1
|
Zhang N, Sun L, Zhou S, Ji C, Cui T, Chu Q, Ye J, Liang S, Ma K, Liu Y, Li X, Guo X, Zhang W, Gu X, Cheng C, Zha Q, Tao S, Zhang Y, Chu J, Wu C, Zhang Y, Wang J, Liu Y, Liu L. Cholangiocarcinoma PDHA1 succinylation suppresses macrophage antigen presentation via alpha-ketoglutaric acid accumulation. Nat Commun 2025; 16:3177. [PMID: 40180922 PMCID: PMC11968997 DOI: 10.1038/s41467-025-58429-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 03/21/2025] [Indexed: 04/05/2025] Open
Abstract
Gemcitabine combined with cisplatin is the first-line chemotherapy for advanced cholangiocarcinoma, but drug resistance remains a challenge, leading to unsatisfactory therapeutic effect. Here, we elucidate the possibility of chemotherapy regimens sensitized by inhibiting succinylation in patients with cholangiocarcinoma from the perspective of post-translational modification. Our omics analysis reveals that succinylation of PDHA1 lysine 83, a key enzyme in the tricarboxylic acid cycle, alters PDH enzyme activity, modulates metabolic flux, and leads to alpha-ketoglutaric acid accumulation in the tumor microenvironment. This process activates the OXGR1 receptor on macrophages, triggering MAPK signaling and inhibiting MHC-II antigen presentation, which promotes immune escape and tumor progression. Moreover, we show that inhibiting PDHA1 succinylation with CPI-613 enhances the efficacy of gemcitabine and cisplatin. Targeting PDHA1 succinylation may be a promising strategy to improve treatment outcomes in cholangiocarcinoma and warrants further clinical exploration.
Collapse
Affiliation(s)
- Ning Zhang
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Linmao Sun
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Shuo Zhou
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Changyong Ji
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Tianming Cui
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Qi Chu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Jiareng Ye
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Shuhang Liang
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
- Department of Gastrointestinal Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Kun Ma
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Yufeng Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Xianying Li
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
- Hepatobiliary Surgery Department, Jining First People's Hospital, Shandong First Medical University, Jining, Shandong, China
| | - Xinyu Guo
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China
| | - Weizhi Zhang
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Xuetian Gu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Cheng Cheng
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Qingrui Zha
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Shengwei Tao
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Yunguang Zhang
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Junhui Chu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Chenghui Wu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Yuchen Zhang
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Jiabei Wang
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China.
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China.
| | - Yao Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China.
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China.
| | - Lianxin Liu
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
Zhang H, Tian Y, Xu C, Chen M, Xiang Z, Gu L, Xue H, Xu Q. Crosstalk between gut microbiotas and fatty acid metabolism in colorectal cancer. Cell Death Discov 2025; 11:78. [PMID: 40011436 DOI: 10.1038/s41420-025-02364-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/30/2025] [Accepted: 02/17/2025] [Indexed: 02/28/2025] Open
Abstract
Colorectal cancer (CRC) is the third most common malignancy globally and the second leading cause of cancer-related mortality. Its development is a multifactorial and multistage process influenced by a dynamic interplay between gut microbiota, environmental factors, and fatty acid metabolism. Dysbiosis of intestinal microbiota and abnormalities in microbiota-associated metabolites have been implicated in colorectal carcinogenesis, highlighting the pivotal role of microbial and metabolic interactions. Fatty acid metabolism serves as a critical nexus linking dietary patterns with gut microbial activity, significantly impacting intestinal health. In CRC patients, reduced levels of short-chain fatty acids (SCFAs) and SCFA-producing bacteria have been consistently observed. Supplementation with SCFA-producing probiotics has demonstrated tumor-suppressive effects, while therapeutic strategies aimed at modulating SCFA levels have shown potential in enhancing the efficacy of radiation therapy and immunotherapy in both preclinical and clinical settings. This review explores the intricate relationship between gut microbiota, fatty acid metabolism, and CRC, offering insights into the underlying mechanisms and their potential translational applications. Understanding this interplay could pave the way for novel diagnostic, therapeutic, and preventive strategies in the management of CRC.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Yuan Tian
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Chunjie Xu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Miaomiao Chen
- Department of Radiology, Huashan Hospital, National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200040, PR China
| | - Zeyu Xiang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Lei Gu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Hanbing Xue
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Qing Xu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
3
|
Chen KY, Liu Z, Yi J, Hui YP, Song YN, Lu JH, Chen HJ, Yang SY, Hu XY, Zhang DS, Liang GY. PDHA1 Alleviates Myocardial Ischemia-Reperfusion Injury by Improving Myocardial Insulin Resistance During Cardiopulmonary Bypass Surgery in Rats. Cardiovasc Drugs Ther 2025; 39:17-31. [PMID: 37610688 DOI: 10.1007/s10557-023-07501-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 08/24/2023]
Abstract
OBJECTIVE Cardiopulmonary bypass (CPB) is a requisite technique for thoracotomy in advanced cardiovascular surgery. However, the consequent myocardial ischemia-reperfusion injury (MIRI) is the primary culprit behind cardiac dysfunction and fatal consequences post-operation. Prior research has posited that myocardial insulin resistance (IR) plays a vital role in exacerbating the progression of MIRI. Nonetheless, the exact mechanisms underlying this phenomenon remain obscure. METHODS We constructed pyruvate dehydrogenase E1 α subunit (PDHA1) interference and overexpression rats and used ascending aorta occlusion in an in vivo model of CPB-MIRI. We devised an in vivo model of CPB-MIRI by constructing rat models with both pyruvate dehydrogenase E1α subunit (PDHA1) interference and overexpression through ascending aorta occlusion. We analyzed myocardial glucose metabolism and the degree of myocardial injury using functional monitoring, biochemical assays, and histological analysis. RESULTS We discovered a clear downregulation of glucose transporter 4 (GLUT4) protein content expression in the CPB I/R model. In particular, cardiac-specific PDHA1 interference resulted in exacerbated cardiac dysfunction, significantly increased myocardial infarction area, more pronounced myocardial edema, and markedly increased cardiomyocyte apoptosis. Notably, the opposite effect was observed with PDHA1 overexpression, leading to a mitigated cardiac dysfunction and decreased incidence of myocardial infarction post-global ischemia. Mechanistically, PDHA1 plays a crucial role in regulating the protein content expression of GLUT4 on cardiomyocytes, thereby controlling the uptake and utilization of myocardial glucose, influencing the development of myocardial insulin resistance, and ultimately modulating MIRI. CONCLUSION Overall, our study sheds new light on the pivotal role of PDHA1 in glucose metabolism and the development of myocardial insulin resistance. Our findings hold promising therapeutic potential for addressing the deleterious effects of MIRI in patients.
Collapse
Affiliation(s)
- Kai-Yuan Chen
- Department of Cardiovascular Surgery, the Affiliated Hospital of Guizhou Medical University, Beijing Road, Yunyan District, Guiyang, 550001, Guizhou Province, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, 550025, Guizhou Province, China
| | - Zhou Liu
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, 550025, Guizhou Province, China
| | - Jing Yi
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, Guizhou Province, China
| | - Yong-Peng Hui
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, 550025, Guizhou Province, China
| | - Ying-Nan Song
- Department of Cardiovascular Surgery, the Affiliated Hospital of Guizhou Medical University, Beijing Road, Yunyan District, Guiyang, 550001, Guizhou Province, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, 550025, Guizhou Province, China
| | - Jun-Hou Lu
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, 550025, Guizhou Province, China
| | - Hong-Jin Chen
- Department of Cardiovascular Surgery, the Affiliated Hospital of Guizhou Medical University, Beijing Road, Yunyan District, Guiyang, 550001, Guizhou Province, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, 550025, Guizhou Province, China
| | - Si-Yuan Yang
- Department of Cardiovascular Surgery, the Affiliated Hospital of Guizhou Medical University, Beijing Road, Yunyan District, Guiyang, 550001, Guizhou Province, China
| | - Xuan-Yi Hu
- Department of Cardiovascular Surgery, the Affiliated Hospital of Guizhou Medical University, Beijing Road, Yunyan District, Guiyang, 550001, Guizhou Province, China
| | - Deng-Shen Zhang
- Department of Cardiovascular Surgery, the Affiliated Hospital of Zunyi Medical University, Zunyi, 563009, Guizhou Province, China
| | - Gui-You Liang
- Department of Cardiovascular Surgery, the Affiliated Hospital of Guizhou Medical University, Beijing Road, Yunyan District, Guiyang, 550001, Guizhou Province, China.
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, 550025, Guizhou Province, China.
| |
Collapse
|
4
|
Jørgensen KS, Pedersen SS, Hjorth SA, Billestrup N, Prause M. Protection of beta cells against cytokine-induced apoptosis by the gut microbial metabolite butyrate. FEBS J 2024. [PMID: 39569473 DOI: 10.1111/febs.17334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/28/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
Type 1 diabetes (T1D) is characterized by immune cell infiltration in the islets of Langerhans, leading to the destruction of insulin-producing beta cells. This destruction is driven by secreted cytokines and cytotoxic T cells inducing apoptosis in beta cells. Butyrate, a metabolite produced by the gut microbiota, has been shown to have various health benefits, including anti-inflammatory and anti-diabetic effects. In this study, we investigated the potential protective effects of butyrate on cytokine-induced apoptosis in beta cells and explored the underlying mechanisms. Insulin-secreting INS-1E cells and isolated mouse islets were treated with interleukin-1beta (IL-1β) or a combination of IL-1β and interferon-gamma (IFN-γ) in the presence or absence of butyrate. We analyzed apoptosis, nitric oxide (NO) levels, expression of stress-related genes, and immune cell migration. Our results demonstrated that butyrate significantly attenuated cytokine-induced apoptosis in both INS-1E cells and mouse islets, accompanied by a reduction in NO levels. Butyrate also decreased the expression of endoplasmic reticulum (ER) stress markers such as Chop, phosphorylated eIF2α and Atf4, as well as some pro-apoptotic genes including Dp5 and Puma. Butyrate reduced the cytokine-induced expression of the chemokine genes Cxcl1 and Cxcl10 in mouse islets, as well as the chemotactic activity of THP-1 monocytes toward conditioned media from IL-1β-exposed islets. In conclusion, these findings indicate that butyrate protects beta cells from cytokine-induced apoptosis and ER stress, suggesting its potential as a therapeutic agent to prevent beta cell destruction in T1D.
