPR-Cas may also influence immune regulation ability in mammalian cells through alterations of pathogenic extent and nature. Recent research has implied that Type I CRISPR-Cas systems of Pseudomonas aeruginosa strain UCBPP-PA14 impede recognition by Toll-like receptor 4, and decrease pro-inflammatory responses both in vitro and in vivo. However, the molecular mechanism by which CRISPR-Cas systems affect host immunity is largely undemonstrated. Here, we explored whether CRISPR-Cas systems can influence autophagy to alter the activation of inflammasome. Using the wild-type PA14 and total CRISPR-Cas region deletion (∆TCR) mutant strain, we elucidated the role and underlying mechanism of Type I CRISPR-Cas systems in bacterial infection, and showed that CRISPR-Cas systems impacted the release of mitochondrial DNA and induction of autophagy. CRISPR-Cas deficiency led to an increase of mitochondrial DNA release, a decrease in autophagy, an increase of inflammasome activation and, ultimately, an elevation of pro-inflammatory response. Our findings illustrate a new important mechanism by which Type I CRISPR-Cas systems control their virulence potency to evade host defense.
Collapse
Affiliation(s)
- Qun Wu
- Department of Pediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Biao Wang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA.,Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Chuanmin Zhou
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Ping Lin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Shugang Qin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Pan Gao
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Zhihan Wang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Zhenwei Xia
- Department of Pediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| |
Collapse
|
18
|
Yaribeygi H, Katsiki N, Butler AE, Sahebkar A. Effects of antidiabetic drugs on NLRP3 inflammasome activity, with a focus on diabetic kidneys. Drug Discov Today 2019; 24:256-262. [DOI: 10.1016/j.drudis.2018.08.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 12/18/2022]
|
19
|
Hibbs ML, Raftery AL, Tsantikos E. Regulation of hematopoietic cell signaling by SHIP-1 inositol phosphatase: growth factors and beyond. Growth Factors 2018; 36:213-231. [PMID: 30764683 DOI: 10.1080/08977194.2019.1569649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SHIP-1 is a hematopoietic-specific inositol phosphatase activated downstream of a multitude of receptors including those for growth factors, cytokines, antigen, immunoglobulin and toll-like receptor agonists where it exerts inhibitory control. While it is constitutively expressed in all immune cells, SHIP-1 expression is negatively regulated by the inflammatory and oncogenic micro-RNA miR-155. Knockout mouse studies have shown the importance of SHIP-1 in various immune cell subsets and have revealed a range of immune-mediated pathologies that are engendered due to loss of SHIP-1's regulatory activity, impelling investigations into the role of SHIP-1 in human disease. In this review, we provide an overview of the literature relating to the role of SHIP-1 in hematopoietic cell signaling and function, we summarize recent reports that highlight the dysregulation of the SHIP-1 pathway in cancers, autoimmune disorders and inflammatory diseases, and lastly we discuss the importance of SHIP-1 in restraining myeloid growth factor signaling.
Collapse
Affiliation(s)
- Margaret L Hibbs
- a Department of Immunology and Pathology , Alfred Medical Research and Education Precinct Monash University , Melbourne , Victoria , Australia
| | - April L Raftery
- a Department of Immunology and Pathology , Alfred Medical Research and Education Precinct Monash University , Melbourne , Victoria , Australia
| | - Evelyn Tsantikos
- a Department of Immunology and Pathology , Alfred Medical Research and Education Precinct Monash University , Melbourne , Victoria , Australia
| |
Collapse
|