1
|
Tien SC, Shih M, Hu CM. RRM1 O-GlcNAcylation inhibition suppresses pancreatic cancer via TK1-mediated replication stress. Cancer Gene Ther 2025; 32:550-562. [PMID: 40155654 PMCID: PMC12086086 DOI: 10.1038/s41417-025-00895-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/07/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
O-GlcNAcylation of ribonucleotide reductase large subunit M1 (RRM1) at position 734 influences high glucose-induced genomic instability and cell transformation in normal pancreatic cells. By disrupting the ribonucleotide reductase complex, it reduces dNTPs. Although the impact of RRM1 O-GlcNAcylation on pancreatic cancer progression remains unexplored, our CRISPR knock-in technology created the RRM1-T734A mutation to minimize RRM1 O-GlcNAcylation. In pancreatic cancer PANC-1 cells with this mutation, we observed heightened replication stress-induced DNA damage, S-phase delays, and diminished in vitro tumor cell growth. Mechanistically, RRM1-T734A enhanced its interaction with RRM2 while impairing binding to RRM2B, leading to decreased NTPs and disrupted dNTP equilibrium. Notably, it doubled dTTP levels via TK1 stabilization mediated by thymidine, resulting in S-phase delay. TK1 silencing restored RRM1-T734A-induced effects on S-phase retardation and decreased colony formation. Our findings highlight the pivotal role of O-GlcNAcylation of RRM1 at T734 in maintaining genomic stability and promoting pancreatic cancer malignancy. Furthermore, reducing RRM1 O-GlcNAcylation increased pancreatic cancer cell sensitivity to gemcitabine, proposing a potential therapeutic strategy.
Collapse
Affiliation(s)
- Sui-Chih Tien
- Genomics Research Center, Academia Sinica, Taipei, 115201, Taiwan
| | - Mei Shih
- Genomics Research Center, Academia Sinica, Taipei, 115201, Taiwan
| | - Chun-Mei Hu
- Genomics Research Center, Academia Sinica, Taipei, 115201, Taiwan.
| |
Collapse
|
2
|
Lu Y, Ma H, Xiong X, Du Y, Liu L, Wang J, Zhao W. Deletion of ENO1 sensitizes pancreatic cancer cells to gemcitabine via MYC/RRM1-mediated glycolysis. Sci Rep 2025; 15:9941. [PMID: 40121292 PMCID: PMC11929750 DOI: 10.1038/s41598-025-94319-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 03/12/2025] [Indexed: 03/25/2025] Open
Abstract
Glycolysis is a critical metabolic pathway in cancer cells, fulfilling their energy requirements, supporting biosynthesis, maintaining redox balance, and enabling survival in hostile environments. Alpha-enolase (ENO1) has been identified as a key promoter of tumor progression through its involvement in glycolysis. This study aims to elucidate the relationship between ENO1, glycolysis, and gemcitabine sensitivity in pancreatic cancer (PC). The expression levels of ENO1 in PC were analyzed using the GEPIA2 database, Kaplan-Meier survival plots, and immunohistochemistry (IHC). To assess the impact of ENO1 on gemcitabine sensitivity, we manipulated ENO1 expression in PC cell lines through overexpression and silencing techniques. Subsequent analyses included flow cytometry assays, glucose uptake and lactate production measurements, and cytotoxicity assays. The underlying mechanisms by which ENO1 modulates gemcitabine sensitivity were explored using Western blotting (WB). ENO1 was found to be significantly overexpressed in PC tissues, and elevated ENO1 levels were associated with poorer prognosis in PC patients. Overexpression of ENO1 reduced the sensitivity of PC cells to gemcitabine, enhancing cell proliferation, migration, and invasion by altering the cell cycle and inhibiting apoptosis. Conversely, silencing ENO1 decreased glycolysis in PC cells and heightened their sensitivity to gemcitabine. Furthermore, glycolysis inhibition-achieved through ENO1 knockdown, glucose deprivation, or treatment with 2-Deoxy-D-glucose (2-DG)-further enhanced the susceptibility of PC cells to gemcitabine. Mechanistically, ENO1 was found to regulate the expression of gemcitabine resistance-related genes, particularly ribonucleotide reductase catalytic subunit M1 (RRM1), via MYC through the glycolytic pathway, thereby contributing to gemcitabine resistance. This study demonstrates that ENO1 plays a crucial role in PC progression and is closely linked to gemcitabine resistance through its regulation of the glycolytic pathway.
Collapse
Affiliation(s)
- Yingpeng Lu
- Department of General Surgery, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, No. 77, Chang'an South Rd, Zhangjiagang, 215600, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, No.99, Huaihai West Rd, Xuzhou, 221006, Jiangsu, China
| | - Hongqin Ma
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, No.99, Huaihai West Rd, Xuzhou, 221006, Jiangsu, China
| | - Xiaoxiao Xiong
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, No.99, Huaihai West Rd, Xuzhou, 221006, Jiangsu, China
- Department of General Surgery, The Affiliated Suqian Hospital of Xuzhou Medical University, No 138, Huanghe South Rd, Suqian, 223800, Jiangsu, China
| | - Yusheng Du
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, No.99, Huaihai West Rd, Xuzhou, 221006, Jiangsu, China
| | - Li Liu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, No.99, Huaihai West Rd, Xuzhou, 221006, Jiangsu, China
| | - Ji Wang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, No.99, Huaihai West Rd, Xuzhou, 221006, Jiangsu, China.
| | - Wenxing Zhao
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, No.99, Huaihai West Rd, Xuzhou, 221006, Jiangsu, China.
| |
Collapse
|
3
|
Gu Y, Yang R, Zhang Y, Guo M, Takehiro K, Zhan M, Yang L, Wang H. Molecular mechanisms and therapeutic strategies in overcoming chemotherapy resistance in cancer. MOLECULAR BIOMEDICINE 2025; 6:2. [PMID: 39757310 PMCID: PMC11700966 DOI: 10.1186/s43556-024-00239-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Cancer remains a leading cause of mortality globally and a major health burden, with chemotherapy often serving as the primary therapeutic option for patients with advanced-stage disease, partially compensating for the limitations of non-curative treatments. However, the emergence of chemotherapy resistance significantly limits its efficacy, posing a major clinical challenge. Moreover, heterogeneity of resistance mechanisms across cancer types complicates the development of universally effective diagnostic and therapeutic approaches. Understanding the molecular mechanisms of chemoresistance and identifying strategies to overcome it are current research focal points. This review provides a comprehensive analysis of the key molecular mechanisms underlying chemotherapy resistance, including drug efflux, enhanced DNA damage repair (DDR), apoptosis evasion, epigenetic modifications, altered intracellular drug metabolism, and the role of cancer stem cells (CSCs). We also examine specific causes of resistance in major cancer types and highlight various molecular targets involved in resistance. Finally, we discuss current strategies aiming at overcoming chemotherapy resistance, such as combination therapies, targeted treatments, and novel drug delivery systems, while proposing future directions for research in this evolving field. By addressing these molecular barriers, this review lays a foundation for the development of more effective cancer therapies aimed at mitigating chemotherapy resistance.
Collapse
Affiliation(s)
- Yixiang Gu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Ruifeng Yang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yang Zhang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Miaomiao Guo
- The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | | | - Ming Zhan
- The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
- Department of Systems Biology, Beckman Research Institute, City of Hope, Monrovia, CA, 91016, USA
| | - Linhua Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Hui Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
4
|
Vrettos EΙ, Kyrkou SG, Zoi V, Giannakopoulou M, Chatziathanasiadou MV, Kanaki Z, Agalou A, Bistas VP, Kougioumtzi A, Karampelas T, Diamantis DA, Murphy C, Beis D, Klinakis A, Tamvakopoulos C, Kyritsis AP, Alexiou GA, Tzakos AG. A Novel Fluorescent Gemcitabine Prodrug That Follows a Nucleoside Transporter-Independent Internalization and Bears Enhanced Therapeutic Efficacy With Respect to Gemcitabine. Chemistry 2024; 30:e202401327. [PMID: 38941241 DOI: 10.1002/chem.202401327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024]
Abstract
The multiplexity of cancer has rendered it the second leading cause of mortality worldwide and theragnostic prodrugs have gained popularity in recent years as a means of treatment. Theragnostic prodrugs enable the simultaneous diagnosis and therapy of tumors via high-precision real-time drug release monitoring. Herein, we report the development of the small theragnostic prodrug GF, based on the nucleoside anticancer agent gemcitabine and the fluorescent dye 5(6)-carboxyfluorescein. We have successfully demonstrated its efficient internalization in tumor cells, showing localization throughout both the early and late endocytic pathways. Its mechanism of cell internalization was evaluated, confirming its independence from nucleoside transporters. Its cellular localization via confocal microscopy revealed a clathrin-mediated endocytosis mechanism, distinguishing it from analogous compounds studied previously. Furthermore, GF exhibited stability across various pH values and in human blood plasma. Subsequently, its in vitro cytotoxicity was assessed in three human cancer cell lines (A549, U87 and T98). Additionally, its pharmacokinetic profile in mice was investigated and the consequent drug release was monitored. Finally, its in vivo visualization was accomplished in zebrafish xenotransplantation models and its in vivo efficacy was evaluated in A549 xenografts. The results unveiled an intriguing efficacy profile, positioning GF as a compelling candidate warranting further investigation.
Collapse
Affiliation(s)
| | - Stavroula G Kyrkou
- Department of Chemistry, University of Ioannina, GR-45110, Ioannina, Greece
| | - Vasiliki Zoi
- Neurosurgical Institute, University of Ioannina, GR-45110, Ioannina, Greece
| | | | | | - Zoi Kanaki
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Soranou Ephessiou Street 4, GR-11527, Athens, Greece
| | - Adamantia Agalou
- Clinical, Experimental Surgery, & Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Soranou Ephessiou Street 4, Athens, GR-11527, Greece
| | | | | | - Theodoros Karampelas
- Clinical, Experimental Surgery, & Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Soranou Ephessiou Street 4, Athens, GR-11527, Greece
| | | | - Carol Murphy
- Biomedical Research Institute, BRI-FORTH, Ioannina, Greece
| | - Dimitris Beis
- Clinical, Experimental Surgery, & Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Soranou Ephessiou Street 4, Athens, GR-11527, Greece
- School of Health Sciences, University of Ioannina, Ioannina, GR-45110, Greece
| | - Apostolos Klinakis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Soranou Ephessiou Street 4, GR-11527, Athens, Greece
| | - Constantin Tamvakopoulos
- Clinical, Experimental Surgery, & Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Soranou Ephessiou Street 4, Athens, GR-11527, Greece
| | | | - George A Alexiou
- Neurosurgical Institute, University of Ioannina, GR-45110, Ioannina, Greece
| | - Andreas G Tzakos
- Department of Chemistry, University of Ioannina, GR-45110, Ioannina, Greece
| |
Collapse
|
5
|
van Harten AM, Shah R, de Boer DV, Buijze M, Kreft M, Song JY, Zürcher LM, Jacobs H, Brakenhoff RH. Gemcitabine as chemotherapy of head and neck cancer in Fanconi anemia patients. Oncogenesis 2024; 13:26. [PMID: 38992100 PMCID: PMC11239817 DOI: 10.1038/s41389-024-00525-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 06/04/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
Fanconi anemia (FA) is a rare hereditary disease resulting from an inactivating mutation in the FA/BRCA pathway, critical for the effective repair of DNA interstrand crosslinks (ICLs). The disease is characterized by congenital abnormalities, progressing bone marrow failure, and an increased risk of developing malignancies early in life, in particular head and neck squamous cell carcinoma (HNSCC). While ICL-inducing cisplatin combined with radiotherapy is a mainstay of HNSCC treatment, cisplatin is contra-indicated for FA-HNSCC patients. This dilemma necessitates the identification of novel treatment modalities tolerated by FA-HNSCC patients. To identify druggable targets, an siRNA-based genetic screen was previously performed in HNSCC-derived cell lines from FA and non-FA tumor origin. Here, we report that the Ribonucleotide Reductase (RNR) complex, consisting of the RRM1 and RRM2 subunits, was identified as a therapeutic target for both, FA and non-FA HNSCC. While non-FA HNSCC cells responded differentially to RNR depletion, FA-HNSCC cells were consistently found hypersensitive. This insight was confirmed pharmacologically using 2', 2'-difluoro 2'deoxycytidine (dFdC), also known as gemcitabine, a clinically used nucleotide analog that is a potent inhibitor of the RNR complex. Importantly, while cisplatin exposure displayed severe, long-lasting toxicity on the hematopoietic stem and progenitor compartments in Fancg-/- mice, gemcitabine was well tolerated and had only a mild, transient impact. Taken together, our data implicate that gemcitabine-based chemoradiotherapy could serve as an alternative HNSCC treatment in Fanconi patients, and deserves clinical testing.
Collapse
Affiliation(s)
- Anne M van Harten
- Amsterdam UMC location Vrije Universiteit Amsterdam, Otolaryngology-Head and Neck Surgery, Head and Neck Cancer Biology & Immunology Section, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Ronak Shah
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - D Vicky de Boer
- Amsterdam UMC location Vrije Universiteit Amsterdam, Otolaryngology-Head and Neck Surgery, Head and Neck Cancer Biology & Immunology Section, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Marijke Buijze
- Amsterdam UMC location Vrije Universiteit Amsterdam, Otolaryngology-Head and Neck Surgery, Head and Neck Cancer Biology & Immunology Section, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Maaike Kreft
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ji-Ying Song
- Department of Experimental Animal Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lisa M Zürcher
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Heinz Jacobs
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ruud H Brakenhoff
- Amsterdam UMC location Vrije Universiteit Amsterdam, Otolaryngology-Head and Neck Surgery, Head and Neck Cancer Biology & Immunology Section, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Sahin TK, Isik A, Guven DC, Ceylan F, Babaoglu B, Akyol A, Yalcin S, Dizdar O. The prognostic and predictive role of class III β-Tubulin and hENT1 expression in patients with advanced pancreatic ductal adenocarcinoma. Pancreatology 2024; 24:279-288. [PMID: 38272717 DOI: 10.1016/j.pan.2024.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND FOLFIRINOX and gemcitabine-nabpaclitaxel (GnP) are standard first-line treatment regimens for advanced pancreatic ductal adenocarcinoma (PDAC). However, currently, there is a lack of predictive biomarkers to aid in the treatment selection. We aimed to explore the prognostic and predictive value of class III β-Tubulin (TUBB3) and human equilibrative nucleoside transporter 1 (hENT1) expression, which have previously been shown to be associated with taxane and gemcitabine resistance in advanced PDAC. METHODS We conducted a retrospective analysis of 106 patients with advanced PDAC treated with GnP and/or FOLFIRINOX at our institution. TUBB3 and hENT1 immunohistochemical staining was performed on tumor specimens and subsequently evaluated based on the intensity and percentage of expression. RESULTS In patients who received the GnP regimen, a high combined score (TUBB3low/hENT1high) was associated with a higher DCR and longer PFS compared to those with intermediate (TUBB3high/hENT1high or TUBB3low/hENT1low) and low score (TUBB3high/hENT1low). In the multivariate analysis, a high combined score was an independent predictor of higher DCR (OR:11.96; 95 % CI:2.61-54.82; p = 0.001) and longer PFS (HR:0.33; 95%CI:0.18-0.60; p < 0.001). However, there was no difference in response rates or PFS based on TUBB3 and hENT1 expression among patients receiving the FOLFIRINOX regimen. CONCLUSION Our findings indicate that tumor TUBB3 and hENT1 expression may predict the efficacy of the GnP regimen, and low TUBB3 and high hENT1 expression (TUBB3low/hENT1high) are associated with a higher DCR and longer PFS in patients treated with GnP. Evaluating TUBB3 and hENT1 jointly can identify the patients most (as well as least) likely to benefit from GnP chemotherapy.