Collapse
Affiliation(s)
- Kasper Suhr Jørgensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Signe Schultz Pedersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Siv Annegrethe Hjorth
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Nils Billestrup
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Michala Prause
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
5
|
Yamashita S, Okamoto M, Mendonca M, Fujiwara N, Kitamura E, Chang CSS, Brueckner S, Shindo S, Kuriki N, Cooley MA, Gill Dhillon N, Kawai T, Bartlett JD, Everett ET, Suzuki M. Fluoride Alters Gene Expression via Histone H3K27 Acetylation in Ameloblast-like LS8 Cells. Int J Mol Sci 2024; 25:9600. [PMID: 39273544 PMCID: PMC11395493 DOI: 10.3390/ijms25179600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Excessive fluoride ingestion during tooth development can cause dental fluorosis. Previously, we reported that fluoride activates histone acetyltransferase (HAT) to acetylate p53, promoting fluoride toxicity in mouse ameloblast-like LS8 cells. However, the roles of HAT and histone acetylation status in fluoride-mediated gene expression remain unidentified. Here, we demonstrate that fluoride-mediated histone modification causes gene expression alterations in LS8 cells. LS8 cells were treated with or without fluoride followed by ChIP-Seq analysis of H3K27ac. Genes were identified by differential H3K27ac peaks within ±1 kb from transcription start sites. The levels of mRNA of identified genes were assessed using rea-time PCR (qPCR). Fluoride increased H3K27ac peaks associated with Bax, p21, and Mdm2 genes and upregulated their mRNA levels. Fluoride decreased H3K27ac peaks and p53, Bad, and Bcl2 had suppressed transcription. HAT inhibitors (Anacardic acid or MG149) suppressed fluoride-induced mRNA of p21 and Mdm2, while fluoride and the histone deacetylase (HDAC) inhibitor sodium butyrate increased Bad and Bcl2 expression above that of fluoride treatment alone. To our knowledge, this is the first study that demonstrates epigenetic regulation via fluoride treatment via H3 acetylation. Further investigation is required to elucidate epigenetic mechanisms of fluoride toxicity in enamel development.
Collapse
Affiliation(s)
- Shohei Yamashita
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; (S.Y.); (M.O.); (M.M.); (S.B.); (S.S.); (N.K.); (T.K.)
| | - Motoki Okamoto
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; (S.Y.); (M.O.); (M.M.); (S.B.); (S.S.); (N.K.); (T.K.)
| | - Melanie Mendonca
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; (S.Y.); (M.O.); (M.M.); (S.B.); (S.S.); (N.K.); (T.K.)
- Biology I Halmos College of Arts and Sciences, Behavioral Neuroscience I College of Psychology, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| | - Natsumi Fujiwara
- Department of Oral Health Care Management, Graduate School of Biomedical Sciences, Tokushima University, Kuramoto, Tokushima 770-8504, Japan;
| | - Eiko Kitamura
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; (E.K.)
| | | | - Susanne Brueckner
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; (S.Y.); (M.O.); (M.M.); (S.B.); (S.S.); (N.K.); (T.K.)
| | - Satoru Shindo
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; (S.Y.); (M.O.); (M.M.); (S.B.); (S.S.); (N.K.); (T.K.)
| | - Nanako Kuriki
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; (S.Y.); (M.O.); (M.M.); (S.B.); (S.S.); (N.K.); (T.K.)
| | - Marion A. Cooley
- Department of Oral Biology and Diagnostic Sciences, The Dental College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Navi Gill Dhillon
- Department of Biological Sciences, Halmos College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, FL 33314, USA;
| | - Toshihisa Kawai
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; (S.Y.); (M.O.); (M.M.); (S.B.); (S.S.); (N.K.); (T.K.)
| | - John D. Bartlett
- Division of Biosciences, College of Dentistry, Ohio State University, Columbus, OH 43210, USA;
| | - Eric T. Everett
- Department of Biomedical Sciences, Adams School of Dentistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Maiko Suzuki
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; (S.Y.); (M.O.); (M.M.); (S.B.); (S.S.); (N.K.); (T.K.)
| |
Collapse
|
6
|
Gou H, Zeng R, Lau HCH, Yu J. Gut microbial metabolites: Shaping future diagnosis and treatment against gastrointestinal cancer. Pharmacol Res 2024; 208:107373. [PMID: 39197712 DOI: 10.1016/j.phrs.2024.107373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024]
Abstract
Gastrointestinal cancer is a worldwide health challenge due to its dramatically increasing prevalence and as a leading cause of cancer-related mortality. Increasing evidence has illustrated the vital role of gut microbes-derived metabolites in gastrointestinal cancer progression and treatment. Microbial metabolites are produced by the gut microbiota that utilizes both extrinsic dietary components and intrinsic host-generated compounds. Meanwhile, certain categories of metabolites such as short-chain fatty acids, bile acids, tryptophan, and indole derivatives, are linked to gastrointestinal malignancy. In this review, the major classes of microbial metabolites and their impacts on various gastrointestinal cancers including colorectal cancer, gastric cancer, and hepatocellular carcinoma, have been introduced. The application of microbial metabolites as predictive biomarkers for early diagnosis and prognosis of gastrointestinal cancer has also been explored. In addition, therapeutic potential of strategies that target microbial metabolites against gastrointestinal cancer is further evaluated.
Collapse
Affiliation(s)
- Hongyan Gou
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR
| | - Ruijie Zeng
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR
| | - Harry Cheuk Hay Lau
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR.
| |
Collapse
|
7
|
Chakraborty P, Gamage HKAH, Laird AS. Butyrate as a potential therapeutic agent for neurodegenerative disorders. Neurochem Int 2024; 176:105745. [PMID: 38641025 DOI: 10.1016/j.neuint.2024.105745] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Maintaining an optimum microbial community within the gastrointestinal tract is intricately linked to human metabolic, immune and brain health. Disturbance to these microbial populations perturbs the production of vital bioactive compounds synthesised by the gut microbiome, such as short-chain fatty acids (SCFAs). Of the SCFAs, butyrate is known to be a major source of energy for colonocytes and has valuable effects on the maintenance of intestinal epithelium and blood brain barrier integrity, gut motility and transit, anti-inflammatory effects, and autophagy induction. Inducing endogenous butyrate production is likely to be beneficial for gut-brain homeostasis and for optimal neuronal function. For these reasons, butyrate has gained interest as a potential therapy for not only metabolic and immunological disorders, but also conditions related to the brain, including neurodegenerative diseases. While direct and indirect sources of butyrate, including prebiotics, probiotics, butyrate pro-drugs and glucosidase inhibitors, offer a promising therapeutic avenue, their efficacy and dosage in neurodegenerative conditions remain largely unknown. Here, we review current literature on effects of butyrate relevant to neuronal function, the impact of butyrate in a range of neurodegenerative diseases and related treatments that may have potential for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Prapti Chakraborty
- Macquarie University Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Hasinika K A H Gamage
- School of Natural Sciences, Macquarie University, NSW, 2109, Australia; ARC Training Centre for Facilitated Advancement of Australia's Bioactives, Macquarie University, NSW, 2109, Australia
| | - Angela S Laird
- Macquarie University Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.
| |
Collapse
|
8
|
Shen H, Ma W, Hu Y, Liu Y, Song Y, Fu L, Qin Z. Mitochondrial Sirtuins in Cancer: A Revisited Review from Molecular Mechanisms to Therapeutic Strategies. Theranostics 2024; 14:2993-3013. [PMID: 38773972 PMCID: PMC11103492 DOI: 10.7150/thno.97320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/03/2024] [Indexed: 05/24/2024] Open
Abstract
The sirtuin (SIRT) family is well-known as a group of deacetylase enzymes that rely on nicotinamide adenine dinucleotide (NAD+). Among them, mitochondrial SIRTs (SIRT3, SIRT4, and SIRT5) are deacetylases located in mitochondria that regulate the acetylation levels of several key proteins to maintain mitochondrial function and redox homeostasis. Mitochondrial SIRTs are reported to have the Janus role in tumorigenesis, either tumor suppressive or oncogenic functions. Although the multi-faceted roles of mitochondrial SIRTs with tumor-type specificity in tumorigenesis, their critical functions have aroused a rising interest in discovering some small-molecule compounds, including inhibitors and activators for cancer therapy. Herein, we describe the molecular structures of mitochondrial SIRTs, focusing on elucidating their regulatory mechanisms in carcinogenesis, and further discuss the recent advances in developing their targeted small-molecule compounds for cancer therapy. Together, these findings provide a comprehensive understanding of the crucial roles of mitochondrial SIRTs in cancer and potential new therapeutic strategies.
Collapse
Affiliation(s)
- Hui Shen
- Department of Respiratory and Critical Care Medicine, Department of Breast Surgery, Department of Outpatient, and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Wei Ma
- Department of Respiratory and Critical Care Medicine, Department of Breast Surgery, Department of Outpatient, and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yue Hu
- Department of Respiratory and Critical Care Medicine, Department of Breast Surgery, Department of Outpatient, and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yuan Liu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yaowen Song
- Department of Respiratory and Critical Care Medicine, Department of Breast Surgery, Department of Outpatient, and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Leilei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Zheng Qin
- Department of Respiratory and Critical Care Medicine, Department of Breast Surgery, Department of Outpatient, and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
9
|
Sun J, Chen S, Zang D, Sun H, Sun Y, Chen J. Butyrate as a promising therapeutic target in cancer: From pathogenesis to clinic (Review). Int J Oncol 2024; 64:44. [PMID: 38426581 PMCID: PMC10919761 DOI: 10.3892/ijo.2024.5632] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
Cancer is one of the leading causes of mortality worldwide. The etiology of cancer has not been fully elucidated yet, and further enhancements are necessary to optimize therapeutic efficacy. Butyrate, a short‑chain fatty acid, is generated through gut microbial fermentation of dietary fiber. Studies have unveiled the relevance of butyrate in malignant neoplasms, and a comprehensive understanding of its role in cancer is imperative for realizing its full potential in oncological treatment. Its full antineoplastic effects via the activation of G protein‑coupled receptors and the inhibition of histone deacetylases have been also confirmed. However, the underlying mechanistic details remain unclear. The present study aimed to review the involvement of butyrate in carcinogenesis and its molecular mechanisms, with a particular emphasis on its association with the efficacy of tumor immunotherapy, as well as discussing relevant clinical studies on butyrate as a therapeutic target for neoplastic diseases to provide new insights into cancer treatment.
Collapse
Affiliation(s)
- Jinzhe Sun
- Department of Oncology, Division of Thoracic Neoplasms, Dalian, Liaoning 116000, P.R. China
| | - Shiqian Chen
- Department of Oncology, Division of Thoracic Neoplasms, Dalian, Liaoning 116000, P.R. China
| | - Dan Zang
- Department of Oncology, Division of Thoracic Neoplasms, Dalian, Liaoning 116000, P.R. China
| | - Hetian Sun
- Department of Ophthalmology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Yan Sun
- Department of Oncology, Division of Thoracic Neoplasms, Dalian, Liaoning 116000, P.R. China
| | - Jun Chen
- Department of Oncology, Division of Thoracic Neoplasms, Dalian, Liaoning 116000, P.R. China
| |
Collapse
|
10
|
Zheng J, Zhou Y, Zhang D, Ma K, Gong Y, Luo X, Liu J, Cui S. Intestinal melatonin levels and gut microbiota homeostasis are independent of the pineal gland in pigs. Front Microbiol 2024; 15:1352586. [PMID: 38596375 PMCID: PMC11003461 DOI: 10.3389/fmicb.2024.1352586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/28/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction Melatonin (MEL) is a crucial neuroendocrine hormone primarily produced by the pineal gland. Pinealectomy (PINX) has been performed on an endogenous MEL deficiency model to investigate the functions of pineal MEL and its relationship with various diseases. However, the effect of PINX on the gastrointestinal tract (GIT) MEL levels and gut microbiome in pigs has not been previously reported. Methods By using a newly established pig PINX model, we detected the levels of MEL in the GIT by liquid chromatography-tandem mass spectrometry. In addition, we examined the effects of PINX on the expression of MEL synthesis enzymes, intestinal histomorphology, and the intestinal barrier. Furthermore, 16S rRNA sequencing was performed to analyze the colonic microbiome. Results PINX reduced serum MEL levels but did not affect GIT MEL levels. Conversely, MEL supplementation increased MEL levels in the GIT and intestinal contents. Neither PINX nor MEL supplementation had any effect on weight gain, organ coefficient, serum biochemical indexes, or MEL synthetase arylalkylamine N-acetyltransferase (AANAT) expression in the duodenum, ileum, and colon. Furthermore, no significant differences were observed in the intestinal morphology or intestinal mucosal barrier function due to the treatments. Additionally, 16S rRNA sequencing revealed that PINX had no significant impact on the composition of the intestinal microbiota. Nevertheless, MEL supplementation decreased the abundance of Fibrobacterota and increased the abundance of Actinobacteriota, Desulfobacterota, and Chloroflexi. Conclusion We demonstrated that synthesis of MEL in the GIT is independent of the pineal gland. PINX had no influence on intestinal MEL level and microbiota composition in pigs, while exogenous MEL alters the structure of the gut microbiota.
