1
|
Zorko NA, Makovec A, Elliott A, Kellen S, Lozada JR, Arafa AT, Felices M, Shackelford M, Barata P, Zakharia Y, Narayan V, Stein MN, Zarrabi KK, Patniak A, Bilen MA, Radovich M, Sledge G, El-Deiry WS, Heath EI, Hoon DSB, Nabhan C, Miller JS, Hwang JH, Antonarakis ES. Natural Killer Cell Infiltration in Prostate Cancers Predict Improved Patient Outcomes. Prostate Cancer Prostatic Dis 2025; 28:129-137. [PMID: 38418892 PMCID: PMC11349934 DOI: 10.1038/s41391-024-00797-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Natural killer (NK) cells are non-antigen specific innate immune cells that can be redirected to targets of interest using multiple strategies, although none are currently FDA-approved. We sought to evaluate NK cell infiltration into tumors to develop an improved understanding of which histologies may be most amenable to NK cell-based therapies currently in the developmental pipeline. METHODS DNA (targeted/whole-exome) and RNA (whole-transcriptome) sequencing was performed from tumors from 45 cancer types (N = 90,916 for all cancers and N = 3365 for prostate cancer) submitted to Caris Life Sciences. NK cell fractions and immune deconvolution were inferred from RNA-seq data using quanTIseq. Real-world overall survival (OS) and treatment status was determined and Kaplan-Meier estimates were calculated. Statistical significance was determined using X2 and Mann-Whitney U tests, with corrections for multiple comparisons where appropriate. RESULTS In both a pan-tumor and prostate cancer (PCa) -specific setting, we demonstrated that NK cells represent a substantial proportion of the total cellular infiltrate (median range 2-9% for all tumors). Higher NK cell infiltration was associated with improved OS in 28 of 45 cancer types, including (PCa). NK cell infiltration was negatively correlated with common driver mutations and androgen receptor variants (AR-V7) in primary prostate biopsies, while positively correlated with negative immune regulators. Higher levels of NK cell infiltration were associated with patterns consistent with a compensatory anti-inflammatory response. CONCLUSIONS Using the largest available dataset to date, we demonstrated that NK cells infiltrate a broad range of tumors, including both primary and metastatic PCa. NK cell infiltration is associated with improved PCa patient outcomes. This study demonstrates that NK cells are capable of trafficking to both primary and metastatic PCa and are a viable option for immunotherapy approaches moving forward. Future development of strategies to enhance tumor-infiltrating NK cell-mediated cytolytic activity and activation while limiting inhibitory pathways will be key.
Collapse
Affiliation(s)
- Nicholas A Zorko
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN, USA.
| | - Allison Makovec
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | | | - Samuel Kellen
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - John R Lozada
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Ali T Arafa
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Martin Felices
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Madison Shackelford
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Pedro Barata
- University Hospital Seidman Cancer Center, Cleveland, OH, USA
| | | | - Vivek Narayan
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark N Stein
- Herbert Irving Comprehensive Cancer Center, Columbia University New York, New York, NY, USA
| | - Kevin K Zarrabi
- Sidney Kimmel Cancer Center, Jefferson Medical College, Philadelphia, PA, USA
| | - Akash Patniak
- University of Chicago Medicine Comprehensive Cancer Center, Chicago, IL, USA
| | - Mehmet A Bilen
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | | | | | | | | | - Dave S B Hoon
- Saint John's Cancer Institute, Saint John's Health Center PHS, Santa Monica, CA, USA
| | | | - Jeffrey S Miller
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Justin H Hwang
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | | |
Collapse
|
2
|
Paralkar D, Akbari A, Aron M. Prostatic adenocarcinoma: molecular underpinnings and treatment-related options. Urol Oncol 2024; 42:203-210. [PMID: 38508940 DOI: 10.1016/j.urolonc.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/28/2024] [Accepted: 03/03/2024] [Indexed: 03/22/2024]
Abstract
Prostate cancer is heterogeneous with varied pathologic features and presents with a wide spectrum of clinical manifestations from indolent to advanced cancer. Interrogation of the molecular landscape of prostate cancer has unveiled the complex genomic alterations in these tumors, which significantly impacts tumor biology. The documented array of chromosomal alterations, gene fusions, and epigenetic changes not only play a crucial role in oncogenesis and disease progression, but also impacts response and resistance to various therapeutic modalities. Various gene expression assays have been developed and are currently recommended in aiding clinical decision making in these clinically and molecularly heterogeneous cancer. In this review, we provide an overview of the molecular underpinnings of prostate cancer, and briefly review the current status of molecular testing and therapeutic options in the management of these tumors.