Collapse
Affiliation(s)
- T K Sahin
- Department of Internal Medicine, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| | - A Isik
- Hacettepe University Transgenic Animal Technologies Research and Application Center, Sıhhiye, Ankara, Turkey
| | - D C Guven
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - F Ceylan
- Department of Medical Oncology, Ankara City Hospital, Ankara, Turkey
| | - B Babaoglu
- Department of Pathology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - A Akyol
- Hacettepe University Transgenic Animal Technologies Research and Application Center, Sıhhiye, Ankara, Turkey; Department of Pathology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - S Yalcin
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - O Dizdar
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey.
| |
Collapse
|
7
|
Chai X, Meng Y, Ge W, Wang J, Li F, Wang XJ, Wang X. A novel synthesized prodrug of gemcitabine based on oxygen-free radical sensitivity inhibited the growth of lung cancer cells. J Biomed Res 2023; 37:355-366. [PMID: 37705111 PMCID: PMC10541775 DOI: 10.7555/jbr.37.20230022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 09/15/2023] Open
Abstract
In the present study, we introduced the H 2O 2-sensitive thiazolidinone moiety at the 4th amino group of gemcitabine (GEM) to synthesize a new target compound named GEM-ZZQ, and then we confirmed its chemical structure by nuclear magnetic resonance spectroscopy. We further confirmed that GEM-ZZQ had a good chemical stability in different pH solutions in vitro and that it could be activated by H 2O 2 to release GEM. Pharmacodynamic studies revealed that the growth inhibition of human normal epithelial cells was weaker by GEM-ZZQ than by GEM treatment and that the inhibition of various lung cancer cell lines by GEM-ZZQ was similar to that of GEM. For the lung cancer cell lines that are resistant to the epidermal growth factor receptor (EGFR)-targeting inhibitor osimertinib, GEM-ZZQ showed less growth inhibition than GEM; however, GEM-ZZQ in combination with cisplatin showed better synergistic effects than GEM in the low-dose groups. In summary, we provided a new anti-cancer compound GEM-ZZQ for treating lung cancer by modifying the GEM structure.
Collapse
Affiliation(s)
- Xinlu Chai
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yuting Meng
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wei Ge
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Juan Wang
- Department of Pharmacology, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Fei Li
- Department of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xue Jun Wang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xuerong Wang
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
8
|
Wang M, Qu K, Zhao P, Yin X, Meng Y, Herdewijn P, Liu C, Zhang L, Xia X. Synthesis and anticancer evaluation of acetylated-lysine conjugated gemcitabine prodrugs. RSC Med Chem 2023; 14:1572-1580. [PMID: 37593582 PMCID: PMC10429768 DOI: 10.1039/d3md00190c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/04/2023] [Indexed: 08/19/2023] Open
Abstract
Gemcitabine is an antimetabolite drug approved for the treatment of various cancers. However, its use is limited due to several issues such as stability, toxicity and drug resistance. Herein, we present the design and synthesis of a series of gemcitabine prodrugs with modifications on the 4-N-amino group by employing an acetylated l- or d-lysine moiety masked by different substitutions. Prodrugs 1-3 and 6-8 showed up to 2.4 times greater anticancer activity than gemcitabine in A549 lung cells, while they exhibited potent activity against BxPC-3 pancreatic cells with IC50 values in the range of 7-40 nM. Moreover, prodrugs 2-3 and 7-8 were found to be less potent against CTSL low expression Caco-2 cells and at least 69-fold less toxic towards human normal HEK-293T cells compared to gemcitabine, leading to improved selectivity and safety profiles. Further stability studies showed that representative prodrugs 2 and 7 exhibited enhanced metabolic stability in human plasma, human liver microsomes and cytidine deaminase. Prodrug 1 can be cleaved by tumor cell-enriched CTSL to release parent drug gemcitabine. Overall, these results demonstrated that acetylated lysine conjugated gemcitabine prodrugs could serve as promising leads for further evaluation as new anticancer drugs.
Collapse
Affiliation(s)
- Mengmeng Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250103 China
| | - Kunyu Qu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250103 China
| | - Peipei Zhao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250103 China
| | - Xin Yin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250103 China
| | - Yiwei Meng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250103 China
| | - Piet Herdewijn
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven 3000 Leuven Belgium
| | - Chao Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University Jinan 250012 China
| | - Lixin Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250103 China
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST) Shanghai 200237 China
| | - Xuekui Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250103 China
| |
Collapse
|
9
|
Ono H, Murase Y, Yamashita H, Kato T, Asano D, Ishikawa Y, Watanabe S, Ueda H, Akahoshi K, Ogawa K, Kudo A, Akiyama Y, Tanaka S, Tanabe M. RRM1 is mediated by histone acetylation through gemcitabine resistance and contributes to invasiveness and ECM remodeling in pancreatic cancer. Int J Oncol 2023; 62:51. [PMID: 36866763 PMCID: PMC10019754 DOI: 10.3892/ijo.2023.5499] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 02/02/2023] [Indexed: 03/04/2023] Open
Abstract
The invasiveness of pancreatic cancer and its resistance to anticancer drugs define its malignant potential, and are considered to affect the peritumoral microenvironment. Cancer cells with resistance to gemcitabine exposed to external signals induced by anticancer drugs may enhance their malignant transformation. Ribonucleotide reductase large subunit M1 (RRM1), an enzyme in the DNA synthesis pathway, is upregulated during gemcitabine resistance, and its expression is associated with worse prognosis for pancreatic cancer. However, the biological function of RRM1 is unclear. In the present study, it was demonstrated that histone acetylation is involved in the regulatory mechanism related to the acquisition of gemcitabine resistance and subsequent RRM1 upregulation. The current in vitro study indicated that RRM1 expression is critical for the migratory and invasive potential of pancreatic cancer cells. Furthermore, a comprehensive RNA sequencing analysis showed that activated RRM1 induced marked changes in the expression levels of extracellular matrix‑related genes, including N‑cadherin, tenascin‑C and COL11A. RRM1 activation also promoted extracellular matrix remodeling and mesenchymal features, which enhanced the migratory invasiveness and malignant potential of pancreatic cancer cells. The present results demonstrated that RRM1 has a critical role in the biological gene program that regulates the extracellular matrix, which promotes the aggressive malignant phenotype of pancreatic cancer.
Collapse
Affiliation(s)
- Hiroaki Ono
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Yoshiki Murase
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Hironari Yamashita
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Tomotaka Kato
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Daisuke Asano
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Yoshiya Ishikawa
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Shuichi Watanabe
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Hiroki Ueda
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Keiichi Akahoshi
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Kosuke Ogawa
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Atsushi Kudo
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Yoshimitsu Akiyama
- Division of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Shinji Tanaka
- Division of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Minoru Tanabe
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| |
Collapse
|
10
|
Wang R, Li Y, Gao J, Luan Y. WRQ-2, a gemcitabine prodrug, reverses gemcitabine resistance caused by hENT1 inhibition. Drug Discov Ther 2022; 16:286-292. [PMID: 36529509 DOI: 10.5582/ddt.2022.01077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Gemcitabine is widely used in the clinic as a first-line antitumor agent. However, intrinsic and acquired resistance hinders its wide clinical application. In this study, a gemcitabine prodrug nominated as WRQ-2 was designed and synthesized by conjugating gemcitabine with the indole-3-methanol analogue OSU-A9 through a carbamate linkage. WRQ-2 exhibited high cytotoxicity against six cancer cell lines (HeLa, A549, MDA-MB-231, HuH-7, MGC-803, and HCT-116) with IC50 values in low micromolar range. WRQ-2 reversed the resistance of HeLa cells to gemcitabine caused by hENT1 inhibition. Compared to gemcitabine, WRQ-2 induced a higher degree of DNA damage and apoptosis in the presence of hENT1 inhibitor. Our study suggests that compound WRQ-2 is a potential gemcitabine prodrug and worth of further antitumor activity investigation.
Collapse
Affiliation(s)
- Ruquan Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Yongliang Li
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Jianjun Gao
- Department of Pharmacology, School of Pharmacy, Qingdao University Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Yepeng Luan
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
11
|
The past, present, and future of chemotherapy with a focus on individualization of drug dosing. J Control Release 2022; 352:840-860. [PMID: 36334860 DOI: 10.1016/j.jconrel.2022.10.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 10/14/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022]
Abstract
While there have been rapid advances in developing new and more targeted drugs to treat cancer, much less progress has been made in individualizing dosing. Even though the introduction of immunotherapies such as CAR T-cells and checkpoint inhibitors, as well as personalized therapies that target specific mutations, have transformed clinical treatment of cancers, chemotherapy remains a mainstay in oncology. Chemotherapies are typically dosed on either a body surface area (BSA) or weight basis, which fails to account for pharmacokinetic differences between patients. Drug absorption, distribution, metabolism, and excretion rates can vary between patients, resulting in considerable differences in exposure to the active drugs. These differences result in suboptimal dosing, which can reduce efficacy and increase side-effects. Therapeutic drug monitoring (TDM), genotype guided dosing, and chronomodulation have been developed to address this challenge; however, despite improving clinical outcomes, they are rarely implemented in clinical practice for chemotherapies. Thus, there is a need to develop interventions that allow for individualized drug dosing of chemotherapies, which can help maximize the number of patients that reach the most efficacious level of drug in the blood while mitigating the risks of underdosing or overdosing. In this review, we discuss the history of the development of chemotherapies, their mechanisms of action and how they are dosed. We discuss substantial intraindividual and interindividual variability in chemotherapy pharmacokinetics. We then propose potential engineering solutions that could enable individualized dosing of chemotherapies, such as closed-loop drug delivery systems and bioresponsive biomaterials.
Collapse
|
12
|
Alafnan A, Seetharam AA, Hussain T, Gupta MS, Rizvi SMD, Moin A, Alamri A, Unnisa A, Awadelkareem AM, Elkhalifa AO, Jayahanumaiah P, Khalid M, Balashanmugam N. Development and Characterization of PEGDA Microneedles for Localized Drug Delivery of Gemcitabine to Treat Inflammatory Breast Cancer. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15217693. [PMID: 36363283 PMCID: PMC9658843 DOI: 10.3390/ma15217693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 05/14/2023]
Abstract
Inflammatory breast cancer (IBC) is one of the most belligerent types of breast cancer. While various modalities exist in managing/treating IBC, drug delivery using microneedles (MNs) is considered to be the most innovative method of localized delivery of anti-cancer agents. Localized drug delivery helps to treat IBC could limit their adverse reactions. MNs are nothing but small needle like structures that cause little or no pain at the site of administration for drug delivery via layers of the skin. The polyethylene glycol diacrylate (PEGDA) based MNs were fabricated by using three dimensional (3D) technology called Projection Micro-Stereo Lithography (PµSL). The fabricated microneedle patches (MNPs) were characterized and coated with a coating formulation comprising of gemcitabine and sodium carboxymethyl cellulose by a novel and inventive screen plate method. The drug coated MNPs were characterized by various instrumental methods of analysis and release profile studies were carried out using Franz diffusion cell. Coat-and-poke strategy was employed in administering the drug coated MNPs. Overall, the methods employed in the present study not only help in obtaining MNPs with accurate dimensions but also help in obtaining uniformly drug coated MNPs of gemcitabine for treatment of IBC. Most importantly, 100% drug release was achieved within the first one hour only.
Collapse
Affiliation(s)
- Ahmed Alafnan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia; (A.A.); (A.A.)
| | - Aravindram Attiguppe Seetharam
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Sri Shivarathreeshwara Nagar, Mysore 570015, India;
| | - Talib Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia; (A.A.); (A.A.)
- Correspondence: (T.H.); (M.S.G.)
| | - Maram Suresh Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Sri Shivarathreeshwara Nagar, Mysore 570015, India;
- Correspondence: (T.H.); (M.S.G.)
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia; (S.M.D.R.); (A.M.)
| | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia; (S.M.D.R.); (A.M.)
| | - Abdulwahab Alamri
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia; (A.A.); (A.A.)
| | - Aziz Unnisa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia;
| | - Amir Mahgoub Awadelkareem
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Ha’il, Ha’il 81442, Saudi Arabia; (A.M.A.); (A.O.E.)
| | - AbdElmoneim O. Elkhalifa
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Ha’il, Ha’il 81442, Saudi Arabia; (A.M.A.); (A.O.E.)
| | - Pradyumna Jayahanumaiah
- Central Manufacturing Technology Institute (CMTI), Tumkur Road, Bangaluru 560022, India; (P.J.); (N.B.)