Collapse
Affiliation(s)
- Jiaming Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yewen Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Di Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Kezhe Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yuneng Gong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xuan Luo
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiali Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Sheng Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, China
| |
Collapse
|
11
|
Liu WQ, Lin WR, Yan L, Xu WH, Yang J. Copper homeostasis and cuproptosis in cancer immunity and therapy. Immunol Rev 2024; 321:211-227. [PMID: 37715546 DOI: 10.1111/imr.13276] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/17/2023]
Abstract
Copper is an essential nutrient for maintaining enzyme activity and transcription factor function. Excess copper results in the aggregation of lipoylated dihydrolipoamide S-acetyltransferase (DLAT), which correlates to the mitochondrial tricarboxylic acid (TCA) cycle, resulting in proteotoxic stress and eliciting a novel cell death modality: cuproptosis. Cuproptosis exerts an indispensable role in cancer progression, which is considered a promising strategy for cancer therapy. Cancer immunotherapy has gained extensive attention owing to breakthroughs in immune checkpoint blockade; furthermore, cuproptosis is strongly connected to the modulation of antitumor immunity. Thus, a thorough recognition concerning the mechanisms involved in the modulation of copper metabolism and cuproptosis may facilitate improvement in cancer management. This review outlines the cellular and molecular mechanisms and characteristics of cuproptosis and the links of the novel regulated cell death modality with human cancers. We also review the current knowledge on the complex effects of cuproptosis on antitumor immunity and immune response. Furthermore, potential agents that elicit cuproptosis pathways are summarized. Lastly, we discuss the influence of cuproptosis induction on the tumor microenvironment as well as the challenges of adding cuproptosis regulators to therapeutic strategies beyond traditional therapy.
Collapse
Affiliation(s)
- Wei-Qing Liu
- Department of Internal Medicine-Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wan-Rong Lin
- Department of Surgical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li Yan
- Department of Internal Medicine-Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wen-Hao Xu
- Department of Internal Medicine-Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jun Yang
- Department of Surgical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
12
|
Xia X, Liu Y, Lu Y, Liu J, Deng Y, Wu Y, Hou M, He F, Yang H, Xu Y, Zhang Y, Zhu X. Retuning Mitochondrial Apoptosis/Mitophagy Balance via SIRT3-Energized and Microenvironment-Modulated Hydrogel Microspheres to Impede Osteoarthritis. Adv Healthc Mater 2023; 12:e2302475. [PMID: 37696643 DOI: 10.1002/adhm.202302475] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/03/2023] [Indexed: 09/13/2023]
Abstract
Full-range therapeutic regimens for osteoarthritis (OA) should consider organs (joints)-tissues (cartilage)-cells (chondrocytes)-organelles cascade, of which the subcellular mitochondria dominate eukaryotic cells' fate, and thus causally influence OA progression. However, the dynamic regulation of mitochondrial rise and demise in impaired chondrocytes and the exact role of mitochondrial metronome sirtuins 3 (SIRT3) is not clarified. Herein, chondrocytes are treated with SIRT3 natural agonist dihydromyricetin (DMY) or chemical antagonist 3-TYP, respectively, to demonstrate the positive action of SIRT3 on preserving cartilage extracellular matrix (ECM). Molecular mechanical investigations disclose that SIRT3-induced chondroprotection depended on the repression of mitochondrial apoptosis (mtApoptosis) and the activation of mitophagy. Inspired by the high-level matrix proteinases and reactive oxygen species (ROS) in the OA environment, by anchoring gelatin methacrylate (GelMA) and benzenediboronic acid (PBA) to hyaluronic acid methacrylate (HAMA) with microfluidic technology, a dual-responsive hydrogel microsphere laden with DMY is tactfully fabricated and named as DMY@HAMA-GelMA-PBA (DMY@HGP). In vivo injection of DMY@HGP ameliorated cartilage abrasion and subchondral bone sclerosis, as well as promoted motor function recovery in post-traumatic OA (PTOA) model via recouping endogenous mtApoptosis and mitophagy balance. Overall, this study unveils a novel mitochondrial dynamic-oriented strategy, holding great promise for the precision treatment of OA.
Collapse
Affiliation(s)
- Xiaowei Xia
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Yang Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Yingjie Lu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Junlin Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Yaoge Deng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Yubin Wu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Mingzhuang Hou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Yong Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Yijian Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Xuesong Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| |
Collapse
|
13
|
Wu X, Zhu C, Zhang M, Wang S, Yu J, Tian J, Hu Z. Effects of different processed tomatoes on carotenoid release and microbiota composition during in vitro gastrointestinal digestion and colonic fermentation. Food Funct 2023; 14:10177-10187. [PMID: 37902310 DOI: 10.1039/d3fo02849f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Carotenoids in tomatoes confer significant health benefits to humans but with the disadvantage of the carotenoids from raw tomatoes not being easily absorbed for utilization. Thus, this study aimed to investigate the effects of different cooking processes on carotenoid release and human gut microbiota composition during in vitro simulated gastrointestinal digestion of tomatoes. The results showed that stir-frying significantly increased the release of lycopene and β-carotene during gastrointestinal digestion, with boiling being the second most effective treatment. The boiling-treated tomatoes enhanced the carotenoid release during in vitro fermentation. Gut microbiota analysis revealed that the digestion of the raw and boiled tomatoes promoted the growth of potentially beneficial microbiota while reducing the ratio of Firmicutes/Bacteroides, which potentially helps prevent obesity. Boiling treatment significantly reduced the growth of Peptostreptococcus and was negatively correlated with carotenoid release. Overall, the boiling-treated tomatoes were more effective than the raw or stir-fried tomatoes in terms of both colon health benefits and carotenoid release.
Collapse
Affiliation(s)
- Xinyi Wu
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China.
| | - Changan Zhu
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China.
| | - Min Zhang
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China.
| | - Shuwen Wang
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China.
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China.
- Hainan Institute, Zhejiang University, Sanya 572000, China
| | - Jinhu Tian
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Zhangjian Hu
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China.
- Hainan Institute, Zhejiang University, Sanya 572000, China
| |
Collapse
|
14
|
Scumaci D, Zheng Q. Epigenetic meets metabolism: novel vulnerabilities to fight cancer. Cell Commun Signal 2023; 21:249. [PMID: 37735413 PMCID: PMC10512595 DOI: 10.1186/s12964-023-01253-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/01/2023] [Indexed: 09/23/2023] Open
Abstract
Histones undergo a plethora of post-translational modifications (PTMs) that regulate nucleosome and chromatin dynamics and thus dictate cell fate. Several evidences suggest that the accumulation of epigenetic alterations is one of the key driving forces triggering aberrant cellular proliferation, invasion, metastasis and chemoresistance pathways. Recently a novel class of histone "non-enzymatic covalent modifications" (NECMs), correlating epigenome landscape and metabolic rewiring, have been described. These modifications are tightly related to cell metabolic fitness and are able to impair chromatin architecture. During metabolic reprogramming, the high metabolic flux induces the accumulation of metabolic intermediate and/or by-products able to react with histone tails altering epigenome homeostasis. The accumulation of histone NECMs is a damaging condition that cancer cells counteracts by overexpressing peculiar "eraser" enzymes capable of removing these modifications preserving histones architecture. In this review we explored the well-established NECMs, emphasizing the role of their corresponding eraser enzymes. Additionally, we provide a parterre of drugs aiming to target those eraser enzymes with the intent to propose novel routes of personalized medicine based on the identification of epi-biomarkers which might be selectively targeted for therapy. Video Abstract.
Collapse
Affiliation(s)
- Domenica Scumaci
- Research Center On Advanced Biochemistry and Molecular Biology, Magna Græcia University of Catanzaro, 88100, Catanzaro, Italy.
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, 88100, Catanzaro, Italy.
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
15
|
Hajjar J, Voigt A, Conner M, Swennes A, Fowler S, Calarge C, Mendonca D, Armstrong D, Chang CY, Walter J, Butte M, Savidge T, Oh J, Kheradmand F, Petrosino J. Common Variable Immunodeficiency Patient Fecal Microbiota Transplant Recapitulates Gut Dysbiosis. RESEARCH SQUARE 2023:rs.3.rs-2640584. [PMID: 36993518 PMCID: PMC10055500 DOI: 10.21203/rs.3.rs-2640584/v1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Purpose Patients with non-infectious complications have worse clinical outcomes in common variable immunodeficiency (CVID) than those with infections-only. Non-infectious complications are associated with gut microbiome aberrations, but there are no reductionist animal models that emulate CVID. Our aim in this study was to uncover potential microbiome roles in the development of non-infectious complications in CVID. Methods We examined fecal whole genome shotgun sequencing from patients CVID, and non-infectious complications, infections-only, and their household controls. We also performed Fecal Microbiota transplant from CVID patients to Germ-Free Mice. Results We found potentially pathogenic microbes Streptococcus parasanguinis and Erysipelatoclostridium ramosum were enriched in gut microbiomes of CVID patients with non-infectious complications. In contrast, Fusicatenibacter saccharivorans and Anaerostipes hadrus, known to suppress inflammation and promote healthy metabolism, were enriched in gut microbiomes of infections-only CVID patients. Fecal microbiota transplant from non-infectious complications, infections-only, and their household controls into germ-free mice revealed gut dysbiosis patterns in recipients from CVID patients with non-infectious complications, but not infections-only CVID, or household controls recipients. Conclusion Our findings provide a proof of concept that fecal microbiota transplant from CVID patients with non-infectious complications to Germ-Free mice recapitulates microbiome alterations observed in the donors.
Collapse
|
16
|
Liang Y, Rao Z, Du D, Wang Y, Fang T. Butyrate prevents the migration and invasion, and aerobic glycolysis in gastric cancer via inhibiting Wnt/β-catenin/c-Myc signaling. Drug Dev Res 2023; 84:532-541. [PMID: 36782390 DOI: 10.1002/ddr.22043] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 02/15/2023]
Abstract
Gastric cancer (GC) remains a common cause of cancer death worldwide. Evidence has found that butyrate exhibited antitumor effects on GC cells. However, the mechanism by which butyrate regulate GC cell proliferation, migration, invasion, and aerobic glycolysis remains largely unknown. The proliferation, migration, and invasion of GC cells were tested by EdU staining, transwell assays. Additionally, protein expressions were determined by western blot assay. Next, glucose uptake, lactate production, and cellular ATP levels in GC cells were detected. Furthermore, the antitumor effects of butyrate in tumor-bearing nude mice were evaluated. We found, butyrate significantly prevented GC cell proliferation, migration, and invasion (p < .01). Additionally, butyrate markedly inhibited GC cell aerobic glycolysis, as shown by the reduced expressions of GLUT1, HK2, and LDHA (p < .01). Moreover, butyrate notably decreased nuclear β-catenin and c-Myc levels in GC cells (p < .01). Remarkably, through activating Wnt/β-catenin signaling with LiCl, the inhibitory effects of butyrate on the growth and aerobic glycolysis of GC cells were diminished (p < .01). Moreover, butyrate notably suppressed tumor volume and weight in GC cell xenograft nude mice in vivo (p < .01). Meanwhile, butyrate obviously reduced nuclear β-catenin, c-Myc, GLUT1, HK2 and LDHA levels in tumor tissues in GC cell xenograft mice (p < .01). Collectively, butyrate could suppress the growth and aerobic glycolysis of GC cells in vitro and in vivo via downregulating wnt/β-catenin/c-Myc signaling. These findings are likely to prove useful in better understanding the role of butyrate in GC.