Collapse
Affiliation(s)
- Divyangi Paralkar
- Department of Urology, Keck School of Medicine, University of Southern California, 1500 San Pablo Street, Room 2409, HC4, Los Angeles, California
| | - Amir Akbari
- Department of Pathology, Keck School of Medicine, University of Southern California, 1500 San Pablo Street, Room 2409, HC4, Los Angeles, California
| | - Manju Aron
- Department of Urology, Keck School of Medicine, University of Southern California, 1500 San Pablo Street, Room 2409, HC4, Los Angeles, California; Department of Pathology, Keck School of Medicine, University of Southern California, 1500 San Pablo Street, Room 2409, HC4, Los Angeles, California.
| |
Collapse
|
3
|
Maekawa S, Takata R, Obara W. Molecular Mechanisms of Prostate Cancer Development in the Precision Medicine Era: A Comprehensive Review. Cancers (Basel) 2024; 16:523. [PMID: 38339274 PMCID: PMC10854717 DOI: 10.3390/cancers16030523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
The progression of prostate cancer (PCa) relies on the activation of the androgen receptor (AR) by androgens. Despite efforts to block this pathway through androgen deprivation therapy, resistance can occur through several mechanisms, including the abnormal activation of AR, resulting in castration-resistant PCa following the introduction of treatment. Mutations, amplifications, and splicing variants in AR-related genes have garnered attention in this regard. Furthermore, recent large-scale next-generation sequencing analysis has revealed the critical roles of AR and AR-related genes, as well as the DNA repair, PI3K, and cell cycle pathways, in the onset and progression of PCa. Moreover, research on epigenomics and microRNA has increasingly become popular; however, it has not translated into the development of effective therapeutic strategies. Additionally, treatments targeting homologous recombination repair mutations and the PI3K/Akt pathway have been developed and are increasingly accessible, and multiple clinical trials have investigated the efficacy of immune checkpoint inhibitors. In this comprehensive review, we outline the status of PCa research in genomics and briefly explore potential future developments in the field of epigenetic modifications and microRNAs.
Collapse
Affiliation(s)
- Shigekatsu Maekawa
- Department of Urology, Iwate Medical University, Iwate 028-3694, Japan; (R.T.); (W.O.)
| | | | | |
Collapse
|
4
|
Ma C, Wang X, Dai JY, Turman C, Kraft P, Stopsack KH, Loda M, Pettersson A, Mucci LA, Stanford JL, Penney KL. Germline Genetic Variants Associated with Somatic TMPRSS2:ERG Fusion Status in Prostate Cancer: A Genome-Wide Association Study. Cancer Epidemiol Biomarkers Prev 2023; 32:1436-1443. [PMID: 37555839 PMCID: PMC10592169 DOI: 10.1158/1055-9965.epi-23-0275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/12/2023] [Accepted: 08/04/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND The prostate cancer subtype defined by the presence of TMPRSS2:ERG has been shown to be molecularly and epidemiologically distinct. However, few studies have investigated germline genetic variants associating with TMPRSS2:ERG fusion status. METHODS We performed a genome-wide association study with 396 TMPRSS2:ERG(+) cases, 390 TMPRSS2:ERG(-) cases, and 2,386 cancer-free controls from the Physicians' Health Study (PHS), the Health Professionals Follow-up Study (HPFS), and a Seattle-based Fred Hutchinson (FH) Cancer Center Prostate Cancer Study. We applied logistic regression models to test the associations between ∼5 million SNPs with TMPRSS2:ERG fusion status accounting for population stratification. RESULTS We did not identify genome-wide significant variants comparing the TMPRSS2:ERG(+) to the TMPRSS2:ERG(-) prostate cancer cases in the meta-analysis. When comparing TMPRSS2:ERG(+) prostate cancer cases with controls without prostate cancer, 10 genome-wide significant SNPs on chromosome 17q24.3 were observed in the meta-analysis. When comparing TMPRSS2:ERG(-) prostate cancer cases with controls without prostate cancer, two SNPs on chromosome 8q24.21 in the meta-analysis reached genome-wide significance. CONCLUSIONS We observed SNPs at several known prostate cancer risk loci (17q24.3, 1q32.1, and 8q24.21) that were differentially and exclusively associated with the risk of developing prostate tumors either with or without the gene fusion. IMPACT Our findings suggest that tumors with the TMPRSS2:ERG fusion exhibit a different germline genetic etiology compared with fusion negative cases.