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Natchimuthu Balashanmugam
- Central Manufacturing Technology Institute (CMTI), Tumkur Road, Bangaluru 560022, India; (P.J.); (N.B.)
| |
Collapse
|
13
|
Ward K, Kitchen MO, Mathias SJ, Khanim FL, Bryan RT. Novel intravesical therapeutics in the treatment of non-muscle invasive bladder cancer: Horizon scanning. Front Surg 2022; 9:912438. [PMID: 35959122 PMCID: PMC9360612 DOI: 10.3389/fsurg.2022.912438] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/07/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Non-muscle-invasive bladder cancer (NMIBC) is a common and heterogeneous disease; many patients develop recurrent or progress to muscle-invasive disease. Intravesical drug therapy is a pillar in the current management of NMIBC; notwithstanding, Mitomycin C (MMC) and Bacillus Calmette-Guérin (BCG) have numerous limitations including international supply issues, and local and systemic toxicity. Here we review novel intravesical therapeutic options and drug delivery devices with potential for clinical use in the treatment of NMIBC. Methods PubMed, ClinicalTrials.gov and Cochrane Library searches were undertaken. Systematic reviews, meta-analyses, randomised controlled trials, single-arm clinical trials and national/international conference proceedings were included. Results Novel intravesical drugs, including chemotherapeutic agents, immune checkpoint inhibitors, monoclonal antibodies and gene therapies, have demonstrated varying efficacy in the treatment of NMIBC. Current evidence for the majority of treatments is mostly limited to single-arm trials in patients with recurrent NMIBC. Various novel methods of drug delivery have also been investigated, with encouraging preliminary results supporting the intravesical delivery of hyperthermic MMC and MMC hydrogel formulations. Conclusions Novel therapeutic agents and drug delivery systems will be important in the future intravesical management of NMIBC. As our understanding of the molecular diversity of NMIBC develops, molecular subtyping will become fundamental in the personalisation of intravesical treatments. Further randomised studies are urgently required to investigate the efficacy of novel intravesical treatments and novel regimens, in comparison to current standards-of-care, particularly in the context of international BCG shortages.
Collapse
Affiliation(s)
- Kelly Ward
- The Bladder Cancer Research Centre, University of Birmingham, Birmingham, United Kingdom
| | - Mark O Kitchen
- School of Medicine, Keele University, Stoke-on-Trent, United Kingdom
| | - Suresh-Jay Mathias
- New Cross Hospital, The Royal Wolverhampton NHS Trust, Wolverhampton, United Kingdom
| | - Farhat L Khanim
- The Bladder Cancer Research Centre, University of Birmingham, Birmingham, United Kingdom
| | - Richard T Bryan
- The Bladder Cancer Research Centre, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
14
|
Zhao W, Yang S, Li C, Li F, Pang H, Xu G, Wang Y, Cong M. Amphiphilic Dendritic Nanomicelle-Mediated Delivery of Gemcitabine for Enhancing the Specificity and Effectiveness. Int J Nanomedicine 2022; 17:3239-3249. [PMID: 35924258 PMCID: PMC9341456 DOI: 10.2147/ijn.s371775] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/15/2022] [Indexed: 12/19/2022] Open
Affiliation(s)
- Weidong Zhao
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, People’s Republic of China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Shaoyou Yang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Chunxiao Li
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, People’s Republic of China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Feifei Li
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, People’s Republic of China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Houjun Pang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Guangling Xu
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, People’s Republic of China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Yuxin Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Mei Cong
- School of Pharmacy, Xinxiang Medical University, Xinxiang, People’s Republic of China
- Correspondence: Mei Cong, School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China, Tel +86 0373 3029879, Fax + 86 0373 3029879, Email
| |
Collapse
|
15
|
Badalamenti G, Incorvaia L, Algeri L, Bonasera A, Dimino A, Scalia R, Cucinella A, Madonia G, Pomi FL, Galvano A, Gristina V, Toia F, Cordova A, Bazan V, Russo A. Safety and effectiveness of gemcitabine for the treatment of classic Kaposi’s sarcoma without visceral involvement. Ther Adv Med Oncol 2022; 14:17588359221086829. [PMID: 35356263 PMCID: PMC8958699 DOI: 10.1177/17588359221086829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/23/2022] [Indexed: 11/15/2022] Open
Abstract
Background: Classic Kaposi’s sarcoma (CKS) is a rare, multifocal, endothelial cell neoplasm that typically occurs in elderly people with previous infection by human herpes virus-8. Prospective trials are rare, and the choice of drugs relies on prospective trials performed on HIV-associated Kaposi’s sarcoma (KS). Pegylated liposomal anthracyclines and taxanes are considered the standard first- and second-line chemotherapy, respectively. Despite the indolent biologic behavior, the natural history is characterized by recurrent disease. This condition of chronic administration of cytotoxic drugs is often associated with immediate/long-term adverse events. Methods: This was an observational, retrospective study to evaluate the effectiveness and safety of gemcitabine in patients with CKS. From January 2016 to September 2021, the patients were treated with gemcitabine 1000 mg/m2 on days 1 and 8, with cycles repeated every 21 days. The treatment was administered as first or second line. Results: Twenty-seven (27) patients were included in the study. Twenty-one (21) out 27 patients (77.8%) achieved a partial response (PR), including 8 patients with major response (MR) (29.6%) and 13 patients with minor response (mR) (48.2%); 2 (7.4%) showed a complete response (CR), 3 (11.1%) a stable disease (SD), and 1 (3.7%) a progressive disease (PD). Tumor responses were generally rapid, with a median time to first response of 4 weeks (range, 3–12 weeks). Patients who responded had disease improvement with flattening of the skin lesions, decrease in the number of lesions, and substantial reduction in tumor-associated complications. Median duration of response was 19.2 months. Common adverse events were grades 1/2 thrombocytopenia, and grade 1 noninfectious fever. No patient discontinued treatment as a result of adverse events. Conclusion: Our study showed that gemcitabine is effective and well tolerated, acts rapidly on cutaneous lesions, and allows substantial symptom palliation, without dose-limiting toxicity. Gemcitabine represents a safe and effective option for the treatment of CKS.
Collapse
Affiliation(s)
- Giuseppe Badalamenti
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Lorena Incorvaia
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via del Vespro 127, 90127 Palermo, Italy
| | - Laura Algeri
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Annalisa Bonasera
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Alessandra Dimino
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Raimondo Scalia
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Alessandra Cucinella
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Giorgio Madonia
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Federica Li Pomi
- Section of Dermatology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Antonio Galvano
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Valerio Gristina
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Francesca Toia
- Division of Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Adriana Cordova
- Division of Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Viviana Bazan
- Section of Medical Oncology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bind.), University of Palermo, Palermo, Italy
| | - Antonio Russo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| |
Collapse
|
16
|
Elisabetta G, Anna B, Adriano P, Andrea CD, Guido S, Ilaria P, Andrea B, Lorenzo A, Serena P. Pharmacogenomics of soft tissue sarcomas: New horizons to understand efficacy and toxicity. Cancer Treat Res Commun 2022; 31:100528. [PMID: 35123198 DOI: 10.1016/j.ctarc.2022.100528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 01/27/2023]
Abstract
Clinical responses to anticancer therapies in advanced soft tissue sarcoma (STS) are unfortunately limited to a small subset of patients. Much of the inter-individual variability in treatment efficacy and risk of toxicities is as result of polymorphisms in genes encoding proteins involved in drug pharmacokinetics and pharmacodynamics. Therefore, the detection of pharmacogenomics (PGx) biomarkers that might predict drug response and toxicity can be useful to explain the genetic basis for the differences in treatment efficacy and toxicity among STS patients. PGx markers are frequently located in transporters, drug-metabolizing enzyme genes, drug targets, or HLA alleles. Along this line, genetic variability harbouring in the germline genome of the patients can influence systemic pharmacokinetics and pharmacodynamics of the treatments, acting as predictive biomarkers for drug-induced toxicity and treatment efficacy. By linking drug activity to the functional complexity of cancer genomes, also systematic pharmacogenomic profiling in cancer cell lines and primary STS samples represents area of active investigation that could eventually lead to enhanced efficacy and offer a powerful biomarker discovery platform to optimize current treatments and improve the knowledge about the individual's drug response in STS patients into the clinical practice.
Collapse
Affiliation(s)
| | - Boddi Anna
- Department of Health Science, University of Florence, Florence, Italy
| | - Pasqui Adriano
- Medical Oncology Unit, Careggi University Hospital, Florence, Italy
| | - Campanacci Domenico Andrea
- Department of Health Science, University of Florence, Florence, Italy; Department of Orthopaedic Oncology and Reconstructive Surgery, Careggi University Hospital, Florence, Italy
| | - Scoccianti Guido
- Department of Health Science, University of Florence, Florence, Italy
| | - Palchetti Ilaria
- Department of Chemistry Ugo Schiff, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Bernini Andrea
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, Siena, 53100 Italy
| | - Antonuzzo Lorenzo
- Clinical Oncology Unit, Careggi University Hospital, Florence, Italy; Medical Oncology Unit, Careggi University Hospital, Florence, Italy; Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Pillozzi Serena
- Medical Oncology Unit, Careggi University Hospital, Florence, Italy.
| |
Collapse
|
17
|
A self-assembling prodrug nanosystem to enhance metabolic stability and anticancer activity of gemcitabine. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.11.083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
18
|
Smart Modification on Magnetic Nanoparticles Dramatically Enhances Their Therapeutic Properties. Cancers (Basel) 2021; 13:cancers13164095. [PMID: 34439250 PMCID: PMC8391586 DOI: 10.3390/cancers13164095] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary In this work, a smart gemcitabine delivery system based on magnetic nanoparticles (MNP) is proposed. Gemcitabine (GEM) is a chemotherapeutic agent usually employed as monotherapy for the treatment of pancreatic cancer. Unfortunately, this drug presents short half-life and high toxicity in non-tumoral tissues. Thus, new efficient drug delivery systems are needed. In this regard, we modified MNP to attach this drug via disulfide bonds (MNP-GEM) to promote the selective release of GEM in pancreatic cancer cells, and the great potential of our proposed nanocarrier for biomedical applications is broadly assessed. Remarkably, this modification has proved to prevent the unspecific binding of proteins, reduced the cytotoxic effect of the drug in non-cancerous cells, improved the internalization in pancreatic cancer cells, and its activity was synergistically enhanced in combination with magnetic hyperthermia. Abstract Magnetic nanoparticles (MNP) are employed as nanocarriers and in magnetic hyperthermia (MH) for the treatment of cancers. Herein, a smart drug delivery system composed of MNP functionalized with the cytotoxic drug gemcitabine (MNP-GEM) has been thoroughly evaluated. The linker employed is based on a disulfide bond and allows the controlled release of GEM under a highly reducing environment, which is frequently present in the cytoplasm of tumor cells. The stability, MH, and the interaction with plasma proteins of the nanoparticles are evaluated, highlighting their great potential for biological applications. Their cytotoxicity is assessed in three pancreatic cancer cell lines with different sensitivity to GEM, including the generation of reactive oxygen species (ROS), the effects on the cell cycle, and the mechanisms of cell death involved. Remarkably, the proposed nanocarrier is better internalized than unmodified nanoparticles, and it is particularly effective in PANC-1 cells, resistant to GEM, but not in non-tumoral keratinocytes. Additionally, its combination with MH produces a synergistic cytotoxic effect in all cancer cell lines tested. In conclusion, MNP-GEM presents a promising potential for treating pancreatic cancer, due to multiple parameters, such as reduced binding to plasma proteins, increased internalization, and synergistic activity when combined with MH.
Collapse
|
19
|
Xuan YZ, Jin CR, Yang KJ. TGF-β downregulation overcomes gemcitabine resistance in oral squamous cell carcinoma. Cancer Biomark 2021; 29:179-187. [PMID: 32741805 DOI: 10.3233/cbm-201456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The aim of this study was to explore the mechanisms by which oral cancer acquires resistance to gemcitabine. METHODS Oral squamous cell carcinoma (OSCC) cells were treated with gemcitabine upon infection or with a lentivirus harboring short hairpin RNA (shRNA) targeted to transforming growth factor-β (TGF-β). Then, Western blot, ELISA, migration assay, MTT assay, and animal experiments were used to explore the mechanism of resistance to gemcitabine treatment. RESULTS After the treatment of non-transfected cells with gemcitabine, NF-κB and AKT activities were increased, which may have induced the OSCC resistance to gemcitabine. Then, we found that TGF-β downregulation effectively reduced NF-κB and AKT phosphorylation levels after the administration of gemcitabine and increased the OSCC sensitivity to gemcitabine, resulting in cell death and the blunting of OSCC resistance to gemcitabine. The EMT was also reduced by TGF-β downregulation combined with gemcitabine treatment. CONCLUSION Cellular levels of TGF-β constitute an important factor in gemcitabine resistance and TGF-β silencing might represent a novel and potent strategy for overcoming OSCC resistance to gemcitabine.