Collapse
Affiliation(s)
- Yizhi Liang
- Department of Gastroenterology, The Second Affiliated Clinical Medical College of Fujian Medical University, The Second Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Zilan Rao
- Department of Gastroenterology, The Second Affiliated Clinical Medical College of Fujian Medical University, The Second Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Dongwei Du
- Department of Gastroenterology, The Second Affiliated Clinical Medical College of Fujian Medical University, The Second Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Yiwen Wang
- Department of Gastroenterology, The Second Affiliated Clinical Medical College of Fujian Medical University, The Second Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Taiyong Fang
- Department of Gastroenterology, The Second Affiliated Clinical Medical College of Fujian Medical University, The Second Affiliated Hospital of Fujian Medical University, Fujian, China
| |
Collapse
|
17
|
Huang C, Deng W, Xu HZ, Zhou C, Zhang F, Chen J, Bao Q, Zhou X, Liu M, Li J, Liu C. Short-chain fatty acids reprogram metabolic profiles with the induction of reactive oxygen species production in human colorectal adenocarcinoma cells. Comput Struct Biotechnol J 2023; 21:1606-1620. [PMID: 36874158 PMCID: PMC9975252 DOI: 10.1016/j.csbj.2023.02.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/15/2023] Open
Abstract
Short-chain fatty acids (SCFAs) exhibit anticancer activity in cellular and animal models of colon cancer. Acetate, propionate, and butyrate are the three major SCFAs produced from dietary fiber by gut microbiota fermentation and have beneficial effects on human health. Most previous studies on the antitumor mechanisms of SCFAs have focused on specific metabolites or genes involved in antitumor pathways, such as reactive oxygen species (ROS) biosynthesis. In this study, we performed a systematic and unbiased analysis of the effects of acetate, propionate, and butyrate on ROS levels and metabolic and transcriptomic signatures at physiological concentrations in human colorectal adenocarcinoma cells. We observed significantly elevated levels of ROS in the treated cells. Furthermore, significantly regulated signatures were involved in overlapping pathways at metabolic and transcriptomic levels, including ROS response and metabolism, fatty acid transport and metabolism, glucose response and metabolism, mitochondrial transport and respiratory chain complex, one-carbon metabolism, amino acid transport and metabolism, and glutaminolysis, which are directly or indirectly linked to ROS production. Additionally, metabolic and transcriptomic regulation occurred in a SCFAs types-dependent manner, with an increasing degree from acetate to propionate and then to butyrate. This study provides a comprehensive analysis of how SCFAs induce ROS production and modulate metabolic and transcriptomic levels in colon cancer cells, which is vital for understanding the mechanisms of the effects of SCFAs on antitumor activity in colon cancer.
Collapse
Key Words
- 1H–13C HMBC, 1H–13C Heteronuclear Multiple Bond Correlation Spectroscopy
- 1H–13C HSQC, 1H–13C Heteronuclear Single Quantum Coherence Spectroscopy
- 1H–1H COSY, 1H–1H Correlation Spectroscopy
- 1H–1H TOCSY, 1H–1H Total Correlation Spectroscopy
- ADP, Adenosine diphosphate
- AMP, Adenosine monophosphate
- ATP, Adenosine triphosphate
- Ace, Acetate
- Ach, Acetylcholine
- Ala, Alanine
- CRC, Colorectal Cancer
- Caco-2, Human Colon Adenocarcinoma
- Cho, Choline
- CoA, Coenzyme A
- Cre, Creatine
- DCFH-DA, Dichloro-Dihydro-Fluorescein Diacetate
- DEGs, Differentially Expressed Genes
- DMEM, Dulbecco's Modified Eagle Medium
- DMG, Dimethylglycine
- DNA, Deoxyribonucleic Acid
- EP, Eppendorf
- FA, Formate
- FDR, False Discovery Rate
- Fru, Fructose
- Fum, Fumaric acid
- GLS, Glutaminase
- GSEA, Gene Set Enrichment Analysis
- GSH, Glutathione
- Gal-1-P, Galactose-1-phosphate
- Glc, Glucose
- Gln, Glutamine
- Glu, Glutamate
- Gly, Glycine
- HCT116, Human Colorectal Carcinoma Cell Line
- HEK, Human Embryonic Kidney cells
- HT29, Human Colorectal Adenocarcinoma Cell Line with Epithelial Morphology
- His, Histidine
- Ile, Isoleucine
- J-Res, J-resolved Spectroscopy
- LDH, Lactate Dehydrogenase
- Lac, Lactate
- Leu, Leucine
- Lys, Lysine
- MCF-7, Human Breast Cancer Cell Line with Estrogen
- MCT, Monocarboxylate Transporters
- Met, Methionine
- MetS, Metabolic Syndrome
- Mitochondrial function
- NAD+, Nicotinamide adenine dinucleotide
- NAG, N-Acetyl-L-Glutamine
- NMR, Nuclear Magnetic Resonance
- NMR-based Metabolomics
- NOESY, Nuclear Overhauser Effect Spectroscopy
- O-PLS-DA, Orthogonal Projection to the Latent Structures Discriminant Analysis
- PA, Pantothenate
- PC, Phosphocholine
- PCA, Principal Component Analysis
- PDC, Pyruvate Decarboxylase
- PDK, Pyruvate Dehydrogenase Kinase
- PKC, Protein Kinase C
- PPP, Pentose Phosphate Pathway
- Phe, Phenylalanine
- Pyr, Pyruvate
- RNA, Ribonucleic Acid
- ROS, Reactive Oxygen Species
- RPKM, Reads per Kilobase of Transcript per Million Reads Mapped
- Reactive oxygen species
- SCFAs, Short Chain Fatty Acids
- SLC, Solute-Carrier Genes
- Short-chain fatty acids
- Suc, Succinate
- T2DM, Type 2 Diabetes
- TCA, Tricarboxylic Acid
- Tau, Taurine
- Thr, Threonine
- Transcriptomics
- Tyr, Tyrosine
- UDP, Uridine 5′-diphosphate
- UDP-GLC, UDP Glucose
- UDPG, UDP Glucuronate
- UDPGs, UDP Glucose and UDP Glucuronate
- UMP, Uridine 5′-monophosphate
- Val, Valine
- WST-1, Water-Soluble Tetrazolium salts
- dDNP, dissolution Dynamic Nuclear Polarization
- qRT-PCR, Real-Time Quantitative Reverse Transcription Polymerase Chain Reaction
- α-KIV, α-Keto-isovalerate
- α-KMV, α-keto-β-methyl-valerate
Collapse
Affiliation(s)
- Chongyang Huang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Wenjun Deng
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Huan-zhou Xu
- Department of Pediatrics, Division of Infectious Diseases, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Chen Zhou
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Fan Zhang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Junfei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Qinjia Bao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Optics Valley Laboratory, Hubei 430074, China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Optics Valley Laboratory, Hubei 430074, China
| | - Jing Li
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chaoyang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Optics Valley Laboratory, Hubei 430074, China
| |
Collapse
|
18
|
Purwaningsih I, Maksum IP, Sumiarsa D, Sriwidodo S. A Review of Fibraurea tinctoria and Its Component, Berberine, as an Antidiabetic and Antioxidant. Molecules 2023; 28:1294. [PMID: 36770960 PMCID: PMC9919506 DOI: 10.3390/molecules28031294] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Diabetes mellitus is a group of metabolic disorders characterized by hyperglycemia caused by resistance to insulin action, inadequate insulin secretion, or excessive glucagon production. Numerous studies have linked diabetes mellitus and oxidative stress. People with diabetes usually exhibit high oxidative stress due to persistent and chronic hyperglycemia, which impairs the activity of the antioxidant defense system and promotes the formation of free radicals. Recently, several studies have focused on exploring natural antioxidants to improve diabetes mellitus. Fibraurea tinctoria has long been known as the native Borneo used in traditional medicine to treat diabetes. Taxonomically, this plant is part of the Menispermaceae family, widely known for producing various alkaloids. Among them are protoberberine alkaloids such as berberine. Berberine is an isoquinoline alkaloid with many pharmacological activities. Berberine is receiving considerable interest because of its antidiabetic and antioxidant activities, which are based on many biochemical pathways. Therefore, this review explores the pharmacological effects of Fibraurea tinctoria and its active constituent, berberine, against oxidative stress and diabetes, emphasizing its mechanistic aspects. This review also summarizes the pharmacokinetics and toxicity of berberine and in silico studies of berberine in several diseases and its protein targets.
Collapse
Affiliation(s)
- Indah Purwaningsih
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Department of Medical Laboratory Technology, Poltekkes Kemenkes Pontianak, Pontianak 78124, Indonesia
| | - Iman Permana Maksum
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Dadan Sumiarsa
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Sriwidodo Sriwidodo
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
19
|
Song S, Zhang M, Xie P, Wang S, Wang Y. Comprehensive analysis of cuproptosis-related genes and tumor microenvironment infiltration characterization in breast cancer. Front Immunol 2022; 13:978909. [PMID: 36341328 PMCID: PMC9630583 DOI: 10.3389/fimmu.2022.978909] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background Cuproptosis is a newly discovered programmed cell death dependent on overload copper-induced mitochondrial respiration dysregulation. The positive response to immunotherapy, one of the most important treatments for invasive breast cancer, depends on the dynamic balance between tumor cells and infiltrating lymphocytes in the tumor microenvironment (TME). However, cuproptosis-related genes (CRGs) in clinical prognosis, immune cell infiltration, and immunotherapy response remain unclear in breast cancer progression. Methods The expression and mutation patterns of 12 cuproptosis-related genes were systematically evaluated in the BRCA training group. Through unsupervised clustering analysis and developing a cuproptosis-related scoring system, we further explored the relationship between cuproptosis and breast cancer progression, prognosis, immune cell infiltration, and immunotherapy. Results We identified two distinct CuproptosisClusters, which were correlated with the different patterns between clinicopathological features, prognosis, and immune cell infiltration. Moreover, the differences of the three cuproptosis-related gene subtypes were evaluated based on the CuproptosisCluster-related DEGs. Then, a cuproptosis-related gene signature (PGK1, SLC52A2, SEC14L2, RAD23B, SLC16A6, CCL5, and MAL2) and the scoring system were constructed to quantify the cuproptosis pattern of BRCA patients in the training cohort, and the testing cohorts validated them. Specifically, patients from the low-CRG_score group were characterized by higher immune cell infiltration, immune checkpoint expression, immune checkpoint inhibitor (ICI) scores, and greater sensitivity to immunotherapy. Finally, we screened out RAD23B as a favorable target and indicated its expression was associated with breast cancer progression, drug resistance, and poor prognosis in BRCA patients by performing real-time RT-PCR, cell viability, and IC50 assay. Conclusions Our results confirmed the essential function of cuproptosis in regulating the progression, prognosis, immune cell infiltration, and response to breast cancer immunotherapy. Quantifying cuproptosis patterns and constructing a CRG_score could help explore the potential molecular mechanisms of cuproptosis regulating BRCA advancement and provide more effective immunotherapy and chemotherapy targets.
