1
|
Xing Z, Xu Y, Xu X, Yang K, Qin S, Jiao Y, Wang L. Identification and validation of a novel risk model based on cuproptosis‑associated m6A for head and neck squamous cell carcinoma. BMC Med Genomics 2024; 17:137. [PMID: 38778403 PMCID: PMC11110395 DOI: 10.1186/s12920-024-01916-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is a prevalent cancer with a poor survival rate due to anatomical limitations of the head and a lack of reliable biomarkers. Cuproptosis represents a novel cellular regulated death pathway, and N6-methyladenosine (m6A) is the most common internal RNA modification in mRNA. They are intricately connected to tumor formation, progression, and prognosis. This study aimed to construct a risk model for HNSCC using a set of mRNAs associated with m6A regulators and cuproptosis genes (mcrmRNA). METHODS RNA-seq and clinical data of HNSCC patients from The Cancer Genome Atlas (TCGA) database were analyzed to develop a risk model through the least absolute shrinkage and selection operator (LASSO) analysis. Survival analysis and receiver operating characteristic (ROC) analysis were performed for the high- and low-risk groups. Additionally, the model was validated using the GSE41613 dataset from the Gene Expression Omnibus (GEO) database. GSEA and CIBERSORT were applied to investigate the immune microenvironment of HNSCC. RESULTS A risk model consisting of 32 mcrmRNA was developed using the LASSO analysis. The risk score of patients was confirmed to be an independent prognostic indicator by multivariate Cox analysis. The high-risk group exhibited a higher tumor mutation burden. Additionally, CIBERSORT analysis indicated varying levels of immune cell infiltration between the two groups. Significant disparities in drug sensitivity to common medications were also observed. Enrichment analysis further unveiled significant differences in metabolic pathways and RNA processing between the two groups. CONCLUSIONS Our risk model can predict outcomes for HNSCC patients and offers valuable insights for personalized therapeutic approaches.
Collapse
Affiliation(s)
- Zhongxu Xing
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Yijun Xu
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Xiaoyan Xu
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Kaiwen Yang
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Songbing Qin
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Yang Jiao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.
| | - Lili Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China.
| |
Collapse
|
2
|
Rigon M, Mutti L, Campanella M. Pleural mesothelioma (PMe): The evolving molecular knowledge of a rare and aggressive cancer. Mol Oncol 2024; 18:797-814. [PMID: 38459714 PMCID: PMC10994233 DOI: 10.1002/1878-0261.13591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/22/2023] [Accepted: 01/15/2024] [Indexed: 03/10/2024] Open
Abstract
Mesothelioma is a type of late-onset cancer that develops in cells covering the outer surface of organs. Although it can affect the peritoneum, heart, or testicles, it mainly targets the lining of the lungs, making pleural mesothelioma (PMe) the most common and widely studied mesothelioma type. PMe is caused by exposure to fibres of asbestos, which when inhaled leads to inflammation and scarring of the pleura. Despite the ban on asbestos by most Western countries, the incidence of PMe is on the rise, also facilitated by a lack of specific symptomatology and diagnostic methods. Therapeutic options are also limited to mainly palliative care, making this disease untreatable. Here we present an overview of biological aspects underlying PMe by listing genetic and molecular mechanisms behind its onset, aggressive nature, and fast-paced progression. To this end, we report on the role of deubiquitinase BRCA1-associated protein-1 (BAP1), a tumour suppressor gene with a widely acknowledged role in the corrupted signalling and metabolism of PMe. This review aims to enhance our understanding of this devastating malignancy and propel efforts for its investigation.
Collapse
Affiliation(s)
- Manuel Rigon
- Centre for Clinical Pharmacology and Precision Medicine William Harvey Research InstituteQueen Mary University of LondonUK
- Department of BiologyUniversity of Rome Tor VergataRomeItaly
| | - Luciano Mutti
- Department of Biotechnological and Applied Clinical SciencesDISCAB, L'Aquila UniversityL'AquilaItaly
- Temple University Sbarro Institute for Cancer Research and Molecular MedicinePhiladelphiaPAUSA
| | - Michelangelo Campanella
- Centre for Clinical Pharmacology and Precision Medicine William Harvey Research InstituteQueen Mary University of LondonUK
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
- Institute Gustave RoussyVillejuifFrance
| |
Collapse
|
3
|
Huang Y, Jiang H, Xu G, Li X, Chen W, Lun Y, Zhang J. Comprehensive analysis of cellular senescence and immune microenvironment in papillary thyroid carcinoma. Aging (Albany NY) 2024; 16:2866-2886. [PMID: 38329430 PMCID: PMC10911381 DOI: 10.18632/aging.205520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 12/22/2023] [Indexed: 02/09/2024]
Abstract
Senescence-induced therapy was previously considered as an effective treatment for tumors, and cellular senescence was initially regarded as an effective mechanism against cancer. However, whether cell senescence-related genes can be used to predict the prognosis of papillary thyroid carcinoma (PTC) and immunotherapy remains unclear. We developed and validated a cell senescence-related signature (CSRS) by analyzing the gene expression of 278 genes related to cellular senescence in 738 patients with PTC. Additionally, further analysis showed that CSRS was a reliable predictor of patient outcomes in combination with immune checkpoint expression and drug susceptibility, and patients with high risk scores may benefit from immunotherapy. The findings of this study demonstrate that CSRS serves as an immunotherapeutic response and prognosis biomarker affecting the tumor immune microenvironment of PTC.
Collapse
Affiliation(s)
- Yinde Huang
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shen-Yang 110001, Liaoning, China
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing 401147, China
| | - Han Jiang
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shen-Yang 110001, Liaoning, China
| | - Guangwen Xu
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shen-Yang 110001, Liaoning, China
| | - Xin Li
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shen-Yang 110001, Liaoning, China
| | - Wenbin Chen
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shen-Yang 110001, Liaoning, China
| | - Yu Lun
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shen-Yang 110001, Liaoning, China
| | - Jian Zhang
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shen-Yang 110001, Liaoning, China
| |
Collapse
|
4
|
Bhattacharya S, Mahato RK, Singh S, Bhatti GK, Mastana SS, Bhatti JS. Advances and challenges in thyroid cancer: The interplay of genetic modulators, targeted therapies, and AI-driven approaches. Life Sci 2023; 332:122110. [PMID: 37734434 DOI: 10.1016/j.lfs.2023.122110] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Thyroid cancer continues to exhibit a rising incidence globally, predominantly affecting women. Despite stable mortality rates, the unique characteristics of thyroid carcinoma warrant a distinct approach. Differentiated thyroid cancer, comprising most cases, is effectively managed through standard treatments such as thyroidectomy and radioiodine therapy. However, rarer variants, including anaplastic thyroid carcinoma, necessitate specialized interventions, often employing targeted therapies. Although these drugs focus on symptom management, they are not curative. This review delves into the fundamental modulators of thyroid cancers, encompassing genetic, epigenetic, and non-coding RNA factors while exploring their intricate interplay and influence. Epigenetic modifications directly affect the expression of causal genes, while long non-coding RNAs impact the function and expression of micro-RNAs, culminating in tumorigenesis. Additionally, this article provides a concise overview of the advantages and disadvantages associated with pharmacological and non-pharmacological therapeutic interventions in thyroid cancer. Furthermore, with technological advancements, integrating modern software and computing into healthcare and medical practices has become increasingly prevalent. Artificial intelligence and machine learning techniques hold the potential to predict treatment outcomes, analyze data, and develop personalized therapeutic approaches catering to patient specificity. In thyroid cancer, cutting-edge machine learning and deep learning technologies analyze factors such as ultrasonography results for tumor textures and biopsy samples from fine needle aspirations, paving the way for a more accurate and effective therapeutic landscape in the near future.
Collapse
Affiliation(s)
- Srinjan Bhattacharya
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Rahul Kumar Mahato
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Satwinder Singh
- Department of Computer Science and Technology, Central University of Punjab, Bathinda 151401, Punjab, India.
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India
| | - Sarabjit Singh Mastana
- School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Leicestershire, Loughborough LE11 3TU, UK.