Collapse
Affiliation(s)
- Yun-Ze Xuan
- Department of Dentistry, Affiliated Hospital of Yanbian University, Yanji, Jilin, China.,Department of Dentistry, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Cheng-Ri Jin
- Department of Dentistry, Affiliated Hospital of Yanbian University, Yanji, Jilin, China.,Department of Dentistry, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Kang-Juan Yang
- Department of Cell Biology and Medical Genetics, Yanbian University College of Basic Medicine, Yanji, Jilin, China
| |
Collapse
|
20
|
Kato T, Ono H, Fujii M, Akahoshi K, Ogura T, Ogawa K, Ban D, Kudo A, Tanaka S, Tanabe M. Cytoplasmic RRM1 activation as an acute response to gemcitabine treatment is involved in drug resistance of pancreatic cancer cells. PLoS One 2021; 16:e0252917. [PMID: 34111175 PMCID: PMC8191885 DOI: 10.1371/journal.pone.0252917] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 05/25/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND RRM1 is functionally associated with DNA replication and DNA damage repair. However, the biological activity of RRM1 in pancreatic cancer remains undetermined. METHODS To determine relationships between RRM1 expression and the prognosis of pancreatic cancer, and to explore RRM1 function in cancer biology, we investigated RRM1 expression levels in 121 pancreatic cancer patients by immunohistochemical staining and performed in vitro experiments to analyze the functional consequences of RRM1 expression. RESULTS Patients with high RRM1 expression had significantly poorer clinical outcomes (overall survival; p = 0.006, disease-free survival; p = 0.0491). In particular, high RRM1 expression was also associated with poorer overall survival on adjuvant chemotherapy (p = 0.008). We found that RRM1 expression was increased 24 hours after exposure to gemcitabine and could be suppressed by histone acetyltransferase inhibition. RRM1 activation in response to gemcitabine exposure was induced mainly in the cytoplasm and cytoplasmic RRM1 activation was related to cancer cell viability. In contrast, cancer cells lacking cytoplasmic RRM1 activation were confirmed to show severe DNA damage. RRM1 inhibition with specific siRNA or hydroxyurea enhanced the cytotoxic effects of gemcitabine for pancreatic cancer cells. CONCLUSIONS Cytoplasmic RRM1 activation is involved in biological processes related to drug resistance in response to gemcitabine exposure and could be a potential target for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Tomotaka Kato
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroaki Ono
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mikiya Fujii
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keiichi Akahoshi
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshiro Ogura
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kosuke Ogawa
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daisuke Ban
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsushi Kudo
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinji Tanaka
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Minoru Tanabe
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
21
|
Li J, Chen B, Xi WQ, Yang C, Zhang WX. Gene-Gene Interactions of Gemcitabine Metabolizing-Enzyme Genes hCNT3 and WEE1 for Preventing Severe Gemcitabine-Induced Hematological Toxicity. J Clin Pharmacol 2021; 61:1376-1385. [PMID: 33974709 DOI: 10.1002/jcph.1909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/10/2021] [Indexed: 11/12/2022]
Abstract
Most patients experience severe hematological toxicity during treatment with gemcitabine; thus, preventing such toxicity would improve the treatment effects and patient quality of life. We analyzed 13 polymorphisms in the transporters, metabolizing enzymes, targets, and genes involved in DNA damage and the folate pathway among 132 patients treated with gemcitabine and studied their association with the severity of the hematological toxicities. Single-locus analysis showed that the single-nucleotide polymorphisms (SNPs) RRM1 rs12806698 and rs11031918 and DCTD rs7663494 were significantly associated with severe neutropenia, hENT1 rs760370 and hCNT3 rs7867504 and rs4877831 were associated with severe leukopenia, CDA rs2072671, DCTD rs7663494, and WEE1 rs3910384 were associated with severe anemia, and MTHFR rs1801133 was associated with severe thrombocytopenia after stringent Bonferroni correction (P < .0038). The gene-gene interaction analysis identified the overall best models, including a 2-way interaction model (hCNT3 rs7867504 and dCK rs12648166) for severe leukopenia (P = .0022) and a 3-locus model (CDA rs207671, DCTD rs7663494, and WEE1 rs3910384) for severe anemia with a strong synergistic effect (P = .0001). The association with hematological toxicity was further strengthened by the results of a haplotype analysis, in which the homozygous genotype combination of rs3910384 CC, rs2072671 AA, rs12648166 GG, rs7867504 CC, and rs7663494 TT conferred high genetic susceptibility to severe thrombocytopenia. Our results suggest that the gene-gene interaction of gemcitabine metabolic pathway genes and WEE1 contributes to susceptibility to gemcitabine-induced hematological toxicity. Moreover, we propose a promising data-mining analysis approach (generalized multifactor dimensionality reduction) to detect and characterize gene-gene interactions.
Collapse
Affiliation(s)
- Juan Li
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Bing Chen
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Wen-Qi Xi
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Chen Yang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Wei-Xia Zhang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
22
|
Paroha S, Verma J, Dubey RD, Dewangan RP, Molugulu N, Bapat RA, Sahoo PK, Kesharwani P. Recent advances and prospects in gemcitabine drug delivery systems. Int J Pharm 2021; 592:120043. [DOI: 10.1016/j.ijpharm.2020.120043] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/17/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022]
|
23
|
Liu JS, Yeh CA, Huang IC, Huang GY, Chiu CH, Mahalakshmi B, Wen SY, Huang CY, Kuo WW. Signal transducer and activator of transcription 3 mediates apoptosis inhibition through reducing mitochondrial ROS and activating Bcl-2 in gemcitabine-resistant lung cancer A549 cells. J Cell Physiol 2020; 236:3896-3905. [PMID: 33283880 DOI: 10.1002/jcp.30133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/02/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022]
Abstract
Lung cancer is a leading cause of cancer-related death worldwide. In this study, we used lung adenocarcinoma cells as a model, as lung adenocarcinoma has the highest mortality rate among all lung cancers. For the past few years, medical treatments or lung cancer have been limited because of chemotherapy resistance. Therefore, understanding the pathogenesis of the development of drug resistance in lung cancer is urgent. Gemcitabine is widely prescribed in the chemotherapeutic treatment of lung cancers. In this study, we developed gemcitabine-resistant lung adenocarcinoma cells (A549-GR) from the A549 cell line. The results showed that apoptotic protein expression and reactive oxygen species (ROS) generation were reduced in A549-GR cells compared to A549 cells. Interestingly, we found that signal transducer and activator of transcription 3 (STAT3) translocated to the nucleus and mitochondria to affect the apoptotic pathway and ROS generation, respectively. Furthermore, treatment with STAT3 small interfering RNA diminished the increase in ROS production, proliferation and antiapoptotic proteins in A549-GR cells. Taken together, the study demonstrated that STAT3 acts as an essential regulator and moderates apoptosis through two major mechanisms to induce gemcitabine resistance in cells; and these findings provide a potential target for the treatment of gemcitabine-resistant lung cancer.
Collapse
Affiliation(s)
- Jian-Sheng Liu
- China Medical University Beigang Hospital Thoracic Department, Yunlin, Taiwan.,Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chun-An Yeh
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - I-Chieh Huang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Guan-Yu Huang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chih-Hao Chiu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - B Mahalakshmi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Su-Ying Wen
- Taipei City Hospital, Renai Branch, Dermatology, Taipei, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| |
Collapse
|
24
|
Miao H, Chen X, Luan Y. Small Molecular Gemcitabine Prodrugs for Cancer Therapy. Curr Med Chem 2020; 27:5562-5582. [PMID: 31419928 DOI: 10.2174/0929867326666190816230650] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/22/2019] [Accepted: 07/09/2019] [Indexed: 02/04/2023]
Abstract
Gemcitabine as a pyrimidine nucleoside analog anticancer drug has high efficacy for a broad spectrum of solid tumors. Gemcitabine is activated within tumor cells by sequential phosphorylation carried out by deoxycytidine kinase to mono-, di-, and triphosphate nucleotides with the last one as the active form. But the instability, drug resistance and toxicity severely limited its utilization in clinics. In the field of medicinal chemistry, prodrugs have proven to be a very effective means for elevating drug stability and decrease undesirable side effects including the nucleoside anticancer drug such as gemcitabine. Many works have been accomplished in design and synthesis of gemcitabine prodrugs, majority of which were summarized in this review.
Collapse
Affiliation(s)
- He Miao
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Shandong Province, Qingdao, China
| | - Xuehong Chen
- Department of Pharmacology, College of Basic Medicine, Qingdao University, Shandong Province, Qingdao, China
| | - Yepeng Luan
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Shandong Province, Qingdao, China
| |
Collapse
|
25
|
Vrettos EI, Karampelas T, Sayyad N, Kougioumtzi A, Syed N, Crook T, Murphy C, Tamvakopoulos C, Tzakos AG. Development of programmable gemcitabine-GnRH pro-drugs bearing linker controllable "click" oxime bond tethers and preclinical evaluation against prostate cancer. Eur J Med Chem 2020; 211:113018. [PMID: 33223264 DOI: 10.1016/j.ejmech.2020.113018] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023]
Abstract
Peptide-drug conjugates (PDCs) are gaining considerable attention as anti-neoplastic agents. However, their development is often laborious and time-consuming. Herein, we have developed and preclinically evaluated three PDCs with gemcitabine as the anticancer cytotoxic unit and D-Lys6-GnRH (gonadotropin-releasing hormone; GnRH) as the cancer-targeting unit. These units were tethered via acid-labile programmable linkers to guide a differential drug release rate from the PDC through a combination of ester or amide and "click" type oxime ligations. The pro-drugs were designed to enable the selective targeting of malignant tumor cells with linker guided differential drug release rates. We exploited the oxime bond responsiveness against the acidic pH of the tumor microenvironment and the GnRH endocytosis via the GnRH-R GPCR which is overexpressed on cancer cells. The challenging metabolic properties of gemcitabine were addressed during design of the PDCs. We developed a rapid (1 hour) and cost-effective "click" oxime bond ligation platform to assemble in one-pot the 3 desired PDCs that does not require purification, surpassing traditional time-ineffective and low yield methods. The internalization of the tumor-homing peptide unit in cancer cells, overexpressing the GnRH-R, was first validated through confocal laser microscopy and flow cytometry analysis. Subsequently, the three PDCs were evaluated for their in vitro antiproliferative effect in prostate cancer cells. Their stability and the release of gemcitabine over time were monitored in vitro in cell culture and in human plasma using LC-MS/MS. We then assessed the ability of the developed PDCs to internalize in prostate cancer cells and to release gemcitabine. The most potent analog, designated GOXG1, was used for pharmacokinetic studies in mice. The metabolism of GOXG1 was examined in liver microsomes, as well as in buffers mimicking the pH of intracellular organelles, resulting in the identification of two metabolites. The major metabolite at low pH emanated from the cleavage of the pH-labile oxime bond, validating our design approach. NMR spectroscopy and in vitro radioligand binding assays were exploited for GOXG1 to validate that upon conjugating the drug to the peptide, the peptide microenvironment responsible for its GnRH-R binding is not perturbed and to confirm its high binding potency to the GnRH-R. Finally, the binding of GOXG1 to the GnRH-R and the associated elicitation of testosterone release in mice were also determined. The facile platform established herein for the rapid assembly of PDCs with linker controllable characteristics from aldehyde and aminooxy units through rapid "click" oxime ligation, that does not require purification steps, could pave the way for a new generation of potent cancer therapeutics, diagnostics and theranostics.
Collapse
Affiliation(s)
| | - Theodoros Karampelas
- Division of Pharmacology-Pharmacotechnology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation ofthe Academy of Athens, Athens, Greece
| | - Nisar Sayyad
- Department of Chemistry, University of Ioannina, Ioannina, GR-45110, Greece
| | - Anastasia Kougioumtzi
- Department of Biomedical Research, Institute of Molecular Biology and Biotechnology - Forth, Ioannina, Greece
| | - Nelofer Syed
- John Fulcher Neuro-oncology Laboratory, Dept of Brain Sciences, Division of Neuroscience, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Timothy Crook
- John Fulcher Neuro-oncology Laboratory, Dept of Brain Sciences, Division of Neuroscience, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Carol Murphy
- Department of Biomedical Research, Institute of Molecular Biology and Biotechnology - Forth, Ioannina, Greece
| | - Constantin Tamvakopoulos
- Division of Pharmacology-Pharmacotechnology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation ofthe Academy of Athens, Athens, Greece
| | - Andreas G Tzakos
- Department of Chemistry, University of Ioannina, Ioannina, GR-45110, Greece; University Research Center of Ioannina (URCI), Institute of Materials Science and Computing, Ioannina, Greece.
| |
Collapse
|
26
|
Braun LM, Lagies S, Guenzle J, Fichtner-Feigl S, Wittel UA, Kammerer B. Metabolic Adaptation during nab-Paclitaxel Resistance in Pancreatic Cancer Cell Lines. Cells 2020; 9:cells9051251. [PMID: 32438599 PMCID: PMC7290296 DOI: 10.3390/cells9051251] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/05/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) correlates with high mortality and is about to become one of the major reasons for cancer-related mortality in the next decades. One reason for that high mortality is the limited availability of effective chemotherapy as well as the intrinsic or acquired resistance against it. Here, we report the impact of nab-paclitaxel on the cellular metabolome of PDAC cell lines. After establishment of nab-paclitaxel resistant cell lines, comparison of parental and resistant PDAC cell lines by metabolomics and biochemical assessments revealed altered metabolism, enhanced viability and reduced apoptosis. The results unveiled that acute nab-paclitaxel treatment affected primary metabolism to a minor extent. However, acquisition of resistance led to altered metabolites in both cell lines tested. Specifically, aspartic acid and carbamoyl-aspartic acid were differentially abundant, which might indicate an increased de novo pyrimidine synthesis. This pathway has already shown a similar behavior in other cancerous entities and thus might serve in the future as vulnerable target fighting resistance acquisition occurring in common malignancies.
Collapse
Affiliation(s)
- Lukas M. Braun
- Center for Biological Systems Analysis ZBSA, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; (L.M.B.); (S.L.)
- Department of General- and Visceral Surgery, University of Freiburg Medical Center Faculty of Medicine, 79106 Freiburg, Germany; (J.G.); (S.F.-F.)
| | - Simon Lagies
- Center for Biological Systems Analysis ZBSA, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; (L.M.B.); (S.L.)
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
- Institute of Biology II, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Jessica Guenzle
- Department of General- and Visceral Surgery, University of Freiburg Medical Center Faculty of Medicine, 79106 Freiburg, Germany; (J.G.); (S.F.-F.)
| | - Stefan Fichtner-Feigl
- Department of General- and Visceral Surgery, University of Freiburg Medical Center Faculty of Medicine, 79106 Freiburg, Germany; (J.G.); (S.F.-F.)
| | - Uwe A. Wittel
- Department of General- and Visceral Surgery, University of Freiburg Medical Center Faculty of Medicine, 79106 Freiburg, Germany; (J.G.); (S.F.-F.)
- Correspondence: (U.A.W.); (B.K.); Tel.: +49-761-270-25090 (U.A.W.); +49-761-203-97137 (B.K.)
| | - Bernd Kammerer
- Center for Biological Systems Analysis ZBSA, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; (L.M.B.); (S.L.)
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
- Correspondence: (U.A.W.); (B.K.); Tel.: +49-761-270-25090 (U.A.W.); +49-761-203-97137 (B.K.)
| |
Collapse
|
27
|
Caruso C, Garofalo C. Pharmacogenomics Biomarkers of Soft Tissue Sarcoma Therapies. Front Oncol 2020; 10:509. [PMID: 32351891 PMCID: PMC7174622 DOI: 10.3389/fonc.2020.00509] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 03/20/2020] [Indexed: 12/19/2022] Open
Abstract
Soft tissue sarcomas (STS) are heterogeneous rare malignancies comprising ~1% of all solid cancers in adults and including more than 70 histological and molecular subtypes with different pathological and clinical development characteristics. Over the last two decades, the increased knowledge of the new molecular and genomic mechanisms of different STS histotypes allowed for a reclassification of these tumors and consequently to the development of novel chemotherapeutic agents. Generally, surgery, in combination with radiotherapy only in selected cases of localized disease, represents the most common treatment of primary STS, whereas the principal treatment modality for locally advanced or metastatic disease is first-line chemotherapy. The principal treatment for the preponderance of STS patients is usually an anthracycline (epirubicin and doxorubicin) in monotherapy or in combination with other drug novel chemotherapeutic agents. However, survival for treated patients with metastatic disease is poor, and a 2-years survival rate is about 30%. In this scenario, Pharmacogenomics (PGx) biomarkers that can predict drug response play an important role in the improvement of molecular diagnostics in clinical routines and contribute to elucidating the genetic basis for the differences in treatment efficacy and toxicity among STS patients. This review focuses on recent insight in the PGx biomarkers that have been described to modulate responsiveness and toxicity parameters of conventional and new chemotherapeutics drugs in several STS histotypes.