Collapse
Affiliation(s)
- Chaoran Ma
- Department of Nutrition, University of Massachusetts Amherst, Amherst, MA
| | - Xiaoyu Wang
- Division of Public Health Sciences, Fred Hutchison Cancer Center, Seattle, WA
| | - James Y. Dai
- Division of Public Health Sciences, Fred Hutchison Cancer Center, Seattle, WA
- Department of Biostatistics, University of Washington School of Public Health, Seattle, WA
| | - Constance Turman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Konrad H. Stopsack
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | | | - Andreas Pettersson
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | - Lorelei A. Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Janet L. Stanford
- Division of Public Health Sciences, Fred Hutchison Cancer Center, Seattle, WA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA
| | - Kathryn L. Penney
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
5
|
Lin TT, Zhang T, Kitata RB, Liu T, Smith RD, Qian WJ, Shi T. Mass spectrometry-based targeted proteomics for analysis of protein mutations. MASS SPECTROMETRY REVIEWS 2023; 42:796-821. [PMID: 34719806 PMCID: PMC9054944 DOI: 10.1002/mas.21741] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/28/2021] [Accepted: 10/07/2021] [Indexed: 05/03/2023]
Abstract
Cancers are caused by accumulated DNA mutations. This recognition of the central role of mutations in cancer and recent advances in next-generation sequencing, has initiated the massive screening of clinical samples and the identification of 1000s of cancer-associated gene mutations. However, proteomic analysis of the expressed mutation products lags far behind genomic (transcriptomic) analysis. With comprehensive global proteomics analysis, only a small percentage of single nucleotide variants detected by DNA and RNA sequencing have been observed as single amino acid variants due to current technical limitations. Proteomic analysis of mutations is important with the potential to advance cancer biomarker development and the discovery of new therapeutic targets for more effective disease treatment. Targeted proteomics using selected reaction monitoring (also known as multiple reaction monitoring) and parallel reaction monitoring, has emerged as a powerful tool with significant advantages over global proteomics for analysis of protein mutations in terms of detection sensitivity, quantitation accuracy and overall practicality (e.g., reliable identification and the scale of quantification). Herein we review recent advances in the targeted proteomics technology for enhancing detection sensitivity and multiplexing capability and highlight its broad biomedical applications for analysis of protein mutations in human bodily fluids, tissues, and cell lines. Furthermore, we review recent applications of top-down proteomics for analysis of protein mutations. Unlike the commonly used bottom-up proteomics which requires digestion of proteins into peptides, top-down proteomics directly analyzes intact proteins for more precise characterization of mutation isoforms. Finally, general perspectives on the potential of achieving both high sensitivity and high sample throughput for large-scale targeted detection and quantification of important protein mutations are discussed.