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda 151401, Punjab, India.
| |
Collapse
|
5
|
Pita JM, Raspé E, Coulonval K, Decaussin-Petrucci M, Tarabichi M, Dom G, Libert F, Craciun L, Andry G, Wicquart L, Leteurtre E, Trésallet C, Marlow LA, Copland JA, Durante C, Maenhaut C, Cavaco BM, Dumont JE, Costante G, Roger PP. CDK4 phosphorylation status and rational use for combining CDK4/6 and BRAF/MEK inhibition in advanced thyroid carcinomas. Front Endocrinol (Lausanne) 2023; 14:1247542. [PMID: 37964967 PMCID: PMC10641312 DOI: 10.3389/fendo.2023.1247542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/26/2023] [Indexed: 11/16/2023] Open
Abstract
Background CDK4/6 inhibitors (CDK4/6i) have been established as standard treatment against advanced Estrogen Receptor-positive breast cancers. These drugs are being tested against several cancers, including in combinations with other therapies. We identified the T172-phosphorylation of CDK4 as the step determining its activity, retinoblastoma protein (RB) inactivation, cell cycle commitment and sensitivity to CDK4/6i. Poorly differentiated (PDTC) and anaplastic (ATC) thyroid carcinomas, the latter considered one of the most lethal human malignancies, represent major clinical challenges. Several molecular evidence suggest that CDK4/6i could be considered for treating these advanced thyroid cancers. Methods We analyzed by two-dimensional gel electrophoresis the CDK4 modification profile and the presence of T172-phosphorylated CDK4 in a collection of 98 fresh-frozen tissues and in 21 cell lines. A sub-cohort of samples was characterized by RNA sequencing and immunohistochemistry. Sensitivity to CDK4/6i (palbociclib and abemaciclib) was assessed by BrdU incorporation/viability assays. Treatment of cell lines with CDK4/6i and combination with BRAF/MEK inhibitors (dabrafenib/trametinib) was comprehensively evaluated by western blot, characterization of immunoprecipitated CDK4 and CDK2 complexes and clonogenic assays. Results CDK4 phosphorylation was detected in all well-differentiated thyroid carcinomas (n=29), 19/20 PDTC, 16/23 ATC and 18/21 thyroid cancer cell lines, including 11 ATC-derived ones. Tumors and cell lines without phosphorylated CDK4 presented very high p16CDKN2A levels, which were associated with proliferative activity. Absence of CDK4 phosphorylation in cell lines was associated with CDK4/6i insensitivity. RB1 defects (the primary cause of intrinsic CDK4/6i resistance) were not found in 5/7 tumors without detectable phosphorylated CDK4. A previously developed 11-gene expression signature identified the likely unresponsive tumors, lacking CDK4 phosphorylation. In cell lines, palbociclib synergized with dabrafenib/trametinib by completely and permanently arresting proliferation. These combinations prevented resistance mechanisms induced by palbociclib, most notably Cyclin E1-CDK2 activation and a paradoxical stabilization of phosphorylated CDK4 complexes. Conclusion Our study supports further clinical evaluation of CDK4/6i and their combination with anti-BRAF/MEK therapies as a novel effective treatment against advanced thyroid tumors. Moreover, the complementary use of our 11 genes predictor with p16/KI67 evaluation could represent a prompt tool for recognizing the intrinsically CDK4/6i insensitive patients, who are potentially better candidates to immediate chemotherapy.
Collapse
Affiliation(s)
- Jaime M. Pita
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Eric Raspé
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Katia Coulonval
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Maxime Tarabichi
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Geneviève Dom
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Frederick Libert
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
- BRIGHTCore, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ligia Craciun
- Tumor Bank of the Institut Jules Bordet Comprehensive Cancer Center – Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Guy Andry
- Department of Head & Neck and Thoracic Surgery, Institut Jules Bordet Comprehensive Cancer Center – Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Laurence Wicquart
- Tumorothèque du Groupement de Coopération Sanitaire-Centre Régional de Référence en Cancérologie (C2RC) de Lille, Lille, France
| | - Emmanuelle Leteurtre
- Department of Pathology, Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Inserm, Centre Hospitalo-Universitaire (CHU) Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Christophe Trésallet
- Department of General and Endocrine Surgery - Pitié-Salpêtrière Hospital, Sorbonne University, Assistance Publique des Hôpitaux de Paris, Paris, France
- Department of Digestive, Bariatric and Endocrine Surgery - Avicenne University Hospital, Paris Nord - Sorbonne University, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Laura A. Marlow
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| | - John A. Copland
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| | - Cosimo Durante
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Carine Maenhaut
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Branca M. Cavaco
- Molecular Endocrinology Group, Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal
| | - Jacques E. Dumont
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Giuseppe Costante
- Departments of Endocrinology and Medical Oncology, Institut Jules Bordet Comprehensive Cancer Center – Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Pierre P. Roger
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
6
|
Wilcox N, Dumont M, González-Neira A, Carvalho S, Joly Beauparlant C, Crotti M, Luccarini C, Soucy P, Dubois S, Nuñez-Torres R, Pita G, Gardner EJ, Dennis J, Alonso MR, Álvarez N, Baynes C, Collin-Deschesnes AC, Desjardins S, Becher H, Behrens S, Bolla MK, Castelao JE, Chang-Claude J, Cornelissen S, Dörk T, Engel C, Gago-Dominguez M, Guénel P, Hadjisavvas A, Hahnen E, Hartman M, Herráez B, Jung A, Keeman R, Kiechle M, Li J, Loizidou MA, Lush M, Michailidou K, Panayiotidis MI, Sim X, Teo SH, Tyrer JP, van der Kolk LE, Wahlström C, Wang Q, Perry JRB, Benitez J, Schmidt MK, Schmutzler RK, Pharoah PDP, Droit A, Dunning AM, Kvist A, Devilee P, Easton DF, Simard J. Exome sequencing identifies breast cancer susceptibility genes and defines the contribution of coding variants to breast cancer risk. Nat Genet 2023; 55:1435-1439. [PMID: 37592023 PMCID: PMC10484782 DOI: 10.1038/s41588-023-01466-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/05/2023] [Indexed: 08/19/2023]
Abstract
Linkage and candidate gene studies have identified several breast cancer susceptibility genes, but the overall contribution of coding variation to breast cancer is unclear. To evaluate the role of rare coding variants more comprehensively, we performed a meta-analysis across three large whole-exome sequencing datasets, containing 26,368 female cases and 217,673 female controls. Burden tests were performed for protein-truncating and rare missense variants in 15,616 and 18,601 genes, respectively. Associations between protein-truncating variants and breast cancer were identified for the following six genes at exome-wide significance (P < 2.5 × 10-6): the five known susceptibility genes ATM, BRCA1, BRCA2, CHEK2 and PALB2, together with MAP3K1. Associations were also observed for LZTR1, ATR and BARD1 with P < 1 × 10-4. Associations between predicted deleterious rare missense or protein-truncating variants and breast cancer were additionally identified for CDKN2A at exome-wide significance. The overall contribution of coding variants in genes beyond the previously known genes is estimated to be small.
Collapse
Affiliation(s)
- Naomi Wilcox
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Martine Dumont
- Genomics Center, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Québec City, Quebec, Canada
| | - Anna González-Neira
- Human Genotyping Unit-CeGen, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sara Carvalho
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Charles Joly Beauparlant
- Genomics Center, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Québec City, Quebec, Canada
| | - Marco Crotti
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Craig Luccarini
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Penny Soucy
- Genomics Center, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Québec City, Quebec, Canada
| | - Stéphane Dubois
- Genomics Center, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Québec City, Quebec, Canada
| | - Rocio Nuñez-Torres
- Human Genotyping Unit-CeGen, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Guillermo Pita
- Human Genotyping Unit-CeGen, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Eugene J Gardner
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - M Rosario Alonso
- Human Genotyping Unit-CeGen, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Nuria Álvarez
- Human Genotyping Unit-CeGen, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Caroline Baynes
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Annie Claude Collin-Deschesnes
- Genomics Center, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Québec City, Quebec, Canada
| | - Sylvie Desjardins
- Genomics Center, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Québec City, Quebec, Canada
| | - Heiko Becher
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jose E Castelao
- Oncology and Genetics Unit, Instituto de Investigación Sanitaria Galicia Sur (IISGS), Xerencia de Xestion Integrada de Vigo-SERGAS, Vigo, Spain
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sten Cornelissen
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE-Leipzig Research Centre for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Manuela Gago-Dominguez
- Cancer Genetics and Epidemiology Group, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS) Foundation, Complejo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - Pascal Guénel
- Team 'Exposome and Heredity,' CESP, Gustave Roussy, INSERM, University Paris-Saclay, UVSQ, Villejuif, France
| | - Andreas Hadjisavvas
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Eric Hahnen
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Mikael Hartman
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore City, Singapore
- Department of Surgery, National University Health System, Singapore City, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Belén Herráez
- Human Genotyping Unit-CeGen, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Audrey Jung
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Renske Keeman
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marion Kiechle
- Division of Gynaecology and Obstetrics, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Jingmei Li
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore City, Singapore.