Collapse
Affiliation(s)
| | - Cecilia Garofalo
- Advanced Translational Research Laboratory, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
| |
Collapse
|
28
|
Correia C, Xavier CPR, Duarte D, Ferreira A, Moreira S, Vasconcelos MH, Vale N. Development of potent CPP6-gemcitabine conjugates against human prostate cancer cell line (PC-3). RSC Med Chem 2020; 11:268-273. [PMID: 33479633 DOI: 10.1039/c9md00489k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/31/2019] [Indexed: 01/19/2023] Open
Abstract
Gemcitabine (dFdC) is a nucleoside analogue used in the treatment of various cancers, being a standard treatment for advanced pancreatic cancer. The effect of gemcitabine is severely compromised due to its rapid plasma degradation, systemic toxicity and drug resistance, which restricts its therapeutic efficacy. Our main goal was to develop new active conjugates of dFdC with novel cell-penetrating hexapeptides (CPP6) to facilitate intracellular delivery of this drug. All new peptides were prepared by solid phase peptide synthesis (SPPS), purified and characterized by HPLC and LC-MS. Cell-penetrating peptides (CPP) contain a considerably high ratio of positively charged amino acids, imparting them with cationic character. Tumor cells are characterized by an increased anionic nature of their membrane surface, a property that could be used by CPP to target these cells. The BxPC-3, MCF-7 and PC-3 cancer cell lines were used to evaluate the in vitro cytotoxicity of conjugates and the results showed that conjugating dFdC with CPP6 significantly enhanced cell growth inhibitory activity on PC-3 cells, with IC50 between 14 and 15 nM. These new conjugates have potential to become new therapeutic tools for cancer therapy.
Collapse
Affiliation(s)
- Cristiana Correia
- Laboratory of Pharmacology , Department of Drug Sciences , Faculty of Pharmacy , University of Porto , Rua de Jorge Viterbo Ferreira 228 , 4050-313 Porto , Portugal . .,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) , Rua Júlio Amaral de Carvalho , 45 , 4200-135 Porto , Portugal.,Instituto de Investigação e Inovação em Saúde (i3S) , University of Porto , Rua Alfredo Allen, 208 , 4200-135 Porto , Portugal
| | - Cristina P R Xavier
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) , Rua Júlio Amaral de Carvalho , 45 , 4200-135 Porto , Portugal.,Instituto de Investigação e Inovação em Saúde (i3S) , University of Porto , Rua Alfredo Allen, 208 , 4200-135 Porto , Portugal
| | - Diana Duarte
- Laboratory of Pharmacology , Department of Drug Sciences , Faculty of Pharmacy , University of Porto , Rua de Jorge Viterbo Ferreira 228 , 4050-313 Porto , Portugal . .,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) , Rua Júlio Amaral de Carvalho , 45 , 4200-135 Porto , Portugal.,Instituto de Investigação e Inovação em Saúde (i3S) , University of Porto , Rua Alfredo Allen, 208 , 4200-135 Porto , Portugal
| | - Abigail Ferreira
- Laboratory of Pharmacology , Department of Drug Sciences , Faculty of Pharmacy , University of Porto , Rua de Jorge Viterbo Ferreira 228 , 4050-313 Porto , Portugal . .,LAQV/REQUIMTE , Department of Chemical Sciences , Faculty of Pharmacy , University of Porto , Rua de Jorge Viterbo Ferreira 228 , 4050-313 Porto , Portugal
| | - Sara Moreira
- Laboratory of Pharmacology , Department of Drug Sciences , Faculty of Pharmacy , University of Porto , Rua de Jorge Viterbo Ferreira 228 , 4050-313 Porto , Portugal . .,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) , Rua Júlio Amaral de Carvalho , 45 , 4200-135 Porto , Portugal.,Instituto de Investigação e Inovação em Saúde (i3S) , University of Porto , Rua Alfredo Allen, 208 , 4200-135 Porto , Portugal
| | - M Helena Vasconcelos
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) , Rua Júlio Amaral de Carvalho , 45 , 4200-135 Porto , Portugal.,Instituto de Investigação e Inovação em Saúde (i3S) , University of Porto , Rua Alfredo Allen, 208 , 4200-135 Porto , Portugal.,Laboratory of Microbiology , Department of Biological Sciences , Faculty of Pharmacy , University of Porto , Rua de Jorge Viterbo Ferreira, 228 , 4050-313 Porto , Portugal
| | - Nuno Vale
- Laboratory of Pharmacology , Department of Drug Sciences , Faculty of Pharmacy , University of Porto , Rua de Jorge Viterbo Ferreira 228 , 4050-313 Porto , Portugal . .,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) , Rua Júlio Amaral de Carvalho , 45 , 4200-135 Porto , Portugal.,Instituto de Investigação e Inovação em Saúde (i3S) , University of Porto , Rua Alfredo Allen, 208 , 4200-135 Porto , Portugal.,Department of Molecular Pathology and Immunology , Abel Salazar Biomedical Sciences Institute (ICBAS) , University of Porto , Rua de Jorge Viterbo Ferreira 228 , 4050-313 Porto , Portugal
| |
Collapse
|
29
|
Fatima M, Iqbal Ahmed MM, Batool F, Riaz A, Ali M, Munch-Petersen B, Mutahir Z. Recombinant deoxyribonucleoside kinase from Drosophila melanogaster can improve gemcitabine based combined gene/chemotherapy for targeting cancer cells. Bosn J Basic Med Sci 2019; 19:342-349. [PMID: 30903745 DOI: 10.17305/bjbms.2019.4136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 03/03/2019] [Indexed: 11/16/2022] Open
Abstract
A recombinant deoxyribonucleoside kinase from Drosophila melanogaster with a deletion of the last 20 amino acid residues (named DmdNKΔC20) was hypothesized as a potential therapeutic tool for gene therapy due to its broad substrate specificity and better catalytic efficiency towards nucleosides and nucleoside analogs. This study was designed to evaluate the effect of DmdNKΔC20 for sensitizing human cancer cell lines to gemcitabine and to further investigate its role in reversal of acquired drug resistance in gemcitabine-resistant cancer cell line. The DmdNKΔC20 gene was delivered to three different cancer cell lines, including breast, colon and liver cancer cells, using lipid-mediated transfection reagent. After transfection, gene expression of DmdNKΔC20 was confirmed by quantitative reverse transcription PCR (qRT-PCR) and the combined effect of DmdNKΔC20 and gemcitabine based cytotoxicity was observed by cell viability assay. We further evolved a gemcitabine-resistant breast cancer cell line (named MCF7-R) through directed evolution in the laboratory, which showed 375-fold more resistance compared with parental MCF7 cells. Upon transfection with DmdNKΔC20 gene, MCF7-R cells showed 83-fold higher sensitivity to gemcitabine compared with the control group of MCF7-R cells. Moreover, we observed 79% higher expression of p21 protein in transfected MCF7-R cells, which may indicate induction of apoptosis. Our findings highlight the importance and therapeutic potential of DmdNKΔC20 in combined gene/chemotherapy approach to target a wide range of cancers, particularly gemcitabine-resistant cancers.
Collapse
Affiliation(s)
- Mahak Fatima
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan.
| | | | | | | | | | | | | |
Collapse
|
30
|
Wang G, Dong Y, Liu H, Ji N, Cao J, Liu A, Tang X, Ren Y. Loss of miR-873 contributes to gemcitabine resistance in triple-negative breast cancer via targeting ZEB1. Oncol Lett 2019; 18:3837-3844. [PMID: 31579087 DOI: 10.3892/ol.2019.10697] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 10/25/2018] [Indexed: 02/06/2023] Open
Abstract
Gemcitabine-based chemotherapy is commonly applied for the treatment of breast cancer in a clinical setting. However, acquired resistance to chemotherapy primarily results in treatment failure and eventually culminates in patient mortality. Aberrant expression of microRNAs (miRNAs) has been demonstrated to be implicated in the development of chemoresistance; however, the role of miR-873 in the chemoresistance of breast cancer and its underlying mechanism have not been completely elucidated. Herein, using cell viability assays, the present study demonstrated that overexpression of miR-873 sensitized triple-negative breast cancer (TNBC) cells (MDA-MB-231 and BT549) towards gemcitabine treatment, while inhibition of miR-873 promoted resistance of TNBC cells to gemcitabine exposure. The 3' untranslated region of zinc finger E-box binding homeobox 1 (ZEB1) was predicted as a candidate target of miR-873, and the regulatory association between ZEB1 and miR-873 was validated with a dual luciferase assay. Reverse transcription-quantitative polymerase chain reaction and western blot analysis confirmed that miR-873 mimics reduced ZEB1 at mRNA and protein levels in MDA-MB-231 and BT549 cells. As ZEB1 was previously reported to interact with Yes associated protein (YAP) to promote cancer progression. The present study observed that miR-873 overexpression decreased the expression of YAP target genes AXL receptor tyrosine kinase, connective tissue growth factor and cysteine rich angiogenic inducer 61 at mRNA and protein levels. Additionally, elevation of the ZEB1 level and reduction of the miR-873 level were detected in gemcitabine-resistant MDA-MB-231 (MDA-MB-231GEMr) cells, which were accompanied with stronger proliferative ability, compared with parental cells. Overexpression of miR-873 or ZEB1 knockdown reversed chemoresistance of MDA-MB-231GEMr cells by inducing a notable cell growth arrest upon gemcitabine exposure. In conclusion, the data obtained by the present study demonstrated that the decrease of miR-873 promoted the development of gemcitabine resistance in TNBC via elevation of ZEB1 expression, which indicated that miR-873 may be a promising predictor for gemcitabine sensitivity in patients with TNBC.
Collapse
Affiliation(s)
- Gangyue Wang
- Department of Breast Surgery, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100006, P.R. China
| | - Yi Dong
- Department of Breast Surgery, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100006, P.R. China
| | - Heng Liu
- Department of Breast Surgery, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100006, P.R. China
| | - Nan Ji
- Department of Breast Surgery, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100006, P.R. China
| | - Jilei Cao
- Department of Breast Surgery, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100006, P.R. China
| | - Aihui Liu
- Department of Breast Surgery, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100006, P.R. China
| | - Xin Tang
- Department of Breast Surgery, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100006, P.R. China
| | - Yu Ren
- Department of Breast Surgery, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100006, P.R. China
| |
Collapse
|
31
|
Hassan T, Jinho P, Hytham H. G, Masters AR, Abdel-Aleem JA, Abdelrahman SI, Abdelrahman AA, Lyle LT, Yeo Y. Development of Liposomal Gemcitabine with High Drug Loading Capacity. Mol Pharm 2019; 16:2858-2871. [PMID: 31136710 PMCID: PMC6662591 DOI: 10.1021/acs.molpharmaceut.8b01284] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Liposomes are widely used for systemic delivery of chemotherapeutic agents to reduce their nonspecific side effects. Gemcitabine (Gem) makes a great candidate for liposomal encapsulation due to the short half-life and nonspecific side effects; however, it has been difficult to achieve liposomal Gem with high drug loading capacity. Remote loading, which uses a transmembrane pH gradient to induce an influx of drug and locks the drug in the core as a sulfate complex, does not serve Gem as efficiently as doxorubicin (Dox) due to the low p Ka value of Gem. Existing studies have attempted to improve Gem loading capacity in liposomes by employing lipophilic Gem derivatives or creating a high-concentration gradient for active loading into the hydrophilic cores (small volume loading). In this study, we combine the remote loading approach and small volume loading or hypertonic loading, a new approach to induce the influx of Gem into the preformed liposomes by high osmotic pressure, to achieve a Gem loading capacity of 9.4-10.3 wt % in contrast to 0.14-3.8 wt % of the conventional methods. Liposomal Gem showed a good stability during storage, sustained-release over 120 h in vitro, enhanced cellular uptake, and improved cytotoxicity as compared to free Gem. Liposomal Gem showed a synergistic effect with liposomal Dox on Huh7 hepatocellular carcinoma cells. A mixture of liposomal Gem and liposomal Dox delivered both drugs to the tumor more efficiently than a free drug mixture and showed a relatively good anti-tumor effect in a xenograft model of hepatocellular carcinoma. This study shows that bioactive liposomal Gem with high drug loading capacity can be produced by remote loading combined with additional approaches to increase drug influx into the liposomes.
Collapse
Affiliation(s)
- Tamam Hassan
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Park Jinho
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Gadalla Hytham H.
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Andrea R. Masters
- Clinical Pharmacology Analytical Core, Indiana University Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jelan A. Abdel-Aleem
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Sayed I. Abdelrahman
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Aly A. Abdelrahman
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - L. Tiffany Lyle
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
32
|
Wu C, Zhao A, Tan T, Wang Y, Shen Z. Overexpression of microRNA-620 facilitates the resistance of triple negative breast cancer cells to gemcitabine treatment by targeting DCTD. Exp Ther Med 2019; 18:550-558. [PMID: 31258693 PMCID: PMC6566059 DOI: 10.3892/etm.2019.7601] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 09/24/2018] [Indexed: 12/14/2022] Open
Abstract
Patients with triple negative breast cancer (TNBC) have a poor survival rate following chemotherapy due to drug resistance. Notably, the molecular mechanism of drug resistance remains elusive. Between December 2011 and December 2014, 36 TNBC samples were obtained from Liaocheng People's Hospital. Three gemcitabine-resistant MDA-MB-231 cell lines (MDA-MB-231rGEM1, MDA-MB-231rGEM2 and MDA-MB-231rGEM3) were obtained by exposure of MDA-MB-231 cells to increasing concentrations of gemcitabine for >12 months. Reverse transcription-quantitative polymerase chain reaction was performed to detect the expression levels of specific genes, including microRNA (miR)-620, ATP-binding cassette sub-family B member 1 (ABCB1), ABCC10, cytidine monophosphate kinase, deoxycytidine monophosphate deaminase (DCTD), nucleoside diphosphate kinase 1 (NME1), ribonucleoside-diphosphate reductase large subunit (RRM1) and RRMB2. Western blot analysis was performed to assess the protein expression levels of DCTD. Furthermore, cell proliferation was assessed using a Cell Counting Kit-8 assay and cell apoptosis was detected using an Annexin V/Dead Cell Apoptosis kit. Interactions between miR-620 and DCTD were predicted using TargetScan and detected with the dual luciferase reporter assay. Elevation of miR-620 expression levels were detected in two of the assessed gemcitabine-resistant MDA-MB-231 cell lines compared with MDA-MB-231 cells. Gemcitabine induced significant elevation of miR-620 in MDA-MB-231 cells. An increase of DCTD at mRNA and protein expression levels in MDA-MB-231rGEM1 cells was observed compared with those in MDA-MB-231 cells. Results suggested that DCTD was directly regulated by miR-620. Inhibition of miR-620 and overexpression of DCTD reversed gemcitabine resistance in MDA-MB-231rGEM1 cells via inducing cell apoptosis and cell growth arrest. A negative correlation was identified between miR-620 and DCTD mRNA expression levels in patients with TNBC. The present results demonstrated that overexpression of miR-620 could contribute to the development of gemcitabine resistance in patients with TNBC via the direct downregulation of DCTD.