Collapse
Affiliation(s)
- Tai-Tu Lin
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Tong Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Reta B. Kitata
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| |
Collapse
|
6
|
Raina K, Kant R, Prasad RR, Kandhari K, Tomar M, Mishra N, Kumar R, Fox JT, Sei S, Shoemaker RH, Chen Y, Maroni P, Agarwal C, Agarwal R. Characterization of stage-specific tumor progression in TMPRSS2-ERG (fusion)-driven and non-fusion-driven prostate cancer in GEM models. Mol Carcinog 2022; 61:717-734. [PMID: 35452553 PMCID: PMC10007524 DOI: 10.1002/mc.23413] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 01/29/2023]
Abstract
In the present study, we performed a comparative stage-specific pathological and molecular marker evaluation of TMPRSS2-ERG fusion and PTEN loss-driven (TMPRSS2-ERG. Ptenflox/flox ) versus non-fusion-driven prostate tumorigenesis (Hi-Myc) in mice. Anterior, ventral, and dorsolateral prostates were collected from mice at different ages (or time points post-Cre induction). Results indicated that growth and progression of prostatic intraepithelial lesions to adenocarcinoma stages occurred in both mice models albeit at different rates. In the TMPRSS2-ERG. Ptenflox/flox mice, the initiation of tumorigenesis was slow, but subsequent progression through different stages became increasingly faster. Adenocarcinoma stage was reached early on; however, no high-grade undifferentiated tumors were observed. Conversely, in the Hi-Myc+/- mice, tumorigenesis initiation was rapid; however, progression through different stages was relatively slower and it took a while to reach the more aggressive phenotype stage. Nevertheless, at the advanced stages in the Hi-Myc+/- mice, high-grade undifferentiated tumors were observed compared to the later stage tumors observed in the fusion-driven TMPRSS2-ERG. Ptenflox/flox mice. These results were corroborated by the stage specific-pattern in the molecular expression of proliferation markers (PCNA and c-Myc); androgen receptor (AR); fusion-resultant overexpression of ERG; Prostein (SLC45-A3); and angiogenesis marker (CD-31). Importantly, there was a significant increase in immune cell infiltrations, which increased with the stage of tumorigenesis, in the TMPRSS2-ERG fusion-positive tumors relative to fusion negative tumors. Together, these findings are both novel and highly significant in establishing a working preclinical model for evaluating the efficacy of interventions during different stages of tumorigenesis in TMPRSS2-ERG fusion-driven PCa.
Collapse
Affiliation(s)
- Komal Raina
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Pharmaceutical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Rama Kant
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ram R Prasad
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kushal Kandhari
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Munendra Tomar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Neha Mishra
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Robin Kumar
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Jennifer T Fox
- Division of Cancer Prevention, Chemopreventive Agent Development Research Group, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Shizuko Sei
- Division of Cancer Prevention, Chemopreventive Agent Development Research Group, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Robert H Shoemaker
- Division of Cancer Prevention, Chemopreventive Agent Development Research Group, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Yu Chen
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Paul Maroni
- Department of Surgery, Division of Urology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
7
|
Transcription associated cyclin-dependent kinases as therapeutic targets for prostate cancer. Oncogene 2022; 41:3303-3315. [PMID: 35568739 PMCID: PMC9187515 DOI: 10.1038/s41388-022-02347-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/21/2022] [Accepted: 05/04/2022] [Indexed: 11/08/2022]
Abstract
Transcriptional deregulation has emerged as a hallmark of several cancer types. In metastatic castration-resistant prostate cancer, a stage in which systemic androgen deprivation therapies fail to show clinical benefit, transcriptional addiction to the androgen receptor is maintained in most patients. This has led to increased efforts to find novel therapies that prevent oncogenic transactivation of the androgen receptor. In this context, a group of druggable protein kinases, known as transcription associated cyclin-dependent kinases (tCDKs), show great potential as therapeutic targets. Despite initial reservations about targeting tCDKs due to their ubiquitous and prerequisite nature, preclinical studies showed that selectively inhibiting such kinases could provide sufficient therapeutic window to exert antitumour effects in the absence of systemic toxicity. As a result, several highly specific inhibitors are currently being trialled in solid tumours, including prostate cancer. This article summarises the roles of tCDKs in regulating gene transcription and highlights rationales for their targeting in prostate cancer. It provides an overview of the most recent developments in this therapeutic area, including the most recent clinical advances, and discusses the utility of tCDK inhibitors in combination with established cancer agents.