| | - Maria A Loizidou
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Michael Lush
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Biostatistics Unit, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Mihalis I Panayiotidis
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore City, Singapore
| | - Soo Hwang Teo
- Breast Cancer Research Programme, Cancer Research Malaysia, Subang Jaya, Malaysia
- Department of Surgery, Faculty of Medicine, University of Malaya, UM Cancer Research Institute, Kuala Lumpur, Malaysia
| | - Jonathan P Tyrer
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Lizet E van der Kolk
- Family Cancer Clinic, The Netherlands Cancer Institute-Antoni van Leeuwenhoek hospital, Amsterdam, the Netherlands
| | - Cecilia Wahlström
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - John R B Perry
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Javier Benitez
- Human Genetics Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek hospital, Amsterdam, the Netherlands
| | - Rita K Schmutzler
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Arnaud Droit
- Genomics Center, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Québec City, Quebec, Canada
- Département de Médecine Moléculaire, Faculté de Médecine, Centre Hospitalier Universitaire de Québec Research Center, Laval University, Québec City, Quebec, Canada
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Anders Kvist
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Peter Devilee
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK.
| | - Jacques Simard
- Genomics Center, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Québec City, Quebec, Canada
| |
Collapse
|
7
|
Wu J, Nie Q, Li G, Zhu K. Identifying driver pathways based on a parameter-free model and a partheno-genetic algorithm. BMC Bioinformatics 2023; 24:211. [PMID: 37221474 DOI: 10.1186/s12859-023-05319-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/04/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Tremendous amounts of omics data accumulated have made it possible to identify cancer driver pathways through computational methods, which is believed to be able to offer critical information in such downstream research as ascertaining cancer pathogenesis, developing anti-cancer drugs, and so on. It is a challenging problem to identify cancer driver pathways by integrating multiple omics data. RESULTS In this study, a parameter-free identification model SMCMN, incorporating both pathway features and gene associations in Protein-Protein Interaction (PPI) network, is proposed. A novel measurement of mutual exclusivity is devised to exclude some gene sets with "inclusion" relationship. By introducing gene clustering based operators, a partheno-genetic algorithm CPGA is put forward for solving the SMCMN model. Experiments were implemented on three real cancer datasets to compare the identification performance of models and methods. The comparisons of models demonstrate that the SMCMN model does eliminate the "inclusion" relationship, and produces gene sets with better enrichment performance compared with the classical model MWSM in most cases. CONCLUSIONS The gene sets recognized by the proposed CPGA-SMCMN method possess more genes engaging in known cancer related pathways, as well as stronger connectivity in PPI network. All of which have been demonstrated through extensive contrast experiments among the CPGA-SMCMN method and six state-of-the-art ones.
Collapse
Affiliation(s)
- Jingli Wu
- Key Lab of Education Blockchain and Intelligent Technology, Ministry of Education, Guangxi Normal University, Guilin, China.
- Guangxi Key Lab of Multi-source Information Mining and Security, Guangxi Normal University, Guilin, China.
- College of Computer Science and Engineering, Guangxi Normal University, Guilin, China.
| | - Qinghua Nie
- Key Lab of Education Blockchain and Intelligent Technology, Ministry of Education, Guangxi Normal University, Guilin, China
- Guangxi Key Lab of Multi-source Information Mining and Security, Guangxi Normal University, Guilin, China
- College of Computer Science and Engineering, Guangxi Normal University, Guilin, China
| | - Gaoshi Li
- Key Lab of Education Blockchain and Intelligent Technology, Ministry of Education, Guangxi Normal University, Guilin, China
- Guangxi Key Lab of Multi-source Information Mining and Security, Guangxi Normal University, Guilin, China
- College of Computer Science and Engineering, Guangxi Normal University, Guilin, China
| | - Kai Zhu
- Guangxi Key Lab of Multi-source Information Mining and Security, Guangxi Normal University, Guilin, China
- College of Computer Science and Engineering, Guangxi Normal University, Guilin, China
| |
Collapse
|
8
|
Wang Z, Wu P, Shi J, Ji X, He L, Dong W, Wang Z, Zhang H, Sun W. A novel necroptosis-related gene signature associated with immune landscape for predicting the prognosis of papillary thyroid cancer. Front Genet 2022; 13:947216. [PMID: 36186479 PMCID: PMC9520455 DOI: 10.3389/fgene.2022.947216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Necroptosis, a type of programmed cell death, has been implicated in a variety of cancer-related biological processes. However, the roles of necroptosis-related genes in thyroid cancer yet remain unknown. Methods: A necroptosis-related gene signature was constructed using the least absolute shrinkage and selection operator (LASSO) regression analysis and Cox regression analysis. The predictive value of the prognostic signature was validated in an internal cohort. Additionally, the single-sample gene set enrichment analysis (ssGSEA) was used to examine the relationships between necroptosis and immune cells, immunological functions, and immune checkpoints. Next, the modeled genes expressions were validated in 96 pairs of clinical tumor and normal tissue samples. Finally, the effects of modeled genes on PTC cells were studied by RNA interference approaches in vitro. Results: In this study, the risk signature of seven necroptosis-related genes was created to predict the prognosis of papillary thyroid cancer (PTC) patients, and all patients were divided into high- and low-risk groups. Patients in the high-risk group fared worse in terms of overall survival than those in the low-risk group. The area under the curve (AUC) of the receiving operating characteristic (ROC) curves proved the predictive capability of created signature. The risk score was found to be an independent risk factor for prognosis in multivariate Cox analysis. The low-risk group showed increased immune cell infiltration and immunological activity, implying that they might respond better to immune checkpoint inhibitor medication. Next, GEO database and qRT-PCR in 96 pairs of matched tumorous and non-tumorous tissues were used to validate the expression of the seven modeled genes in PTCs, and the results were compatible with TCGA database. Finally, overexpression of IPMK, KLF9, SPATA2 could significantly inhibit the proliferation, invasion and migration of PTC cells. Conclusion: The created necroptosis associated risk signature has the potential to have prognostic capability in PTC for patient outcome. The findings of this study could pave the way for further research into the link between necroptosis and tumor immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hao Zhang
- *Correspondence: Wei Sun, ; Hao Zhang,
| | - Wei Sun
- *Correspondence: Wei Sun, ; Hao Zhang,
| |
Collapse
|
9
|
Fan X, Xie F, Zhang L, Tong C, Zhang Z. Identification of immune-related ferroptosis prognostic marker and in-depth bioinformatics exploration of multi-omics mechanisms in thyroid cancer. Front Mol Biosci 2022; 9:961450. [PMID: 36060256 PMCID: PMC9428456 DOI: 10.3389/fmolb.2022.961450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/18/2022] [Indexed: 11/26/2022] Open
Abstract
Background: Factors such as variations in thyroid carcinoma (THCA) gene characteristics could influence the clinical outcome. Ferroptosis and immunity have been verified to play an essential role in various cancers, and could affect the cancer patients' prognosis. However, their relationship to the progression and prognosis of many types of THCA remains unclear. Methods: First, we extracted prognosis-related immune-related genes and ferroptosis-related genes from 2 databases for co-expression analysis to obtain prognosis-related differentially expressed immune-related ferroptosis genes (PR-DE-IRFeGs), and screened BID and CDKN2A for building a prognostic model. Subsequently, multiple validation methods were used to test the model's performance and compare its performance with other 4 external models. Then, we explored the mechanism of immunity and ferroptosis in the occurrence, development and prognosis of THCA from the perspectives of anti-tumor immunity, CDKN2A-related competitive endogenous RNA regulatory, copy number variations and high frequency gene mutation. Finally, we evaluated this model's clinical practice value. Results: BID and CDKN2A were identified as prognostic risk and protective factors, respectively. External data and qRT-PCR experiment also validated their differential expression. The model's excellent performance has been repeatedly verified and outperformed other models. Risk scores were significantly associated with most immune cells/functions. Risk score/2 PR-DE-IRFeGs expression was strongly associated with BRAF/NRAS/HRAS mutation. Single copy number deletion of CDKN2A is associated with upregulation of CDKN2A expression and worse prognosis. The predicted regulatory network consisting of CYTOR, hsa-miRNA-873-5p and CDKN2A was shown to significantly affect prognosis. The model and corresponding nomogram have been shown to have excellent clinical practice value. Conclusion: The model can effectively predict the THCA patients' prognosis and guide clinical treatment. Ferroptosis and immunity may be involved in the THCA's progression through antitumor immunity and BRAF/NRAS/HRAS mutation. CYTOR-hsa-miRNA-873-5p-CDKN2A regulatory networks and single copy number deletion of CDKN2A may also affect THCA' progression and prognosis.