Collapse
Affiliation(s)
- Shaoran Song
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,The Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Miao Zhang
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,The Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Peiling Xie
- Department of Breast Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shuhong Wang
- Department of Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,*Correspondence: Yaochun Wang, ; Shuhong Wang,
| | - Yaochun Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,The Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China,*Correspondence: Yaochun Wang, ; Shuhong Wang,
| |
Collapse
|
20
|
Zhao J, Guo S, Schrodi SJ, He D. Cuproptosis and cuproptosis-related genes in rheumatoid arthritis: Implication, prospects, and perspectives. Front Immunol 2022; 13:930278. [PMID: 35990673 PMCID: PMC9386151 DOI: 10.3389/fimmu.2022.930278] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/18/2022] [Indexed: 11/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that severely affects patients' physical and mental health, leading to chronic synovitis and destruction of bone joints. Although various available clinical treatment options exist, patients respond with varying efficacies due to multiple factors, and there is an urgent need to discover new treatment options to improve clinical outcomes. Cuproptosis is a newly characterized form of cell death. Copper causes cuproptosis by binding to lipid-acylated components of the tricarboxylic acid cycle, leading to protein aggregation, loss of iron-sulfur cluster proteins, and eventually proteotoxic stress. Targeting copper cytotoxicity and cuproptosis are considered potential options for treating oncological diseases. The synovial hypoxic environment and the presence of excessive glycolysis in multiple cells appear to act as inhibitors of cuproptosis, which can lead to excessive survival and proliferation of multiple immune cells, such as fibroblast-like synoviocytes, effector T cells, and macrophages, further mediating inflammation and bone destruction in RA. Therefore, in this study, we attempted to elaborate and summarize the linkage of cuproptosis and key genes regulating cuproptosis to the pathological mechanisms of RA and their effects on a variety of immune cells. This study aimed to provide a theoretical basis and support for translating preclinical and experimental results of RA to clinical protocols.
Collapse
Affiliation(s)
- Jianan Zhao
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Steven J. Schrodi
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Dongyi He
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| |
Collapse
|
21
|
Zhao Q, Zhou J, Li F, Guo S, Zhang L, Li J, Qi Q, Shi Y. The Role and Therapeutic Perspectives of Sirtuin 3 in Cancer Metabolism Reprogramming, Metastasis, and Chemoresistance. Front Oncol 2022; 12:910963. [PMID: 35832551 PMCID: PMC9272524 DOI: 10.3389/fonc.2022.910963] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022] Open
Abstract
Sirtuin 3 (SIRT3), the nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase, acts as a metabolic modulator mainly located in mitochondria via regulating the process of the relevant biochemical processes by targeting crucial mediators. Recently, owing to its dual role in cancer, SIRT3 has attracted extensive attention. Cancer cells have different metabolic patterns from normal cells, and SIRT3-mediated metabolism reprogramming could be critical in the cancer context, which is closely related to the mechanism of metabolism reprogramming, metastasis, and chemoresistance in tumor cells. Therefore, it is crucial to elucidate the relevant pathological mechanisms and take appropriate countermeasures for the progression of clinical strategies to inhibit the development of cancer. In this review, existing available data on the regulation of cancer metabolism reprogramming, metastasis, and chemoresistance progression of SIRT3 are detailed, as well as the status quo of SIRT3 small molecule modulators is updated in the application of cancer therapy, aiming to highlight strategies directly targeting SIRT3-mediated tumor-suppressing and tumor-promoting, and provide new approaches for therapy application. Furthermore, we offer an effective evidence-based basis for the evolvement of potential personalized therapy management strategies for SIRT3 in cancer settings.
Collapse
Affiliation(s)
- QingYi Zhao
- Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Zhou
- Department of Acupuncture and Moxibustion, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Li
- Department of Acupuncture and Moxibustion, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sen Guo
- Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liang Zhang
- Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Li
- Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qin Qi
- Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Outpatient Department, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
- *Correspondence: Qin Qi, ; Yin Shi,
| | - Yin Shi
- Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Outpatient Department, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
- *Correspondence: Qin Qi, ; Yin Shi,
| |
Collapse
|
22
|
Ouyang S, Zhang Q, Lou L, Zhu K, Li Z, Liu P, Zhang X. The Double-Edged Sword of SIRT3 in Cancer and Its Therapeutic Applications. Front Pharmacol 2022; 13:871560. [PMID: 35571098 PMCID: PMC9092499 DOI: 10.3389/fphar.2022.871560] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Reprogramming of cellular energy metabolism is considered an emerging feature of cancer. Mitochondrial metabolism plays a crucial role in cancer cell proliferation, survival, and metastasis. As a major mitochondrial NAD+-dependent deacetylase, sirtuin3 (SIRT3) deacetylates and regulates the enzymes involved in regulating mitochondrial energy metabolism, including fatty acid oxidation, the Krebs cycle, and the respiratory chain to maintain metabolic homeostasis. In this article, we review the multiple roles of SIRT3 in various cancers, and systematically summarize the recent advances in the discovery of its activators and inhibitors. The roles of SIRT3 vary in different cancers and have cell- and tumor-type specificity. SIRT3 plays a unique function by mediating interactions between mitochondria and intracellular signaling. The critical functions of SIRT3 have renewed interest in the development of small molecule modulators that regulate its activity. Delineation of the underlying mechanism of SIRT3 as a critical regulator of cell metabolism and further characterization of the mitochondrial substrates of SIRT3 will deepen our understanding of the role of SIRT3 in tumorigenesis and progression and may provide novel therapeutic strategies for cancer targeting SIRT3.
Collapse
Affiliation(s)
- Shumin Ouyang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Qiyi Zhang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Linlin Lou
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Kai Zhu
- Innovation Practice Center, Changchun University of Chinese Medicine, Changchun, China
| | - Zeyu Li
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Peiqing Liu
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xiaolei Zhang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
23
|
Yan H, Chen Y, Zhu H, Huang WH, Cai XH, Li D, Lv YJ, Si-Zhao, Zhou HH, Luo FY, Zhang W, Li X. The Relationship Among Intestinal Bacteria, Vitamin K and Response of Vitamin K Antagonist: A Review of Evidence and Potential Mechanism. Front Med (Lausanne) 2022; 9:829304. [PMID: 35510250 PMCID: PMC9058076 DOI: 10.3389/fmed.2022.829304] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
The vitamin K antagonist is a commonly prescribed effective oral anticoagulant with a narrow therapeutic range, and the dose requirements for different patients varied greatly. In recent years, studies on human intestinal microbiome have provided many valuable insights into disease development and drug reactions. A lot of studies indicated the potential relationship between microbiome and the vitamin K antagonist. Vitamin K is absorbed by the gut, and the intestinal bacteria are a major source of vitamin K in human body. A combined use of the vitamin K antagonist and antibiotics may result in an increase in INR, thus elevating the risk of bleeding, while vitamin K supplementation can improve stability of anticoagulation for oral vitamin K antagonist treatment. Recently, how intestinal bacteria affect the response of the vitamin K antagonist remains unclear. In this review, we reviewed the research, focusing on the physiology of vitamin K in the anticoagulation treatment, and investigated the potential pathways of intestinal bacteria affecting the reaction of the vitamin K antagonist.
Collapse
|
24
|
Free fatty acid receptor 2 promotes cardiomyocyte hypertrophy by activating STAT3 and GATA4. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.11.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Hou H, Chen D, Zhang K, Zhang W, Liu T, Wang S, Dai X, Wang B, Zhong W, Cao H. Gut microbiota-derived short-chain fatty acids and colorectal cancer: Ready for clinical translation? Cancer Lett 2022; 526:225-235. [PMID: 34843863 DOI: 10.1016/j.canlet.2021.11.027] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/28/2021] [Accepted: 11/22/2021] [Indexed: 02/08/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related death worldwide. It involves the complex interactions between genetic factors, environmental exposure, and gut microbiota. Specific changes in the gut microbiome and metabolome have been described in CRC, supporting the critical role of gut microbiota dysbiosis and microbiota-related metabolites in the tumorigenesis process. Short-chain fatty acids (SCFAs), the principal metabolites generated from the gut microbial fermentation of insoluble dietary fiber, can directly activate G-protein-coupled receptors (GPCRs), inhibit histone deacetylases (HDACs), and serve as energy substrates to connect dietary patterns and gut microbiota, thereby improving the intestinal health. A significantly lower abundance of SCFAs and SCFA-producing bacteria has been demonstrated in CRC, and the supplementation of SCFA-producing probiotics can inhibit intestinal tumor development. SCFAs-guided modulation in both mouse and human CRC models augmented their responses to chemotherapy and immunotherapy. This review briefly summarizes the complex crosstalk between SCFAs and CRC, which might inspire new approaches for the diagnosis, treatment and prevention of CRC on the basis of gut microbiota-derived metabolites SCFAs.
Collapse
Affiliation(s)
- Huiqin Hou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Danfeng Chen
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Kexin Zhang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Wanru Zhang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Sinan Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xin Dai
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China.
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China.
| |
Collapse
|
26
|
Zhu W, Wu Y, Liu H, Jiang C, Huo L. Gut-Lung Axis: Microbial Crosstalk in Pediatric Respiratory Tract Infections. Front Immunol 2021; 12:741233. [PMID: 34867963 PMCID: PMC8637285 DOI: 10.3389/fimmu.2021.741233] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota is an important regulator for maintaining the organ microenvironment through effects on the gut-vital organs axis. Respiratory tract infections are one of the most widespread and harmful diseases, especially in the last 2 years. Many lines of evidence indicate that the gut microbiota and its metabolites can be considered in therapeutic strategies to effectively prevent and treat respiratory diseases. However, due to the different gut microbiota composition in children compared to adults and the dynamic development of the immature immune system, studies on the interaction between children's intestinal flora and respiratory infections are still lacking. Here, we describe the changes in the gut microbiota of children with respiratory tract infections and explain the relationship between the microbiota of children with their immune function and disease development. In addition, we will provide perspectives on the direct manipulation of intestinal microbes to prevent or treat pediatric respiratory infections.