Collapse
Affiliation(s)
- Chao Wu
- Department of Medical Oncology, Liaocheng Cancer Prevention and Treatment Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Aili Zhao
- Radiology Department, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Tingzhao Tan
- Department of Medical Oncology, Liaocheng Cancer Prevention and Treatment Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Yuan Wang
- Department of Medical Oncology, Liaocheng Cancer Prevention and Treatment Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Zhentao Shen
- Department of Medical Oncology, Liaocheng Cancer Prevention and Treatment Hospital, Liaocheng, Shandong 252000, P.R. China
| |
Collapse
|
33
|
Varamo C, Peraldo-Neia C, Ostano P, Basiricò M, Raggi C, Bernabei P, Venesio T, Berrino E, Aglietta M, Leone F, Cavalloni G. Establishment and Characterization of a New Intrahepatic Cholangiocarcinoma Cell Line Resistant to Gemcitabine. Cancers (Basel) 2019; 11:cancers11040519. [PMID: 30979003 PMCID: PMC6520787 DOI: 10.3390/cancers11040519] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/05/2019] [Accepted: 04/07/2019] [Indexed: 12/19/2022] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is one of the most lethal liver cancers. Late diagnosis and chemotherapy resistance contribute to the scarce outfit and poor survival. Resistance mechanisms are still poorly understood. Here, we established a Gemcitabine (GEM) resistant model, the MT-CHC01R1.5 cell line, obtained by a GEM gradual exposure (up to 1.5 µM) of the sensitive counterpart, MT-CHC01. GEM resistance was irreversible, even at high doses. The in vitro and in vivo growth was slower than MT-CHC01, and no differences were highlighted in terms of migration and invasion. Drug prediction analysis suggested that Paclitaxel and Doxycycline might overcome GEM resistance. Indeed, in vitro MT-CHC01R1.5 growth was reduced by Paclitaxel and Doxycycline. Importantly, Doxycycline pretreatment at very low doses restored GEM sensitivity. To assess molecular mechanisms underlying the acquisition of GEM resistance, a detailed analysis of the transcriptome in MT-CHC01R1.5 cells versus the corresponding parental counterpart was performed. Transcriptomic analysis showed that most up-regulated genes were involved in cell cycle regulation and in the DNA related process, while most down-regulated genes were involved in the response to stimuli, xenobiotic metabolism, and angiogenesis. Furthermore, additional panels of drug resistance and epithelial to mesenchymal transition genes (n = 168) were tested by qRT-PCR and the expression of 20 genes was affected. Next, based on a comparison between qRT-PCR and microarray data, a list of up-regulated genes in MT-CHC01R1.5 was selected and further confirmed in a primary cell culture obtained from an ICC patient resistant to GEM. In conclusion, we characterized a new GEM resistance ICC model that could be exploited either to study alternative mechanisms of resistance or to explore new therapies.
Collapse
Affiliation(s)
- Chiara Varamo
- Department of Oncology, University of Turin, 10100 Torino, Italy.
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, Center for Cancer Biology, KU Leuven, B3000 Leuven, Belgium.
| | | | - Paola Ostano
- Cancer Genomics Lab, Fondazione Edo ed Elvo Tempia, 13900 Biella, Italy.
| | - Marco Basiricò
- Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Torino, Italy.
| | - Chiara Raggi
- Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, 20089 Rozzano, Italy.
- Dept. Medicina Sperimentale e Clinica, Università di Firenze, 50100 Florence, Italy.
| | - Paola Bernabei
- Flow Cytometry Center, Candiolo Cancer Institute FPO-IRCCS, 10060 Candiolo, Torino, Italy.
| | - Tiziana Venesio
- Molecular Pathology Lab, Unit of Pathology, Candiolo Cancer Institute FPO-IRCCS, 10060 Candiolo, Torino, Italy.
| | - Enrico Berrino
- Molecular Pathology Lab, Unit of Pathology, Candiolo Cancer Institute FPO-IRCCS, 10060 Candiolo, Torino, Italy.
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy.
| | - Massimo Aglietta
- Department of Oncology, University of Turin, 10100 Torino, Italy.
- Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Torino, Italy.
| | - Francesco Leone
- Department of Oncology, University of Turin, 10100 Torino, Italy.
- Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Torino, Italy.
| | - Giuliana Cavalloni
- Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Torino, Italy.
| |
Collapse
|
34
|
Park JY, Cho YL, Chae JR, Moon SH, Cho WG, Choi YJ, Lee SJ, Kang WJ. Gemcitabine-Incorporated G-Quadruplex Aptamer for Targeted Drug Delivery into Pancreas Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:543-553. [PMID: 30195790 PMCID: PMC6077122 DOI: 10.1016/j.omtn.2018.06.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 06/11/2018] [Accepted: 06/11/2018] [Indexed: 01/07/2023]
Abstract
Gemcitabine has been considered a first-line chemotherapy agent for the treatment of pancreatic cancer. However, the initial response rate of gemcitabine is low and chemoresistance occurs frequently. Aptamers can be effectively internalized into cancer cells via binding to target molecules with high affinity and specificity. In the current study, we constructed an aptamer-based gemcitabine delivery system, APTA-12, and assessed its therapeutic effects on pancreatic cancer cells in vitro and in vivo. APTA-12 was effective in vitro and in vivo in pancreatic cancer cells with high expression of nucleolin. The results of in vitro cytotoxicity assays indicated that APTA-12 inhibited the growth of pancreatic cancer cell lines. In vivo evaluation showed that APTA-12 effectively inhibited the growth of pancreatic cancer in Capan-1 tumor-bearing mice compared to mice that received gemcitabine alone or vehicle. These results suggest that the gemcitabine-incorporated APTA-12 aptamer may be a promising targeted therapeutic strategy for pancreatic cancer.
Collapse
Affiliation(s)
- Jun Young Park
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea; Department of Anatomy, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Ye Lim Cho
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ju Ri Chae
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | | | - Won Gil Cho
- Department of Anatomy, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Yun Jung Choi
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Soo Jin Lee
- Aptabio Therapeutics Inc., Gyeonggi-do, Korea.
| | - Won Jun Kang
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
35
|
Lankadasari MB, Aparna JS, Mohammed S, James S, Aoki K, Binu VS, Nair S, Harikumar KB. Targeting S1PR1/STAT3 loop abrogates desmoplasia and chemosensitizes pancreatic cancer to gemcitabine. Am J Cancer Res 2018; 8:3824-3840. [PMID: 30083262 PMCID: PMC6071521 DOI: 10.7150/thno.25308] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/19/2018] [Indexed: 12/26/2022] Open
Abstract
Rationale: Pancreatic cancer is associated with poor prognosis with a 5-year survival rate of less than 6%. Approximately 90% of pancreatic cancer patients harbor somatic mutations in the KRAS gene. Multiple lines of evidence suggest a persistent activation of STAT3 in KRAS-driven oncogenesis contributing to desmoplasia and gemcitabine resistance. Sphingosine 1-phosphate receptor 1 (S1PR1) is an integral component of tumor progression and maintains an activated state of STAT3. FTY720 is an approved drug for multiple sclerosis and acts as a functional antagonist for S1PR1. Here we explored the potential utility of FTY720 to target S1PR1/STAT3 and other major signaling pathways in pancreatic cancer, and sought proof-of-principle for repurposing FTY720 for the treatment of pancreatic cancer. Methods: We examined the activity of FTY720 in the proliferation, apoptosis, and cell cycle assays in human and mouse pancreatic cancer model systems. Further, we studied the efficacy of using a combination of FTY720 and gemcitabine as opposed to individual agents in vitro as well as in vivoResults: Treatment of human and mouse pancreatic cancer cells with FTY720 resulted in inhibition of growth, increased apoptosis, and cell cycle arrest. FTY720 in combination with gemcitabine breached the mitochondrial membrane potential, altered the S1PR1-STAT3 loop, and inhibited epithelial to mesenchymal (EMT) transition. Data from murine models exhibited a marked reduction in the tumor size, increased apoptosis, inhibited NF-κB, S1PR1/STAT3, Shh signaling and desmoplasia, modulated the expression of gemcitabine-metabolizing transport enzymes, and restored the expression of tumor suppressor gene PP2A. Conclusion: Taken together, our results established FTY720 as a propitious molecule, which increases the efficacy of gemcitabine and represents a promising agent in the management of pancreatic cancer.
Collapse
|
36
|
Vert A, Castro J, Ribó M, Vilanova M, Benito A. Transcriptional profiling of NCI/ADR-RES cells unveils a complex network of signaling pathways and molecular mechanisms of drug resistance. Onco Targets Ther 2018; 11:221-237. [PMID: 29379303 PMCID: PMC5757493 DOI: 10.2147/ott.s154378] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Ovarian cancer has the highest mortality rate among all the gynecological cancers. This is mostly due to the resistance of ovarian cancer to current chemotherapy regimens. Therefore, it is of crucial importance to identify the molecular mechanisms associated with chemoresistance. Methods NCI/ADR-RES is a multidrug-resistant cell line that is a model for the study of drug resistance in ovarian cancer. We carried out a microarray-derived transcriptional profiling analysis of NCI/ADR-RES to identify differentially expressed genes relative to its parental OVCAR-8. Results Gene-expression profiling has allowed the identification of genes and pathways that may be important for the development of drug resistance in ovarian cancer. The NCI/ADR-RES cell line has differential expression of genes involved in drug extrusion, inactivation, and efficacy, as well as genes involved in the architectural and functional reorganization of the extracellular matrix. These genes are controlled through different signaling pathways, including MAPK–Akt, Wnt, and Notch. Conclusion Our findings highlight the importance of using orthogonal therapies that target completely independent pathways to overcome mechanisms of resistance to both classical chemotherapeutic agents and molecularly targeted drugs.
Collapse
Affiliation(s)
- Anna Vert
- Protein Engineering Laboratory, Department of Biology, Faculty of Sciences, Universitat de Girona.,Biomedical Research Institute of Girona (IDIBGi), Girona, Spain
| | - Jessica Castro
- Protein Engineering Laboratory, Department of Biology, Faculty of Sciences, Universitat de Girona.,Biomedical Research Institute of Girona (IDIBGi), Girona, Spain
| | - Marc Ribó
- Protein Engineering Laboratory, Department of Biology, Faculty of Sciences, Universitat de Girona.,Biomedical Research Institute of Girona (IDIBGi), Girona, Spain
| | - Maria Vilanova
- Protein Engineering Laboratory, Department of Biology, Faculty of Sciences, Universitat de Girona.,Biomedical Research Institute of Girona (IDIBGi), Girona, Spain
| | - Antoni Benito
- Protein Engineering Laboratory, Department of Biology, Faculty of Sciences, Universitat de Girona.,Biomedical Research Institute of Girona (IDIBGi), Girona, Spain
| |
Collapse
|
37
|
Elander N, Aughton K, Greenhalf W. Development of Novel Therapeutic Response Biomarkers. PANCREATIC CANCER 2018:1273-1304. [DOI: 10.1007/978-1-4939-7193-0_59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
38
|
Rajabpour A, Afgar A, Mahmoodzadeh H, Radfar JED, Rajaei F, Teimoori-Toolabi L. MiR-608 regulating the expression of ribonucleotide reductase M1 and cytidine deaminase is repressed through induced gemcitabine chemoresistance in pancreatic cancer cells. Cancer Chemother Pharmacol 2017; 80:765-775. [PMID: 28887583 DOI: 10.1007/s00280-017-3418-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 08/07/2017] [Indexed: 01/29/2023]
Abstract
PURPOSE Gemcitabine resistance is the main problem in pancreatic adenocarcinoma patients. Hence, we aimed to identify the correlation between expression of RRM1 and CDA as the resistance genes and their predicted targeting miR-608 in the resistant pancreatic cancer cell lines to gemcitabine. METHODS Dual luciferase assay was performed to determine whether both RRM1 and CDA are targeted by miR-608 in 293T and pancreatic cancer cell lines. AsPC-1 and MIA PaCa-2 cell lines became gradually resistant to gemcitabine by exposing to the increasing doses of gemcitabine. After RNA and miRNAs extraction and cDNA conversion, the expressions of RRM1, CDA and miR-608 in all cell lines were studied by quantitative PCR. Pre-miR-608 transfection to the cell lines was done by calcium phosphate method. MTT assay was performed for analyzing the chemo sensitivity of different cell lines to gemcitabine. RESULTS Luciferase assays showed that miR-608 targeted RRM1 and CDA genes in 293T, AsPC-1 and MIA PaCa-2 cell lines. Compared to parental cell line, resistant MIA PaCa-2 and AsPC-1 cells demonstrated increased expression of RRM1 and CDA. On the other hand the expression of miR-608 in resistant MIA PaCa-2 and AsPC-1 cells was lower than parental cells. Furthermore, transfection of MIA PaCa-2 and AsPC-1 cells by miR-608 lead to decreased expression of RRM1 and CDA and lowered viability of the cells in comparison with scrambled microRNA transfected cells. CONCLUSION During resistance induction in pancreatic cancer cells, miR-608 which is targeting RRM1 and CDA is downregulated which leads to upregulation of these genes.