Collapse
Affiliation(s)
- Xin Fan
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fei Xie
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lingling Zhang
- School of Stomatology, Nanchang University, Nanchang, China
| | - Chang Tong
- Pediatric Medical School, Nanchang University, Nanchang, China
| | - Zhiyuan Zhang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
10
|
Fontana R, Guidone D, Angrisano T, Calabrò V, Pollice A, La Mantia G, Vivo M. Mutation of the Conserved Threonine 8 within the Human ARF Tumour Suppressor Protein Regulates Autophagy. Biomolecules 2022; 12:biom12010126. [PMID: 35053274 PMCID: PMC8773949 DOI: 10.3390/biom12010126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/10/2022] Open
Abstract
Background: The ARF tumour suppressor plays a well-established role as a tumour suppressor, halting cell growth by both p53-dependent and independent pathways in several cellular stress response circuits. However, data collected in recent years challenged the traditional role of this protein as a tumour suppressor. Cancer cells expressing high ARF levels showed that its expression, far from being dispensable, is required to guarantee tumour cell survival. In particular, ARF can promote autophagy, a self-digestion pathway that helps cells cope with stressful growth conditions arising during both physiological and pathological processes. Methods: We previously showed that ARF is regulated through the activation of the protein kinase C (PKC)-dependent pathway and that an ARF phospho-mimetic mutant on the threonine residue 8, ARF-T8D, sustains cell proliferation in HeLa cells. We now explored the role of ARF phosphorylation in both basal and starvation-induced autophagy by analysing autophagic flux in cells transfected with either WT and ARF phosphorylation mutants by immunoblot and immunofluorescence. Results: Here, we show that endogenous ARF expression in HeLa cells is required for starvation-induced autophagy. Further, we provide evidence that the hyper-expression of ARF-T8D appears to inhibit autophagy in both HeLa and lung cancer cells H1299. This effect is due to the cells’ inability to elicit autophagosomes formation upon T8D expression. Conclusions: Our results lead to the hypothesis that ARF phosphorylation could be a mechanism through which the protein promotes or counteracts autophagy. Several observations underline how autophagy could serve a dual role in cancer progression, either protecting healthy cells from damage or aiding cancerous cells to survive. Our results indicate that ARF phosphorylation controls protein’s ability to promote or counteract autophagy, providing evidence of the dual role played by ARF in cancer progression.
Collapse
Affiliation(s)
- Rosa Fontana
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (R.F.); (D.G.); (T.A.); (V.C.); (A.P.); (G.L.M.)
| | - Daniela Guidone
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (R.F.); (D.G.); (T.A.); (V.C.); (A.P.); (G.L.M.)
| | - Tiziana Angrisano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (R.F.); (D.G.); (T.A.); (V.C.); (A.P.); (G.L.M.)
| | - Viola Calabrò
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (R.F.); (D.G.); (T.A.); (V.C.); (A.P.); (G.L.M.)
| | - Alessandra Pollice
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (R.F.); (D.G.); (T.A.); (V.C.); (A.P.); (G.L.M.)
| | - Girolama La Mantia
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (R.F.); (D.G.); (T.A.); (V.C.); (A.P.); (G.L.M.)
| | - Maria Vivo
- Department of Chemistry and Biology “Adolfo Zambelli”, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
- Correspondence:
| |
Collapse
|
11
|
Analysis of the Frequency of 10 Polymorphic Markers of CDKN2A and RB1 Genes in Russian Populations. Bull Exp Biol Med 2022; 172:352-358. [PMID: 35001307 DOI: 10.1007/s10517-022-05391-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Indexed: 10/19/2022]
Abstract
The study of population frequencies of rare clinically significant alleles is a prerequisite of the development of personalized medicine. We performed genotyping of 1785 DNA samples from representatives of Russian populations according to 10 benign polymorphic markers of two genes involved in oncogenesis: 3 variants of the CDKN2A gene (rs3731249, rs116150891, and rs6413464) and 7 markers of the RB1 gene (rs149800437, rs147754935, rs183898408, rs146897002, rs4151539, rs187912365, and rs144668210). Genotyping was performed using the Illumina biochip test system. The sample covered 28 populations of the Russian Federation and neighboring countries, which were later combined into 3 groups (Asian, European, and Caucasian). The information from the ALFA (NCBI) project was used as reference for the frequencies of these polymorphisms in the Asian and European populations. It was shown that rare alleles in 8 of 10 studied polymorphic markers are presented in Russian populations of European and Caucasian origin with frequencies that are tens and hundreds of times higher than the available data for Western European populations, and in Russian Asian populations, alternative alleles of 5 markers absent in the Asian population of the ALFA project were found. In the subpopulation of Astrakhan Tatars, exceptionally high frequencies of rare alleles were identified; this requires further study.
Collapse
|
12
|
Wu M, Li S, Han J, Liu R, Yuan H, Xu X, Li X, Liu Z. Progression Risk Assessment of Post-surgical Papillary Thyroid Carcinoma Based on Circular RNA-Associated Competing Endogenous RNA Mechanisms. Front Cell Dev Biol 2021; 8:606327. [PMID: 33553144 PMCID: PMC7859334 DOI: 10.3389/fcell.2020.606327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/11/2020] [Indexed: 12/22/2022] Open
Abstract
Background: Accurate risk assessment of post-surgical progression in papillary thyroid carcinoma (PTC) patients is critical. Exploring key differentially expressed mRNAs (DE-mRNAs) regulated by differentially expressed circular RNAs (circRNAs) via the ceRNA mechanism could help establish a novel assessment tool. Methods: ceRNA network was established based on differentially expressed RNAs and correlation analysis. DE-mRNAs within the ceRNA network associated with progression-free interval (PFI) of PTC were identified to construct a prognostic ceRNA regulatory subnetwork. least absolute shrinkage and selection operator (LASSO)-Cox regression was applied to identify hub DE-mRNAs and establish a novel DE-mRNA signature in predicting PFI of PTC. Results: Six hub DE-mRNAs, namely, CLCNKB, FXBO27, FXYD6, RIMS2, SPC24, and CDKN2A, were identified to be most significantly related to the PFI of PTC, and a prognostic DE-mRNA signature was proposed. A nomogram incorporating the DE-mRNA signature and clinical parameters was established to improve the progression risk assessment in post-surgical PTC, which was superior to the American Thyroid Association risk stratification system and distant Metastasis, patient Age, Completeness of resection, local Invasion, and tumor Size (MACIS) score American Joint Committee on Cancer staging system. Conclusions: Based on the circRNA-associated ceRNA RNA mechanism, a DE-mRNA signature and prognostic nomogram was established, which may improve the progression risk assessment in post-surgical PTC.