Collapse
Affiliation(s)
- Wenxia Zhu
- Shanghai Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yilin Wu
- Shanghai Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Liu
- Shanghai Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Caini Jiang
- Shanghai Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Huo
- Shanghai Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
27
|
Butyrate and Metformin Affect Energy Metabolism Independently of the Metabolic Phenotype in the Tumor Therapy Model. Biomolecules 2021; 11:biom11121831. [PMID: 34944475 PMCID: PMC8699353 DOI: 10.3390/biom11121831] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
The BALB/c cell transformation assay (BALB-CTA) considers inter- and intra-tumor heterogeneities and affords the possibility of a direct comparison between untransformed and malignant cells. In the present study, we established monoclonal cell lines that originate from the BALB-CTA and mimic heterogeneous tumor cell populations, in order to investigate phenotype-specific effects of the anti-diabetic drug metformin and the short-chain fatty acid butyrate. Growth inhibitory effects were measured with a ViCell XR cell counter. The BALB/c tumor therapy model (BALB-TTM) was performed, and the extracellular glucose level was measured in the medium supernatant. Using a Seahorse Analyzer, the metabolic phenotypes of four selected clones were characterized, and effects on energy metabolism were investigated. Anti-carcinogenic effects and reduced glucose uptake after butyrate application were observed in the BALB-TTM. Metabolic characterization of the cell clones revealed three different phenotypes. Surprisingly, treatment with metformin or butyrate induced opposite metabolic shifts with similar patterns in all cell clones tested. In conclusion, the BALB-TTM is a relevant model for mechanistic cancer research, and the generation of monoclonal cell lines offers a novel possibility to investigate specific drug effects in a heterogeneous tumor cell population. The results indicate that induced alterations in energy metabolism seem to be independent of the original metabolic phenotype.
Collapse
|
28
|
Mukherjee M, Rahaman M, Ray SK, Shukla PC, Dolai TK, Chakravorty N. Revisiting fetal hemoglobin inducers in beta-hemoglobinopathies: a review of natural products, conventional and combinatorial therapies. Mol Biol Rep 2021; 49:2359-2373. [PMID: 34822068 DOI: 10.1007/s11033-021-06977-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/17/2021] [Indexed: 12/17/2022]
Abstract
Beta-hemoglobinopathies exhibit a heterogeneous clinical picture with varying degrees of clinical severity. Pertaining to the limited treatment options available, where blood transfusion still remains the commonest mode of treatment, pharmacological induction of fetal hemoglobin (HbF) has been a lucrative therapeutic intervention. Till now more than 70 different HbF inducers have been identified. The practical usage of many pharmacological drugs has been limited due to safety concerns. Natural compounds, like Resveratrol, Ripamycin and Bergaptene, with limited cytotoxicity and high efficacy have started capturing the attention of researchers. In this review, we have summarized pharmacological drugs and bioactive compounds isolated from natural sources that have been shown to increase HbF significantly. It primarily discusses recently identified synthetic and natural compounds, their mechanism of action, and their suitable screening platforms, including high throughput drug screening technology and biosensors. It also delves into the topic of combinatorial therapy and drug repurposing for HbF induction. Overall, we aim to provide insights into where we stand in HbF induction strategies for treating β-hemoglobinopathies.
Collapse
Affiliation(s)
- Mandrita Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Paschim Medinipur, Kharagpur, West Bengal, 721302, India
| | - Motiur Rahaman
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Paschim Medinipur, Kharagpur, West Bengal, 721302, India
| | - Suman Kumar Ray
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Paschim Medinipur, Kharagpur, West Bengal, 721302, India
| | - Praphulla Chandra Shukla
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Paschim Medinipur, Kharagpur, West Bengal, 721302, India
| | - Tuphan Kanti Dolai
- Department of Hematology, Nil Ratan Sircar Medical College and Hospital, Kolkata, West Bengal, 700014, India
| | - Nishant Chakravorty
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Paschim Medinipur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
29
|
Wang D, Cao L, Pan S, Wang G, Wang L, Cao N, Hao X. Sirt3-mediated mitochondrial dysfunction is involved in fluoride-induced cognitive deficits. Food Chem Toxicol 2021; 158:112665. [PMID: 34780879 DOI: 10.1016/j.fct.2021.112665] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/17/2021] [Accepted: 11/04/2021] [Indexed: 01/11/2023]
Abstract
Excessive fluoride is capable of inducing cognitive deficits, but the mechanisms remain elusive. This study aimed to investigate the effects and underlying mechanisms of fluoride on mitochondrial dysfunction and neurobiological alterations, as well as cognitive impairment. C57BL/6 mice were orally administered 25, 50, and 100 mg/L NaF for 90 days. Cultured human neuroblastoma SH-SY5Y cells were exposed to NaF (110 mg/L) for 24 h in the presence or absence of Sirt3 overexpression. The results demonstrated that chronic exposure to high fluoride induced cognitive deficits and neural/synaptic injury in mice. Fluoride reduced mitochondrial antioxidant enzyme activities and elevated SOD2 acetylation by downregulating Sirt3 expression in the brains of mice and NaF-treated SH-SY5Y cells. Moreover, fluoride lowered mtDNA transcription and induced mitochondrial dysfunction along with increased FoxO3A acetylation in the brains of mice and NaF-treated SH-SY5Y cells. Subsequent experiments revealed that overexpression of Sirt3 significantly attenuated the adverse effects of fluoride on radical scavenging capabilities and mtDNA transcription, as well as mitochondrial function in SH-SY5Y cells. These results suggest that chronic long-term fluoride exposure evokes neural/synaptic injury and cognitive impairment through mitochondrial dysfunction and its associated oxidative stress, which is, at least partly, mediated by Sirt3 inhibition in the mouse brain.
Collapse
Affiliation(s)
- Dongmei Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Henan, Luoyang, 471003, China.
| | - Luyang Cao
- School of Basic Medical Sciences, Henan University of Science and Technology, Henan, Luoyang, 471003, China
| | - Shunji Pan
- School of Basic Medical Sciences, Henan University of Science and Technology, Henan, Luoyang, 471003, China
| | - Gang Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Henan, Luoyang, 471003, China
| | - Lewei Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Henan, Luoyang, 471003, China
| | - Ningyao Cao
- School of Basic Medical Sciences, Henan University of Science and Technology, Henan, Luoyang, 471003, China
| | - Xueqin Hao
- School of Basic Medical Sciences, Henan University of Science and Technology, Henan, Luoyang, 471003, China
| |
Collapse
|
30
|
Coronel-Hernández J, Pérez-Yépez EA, Delgado-Waldo I, Contreras-Romero C, Jacobo-Herrera N, Cantú-De León D, Pérez-Plasencia C. Aberrant Metabolism as Inductor of Epigenetic Changes in Breast Cancer: Therapeutic Opportunities. Front Oncol 2021; 11:676562. [PMID: 34692471 PMCID: PMC8531643 DOI: 10.3389/fonc.2021.676562] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/08/2021] [Indexed: 12/23/2022] Open
Abstract
Aberrant metabolism is arising interest in the scientific community not only because of the role it plays in the development and establishment of the tumor mass but also the possibility of drug poisoning of key enzymes overexpressed in tumor cells. Moreover, tumor metabolism provides key molecules to maintain the epigenetic changes that are also an undisputed characteristic of each tumor type. This metabolic change includes the Warburg effect and alterations in key pathways involved in glutaminolysis, pentose phosphate, and unsaturated fatty acid biosynthesis. Modifications in all these pathways have consequences that impact genetics and epigenetics processes such as DNA methylation patterns, histone post-translational modifications, triggering oncogenes activation, and loss in tumor suppressor gene expression to lead the tumor establishment. In this review, we describe the metabolic rearrangement and its association with epigenetic regulation in breast cancer, as well as its implication in biological processes involved in cancer progression. A better understanding of these processes could help to find new targets for the diagnosis, prognosis, and treatment of this human health problem.
Collapse
Affiliation(s)
| | - Eloy Andrés Pérez-Yépez
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Mexico City, Mexico.,Cátedra-CONACYT, Dirección de Cátedras, Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico City, Mexico
| | | | | | - Nadia Jacobo-Herrera
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City, Mexico
| | - David Cantú-De León
- Unidad de Investigación en Cáncer, Instituto Nacional de Cancerología , Mexico City, Mexico
| | - Carlos Pérez-Plasencia
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Mexico City, Mexico.,Laboratorio de Genómica Funcional, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
31
|
Butyrate Alters Pyruvate Flux and Induces Lipid Accumulation in Cultured Colonocytes. Int J Mol Sci 2021; 22:ijms222010937. [PMID: 34681598 PMCID: PMC8539916 DOI: 10.3390/ijms222010937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 11/28/2022] Open
Abstract
Butyrate is considered the primary energy source of colonocytes and has received wide attention due to its unique health benefits. Insight into the mechanistic effects of butyrate on cellular and metabolic function relies mainly on research in in-vitro-cultured cells. However, cells in culture differ from those in vivo in terms of metabolic phenotype and nutrient availability. For translation, it is therefore important to understand the impact of different nutrients on the effects of butyrate. We investigated the metabolic consequences of butyrate exposure under various culturing conditions, with a focus on the interaction between butyrate and glucose. To investigate whether the effects of butyrate were different between cells with high and low mitochondrial capacity, we cultured HT29 cells under either low- (0.5 mM) or high- (25 mM) glucose conditions. Low-glucose culturing increased the mitochondrial capacity of HT29 cells compared to high-glucose (25 mM) cultured HT29 cells. Long-term exposure to butyrate did not alter mitochondrial bioenergetics, but it decreased glycolytic function, regardless of glucose availability. In addition, both high- and low-glucose-grown HT29 cells showed increased lipid droplet accumulation following long-term butyrate exposure. Acute exposure of cultured cells (HT29 and Caco-2) to butyrate increased their oxygen consumption rate (OCR). A simultaneous decrease in extracellular acidification rate (ECAR) was observed. Furthermore, in the absence of glucose, OCR did not increase in response to butyrate. These results lead us to believe that butyrate itself was not responsible for the observed increase in OCR, but, instead, butyrate stimulated pyruvate flux into mitochondria. Indeed, blocking of the mitochondrial pyruvate carrier prevented a butyrate-induced increase in oxygen consumption. Taken together, our results indicate that butyrate itself is not oxidized in cultured cells but instead alters pyruvate flux and induces lipid accumulation.
Collapse
|
32
|
Liu CJ, Chen SQ, Zhang SY, Wang JL, Tang XD, Yang KX, Li XR. The comparison of microbial communities in thyroid tissues from thyroid carcinoma patients. J Microbiol 2021; 59:988-1001. [PMID: 34613604 DOI: 10.1007/s12275-021-1271-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 02/08/2023]
Abstract
Thyroid carcinoma is a common endocrine organ cancer associated with abnormal hormone secretion, leading to the disorder of metabolism. The intestinal microbiota is vital to maintain digestive and immunologic homeostasis. The relevant information of the microbial community in the gut and thyroid, including composition, structure, and relationship, is unclear in thyroid carcinoma patients. A total of 93 samples from 25 patients were included in this study. The results showed that microbial communities existed in thyroid tissue; gut and thyroid had high abundance of facultative anaerobes from the Proteobacteria phyla. The microbial metabolism from the thyroid and gut may be affected by the thyroid carcinoma cells. The cooccurrence network showed that the margins of different thyroid tissues were unique areas with more competition; the stabilization of microcommunities from tissue and stool may be maintained by several clusters of species that may execute different vital metabolism processes dominantly that are attributed to the microenvironment of cancer.