Collapse
Affiliation(s)
- Azam Rajabpour
- Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
- Molecular Medicine Department, Pasteur Institute of Iran, Tehran, Iran
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ali Afgar
- Molecular Medicine Department, Pasteur Institute of Iran, Tehran, Iran
| | - Habibollah Mahmoodzadeh
- Cancer Institute of Iran, Imam Khomeini Medical Complex, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Farzad Rajaei
- Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran.
| | | |
Collapse
|
39
|
Youngren-Ortiz SR, Hill DB, Hoffmann PR, Morris KR, Barrett EG, Forest MG, Chougule MB. Development of Optimized, Inhalable, Gemcitabine-Loaded Gelatin Nanocarriers for Lung Cancer. J Aerosol Med Pulm Drug Deliv 2017; 30:299-321. [PMID: 28277892 PMCID: PMC5650720 DOI: 10.1089/jamp.2015.1286] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 01/11/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Aerosol delivery of chemotherapeutic nanocarriers represents a promising alternative for lung cancer therapy. This study optimized gemcitabine (Gem)-loaded gelatin nanocarriers (GNCs) cross-linked with genipin (Gem-GNCs) to evaluate their potential for nebulized lung cancer treatment. METHODS Gem-GNCs were prepared by two-step desolvation and optimized through Taguchi design and characterized for physicochemical properties. Particle size and morphology were confirmed by scanning and transmission electron microscopy. In vitro release of Gem from Gem-GNCs performed in Dulbecco's phosphate-buffered saline and simulated lung fluid was evaluated to determine release mechanisms. Particle size stability was assessed under varying pH. Differential scanning calorimetry and powder X-ray diffraction were used to determine the presence and stability of Gem-GNC components and amorphization of Gem, respectively. Gem-GNC efficacy within A549 and H460 cells was evaluated using MTT assays. Mucus rheology upon treatment with Gem-GNCs, lactose, and normal saline control was measured. Andersen cascade impaction identified the aerodynamic particle size distribution of the nebulized formulation. RESULTS Gem-GNCs had particle size, zeta potential, entrapment efficiency, and loading efficiency of 178 ± 7.1 nm, -18.9 mV, 92.5%, and 9.1%, respectively. The Gem and formulation excipients where molecularly dispersed and configured amorphously. Gem-GNCs were stable at pH 5.4-7.4 for 72 hours. Gem release from Gem-GNCs was governed by non-Fickian controlled release due to diffusion/erosion from a matrix-based nanocarrier. Gem-GNCs elicited a 40% reduction of the complex viscosity η*(1 Hz) of human bronchial epithelial cell mucus containing 3 wt% solids to mimic mild airway disease. The nebulized Gem-GNCs had a mass median aerodynamic diameter (MMAD) of 2.0 ± 0.16 μm, geometric standard deviation (GSD) of 2.7 ± 0.16, and fine particle fraction (FPF) of 75.2% ± 2.4%. The Gem-GNC formulation did not outperform the Gem solution in A549 cells. However, in H460, Gem-GNCs outperformed the Gem IC50 reduction by ∼5-fold at 48 and 10-fold 72 hours. CONCLUSION Stable, effective, and sustained-release Gem-GNCs were developed. The nebulized Gem-GNCs had satisfactory MMAD, GSD, and FPF and the formulation reduced the dynamic complex viscosity of mucus consistent with increased mobility of nanoparticles.
Collapse
Affiliation(s)
- Susanne R. Youngren-Ortiz
- Translational Drug Delivery Research (TransDDR) Laboratory, Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawai'i
| | - David B. Hill
- Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Marsico Lung Institute/CF Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Peter R. Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i, Honolulu, Hawai'i
| | - Kenneth R. Morris
- Translational Drug Delivery Research (TransDDR) Laboratory, Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawai'i
- The Lachman Institute for Pharmaceutical Analysis, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University–Brooklyn Campus, Brooklyn, New York
| | - Edward G. Barrett
- Respiratory and Asthma Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - M. Gregory Forest
- Carolina Center for Interdisciplinary Applied Mathematics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Mahavir B. Chougule
- Translational Drug Delivery Research (TransDDR) Laboratory, Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawai'i
- Pii Center for Pharmaceutical Technology, Research Institute of Pharmaceutical Sciences, University of Mississippi, Oxford, Mississippi
- Translational Drug and Gene Delivery Research (TransDGDR) Laboratory, Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, Mississippi
- Natural Products and Experimental Therapeutics Program, University of Hawai'i Cancer Center, University of Hawai'i, Honolulu, Hawai'i
| |
Collapse
|
40
|
Woo SM, Yoon KA, Hong EK, Park WS, Han SS, Park SJ, Joo J, Park EY, Lee JH, Kim YH, Kim TH, Lee WJ. DCK expression, a potential predictive biomarker in the adjuvant gemcitabine chemotherapy for biliary tract cancer after surgical resection: results from a phase II study. Oncotarget 2017; 8:81394-81404. [PMID: 29113399 PMCID: PMC5655294 DOI: 10.18632/oncotarget.19037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/18/2017] [Indexed: 01/03/2023] Open
Abstract
The role of adjuvant therapy following resection of biliary tract cancer (BTC) remains unclear. We therefore evaluated the feasibility and toxicity of adjuvant gemcitabine in patients with BTC. This clinical phase II trial was an open-label, single center, single-arm study. Within 8 weeks after gross complete resection of BTC, patients were started on intravenous infusions of gemcitabine 1000 mg/m2 over 30 min on days 1, 8, and 15 of every 28-day cycle. Intratumoral expression of cytidine deaminase (CDA), human equilibrative transporter-1 (hENT1), deoxycytidine kinase (dCK) and ribonucleotide reductase subunit 1 (RRM1) was measured by immunohistochemistry. This study enrolled 72 patients with BTC (26 with gallbladder cancer, 33 with extrahepatic cholangiocarcinoma, and 13 with intrahepatic cholangiocarcinoma). The 2-year recurrence-free survival (RFS) rate was 43% (95% CI, 33–57%). Multivariable analysis showed that DCK expression, vascular invasion, and lymph node metastasis were significantly associated with RFS. Twenty-one (31.8%) were positive for DCK immunoreactivity. The median RFS was 34.95 months for DCK-positive patients, compared with 11.41 months for DCK-negative patients. Although the primary hypothesis of this study, defined as a 2-year RFS of 60%, was not met, intratumoral DCK expression was significantly associated with RFS in patients with resected BTC treated with postoperative gemcitabine chemotherapy. Future randomized controlled trials are warranted.
Collapse
Affiliation(s)
- Sang Myung Woo
- Center for Liver Cancer, National Cancer Center, Goyang-Si Gyeonggi-Do, Korea
| | - Kyong-Ah Yoon
- College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Eun Kyung Hong
- Center for Liver Cancer, National Cancer Center, Goyang-Si Gyeonggi-Do, Korea.,Department of Pathology, National Cancer Center, Goyang-Si Gyeonggi-Do, Korea
| | - Weon Seo Park
- Department of Pathology, National Cancer Center, Goyang-Si Gyeonggi-Do, Korea
| | - Sung-Sik Han
- Center for Liver Cancer, National Cancer Center, Goyang-Si Gyeonggi-Do, Korea
| | - Sang-Jae Park
- Center for Liver Cancer, National Cancer Center, Goyang-Si Gyeonggi-Do, Korea
| | - Jungnam Joo
- Biometrics Research Branch, Research Institute, National Cancer Center, Goyang-Si Gyeonggi-Do, Korea
| | - Eun Young Park
- Biometrics Research Branch, Research Institute, National Cancer Center, Goyang-Si Gyeonggi-Do, Korea
| | - Ju Hee Lee
- Center for Liver Cancer, National Cancer Center, Goyang-Si Gyeonggi-Do, Korea
| | - Yun-Hee Kim
- Molecular Imaging Branch, Research Institute, National Cancer Center, Goyang-Si Gyeonggi-Do, Korea
| | - Tae Hyun Kim
- Center for Liver Cancer, National Cancer Center, Goyang-Si Gyeonggi-Do, Korea
| | - Woo Jin Lee
- Center for Liver Cancer, National Cancer Center, Goyang-Si Gyeonggi-Do, Korea
| |
Collapse
|
41
|
Human equilibrative nucleoside transporter 1 gene expression is associated with gemcitabine efficacy in advanced leiomyosarcoma and angiosarcoma. Br J Cancer 2017. [PMID: 28641307 PMCID: PMC5537497 DOI: 10.1038/bjc.2017.187] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: The expression of human equilibrative nucleoside transporter 1 (hENT1), the major gemcitabine transporter into cells, has been thoroughly investigated as a predictive marker of response to gemcitabine in pancreatic cancer and biliary tract cancers. Since gemcitabine is widely used in the treatment of leiomyosarcoma and angiosarcoma, we investigated the correlation between hENT1 expression and gemcitabine efficacy in these sarcoma subtypes. Methods: We retrospectively identified 71 patients affected by advanced angiosarcoma (26) or leiomyosarcoma (45) treated within five Italian referral centres for sarcoma; among them, 49 patients (15 angiosarcoma, 34 leiomyosarcoma) were treated with gemcitabine. All tumour samples were analysed for hENT1 expression by real-time PCR. Median 2–ΔCt value was used as the cutoff to dichotomise patients into ‘high’ expression and ‘low’ expression groups. Kaplan–Meier analysis was performed to estimate progression-free survival (PFS) and overall survival (OS). Results: We found a significant association between high hENT1 expression levels and favourable outcome in terms of PFS and OS compared to cases with low hENT1 expression in leiomyosarcoma treated with gemcitabine (PFS: 6.8 vs 3.2 months, P=0.004; OS: 14.9 vs 8.5 months, P=0.007). In addition, hENT1 overexpression correlated with a significant improvement in PFS (9.3 vs 4.5 months; P=0.02) and OS (20.6 vs 10.8 months; P=0.001) in angiosarcoma patients treated with gemcitabine. Conclusions: Our study suggests that higher hENT1 expression are associated to gemcitabine efficacy both in patients with advanced leiomyosarcoma and angiosarcoma.
Collapse
|
42
|
Takiguchi S, Inoue K, Matsusue K, Furukawa M, Teramoto N, Iguchi H. Crizotinib, a MET inhibitor, prevents peritoneal dissemination in pancreatic cancer. Int J Oncol 2017; 51:184-192. [PMID: 28498406 DOI: 10.3892/ijo.2017.3992] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/18/2017] [Indexed: 11/06/2022] Open
Abstract
Peritoneal dissemination is a frequent occurrence in pancreatic cancer, which is associated with a poor prognosis. MET is associated with the progression of pancreatic cancer; therefore, we evaluated the effect of a MET inhibitor, crizotinib, on peritoneal dissemination of pancreatic cancer. Crizotinib inhibited the growth of 8 pancreatic cancer cell lines with the IC50 ranging from 1.4 to 4.3 µM. Invasion of the pancreatic cancer cell line Suit-2, was suppressed in vitro at a concentration of 1.0 µM, which is sufficient for the inhibition of MET phosphorylation. This effect on cell invasion was also recapitulated by the reduction of MET expression in Suit-2 with siRNA. Crizotinib also inhibited RhoA activation in addition to MET phosphorylation. We further evaluated the effect of crizotinib on peritoneal dissemination of pancreatic cancer in vivo. Crizotinib reduced tumor burden and ascites accumulation due to development of peritoneal dissemination after inoculation of Suit-2. Taken together, crizotinib may be a potent drug for treating peritoneal dissemination of pancreatic cancer by inhibiting cancer cell proliferation and invasion, at least in part through the suppression of HGF/MET signaling and RhoA activation.
Collapse
Affiliation(s)
- Soichi Takiguchi
- Clinical Research Institute, National Kyushu Cancer Center, Fukuoka 811-1395, Japan
| | - Kazuko Inoue
- Clinical Research Institute, National Kyushu Cancer Center, Fukuoka 811-1395, Japan
| | - Kimihiko Matsusue
- Department of Hygiene Chemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Masayuki Furukawa
- Department of Hepato-Biliary-Pancreatology, National Kyushu Cancer Center, Fukuoka 811-1395, Japan
| | - Norihiro Teramoto
- Division of Pathology, National Hospital Organization Shikoku Cancer Center, Matsuyama 791-0280, Japan
| | - Haruo Iguchi
- Clinical Research Institute, National Hospital Organization Shikoku Cancer Center, Matsuyama 791-0280, Japan
| |
Collapse
|
43
|
Gemcitabine anti-proliferative activity significantly enhanced upon conjugation with cell-penetrating peptides. Bioorg Med Chem Lett 2017; 27:2898-2901. [PMID: 28495087 DOI: 10.1016/j.bmcl.2017.04.086] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 11/23/2022]
Abstract
Gemcitabine proven efficiency against a wide range of solid tumors and undergoes deamination to its inactive uridine metabolite, which underlies its low bioavailability, and tumour resistance was also associated with nucleoside transporter alterations. Hence, we have conjugated gemcitabine to cell-penetrating peptides (CPP), in an effort to both mask its aniline moiety and facilitate its delivery into cancer cells. Two CPP-drug conjugates have been synthesized and studied regarding both the time-dependent kinetics of gemcitabine release and their anti-proliferative activity on three different human cancer cell lines. Results obtained reveal a dramatic increase in the anti-proliferative activity of gemcitabine in vitro, upon conjugation with the CPPs. As such, CPP-gemcitabine conjugates emerge as promising leads for cancer therapy.
Collapse
|
44
|
Rajabpour A, Rajaei F, Teimoori-Toolabi L. Molecular alterations contributing to pancreatic cancer chemoresistance. Pancreatology 2017; 17:310-320. [PMID: 28065383 DOI: 10.1016/j.pan.2016.12.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 12/27/2016] [Accepted: 12/28/2016] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most common causes of cancer-related death all over the world. This disease is difficult to treat and patients have an overall 5-year survival rate of less than 5%. Although two drugs, gemcitabine (GEM) and 5-fluorouracil (5-FU) have been shown to improve the survival rate of patients systematically, they do not increase general survival to a clinically acceptable degree. Lack of ideal clinical response of pancreatic cancer patients to chemotherapy is likely to be due to intrinsic and acquired chemoresistance of tumor cells. Various mechanisms of drug resistance have been investigated in pancreatic cancer, including genetic and epigenetic changes in particular genes or signaling pathways. In addition, evidence suggests that microRNAs (miRNAs) play significant roles as key regulators of gene expression in many cellular processes, including drug resistance. Understanding underlying genes and mechanisms of drug resistance in pancreatic cancer is critical to develop new effective treatments for this deadly disease. This review illustrates the genes and miRNAs involved in resistance to gemcitabine in pancreatic cancer.