Collapse
Affiliation(s)
- Mengwei Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuo Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiashu Han
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- MD Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Rui Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hongwei Yuan
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiequn Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaobin Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ziwen Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
13
|
Non-Canonical Functions of the ARF Tumor Suppressor in Development and Tumorigenesis. Biomolecules 2021; 11:biom11010086. [PMID: 33445626 PMCID: PMC7827855 DOI: 10.3390/biom11010086] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
P14ARF (ARF; Alternative Reading Frame) is an extensively characterized tumor suppressor which, in response to oncogenic stimuli, mediates cell cycle arrest and apoptosis via p53-dependent and independent routes. ARF has been shown to be frequently lost through CpG island promoter methylation in a wide spectrum of human malignancies, such as colorectal, prostate, breast, and gastric cancers, while point mutations and deletions in the p14ARF locus have been linked with various forms of melanomas and glioblastomas. Although ARF has been mostly studied in the context of tumorigenesis, it has been also implicated in purely developmental processes, such as spermatogenesis, and mammary gland and ocular development, while it has been additionally involved in the regulation of angiogenesis. Moreover, ARF has been found to hold important roles in stem cell self-renewal and differentiation. As is often the case with tumor suppressors, ARF functions as a pleiotropic protein regulating a number of different mechanisms at the crossroad of development and tumorigenesis. Here, we provide an overview of the non-canonical functions of ARF in cancer and developmental biology, by dissecting the crosstalk of ARF signaling with key oncogenic and developmental pathways.
Collapse
|
14
|
Post-Translational Regulation of ARF: Perspective in Cancer. Biomolecules 2020; 10:biom10081143. [PMID: 32759846 PMCID: PMC7465197 DOI: 10.3390/biom10081143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/25/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023] Open
Abstract
Tumorigenesis can be induced by various stresses that cause aberrant DNA mutations and unhindered cell proliferation. Under such conditions, normal cells autonomously induce defense mechanisms, thereby stimulating tumor suppressor activation. ARF, encoded by the CDKN2a locus, is one of the most frequently mutated or deleted tumor suppressors in human cancer. The safeguard roles of ARF in tumorigenesis are mainly mediated via the MDM2-p53 axis, which plays a prominent role in tumor suppression. Under normal conditions, low p53 expression is stringently regulated by its target gene, MDM2 E3 ligase, which induces p53 degradation in a ubiquitin-proteasome-dependent manner. Oncogenic signals induced by MYC, RAS, and E2Fs trap MDM2 in the inhibited state by inducing ARF expression as a safeguard measure, thereby activating the tumor-suppressive function of p53. In addition to the MDM2-p53 axis, ARF can also interact with diverse proteins and regulate various cellular functions, such as cellular senescence, apoptosis, and anoikis, in a p53-independent manner. As the evidence indicating ARF as a key tumor suppressor has been accumulated, there is growing evidence that ARF is sophisticatedly fine-tuned by the diverse factors through transcriptional and post-translational regulatory mechanisms. In this review, we mainly focused on how cancer cells employ transcriptional and post-translational regulatory mechanisms to manipulate ARF activities to circumvent the tumor-suppressive function of ARF. We further discussed the clinical implications of ARF in human cancer.
Collapse
|
15
|
Kuhn E, Ragazzi M, Ciarrocchi A, Torricelli F, de Biase D, Zanetti E, Bisagni A, Corrado S, Uccella S, La Rosa S, Bongiovanni M, Losito S, Piana S. Angiosarcoma and anaplastic carcinoma of the thyroid are two distinct entities: a morphologic, immunohistochemical, and genetic study. Mod Pathol 2019; 32:787-798. [PMID: 30723294 DOI: 10.1038/s41379-018-0199-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 02/08/2023]
Abstract
Angiosarcoma and anaplastic carcinoma are the most lethal neoplasms of the thyroid worldwide and share some similarities, which have led to a longstanding controversy on their etiopathological relationship. Thyroid angiosarcomas are characterized by vessel formation and an immunophenotype common to endothelial cells, while anaplastic carcinomas are partially or wholly composed of mesenchymal-like cells that have lost the morphologic and functional features of normal thyroid follicular cells. To investigate whether angiosarcomas represent the endothelial extreme of the differentiation spectrum of carcinomas or they are bona fide vascular neoplasms, we studied the clinico-morphologic and genetic characteristics of a series of 10 angiosarcomas and 22 anaplastic carcinomas. Immunohistochemically, among the endothelial markers, CD31 and ERG were the most consistently expressed in angiosarcomas. Among the markers of thyroid origin, PAX8 was the most reliable in anaplastic carcinomas, while TTF-1 reactivity was found in only 5% of anaplastic carcinomas and thyroglobulin was always negative. Pankeratin reacted with most angiosarcomas and anaplastic carcinomas and is therefore not useful in the differential diagnosis. Interestingly a mutated pattern of p53 immunostaining prompted a diagnosis of anaplastic carcinoma. To compare the genetic profile, we used the NGS approach to sequence hotspot regions within a panel of 57 genes. As a result, only a few mutations were found in angiosarcomas and all of them were single events (no TP53 or TERT mutation). On the other hand, anaplastic carcinomas were characterized by a higher number of mutations, and TP53 and TERT promoter mutations were the most frequent genetic alterations. The lack in angiosarcomas of the common mutations identified in anaplastic carcinomas supports a different genetic origin and strongly suggests that, in spite of a shared sarcomatous morphology and a similar clinical aggressiveness, angiosarcomas and anaplastic carcinomas rely on a completely different set of genetic alterations during their evolution.
Collapse
Affiliation(s)
- Elisabetta Kuhn
- Pathology Unit, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS, Reggio Emilia, Italy
| | - Moira Ragazzi
- Pathology Unit, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS, Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS, Reggio Emilia, Italy
| | - Federica Torricelli
- Laboratory of Translational Research, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS, Reggio Emilia, Italy
| | - Dario de Biase
- Department of Pharmacy and Biotechnology (Dipartimento di Farmacia e Biotecnologie) - Molecular Pathology Unit, Azienda USL di Bologna, University of Bologna, Bologna, Italy
| | - Eleonora Zanetti
- Pathology Unit, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS, Reggio Emilia, Italy
| | - Alessandra Bisagni
- Pathology Unit, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS, Reggio Emilia, Italy
| | - Stefania Corrado
- Department of Anatomic Pathology, Azienda Ospedaliero-Universitaria, Modena, Italy
| | - Silvia Uccella
- Department of Medicine and Surgery, University of Insumbria, Varese, Italy
| | - Stefano La Rosa
- Service of Clinical Pathology, Lausanne University Hospital, Institute of Pathology, Lausanne, Switzerland
| | - Massimo Bongiovanni
- Service of Clinical Pathology, Lausanne University Hospital, Institute of Pathology, Lausanne, Switzerland
| | | | - Simonetta Piana
- Pathology Unit, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS, Reggio Emilia, Italy.
| |
Collapse
|
16
|
Fontana R, Ranieri M, La Mantia G, Vivo M. Dual Role of the Alternative Reading Frame ARF Protein in Cancer. Biomolecules 2019; 9:E87. [PMID: 30836703 PMCID: PMC6468759 DOI: 10.3390/biom9030087] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 02/07/2023] Open
Abstract
The CDKN2a/ARF locus expresses two partially overlapping transcripts that encode two distinct proteins, namely p14ARF (p19Arf in mouse) and p16INK4a, which present no sequence identity. Initial data obtained in mice showed that both proteins are potent tumor suppressors. In line with a tumor-suppressive role, ARF-deficient mice develop lymphomas, sarcomas, and adenocarcinomas, with a median survival rate of one year of age. In humans, the importance of ARF inactivation in cancer is less clear whereas a more obvious role has been documented for p16INK4a. Indeed, many alterations in human tumors result in the elimination of the entire locus, while the majority of point mutations affect p16INK4a. Nevertheless, specific mutations of p14ARF have been described in different types of human cancers such as colorectal and gastric carcinomas, melanoma and glioblastoma. The activity of the tumor suppressor ARF has been shown to rely on both p53-dependent and independent functions. However, novel data collected in the last years has challenged the traditional and established role of this protein as a tumor suppressor. In particular, tumors retaining ARF expression evolve to metastatic and invasive phenotypes and in humans are associated with a poor prognosis. In this review, the recent evidence and the molecular mechanisms of a novel role played by ARF will be presented and discussed, both in pathological and physiological contexts.