Collapse
Affiliation(s)
- Chen-Jian Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, P. R. China
| | - Si-Qian Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, P. R. China
| | - Si-Yao Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, P. R. China
| | - Jia-Lun Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, P. R. China
| | - Xiao-Dan Tang
- Gastroenterology Department, the First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, P. R. China.,Gastroenterology Department, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, 650032, P. R. China
| | - Kun-Xian Yang
- Oncology Department, the First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, P. R. China. .,Oncology Department, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, 650032, P. R. China.
| | - Xiao-Ran Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, P. R. China.
| |
Collapse
|
33
|
Wang L, Liao Y, Yang R, Zhu Z, Zhang L, Wu Z, Sun X. An engineered probiotic secreting Sj16 ameliorates colitis via Ruminococcaceae/butyrate/retinoic acid axis. Bioeng Transl Med 2021; 6:e10219. [PMID: 34589596 PMCID: PMC8459592 DOI: 10.1002/btm2.10219] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 12/29/2022] Open
Abstract
Most inflammatory bowel disease (IBD) patients are unable to maintain a lifelong remission. Developing a novel therapeutic strategy is urgently needed. In this study, we adopt a new strategy to attenuate colitis using the Escherichia coli Nissle 1917 probiotic strain to express a schistosome immunoregulatory protein (Sj16) in the gastrointestinal tract. The genetically engineered Nissle 1917 (EcN-Sj16) highly expressed Sj16 in the gastrointestinal tracts of dextran sulfate sodium-induced colitis mice and significantly attenuated the clinical activity of colitis mice. Mechanistically, EcN-Sj16 increased the intestinal microbiota diversity and selectively promoted the growth of Ruminococcaceae and therefore enhanced the butyrate production. Butyrate induced the expression of retinoic acid, which further attenuated the clinical activity of colitis mice by increasing Treg cells and decreasing Th17. Strikingly, retinoic acid inhibitor inhibited the therapeutic effects of EcN-Sj16 in colitis mice. These findings suggest that EcN-Sj16 represents a novel engineered probiotic that may be used to treat IBD.
Collapse
Affiliation(s)
- Lifu Wang
- Department of Parasitology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Key Laboratory of Tropical Disease ControlMinistry of Education, Sun Yat‐sen UniversityGuangzhouChina
- Provincial Engineering Technology Research Center for Biological Vector ControlGuangzhouChina
| | - Yao Liao
- Department of Parasitology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Key Laboratory of Tropical Disease ControlMinistry of Education, Sun Yat‐sen UniversityGuangzhouChina
- Provincial Engineering Technology Research Center for Biological Vector ControlGuangzhouChina
| | - Ruibing Yang
- Department of Parasitology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Key Laboratory of Tropical Disease ControlMinistry of Education, Sun Yat‐sen UniversityGuangzhouChina
- Provincial Engineering Technology Research Center for Biological Vector ControlGuangzhouChina
| | - Zifeng Zhu
- Department of Parasitology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Key Laboratory of Tropical Disease ControlMinistry of Education, Sun Yat‐sen UniversityGuangzhouChina
- Provincial Engineering Technology Research Center for Biological Vector ControlGuangzhouChina
| | - Lichao Zhang
- Department of Parasitology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Key Laboratory of Tropical Disease ControlMinistry of Education, Sun Yat‐sen UniversityGuangzhouChina
- Provincial Engineering Technology Research Center for Biological Vector ControlGuangzhouChina
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Key Laboratory of Tropical Disease ControlMinistry of Education, Sun Yat‐sen UniversityGuangzhouChina
- Provincial Engineering Technology Research Center for Biological Vector ControlGuangzhouChina
| | - Xi Sun
- Department of Parasitology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Key Laboratory of Tropical Disease ControlMinistry of Education, Sun Yat‐sen UniversityGuangzhouChina
- Provincial Engineering Technology Research Center for Biological Vector ControlGuangzhouChina
| |
Collapse
|
34
|
Salahshouri P, Emadi-Baygi M, Jalili M, Khan FM, Wolkenhauer O, Salehzadeh-Yazdi A. A Metabolic Model of Intestinal Secretions: The Link between Human Microbiota and Colorectal Cancer Progression. Metabolites 2021; 11:metabo11070456. [PMID: 34357350 PMCID: PMC8303431 DOI: 10.3390/metabo11070456] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/22/2022] Open
Abstract
The human gut microbiota plays a dual key role in maintaining human health or inducing disorders, for example, obesity, type 2 diabetes, and cancers such as colorectal cancer (CRC). High-throughput data analysis, such as metagenomics and metabolomics, have shown the diverse effects of alterations in dynamic bacterial populations on the initiation and progression of colorectal cancer. However, it is well established that microbiome and human cells constantly influence each other, so it is not appropriate to study them independently. Genome-scale metabolic modeling is a well-established mathematical framework that describes the dynamic behavior of these two axes at the system level. In this study, we created community microbiome models of three conditions during colorectal cancer progression, including carcinoma, adenoma and health status, and showed how changes in the microbial population influence intestinal secretions. Conclusively, our findings showed that alterations in the gut microbiome might provoke mutations and transform adenomas into carcinomas. These alterations include the secretion of mutagenic metabolites such as H2S, NO compounds, spermidine and TMA (trimethylamine), as well as the reduction of butyrate. Furthermore, we found that the colorectal cancer microbiome can promote inflammation, cancer progression (e.g., angiogenesis) and cancer prevention (e.g., apoptosis) by increasing and decreasing certain metabolites such as histamine, glutamine and pyruvate. Thus, modulating the gut microbiome could be a promising strategy for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Pejman Salahshouri
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord 8818634141, Iran; (P.S.); (M.E.-B.)
| | - Modjtaba Emadi-Baygi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord 8818634141, Iran; (P.S.); (M.E.-B.)
- Biotechnology Research Institute, Shahrekord University, Shahrekord 8818634141, Iran
| | - Mahdi Jalili
- Hematology, Oncology and SCT Research Center, Tehran University of Medical Sciences, Tehran 14114, Iran;
| | - Faiz M. Khan
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051 Rostock, Germany; (F.M.K.); (O.W.)
| | - Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051 Rostock, Germany; (F.M.K.); (O.W.)
| | - Ali Salehzadeh-Yazdi
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051 Rostock, Germany; (F.M.K.); (O.W.)
- Correspondence:
| |
Collapse
|
35
|
Xie XT, Cheong KL. Recent advances in marine algae oligosaccharides: structure, analysis, and potential prebiotic activities. Crit Rev Food Sci Nutr 2021; 62:7703-7717. [PMID: 33939558 DOI: 10.1080/10408398.2021.1916736] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Marine algae contain abundant polysaccharides that support a range of health-promoting activities; however, the high molecular weight, high viscosity, and low solubility of marine algae polysaccharides (MAPs) limit their application in food, agriculture and medicine. Thus, as the degradation products of MAPs, marine algae oligosaccharides (MAOs) have drawn increasing attention. Most MAOs are non-digestible by digestive enzyme in the human gastrointestinal tract, but are fermented by bacteria in the gut and converted into short-chain fatty acids (SCFAs). MAOs can selectively enhance the activities of some populations of beneficial bacteria and stimulate a series of prebiotic effects, such as anti-oxidant, anti-diabetic, anti-tumour. However, the exact structures of MAOs and their prebiotic activities are, to a large extent, unexplored. This review summarizes recent advances in the sources, categories, and structure analysis methods of MAOs, emphasizing their effects on gut microbiota and its metabolite SCFAs as well as the resulting range of probiotic activities.
Collapse
Affiliation(s)
- Xu-Ting Xie
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, Guangdong, PR China
| | - Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, Guangdong, PR China
| |
Collapse
|
36
|
Zhao Y, Li J, Guo W, Li H, Lei L. Periodontitis-level butyrate-induced ferroptosis in periodontal ligament fibroblasts by activation of ferritinophagy. Cell Death Discov 2020; 6:119. [PMID: 33298848 PMCID: PMC7655826 DOI: 10.1038/s41420-020-00356-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/08/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Loss of periodontal ligament fibroblasts (PDLFs) is one critical issue for regenerating lost periodontal tissues. A wide variety of regulated cell death pathways, such as apoptosis, pyroptosis, and necroptosis have been proposed in the periodontitis development. The aim of the present study was to explore whether long-term periodontitis-level butyrate may trigger ferroptosis, a newly characterized iron-dependent regulated cell death in PDLFs. Here, we showed that long-term treatment of butyrate, an important short-chain fatty acid in the periodontal pocket, induces the cargo receptor nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy and ferroptosis in PDLFs. Butyrate-induced iron accumulation, reactive oxygen species (ROS) generation, glutathione depletion and lipid peroxidation in PDLFs, and the butyrate-induced ferroptosis can be blocked by the lipid peroxide scavenger ferrostatin-1. The NCOA4-mediated ferritinophagy is dependent on p38/hypoxia inducible factor-1α (HIF-1α) pathway activation as well as Bromodomain-containing protein (BRD) 4 and cyclin-dependent kinase 9 (CDK9) coordination. These lines of evidence provide a new mechanistic insight into the mechanism of loss of PDLFs during periodontitis development, showing that periodontitis-level butyrate disrupted iron homeostasis by activation of NCOA4-mediated ferritinophagy, leading to ferroptosis in PDLFs.
Collapse
Affiliation(s)
- Yunhe Zhao
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 210008, Nanjing, China.,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 210008, Nanjing, China
| | - Jiao Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 210008, Nanjing, China
| | - Wei Guo
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 210008, Nanjing, China.,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 210008, Nanjing, China
| | - Houxuan Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 210008, Nanjing, China.
| | - Lang Lei
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 210008, Nanjing, China. .,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 210008, Nanjing, China.
| |
Collapse
|
37
|
Dynamic balancing of intestinal short-chain fatty acids: The crucial role of bacterial metabolism. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.02.026] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Berberine increases glucose uptake and intracellular ROS levels by promoting Sirtuin 3 ubiquitination. Biomed Pharmacother 2019; 121:109563. [PMID: 31706105 DOI: 10.1016/j.biopha.2019.109563] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/11/2019] [Accepted: 10/20/2019] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Berberine improves insulin sensitivity and ovulation function in PCOS patients. However, the mechanism by which berberine initiates glucose metabolism-related signaling pathways in ovarian cells remains unknown. This study unveiled a new mechanism by which berberine promotes ovarian cell glucose uptake, and demonstrated that SIRT3 ubiquitination is involved in the insulin sensitizing effect of berberine. METHODS Berberine was used at different concentrations to treat cultured KGN cells. Then, cell viability, cell apoptosis, intracellular ROS levels, mitochondrial depolarization and activation of related signaling pathways were evaluated. RESULTS Berberine administration led to mitochondrial depolarization and AMP accumulation by promoting SIRT3 ubiquitination. We confirmed that AMP accumulation activated AMPK signaling and further promoted glucose uptake. Meanwhile, berberine reduced the activity of mitochondrial complex I in a dose-depended manner, but not that of mitochondrial complex II. Furthermore, intracellular ROS levels and the expression of mitochondrial apoptosis pathway related factors increased with berberine concentration. Berberine caused significant SIRT3 ubiquitination and degradation by activating the AMPK pathway and increasing intracellular ROS levels. Interestingly, berberine induced ubiquitination paralleled the increased FOXO3a phosphorylation and FOXO3a/Parkin pathway activation. CONCLUSIONS Berberine promotes glucose uptake and inhibits mitochondrial function by promoting SIRT3 ubiquitination, and is likely to regulate autophagy related function in ovarian cells by activating the AMPK pathway. These findings may provide novel insights into the development of drugs for the treatment of abnormal reproductive functions of the ovary.