Collapse
Affiliation(s)
- Azam Rajabpour
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Molecular Medicine, Pasteur Institute of Iran, Tehran, Iran
| | - Farzad Rajaei
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | | |
Collapse
|
45
|
Bird NTE, Elmasry M, Jones R, Psarelli E, Dodd J, Malik H, Greenhalf W, Kitteringham N, Ghaneh P, Neoptolemos JP, Palmer D. Immunohistochemical hENT1 expression as a prognostic biomarker in patients with resected pancreatic ductal adenocarcinoma undergoing adjuvant gemcitabine-based chemotherapy. Br J Surg 2017; 104:328-336. [PMID: 28199010 DOI: 10.1002/bjs.10482] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/12/2016] [Accepted: 12/08/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND Human equilibrative nucleoside transporters (hENTs) are transmembranous proteins that facilitate the uptake of nucleosides and nucleoside analogues, such as gemcitabine, into the cell. The abundance of hENT1 transporters in resected pancreatic ductal adenocarcinoma (PDAC) might make hENT1 a potential biomarker of response to adjuvant chemotherapy. The aim of this study was to see whether hENT1 expression, as determined by immunohistochemistry, was a suitable predictive marker for subsequent treatment with gemcitabine-based adjuvant chemotherapy. METHODS A systematic review was performed, searching databases from January 1997 to January 2016. Articles pertaining to hENT1 immunohistochemical analysis in resected PDAC specimens from patients who subsequently underwent adjuvant gemcitabine-based chemotherapy were identified. Eligible studies were required to contain survival data, reporting specifically overall survival (OS) and disease-free survival (DFS) with associated hazard ratios (HRs) stratified by hENT1 status. RESULTS Of 42 articles reviewed, eight were suitable for review, with seven selected for quantitative meta-analysis. The total number of patients included in the meta-analysis was 770 (405 hENT1-negative, 365 hENT1-positive). Immunohistochemically detected hENT1 expression was significantly associated with both prolonged DFS (HR 0·58, 95 per cent c.i. 0·42 to 0·79) and OS (HR 0·52, 0·38 to 0·72) in patients receiving adjuvant gemcitabine but not those having fluoropyrimidine-based adjuvant therapy. CONCLUSION Expression of hENT1 is a suitable prognostic biomarker in patients undergoing adjuvant gemcitabine-based chemotherapy.
Collapse
Affiliation(s)
- N T E Bird
- Liverpool University Pharmacology Unit, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - M Elmasry
- Liverpool University Pharmacology Unit, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - R Jones
- Liverpool University Pharmacology Unit, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - E Psarelli
- Liverpool University Pharmacology Unit, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - J Dodd
- Liverpool University Pharmacology Unit, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - H Malik
- Liverpool University Pharmacology Unit, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - W Greenhalf
- Liverpool University Pharmacology Unit, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - N Kitteringham
- Liverpool University Pharmacology Unit, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - P Ghaneh
- Liverpool University Pharmacology Unit, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - J P Neoptolemos
- Liverpool University Pharmacology Unit, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - D Palmer
- Liverpool University Pharmacology Unit, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| |
Collapse
|
46
|
Karampelas T, Skavatsou E, Argyros O, Fokas D, Tamvakopoulos C. Gemcitabine Based Peptide Conjugate with Improved Metabolic Properties and Dual Mode of Efficacy. Mol Pharm 2017; 14:674-685. [PMID: 28099809 DOI: 10.1021/acs.molpharmaceut.6b00961] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Gemcitabine is a clinically established anticancer agent potent in various solid tumors but limited by its rapid metabolic inactivation and off-target toxicity. We have previously generated a metabolically superior to gemcitabine molecule (GSG) by conjugating gemcitabine to a gonadotropin releasing hormone receptor (GnRH-R) ligand peptide and showed that GSG was efficacious in a castration resistant prostate cancer (CRPC) animal model. The current article provides an in-depth metabolic and mechanistic study of GSG, coupled with toxicity assays that strengthen the potential role of GSG in the clinic. LC-MS/MS based approaches were employed to delineate the metabolism of GSG, its mechanistic cellular uptake, and release of gemcitabine and to quantitate the intracellular levels of gemcitabine and its metabolites (active dFdCTP and inactive dFdU) resulting from GSG. The GnRH-R agonistic potential of GSG was investigated by quantifying the testosterone levels in animals dosed daily with GSG, while an in vitro colony forming assay together with in vivo whole blood measurements were performed to elucidate the hematotoxicity profile of GSG. Stability showed that the major metabolite of GSG is a more stable nonapeptide that could prolong gemcitabine's bioavailability. GSG acted as a prodrug and offered a metabolic advantage compared to gemcitabine by generating higher and steadier levels of dFdCTP/dFdU ratio, while intracellular release of gemcitabine from GSG in DU145 CRPC cells depended on nucleoside transporters. Daily administrations in mice showed that GSG is a potent GnRH-R agonist that can also cause testosterone ablation without any observed hematotoxicity. In summary, GSG could offer a powerful and unique pharmacological approach to prostate cancer treatment: a single nontoxic molecule that can be used to reach the tumor site selectively with superior to gemcitabine metabolism, biodistribution, and safety while also agonistically ablating testosterone levels.
Collapse
Affiliation(s)
- Theodoros Karampelas
- Division of Pharmacology-Pharmacotechnology, Biomedical Research Foundation, Academy of Athens , 4 Soranou Ephessiou Street, 11527 Athens, Greece
| | - Eleni Skavatsou
- Division of Pharmacology-Pharmacotechnology, Biomedical Research Foundation, Academy of Athens , 4 Soranou Ephessiou Street, 11527 Athens, Greece
| | - Orestis Argyros
- Division of Pharmacology-Pharmacotechnology, Biomedical Research Foundation, Academy of Athens , 4 Soranou Ephessiou Street, 11527 Athens, Greece
| | - Demosthenes Fokas
- Laboratory of Medicinal Chemistry, Department of Materials Science and Engineering, University of Ioannina , 45110 Ioannina, Greece
| | - Constantin Tamvakopoulos
- Division of Pharmacology-Pharmacotechnology, Biomedical Research Foundation, Academy of Athens , 4 Soranou Ephessiou Street, 11527 Athens, Greece
| |
Collapse
|
47
|
Dubey RD, Klippstein R, Wang JTW, Hodgins N, Mei KC, Sosabowski J, Hider RC, Abbate V, Gupta PN, Al-Jamal KT. Novel Hyaluronic Acid Conjugates for Dual Nuclear Imaging and Therapy in CD44-Expressing Tumors in Mice In Vivo. Nanotheranostics 2017; 1:59-79. [PMID: 29071179 PMCID: PMC5646725 DOI: 10.7150/ntno.17896] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 11/28/2016] [Indexed: 12/13/2022] Open
Abstract
Hyaluronic acid, a natural CD44 receptor ligand, has attracted attention in the past years as a macromolecular delivery of anticancer agents to cancer. At the same time, the clinical applications of Gemcitabine (Gem) have been hindered by its short biological half-life, high dose and development of drug resistance. This work reports the synthesis of a hyaluronic acid (HA) conjugate for nuclear imaging, and in vivo Gem delivery to CD44-expressing solid tumors in mice. HA was individually conjugated, via amide coupling, to Gem (HA-Gem), 4'-(aminomethyl)fluorescein hydrochloride (HA-4'-AMF) or tris(hydroxypyridinone) amine (HA-THP) for cancer therapy, in vitro tracking or single photon emission computed tomography/computed tomography (SPECT/CT) imaging, respectively. Gem conjugation to HA was directly confirmed by nuclear magnetic resonance (1H NMR), gel permeation chromatography (GPC) and UV-visible spectrometry, or indirectly by a nucleoside transporter inhibition study. Gem conjugation to HA improved its plasma stability, reduced blood hemolysis and resulted in delayed cytotoxicity in vitro. Uptake inhibition studies in colon CT26 and pancreatic PANC-1 cells, by flow cytometry, revealed that uptake of fluorescent HA conjugate is CD44 receptor and macropinocytosis-dependent. Gamma scintigraphy and SPECT/CT imaging confirmed the relatively prolonged blood circulation profile and uptake in CT26 (1.5 % ID/gm) and PANC-1 (1 % ID/gm) subcutaneous tumors at 24 h after intravenous injection in mice. Four injections of HA-Gem at ~15 mg/kg, over a 28-day period, resulted in significant delay in CT26 tumor growth and prolonged mice survival compared to the free drug. This study reports for the first time dual nuclear imaging and drug delivery (Gem) of HA conjugates to solid tumors in mice. The conjugates show great potential in targeting, imaging and killing of CD44-over expressing cells in vivo. This work is likely to open new avenues for the application of HA-based macromolecules in the field of image-guided delivery in oncology.
Collapse
Affiliation(s)
- Ravindra Dhar Dubey
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
| | - Rebecca Klippstein
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE19NH, United Kingdom
| | - Julie Tzu-Wen Wang
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE19NH, United Kingdom
| | - Naomi Hodgins
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE19NH, United Kingdom
| | - Kuo-Ching Mei
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE19NH, United Kingdom
| | - Jane Sosabowski
- Centre for Molecular Oncology, Bart's Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Robert C Hider
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE19NH, United Kingdom
| | - Vincenzo Abbate
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE19NH, United Kingdom
| | - Prem N Gupta
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE19NH, United Kingdom
| |
Collapse
|
48
|
TODAKA A, UMEHARA R, SASAKI K, SERIZAWA M, URAKAMI K, KUSUHARA M, YAMAGUCHI K, YASUI H. Metabolic profiling of gemcitabine- and paclitaxel-treated immortalized human pancreatic cell lines with K-RASG12D . Biomed Res 2017; 38:29-40. [DOI: 10.2220/biomedres.38.29] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Akiko TODAKA
- Division of Gastrointestinal Oncology, Shizuoka Cancer Center
- Shizuoka Cancer Center
- Department of Surgery, Keio University Graduate School of Medicine
| | - Rina UMEHARA
- Drug Discovery and Development Division, Shizuoka Cancer Center Research Institute
| | | | - Masakuni SERIZAWA
- Drug Discovery and Development Division, Shizuoka Cancer Center Research Institute
| | - Kenichi URAKAMI
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute
| | - Masatoshi KUSUHARA
- Drug Discovery and Development Division, Shizuoka Cancer Center Research Institute
- Regional Resources Division, Shizuoka Cancer Center Research Institute
| | | | - Hirofumi YASUI
- Division of Gastrointestinal Oncology, Shizuoka Cancer Center
| |
Collapse
|
49
|
Jiang Y, Hou J, Li X, Huang Y, Wang X, Wu J, Zhang J, Xu W, Zhang Y. Discovery of a novel chimeric ubenimex-gemcitabine with potent oral antitumor activity. Bioorg Med Chem 2016; 24:5787-5795. [PMID: 27670098 DOI: 10.1016/j.bmc.2016.09.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 01/06/2023]
Abstract
Herein, a novel mutual prodrug BC-A1 was discovered by integrating ubenimex and gemcitabine into one molecule. Biological characterization revealed that compound BC-A1 could maintain both the anti-CD13 activity of ubenimex and the cytotoxic activity of gemcitabine in vitro. Further characterization also demonstrated that compound BC-A1 exhibited significant anti-invasion and anti-angiogenesis effects in vitro. The preliminary stability test of BC-A1 revealed that it could release gemcitabine in vitro. The in vivo anti-tumor results in liver cancer showed that at the same dosage, oral administration of BC-A1 was as potent as intraperitoneal administration of gemcitabine. This warranted the further research and development of the orally active prodrug BC-A1 because gemcitabine can not be orally administrated in clinic.
Collapse
Affiliation(s)
- Yuqi Jiang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, 250012 Ji'nan, Shandong, PR China
| | - Jinning Hou
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, 250012 Ji'nan, Shandong, PR China
| | - Xiaoyang Li
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, 250012 Ji'nan, Shandong, PR China
| | - Yongxue Huang
- Weifang Bochuang International Biological Medicinal Institute, Weifang, Shandong 261061, PR China
| | - Xuejian Wang
- College of Pharmacy, Weifang Medical University, 261053 Weifang, Shandong, PR China
| | - Jingde Wu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, 250012 Ji'nan, Shandong, PR China
| | - Jian Zhang
- College of Pharmacy, Weifang Medical University, 261053 Weifang, Shandong, PR China
| | - Wenfang Xu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, 250012 Ji'nan, Shandong, PR China
| | - Yingjie Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, 250012 Ji'nan, Shandong, PR China.
| |
Collapse
|
50
|
Dubey RD, Saneja A, Gupta PK, Gupta PN. Recent advances in drug delivery strategies for improved therapeutic efficacy of gemcitabine. Eur J Pharm Sci 2016; 93:147-62. [PMID: 27531553 DOI: 10.1016/j.ejps.2016.08.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 02/07/2023]
Abstract
Gemcitabine (2',2'-difluoro-2'-deoxycytidine; dFdC) is an efficacious anticancer agent acting against a wide range of solid tumors, including pancreatic, non-small cell lung, bladder, breast, ovarian, thyroid and multiple myelomas. However, short plasma half-life due to metabolism by cytidine deaminase necessitates administration of high dose, which limits its medical applicability. Further, due to its hydrophilic nature, it cannot traverse cell membranes by passive diffusion and, therefore, enters via nucleoside transporters that may lead to drug resistance. To circumvent these limitations, macromolecular prodrugs and nanocarrier-based formulations of Gemcitabine are gaining wide recognition. The nanoformulations based approaches by virtue of their controlled release and targeted delivery have proved to improve bioavailability, increase therapeutic efficacy and reduce adverse effects of the drug. Furthermore, the combination of Gemcitabine with other anticancer agents as well as siRNAs using nanocarriers has also been investigated in order to enhance its therapeutic potential. This review deals with challenges and recent advances in the delivery of Gemcitabine with particular emphasis on macromolecular prodrugs and nanomedicines.
Collapse
Affiliation(s)
- Ravindra Dhar Dubey
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi 180001, India
| | - Ankit Saneja
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi 180001, India
| | - Prasoon K Gupta
- Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi 180001, India.
| | - Prem N Gupta
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi 180001, India.
| |
Collapse
|