Collapse
Affiliation(s)
- Rosa Fontana
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Michela Ranieri
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY 10016, USA.
| | - Girolama La Mantia
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy.
| | - Maria Vivo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy.
| |
Collapse
|
17
|
Fontana R, Vivo M. Dynamics of p14ARF and Focal Adhesion Kinase-Mediated Autophagy in Cancer. Cancers (Basel) 2018; 10:cancers10070221. [PMID: 29966311 PMCID: PMC6071150 DOI: 10.3390/cancers10070221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 06/22/2018] [Accepted: 06/26/2018] [Indexed: 12/23/2022] Open
Abstract
It has been widely shown that the focal adhesion kinase (FAK) is involved in nearly every aspect of cancer, from invasion to metastasis to epithelial–mesenchymal transition and maintenance of cancer stem cells. FAK has been shown to interact with p14ARF (alternative reading frame)—a well-established tumor suppressor—and functions in the negative regulation of cancer through both p53-dependent and -independent pathways. Interestingly, both FAK and ARF (human and mouse counterpart) proteins, as well as p53, are involved in autophagy—a process of “self-digestion”—whose main function is the recycling of cellular components and quality control of proteins and organelles. In the last years, an unexpected role of p14ARF in the survival of cancer cells has been underlined in different cellular contexts, suggesting a novel pro-oncogenic function of this protein. In this review, the mechanisms whereby ARF and FAK control autophagy are presented, as well as the role of autophagy in cell migration and spreading. Integrated investigation of these cell functions is extremely important to understand the mechanism of the basis of cell transformation and migration and thus cancer development.
Collapse
Affiliation(s)
- Rosa Fontana
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy.
| | - Maria Vivo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy.
| |
Collapse
|
18
|
PKC Dependent p14ARF Phosphorylation on Threonine 8 Drives Cell Proliferation. Sci Rep 2018; 8:7056. [PMID: 29728595 PMCID: PMC5935756 DOI: 10.1038/s41598-018-25496-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/24/2018] [Indexed: 01/11/2023] Open
Abstract
ARF role as tumor suppressor has been challenged in the last years by several findings of different groups ultimately showing that its functions can be strictly context dependent. We previously showed that ARF loss in HeLa cells induces spreading defects, evident as rounded morphology of depleted cells, accompanied by a decrease of phosphorylated Focal Adhesion Kinase (FAK) protein levels and anoikis. These data, together with previous finding that a PKC dependent signalling pathway can lead to ARF stabilization, led us to the hypothesis that ARF functions in cell proliferation might be regulated by phosphorylation. In line with this, we show here that upon spreading ARF is induced through PKC activation. A constitutive-phosphorylated ARF mutant on the conserved threonine 8 (T8D) is able to mediate both cell spreading and FAK activation. Finally, ARF-T8D expression confers growth advantage to cells thus leading to the intriguing hypothesis that ARF phosphorylation could be a mechanism through which pro-proliferative or anti proliferative signals could be transduced inside the cells in both physiological and pathological conditions.
Collapse
|
19
|
Da C, Wu K, Yue C, Bai P, Wang R, Wang G, Zhao M, Lv Y, Hou P. N-cadherin promotes thyroid tumorigenesis through modulating major signaling pathways. Oncotarget 2018; 8:8131-8142. [PMID: 28042956 PMCID: PMC5352388 DOI: 10.18632/oncotarget.14101] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 11/18/2016] [Indexed: 12/18/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT), a crucial step in disease progression, plays a key role in tumor metastasis. N-cadherin, a well-known EMT marker, acts as a major oncogene in diverse cancers, whereas its functions in thyroid cancer remains largely unclear. This study was designed to explore the biological roles and related molecular mechanism of N-cadherin in thyroid tumorigenesis. Quantitative RT-PCR (qRT-PCR) and immunohistochemistry assays were used to evaluate N-cadherin expression. A series of in vitro studies such as cell proliferation, colony formation, cell cycle, apoptosis, migration and invasion assays were performed to determine the effect of N-cadherin on malignant behavior of thyroid cancer cells. Our results showed that N-cadherin was significantly upregulated in papillary thyroid cancers (PTCs) as compared with non-cancerous thyroid tissues. N-cadherin knockdown markedly inhibited cell proliferation, colony formation, cell migration and invasion, and induced cell cycle arrest and apoptosis. On the other hand, ectopic expression of N-cadherin promoted thyroid cancer cell growth and invasiveness. Mechanically, our data demonstrated that tumor-promoting role of N-cadherin in thyroid cancer was closely related to the activities of the MAPK/Erk, the phosphatidylinositol-3-kinase (PI3K)/Akt and p16/Rb signaling pathways in addition to affecting the EMT process. Altogether, our findings suggest that N-cadherin promotes thyroid tumorigenesis by modulating the activities of major signaling pathways and EMT process, and may represent a potential therapeutic target for this cancer.
Collapse
Affiliation(s)
- Chenxing Da
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China.,Department of Endocrinology, Shanxi Provincial Crops Hospital of Chinese People's Armed Police Force, Xi'an 710054, P.R. China
| | - Kexia Wu
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Chenli Yue
- Department of Endocrinology, Shanxi Provincial Crops Hospital of Chinese People's Armed Police Force, Xi'an 710054, P.R. China
| | - Peisong Bai
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Rong Wang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Guanjie Wang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Man Zhao
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Yanyan Lv
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Peng Hou
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China.,Department of Endocrinology, Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| |
Collapse
|
20
|
Nikitin AG, Potapov VY, Brovkina OI, Koksharova EO, Khodyrev DS, Philippov YI, Michurova MS, Shamkhalova MS, Vikulova OK, Smetanina SA, Suplotova LA, Kononenko IV, Kalashnikov VY, Smirnova OM, Mayorov AY, Nosikov VV, Averyanov AV, Shestakova MV. Association of polymorphic markers of genes FTO, KCNJ11, CDKAL1, SLC30A8, and CDKN2B with type 2 diabetes mellitus in the Russian population. PeerJ 2017; 5:e3414. [PMID: 28717589 PMCID: PMC5511504 DOI: 10.7717/peerj.3414] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 05/14/2017] [Indexed: 01/11/2023] Open
Abstract
Background The association of type 2 diabetes mellitus (T2DM) with the KCNJ11, CDKAL1, SLC30A8, CDKN2B, and FTO genes in the Russian population has not been well studied. In this study, we analysed the population frequencies of polymorphic markers of these genes. Methods The study included 862 patients with T2DM and 443 control subjects of Russian origin. All subjects were genotyped for 10 single nucleotide polymorphisms (SNPs) of the genes using real-time PCR (TaqMan assays). HOMA-IR and HOMA-β were used to measure insulin resistance and β-cell secretory function, respectively. Results The analysis of the frequency distribution of polymorphic markers for genes KCNJ11, CDKAL1, SLC30A8 and CDKN2B showed statistically significant associations with T2DM in the Russian population. The association between the FTO gene and T2DM was not statistically significant. The polymorphic markers rs5219 of the KCNJ11 gene, rs13266634 of the SLC30A8 gene, rs10811661 of the CDKN2B gene and rs9465871, rs7756992 and rs10946398 of the CDKAL1 gene showed a significant association with impaired glucose metabolism or impaired β-cell function. Conclusion In the Russian population, genes, which affect insulin synthesis and secretion in the β-cells of the pancreas, play a central role in the development of T2DM.