Collapse
|
39
|
Lewis G, Wang B, Shafiei Jahani P, Hurrell BP, Banie H, Aleman Muench GR, Maazi H, Helou DG, Howard E, Galle-Treger L, Lo R, Santosh S, Baltus A, Bongers G, San-Mateo L, Gilliland FD, Rehan VK, Soroosh P, Akbari O. Dietary Fiber-Induced Microbial Short Chain Fatty Acids Suppress ILC2-Dependent Airway Inflammation. Front Immunol 2019; 10:2051. [PMID: 31620118 PMCID: PMC6760365 DOI: 10.3389/fimmu.2019.02051] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/14/2019] [Indexed: 12/21/2022] Open
Abstract
Group 2 Innate lymphoid cells (ILC2) contribute significantly to allergic inflammation. However, the role of microbiota on ILC2s remains to be unraveled. Here we show that short chain fatty acids (SCFAs), such as butyrate, derived from fermentation of dietary fibers by the gut microbiota inhibit pulmonary ILC2 functions and subsequent development of airway hyperreactivity (AHR). We further show that SCFAs modulate GATA3, oxidative phosphorylation, and glycolytic metabolic pathways in pulmonary ILC2s. The observed phenotype is associated with increased IL-17a secretion by lung ILC2s and linked to enhanced neutrophil recruitment to the airways. Finally, we show that butyrate-producing gut bacteria in germ-free mice effectively suppress ILC2-driven AHR. Collectively, our results demonstrate a previously unrecognized role for microbial-derived SCFAs on pulmonary ILC2s in the context of AHR. The data suggest strategies aimed at modulating metabolomics and microbiota in the gut, not only to treat, but to prevent lung inflammation and asthma.
Collapse
Affiliation(s)
- Gavin Lewis
- Janssen Research and Development, San Diego, CA, United States
| | - Bowen Wang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Pedram Shafiei Jahani
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Benjamin P. Hurrell
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Homayon Banie
- Janssen Research and Development, San Diego, CA, United States
| | | | - Hadi Maazi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Doumet Georges Helou
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Emily Howard
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Lauriane Galle-Treger
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Richard Lo
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Swetha Santosh
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Andrew Baltus
- Janssen Research and Development, Spring House, PA, United States
| | - Gerrold Bongers
- Janssen Research and Development, Spring House, PA, United States
| | - Lani San-Mateo
- Janssen Research and Development, Spring House, PA, United States
| | - Frank D. Gilliland
- Division of Environmental Health, Department of Preventive Medicine, University of Southern California, Los Angeles, CA, United States
| | - Virender K. Rehan
- Division of Neonatology, Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Pejman Soroosh
- Janssen Research and Development, San Diego, CA, United States
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
40
|
Madland E, Kitaoku Y, Sætrom GI, Leth ML, Ejby M, Hachem MA, Aachmann FL. 1H, 13C and 15N backbone and side-chain assignment of a carbohydrate binding module from a xylanase from Roseburia intestinalis. BIOMOLECULAR NMR ASSIGNMENTS 2019; 13:55-58. [PMID: 30244308 DOI: 10.1007/s12104-018-9850-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/17/2018] [Indexed: 06/08/2023]
Abstract
The N-terminal domain (residues 28-165) from the glycoside hydrolase family 10 from Roseburia intestinalis (RiCBMx), has been isotopically labeled and recombinantly expressed in Escherichia coli. Here we report 1H, 13C and 15N NMR chemical shift assignments for this carbohydrate binding module (CBM).
Collapse
Affiliation(s)
- Eva Madland
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Gerd Inger Sætrom
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Maria Louise Leth
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Morten Ejby
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Maher Abou Hachem
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Finn Lillelund Aachmann
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
41
|
Kim R, Wang Y, Hwang SHJ, Attayek PJ, Smiddy NM, Reed MI, Sims CE, Allbritton NL. Formation of arrays of planar, murine, intestinal crypts possessing a stem/proliferative cell compartment and differentiated cell zone. LAB ON A CHIP 2018; 18:2202-2213. [PMID: 29944153 PMCID: PMC6337012 DOI: 10.1039/c8lc00332g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A simple, in vitro intestinal model recapitulating key aspects of crypt architecture and physiology would facilitate our understanding the impact of drugs, foods and microbial metabolites on the intestine. To address the limitations of previously reported intestinal in vitro platforms, we developed a planar crypt array that replicated the spatial segregation and physiologic responses of primary mouse intestinal epithelial cells in the large intestine. Collagen was coated across an impermeable film possessing an array of microholes creating two regions of distinct stiffness and porosity (above and outside the microholes). Primary mouse colon epithelial cells formed a continuous monolayer across the array with a proliferative cell zone above the microholes and a nonproliferative or differentiated cell region distant from the microholes. Formation of a chemical gradient of growth factors across the array yielded a more complete or in vivo-like cell segregation of proliferative and differentiated cells with cell migration outward from the proliferative cell zone into the differentiated zone to replace apoptotic dying cells much as occurs in vivo. Short chain fatty acids (microbial metabolites) applied to the luminal surface of the crypt array significantly impacted the proliferation and differentiation of the cells replicating the known in vivo effects of these fatty acids. Importantly this planar crypt array was readily fabricated and maintained, easily imaged with properties quantified by microscopy, and compatible with reagent addition to either the luminal or basal fluid reservoirs. The ability to observe simultaneously stem/proliferative and differentiated cell behavior and movement between these two compartments in response to drugs, toxins, inflammatory mediators or microbial metabolites will be of widespread utility.
Collapse
Affiliation(s)
- Raehyun Kim
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, and North Carolina State University, Raleigh, North Carolina, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Leth ML, Ejby M, Workman C, Ewald DA, Pedersen SS, Sternberg C, Bahl MI, Licht TR, Aachmann FL, Westereng B, Abou Hachem M. Differential bacterial capture and transport preferences facilitate co-growth on dietary xylan in the human gut. Nat Microbiol 2018; 3:570-580. [PMID: 29610517 DOI: 10.1038/s41564-018-0132-8] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/19/2018] [Indexed: 12/11/2022]
Abstract
Metabolism of dietary glycans is pivotal in shaping the human gut microbiota. However, the mechanisms that promote competition for glycans among gut commensals remain unclear. Roseburia intestinalis, an abundant butyrate-producing Firmicute, is a key degrader of the major dietary fibre xylan. Despite the association of this taxon to a healthy microbiota, insight is lacking into its glycan utilization machinery. Here, we investigate the apparatus that confers R. intestinalis growth on different xylans. R. intestinalis displays a large cell-attached modular xylanase that promotes multivalent and dynamic association to xylan via four xylan-binding modules. This xylanase operates in concert with an ATP-binding cassette transporter to mediate breakdown and selective internalization of xylan fragments. The transport protein of R. intestinalis prefers oligomers of 4-5 xylosyl units, whereas the counterpart from a model xylan-degrading Bacteroides commensal targets larger ligands. Although R. intestinalis and the Bacteroides competitor co-grew in a mixed culture on xylan, R. intestinalis dominated on the preferred transport substrate xylotetraose. These findings highlight the differentiation of capture and transport preferences as a possible strategy to facilitate co-growth on abundant dietary fibres and may offer a unique route to manipulate the microbiota based on glycan transport preferences in therapeutic interventions to boost distinct taxa.
Collapse
Affiliation(s)
- Maria Louise Leth
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Morten Ejby
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Christopher Workman
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - David Adrian Ewald
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Signe Schultz Pedersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Claus Sternberg
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Martin Iain Bahl
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Tine Rask Licht
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Finn Lillelund Aachmann
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Bjørge Westereng
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Maher Abou Hachem
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
43
|
Liu S, Ji S, Yu ZJ, Wang HL, Cheng X, Li WJ, Jing L, Yu Y, Chen Q, Yang LL, Li GB, Wu Y. Structure-based discovery of new selective small-molecule sirtuin 5 inhibitors. Chem Biol Drug Des 2017; 91:257-268. [PMID: 28756638 DOI: 10.1111/cbdd.13077] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 07/10/2017] [Accepted: 07/15/2017] [Indexed: 02/05/2023]
Abstract
Human sirtuin 5 (SIRT5) is a protein deacylase regulating metabolic pathways and stress responses and is implicated in metabolism-related diseases. Small-molecule inhibitors for SIRT5 are sought as chemical tools and potential therapeutics. Herein, we proposed a customized virtual screening approach targeting catalytically important and unique residues Tyr102 and Arg105 of SIRT5. Of the 20 tested virtual screening hits, six compounds displayed marked inhibitory activities against SIRT5. For the hit compound 19, a series of newly synthesized (E)-2-cyano-N-phenyl-3-(5-phenylfuran-2-yl)acrylamide derivatives/analogues were carried out structure-activity relationship analyses, resulting in new more potent inhibitors, among which 37 displayed the most potent inhibition to SIRT5 with an IC50 value of 5.59 ± 0.75 μM. The biochemical studies revealed that 37 likely acts via competitive inhibition with the succinyl-lysine substrate, rather than the NAD+ cofactor, and it manifested substantial selectivity for SIRT5 over SIRT2 and SIRT6. This study will aid further efforts to develop new selective SIRT5 inhibitors as tools and therapeutics.
Collapse
Affiliation(s)
- Sha Liu
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, and Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Sen Ji
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, and Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Zhu-Jun Yu
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, and Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Hua-Li Wang
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, and Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Xu Cheng
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, and Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Wei-Jian Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, and Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Li Jing
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, and Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yamei Yu
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, and Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Qiang Chen
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, and Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Ling-Ling Yang
- College of Food and Bioengineering, Xihua University, Sichuan, China
| | - Guo-Bo Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, and Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yong Wu
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, and Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
44
|
Wang HL, Liu S, Yu ZJ, Wu C, Cheng L, Wang Y, Chen K, Zhou S, Chen Q, Yu Y, Li GB. Interactions between sirtuins and fluorogenic small-molecule substrates offer insights into inhibitor design. RSC Adv 2017. [DOI: 10.1039/c7ra05824a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Biophysical and crystallographic analyses of small-molecule substrates with sirtuins provide thermodynamic insights and key pharmacophore features for inhibitor design.
Collapse
Affiliation(s)
- Hua-Li Wang
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education
- West China School of Pharmacy, and State Key Laboratory of Biotherapy
- Sichuan University
- Chengdu
- China
| | - Sha Liu
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education
- West China School of Pharmacy, and State Key Laboratory of Biotherapy
- Sichuan University
- Chengdu
- China
| | - Zhu-Jun Yu
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education
- West China School of Pharmacy, and State Key Laboratory of Biotherapy
- Sichuan University
- Chengdu
- China
| | - Chengyong Wu
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education
- West China School of Pharmacy, and State Key Laboratory of Biotherapy
- Sichuan University
- Chengdu
- China
| | - Linna Cheng
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education
- West China School of Pharmacy, and State Key Laboratory of Biotherapy
- Sichuan University
- Chengdu
- China
| | - Yuxi Wang
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education
- West China School of Pharmacy, and State Key Laboratory of Biotherapy
- Sichuan University
- Chengdu
- China
| | - Kai Chen
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education
- West China School of Pharmacy, and State Key Laboratory of Biotherapy
- Sichuan University
- Chengdu
- China
| | - Shu Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education
- West China School of Pharmacy, and State Key Laboratory of Biotherapy
- Sichuan University
- Chengdu
- China
| | - Qiang Chen
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education
- West China School of Pharmacy, and State Key Laboratory of Biotherapy
- Sichuan University
- Chengdu
- China
| | - Yamei Yu
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education
- West China School of Pharmacy, and State Key Laboratory of Biotherapy
- Sichuan University
- Chengdu
- China
| | - Guo-Bo Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education
- West China School of Pharmacy, and State Key Laboratory of Biotherapy
- Sichuan University
- Chengdu
- China
| |
Collapse
|