Collapse
Affiliation(s)
- Aleksey G Nikitin
- Federal Research Clinical Center for Specialized Types of Health Care and Medical Technologies of Federal Medical and Biology Agency, Moscow, Russian Federation
| | - Viktor Y Potapov
- Clinic of New Medical Technologies "Archimedes", Moscow, Russian Federation
| | - Olga I Brovkina
- Federal Research Clinical Center for Specialized Types of Health Care and Medical Technologies of Federal Medical and Biology Agency, Moscow, Russian Federation
| | | | - Dmitry S Khodyrev
- Federal Research Clinical Center for Specialized Types of Health Care and Medical Technologies of Federal Medical and Biology Agency, Moscow, Russian Federation
| | | | | | | | - Olga K Vikulova
- Endocrinology Research Centre, Moscow, Russian Federation.,I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | | | | | - Irina V Kononenko
- Endocrinology Research Centre, Moscow, Russian Federation.,I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | | | - Olga M Smirnova
- Endocrinology Research Centre, Moscow, Russian Federation.,I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Alexander Y Mayorov
- Endocrinology Research Centre, Moscow, Russian Federation.,I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Valery V Nosikov
- State Research Institute of Genetics and Selection of Industrial Microorganisms, Moscow, Russian Federation
| | - Alexander V Averyanov
- Federal Research Clinical Center for Specialized Types of Health Care and Medical Technologies of Federal Medical and Biology Agency, Moscow, Russian Federation
| | - Marina V Shestakova
- Endocrinology Research Centre, Moscow, Russian Federation.,I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| |
Collapse
|
21
|
p14ARF interacts with the focal adhesion kinase and protects cells from anoikis. Oncogene 2017; 36:4913-4928. [PMID: 28436949 PMCID: PMC5582215 DOI: 10.1038/onc.2017.104] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 03/01/2017] [Accepted: 03/06/2017] [Indexed: 12/13/2022]
Abstract
The ARF protein functions as an important sensor of hyper-proliferative stimuli restricting cell proliferation through both p53-dependent and -independent pathways. Although to date the majority of studies on ARF have focused on its anti-proliferative role, few studies have addressed whether ARF may also have pro-survival functions. Here we show for the first time that during the process of adhesion and spreading ARF re-localizes to sites of active actin polymerization and to focal adhesion points where it interacts with the phosphorylated focal adhesion kinase. In line with its recruitment to focal adhesions, we observe that hampering ARF function in cancer cells leads to gross defects in cytoskeleton organization resulting in apoptosis through a mechanism dependent on the Death-Associated Protein Kinase. Our data uncover a novel function for p14ARF in protecting cells from anoikis that may reflect its role in anchorage independence, a hallmark of malignant tumor cells.
Collapse
|
22
|
Zang X, Chen M, Zhou Y, Xiao G, Xie Y, Wang X. Identifying CDKN3 Gene Expression as a Prognostic Biomarker in Lung Adenocarcinoma via Meta-analysis. Cancer Inform 2015; 14:183-91. [PMID: 26052221 PMCID: PMC4444140 DOI: 10.4137/cin.s17287] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/30/2015] [Accepted: 02/09/2015] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is among the major causes of cancer deaths, and the survival rate of lung cancer patients is extremely low. Recent studies have demonstrated that the gene CDKN3 is related to neoplasia, but in the literature severe controversy exists over whether it is involved in cancer progression or, conversely, tumor inhibition. In this study, we investigated the expression of CDKN3 and its association with prognosis in lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC) using datasets in Lung Cancer Explorer (LCE; http://qbrc.swmed.edu/lce/). We found that CDKN3 was up-regulated in ADC and SCC compared to normal tissues. We also found that CDKN3 was expressed at a higher level in SCC than in ADC, which was further validated through meta-analysis (coefficient = 2.09, 95% CI = 1.50-2.67, P < 0.0001). In addition, based on meta-analysis for the prognostic value of CDKN3, we found that higher CDKN3 expression was associated with poorer survival outcomes in ADC (HR = 1.65, 95% CI = 1.39-1.96, P < 0.0001), but not in SCC (HR = 1.10, 95% CI = 0.84-1.44, P = 0.494). Our findings indicate that CDKN3 may be a prognostic marker in ADC, though the detailed mechanism is yet to be revealed.
Collapse
Affiliation(s)
- Xiao Zang
- Quantitative Biomedical Research Center, Department of Clinical Sciences
| | - Min Chen
- Department of Mathematical Sciences, University of Texas at Dallas
| | - Yunyun Zhou
- Quantitative Biomedical Research Center, Department of Clinical Sciences
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, Department of Clinical Sciences
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center
| | - Yang Xie
- Quantitative Biomedical Research Center, Department of Clinical Sciences
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center
| | - Xinlei Wang
- Department of Statistics, Southern Methodist University
| |
Collapse
|
23
|
Nikitin AG, Potapov VA, Brovkin AN, Lavrikova EY, Khodyrev DS, Shamhalova MS, Smetanina SA, Suplotova LN, Shestakova MV, Nosikov VV, Averyanov AV. Association of FTO, KCNJ11, SLC30A8, and CDKN2B polymorphisms with type 2 diabetes mellitus. Mol Biol 2015. [DOI: 10.1134/s0026893315010112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Zhang F, Xu L, Wei Q, Song X, Sturgis EM, Li G. Significance of MDM2 and P14 ARF polymorphisms in susceptibility to differentiated thyroid carcinoma. Surgery 2012; 153:711-7. [PMID: 23218882 DOI: 10.1016/j.surg.2012.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 11/07/2012] [Indexed: 02/08/2023]
Abstract
BACKGROUND Murine double minute 2 (MDM2) oncoprotein and p14(ARF) tumor suppressor play pivotal roles in regulating p53 and function in the MAPK pathway, which is mutated frequently in differentiated thyroid carcinoma (DTC). We hypothesized that functional polymorphisms in the promoters of MDM2 and p14(ARF) contribute to the interindividual difference in predisposition to DTC. METHODS MDM2-rs2279744, MDM2-rs937283, p14(ARF)-rs3731217, and p14(ARF)-rs3088440 were genotyped in 303 patients with DTC and 511 cancer-free healthy controls. Multivariate logistic regression analysis was performed to calculate odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS MDM2-rs2279744 and p14(ARF)-rs3731217 were associated with a significantly increased risk of DTC (MDM2-rs2279744: TT versus TG/GG; OR, 1.5; 95% CI, 1.1-2.0; p14(ARF)-rs3731217: TG/GG versus TT; OR, 1.7; 95% CI, 1.2-2.3). No association was found for MDM2-rs937283 or p14(ARF)-rs3088440. Individuals carrying 3-4 risk genotypes of MDM2 and p14(ARF) had 2.2 times (95% CI, 1.4-3.5) the risk for DTC of individuals carrying 0-1 risk genotypes (P trend = .021). The combined effect of MDM2 and p14(ARF) on risk of DTC was confined to young subjects (≤ 45 years), nonsmokers, nondrinkers, and subjects with a first-degree family history of cancer. These associations were quite similar in strength when cases were restricted to those with papillary thyroid cancer. CONCLUSION Our results suggest that polymorphisms of MDM2 and p14(ARF) contribute to the interindividual difference in susceptibility to DTC, either alone or more likely jointly. The observed associations warrant further confirmation in independent studies.
Collapse
Affiliation(s)
- Fenghua Zhang
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
25
|
Gene expression and epigenetic changes by furan in rat liver. Toxicology 2012; 292:63-70. [DOI: 10.1016/j.tox.2011.10.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 10/25/2011] [Accepted: 10/27/2011] [Indexed: 02/02/2023]
|
26
|
Vizioli MG, Possik PA, Tarantino E, Meissl K, Borrello MG, Miranda C, Anania MC, Pagliardini S, Seregni E, Pierotti MA, Pilotti S, Peeper DS, Greco A. Evidence of oncogene-induced senescence in thyroid carcinogenesis. Endocr Relat Cancer 2011; 18:743-57. [PMID: 21937739 DOI: 10.1530/erc-11-0240] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Oncogene-induced senescence (OIS) is a growth arrest triggered by the enforced expression of cancer-promoting genes and acts as a barrier against malignant transformation in vivo. In this study, by a combination of in vitro and in vivo approaches, we investigate the role of OIS in tumours originating from the thyroid epithelium. We found that expression of different thyroid tumour-associated oncogenes in primary human thyrocytes triggers senescence, as demonstrated by the presence of OIS hallmarks: changes in cell morphology, accumulation of SA-β-Gal and senescence-associated heterochromatic foci, and upregulation of transcription of the cyclin-dependent kinase inhibitors p16(INK4a) and p21(CIP1). Furthermore, immunohistochemical analysis of a panel of thyroid tumours characterised by different aggressiveness showed that the expression of OIS markers such as p16(INK4a), p21(CIP1) and IGFBP7 is upregulated at early stages, and lost during thyroid tumour progression. Taken together, our results suggest a role of OIS in thyroid carcinogenesis.
Collapse
Affiliation(s)
- Maria Grazia Vizioli
- Molecular Mechanisms Unit, Department of Experimental Oncology and Molecular Medicine, IRCCS Foundation-Istituto Nazionale dei Tumori, Via G. Amadeo, 42 20133 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Italiano A, Bianchini L, Gjernes E, Keslair F, Ranchere-Vince D, Dumollard JM, Haudebourg J, Leroux A, Mainguené C, Terrier P, Chibon F, Coindre JM, Pedeutour F. Clinical and Biological Significance of CDK4 Amplification in Well-Differentiated and Dedifferentiated Liposarcomas. Clin Cancer Res 2009; 15:5696-703. [DOI: 10.1158/1078-0432.ccr-08-3185] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Miller KA, Yeager N, Baker K, Liao XH, Refetoff S, Di Cristofano A. Oncogenic Kras requires simultaneous PI3K signaling to induce ERK activation and transform thyroid epithelial cells in vivo. Cancer Res 2009; 69:3689-94. [PMID: 19351816 DOI: 10.1158/0008-5472.can-09-0024] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Thyroid tumors arising from the follicular cells often harbor mutations leading to the constitutive activation of the PI3K and Ras signaling cascades. However, it is still unclear what their respective contribution to the neoplastic process is, as well as to what extent they interact. We have used mice harboring a Kras oncogenic mutation and a Pten deletion targeted to the thyroid epithelium to address in vivo these questions. Here, we show that although each of these two pathways, alone, is unable to transform thyroid follicular cells, their simultaneous activation is highly oncogenic, leading to invasive and metastatic follicular carcinomas. In particular, phosphatidylinositol-3-kinase (PI3K) activation suppressed Kras-initiated feedback signals that uncouple mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase (MEK) and ERK activation, thus stunting MAPK activity; in addition, PI3K and Kras cooperated to drastically up-regulate cyclin D1 mRNA levels. Finally, combined pharmacologic inhibition of PI3K and MAPK completely inhibited the growth of double-mutant cancer cell lines, providing a compelling rationale for the dual targeting of these pathways in thyroid cancer.
Collapse
Affiliation(s)
- Kelly A Miller
- Human Genetics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
29
|
Xi L, Feber A, Gupta V, Wu M, Bergemann AD, Landreneau RJ, Litle VR, Pennathur A, Luketich JD, Godfrey TE. Whole genome exon arrays identify differential expression of alternatively spliced, cancer-related genes in lung cancer. Nucleic Acids Res 2008; 36:6535-6547. [PMID: 18927117 PMCID: PMC2582617 DOI: 10.1093/nar/gkn697] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 09/24/2008] [Accepted: 09/25/2008] [Indexed: 12/21/2022] Open
Abstract
Alternative processing of pre-mRNA transcripts is a major source of protein diversity in eukaryotes and has been implicated in several disease processes including cancer. In this study we have performed a genome wide analysis of alternative splicing events in lung adenocarcinoma. We found that 2369 of the 17 800 core Refseq genes appear to have alternative transcripts that are differentially expressed in lung adenocarcinoma versus normal. According to their known functions the largest subset of these genes (30.8%) is believed to be cancer related. Detailed analysis was performed for several genes using PCR, quantitative RT-PCR and DNA sequencing. We found overexpression of ERG variant 2 but not variant 1 in lung tumors and overexpression of CEACAM1 variant 1 but not variant 2 in lung tumors but not in breast or colon tumors. We also identified a novel, overexpressed variant of CDH3 and verified the existence and overexpression of a novel variant of P16 transcribed from the CDKN2A locus. These findings demonstrate how analysis of alternative pre-mRNA processing can shed additional light on differences between tumors and normal tissues as well as between different tumor types. Such studies may lead to the development of additional tools for tumor diagnosis, prognosis and therapy.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Alternative Splicing
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Cadherins/genetics
- Cadherins/metabolism
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Cyclin-Dependent Kinase Inhibitor p16/genetics
- Cyclin-Dependent Kinase Inhibitor p16/metabolism
- Exons
- Female
- Gene Expression Regulation, Neoplastic
- Genes, Neoplasm
- Genetic Variation
- Genome, Human
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Male
- Middle Aged
- Oligonucleotide Array Sequence Analysis
- RNA, Messenger/analysis
- RNA, Messenger/chemistry
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcriptional Regulator ERG
Collapse
Affiliation(s)
- Liqiang Xi
- Department of Pathology, Department of Cardiothoracic Surgery, Mount Sinai School of Medicine, New York, NY 10029 and Heart, Lung and Esophageal Surgery Institute, and Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Andrew Feber
- Department of Pathology, Department of Cardiothoracic Surgery, Mount Sinai School of Medicine, New York, NY 10029 and Heart, Lung and Esophageal Surgery Institute, and Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Vanita Gupta
- Department of Pathology, Department of Cardiothoracic Surgery, Mount Sinai School of Medicine, New York, NY 10029 and Heart, Lung and Esophageal Surgery Institute, and Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Maoxin Wu
- Department of Pathology, Department of Cardiothoracic Surgery, Mount Sinai School of Medicine, New York, NY 10029 and Heart, Lung and Esophageal Surgery Institute, and Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Andrew D. Bergemann
- Department of Pathology, Department of Cardiothoracic Surgery, Mount Sinai School of Medicine, New York, NY 10029 and Heart, Lung and Esophageal Surgery Institute, and Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Rodney J. Landreneau
- Department of Pathology, Department of Cardiothoracic Surgery, Mount Sinai School of Medicine, New York, NY 10029 and Heart, Lung and Esophageal Surgery Institute, and Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Virginia R. Litle
- Department of Pathology, Department of Cardiothoracic Surgery, Mount Sinai School of Medicine, New York, NY 10029 and Heart, Lung and Esophageal Surgery Institute, and Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Arjun Pennathur
- Department of Pathology, Department of Cardiothoracic Surgery, Mount Sinai School of Medicine, New York, NY 10029 and Heart, Lung and Esophageal Surgery Institute, and Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - James D. Luketich
- Department of Pathology, Department of Cardiothoracic Surgery, Mount Sinai School of Medicine, New York, NY 10029 and Heart, Lung and Esophageal Surgery Institute, and Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Tony E. Godfrey
- Department of Pathology, Department of Cardiothoracic Surgery, Mount Sinai School of Medicine, New York, NY 10029 and Heart, Lung and Esophageal Surgery Institute, and Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
30
|
Pallante P, Federico A, Berlingieri MT, Bianco M, Ferraro A, Forzati F, Iaccarino A, Russo M, Pierantoni GM, Leone V, Sacchetti S, Troncone G, Santoro M, Fusco A. Loss of the CBX7 Gene Expression Correlates with a Highly Malignant Phenotype in Thyroid Cancer. Cancer Res 2008; 68:6770-8. [DOI: 10.1158/0008-5472.can-08-0695] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Zafon C, Obiols G, Castellví J, Ramon y Cajal S, Baena JA, Mesa J. Expression of p21cip1, p27kip1, and p16INk4a cyclin-dependent kinase inhibitors in papillary thyroid carcinoma: correlation with clinicopathological factors. Endocr Pathol 2008; 19:184-9. [PMID: 18766473 DOI: 10.1007/s12022-008-9037-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In a variety of human malignancies, aberrant expression of proteins involved in the control of cell-cycle progression has been reported. In this study, p21cip1, p27kip1, and p16INk4a cyclin-dependent kinase inhibitors were analyzed to evaluate their usefulness in clinical management of papillary thyroid carcinoma (PTC). Archived material derived from 46 cases of PTC was analyzed immunohistochemically. Protein expression was ascertained on tissue microarrays, and results were correlated with clinicopathological features of the patients. Positive immunostaining was observed in 14 (30,4%) p21cip1, 26 (56,5%) p27kip1, and 14 (30,4%) p16INk4a cases. No significant correlation between p21cip1 or p27kip1 and clinical factors was found. In contrast, p16INk4a expression showed a significant correlation with initial extension of the disease. Therefore, 45.8% of patients with loco-regional extension were p16INk4a positive, whereas overexpression was only seen in 15.7% of cases with intrathyroid disease (p < 0.05). Moreover, all patients with simultaneous p16INk4a positivity and lack of p27kip1 staining (four patients) presented lymph node metastases. In contrast, only 12 (28.5%) of the remaining patients showed lymph node tumor involvement. In conclusion, p16INk4a expression suggests extrathyroid neck extension of PTC. This effect is enhanced when p27kip1 is negative. We think that their analysis by immunohistochemistry could be useful in the management of patients with PTC.
Collapse
Affiliation(s)
- Carles Zafon
- Division of Endocrinology, Hospital General i Universitari Vall d'Hebron, University Autonomous of Barcelona, Pg. Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|