Collapse
|
8
|
Dadhania V, Gonzalez D, Yousif M, Cheng J, Morgan TM, Spratt DE, Reichert ZR, Mannan R, Wang X, Chinnaiyan A, Cao X, Dhanasekaran SM, Chinnaiyan AM, Pantanowitz L, Mehra R. Leveraging artificial intelligence to predict ERG gene fusion status in prostate cancer. BMC Cancer 2022; 22:494. [PMID: 35513774 PMCID: PMC9069768 DOI: 10.1186/s12885-022-09559-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/17/2022] [Indexed: 11/30/2022] Open
Abstract
Background TMPRSS2-ERG gene rearrangement, the most common E26 transformation specific (ETS) gene fusion within prostate cancer, is known to contribute to the pathogenesis of this disease and carries diagnostic annotations for prostate cancer patients clinically. The ERG rearrangement status in prostatic adenocarcinoma currently cannot be reliably identified from histologic features on H&E-stained slides alone and hence requires ancillary studies such as immunohistochemistry (IHC), fluorescent in situ hybridization (FISH) or next generation sequencing (NGS) for identification. Methods Objective We accordingly sought to develop a deep learning-based algorithm to identify ERG rearrangement status in prostatic adenocarcinoma based on digitized slides of H&E morphology alone. Design Setting, and Participants: Whole slide images from 392 in-house and TCGA cases were employed and annotated using QuPath. Image patches of 224 × 224 pixel were exported at 10 ×, 20 ×, and 40 × for input into a deep learning model based on MobileNetV2 convolutional neural network architecture pre-trained on ImageNet. A separate model was trained for each magnification. Training and test datasets consisted of 261 cases and 131 cases, respectively. The output of the model included a prediction of ERG-positive (ERG rearranged) or ERG-negative (ERG not rearranged) status for each input patch. Outcome measurements and statistical analysis: Various accuracy measurements including area under the curve (AUC) of the receiver operating characteristic (ROC) curves were used to evaluate the deep learning model. Results and Limitations All models showed similar ROC curves with AUC results ranging between 0.82 and 0.85. The sensitivity and specificity of these models were 75.0% and 83.1% (20 × model), respectively. Conclusions A deep learning-based model can successfully predict ERG rearrangement status in the majority of prostatic adenocarcinomas utilizing only H&E-stained digital slides. Such an artificial intelligence-based model can eliminate the need for using extra tumor tissue to perform ancillary studies in order to assess for ERG gene rearrangement in prostatic adenocarcinoma.
Collapse
Affiliation(s)
- Vipulkumar Dadhania
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Daniel Gonzalez
- Department of Pathology and Laboratory Medicine, Jackson Memorial Hospital, Miami, FL, USA
| | - Mustafa Yousif
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jerome Cheng
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Todd M Morgan
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Daniel E Spratt
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Zachery R Reichert
- Department of Medical Oncology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Rahul Mannan
- Michigan Center for Translational Pathology, Ann Arbor, MI, USA
| | - Xiaoming Wang
- Michigan Center for Translational Pathology, Ann Arbor, MI, USA
| | - Anya Chinnaiyan
- Michigan Center for Translational Pathology, Ann Arbor, MI, USA
| | - Xuhong Cao
- Michigan Center for Translational Pathology, Ann Arbor, MI, USA
| | | | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Urology, University of Michigan Medical School, Ann Arbor, MI, USA.,Michigan Center for Translational Pathology, Ann Arbor, MI, USA.,Rogel Cancer Center, Michigan Medicine, Ann Arbor, MI, USA.,Howard Hughes Medical Institute, Ann Arbor, MI, USA
| | - Liron Pantanowitz
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.,Rogel Cancer Center, Michigan Medicine, Ann Arbor, MI, USA
| | - Rohit Mehra
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA. .,Michigan Center for Translational Pathology, Ann Arbor, MI, USA. .,Rogel Cancer Center, Michigan Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
9
|
Lu G, Cai W, Wang X, Huang B, Zhao Y, Shao Y, Wang D. Identifying prognostic signatures in the microenvironment of prostate cancer. Transl Androl Urol 2022; 10:4206-4218. [PMID: 34984186 PMCID: PMC8661256 DOI: 10.21037/tau-21-819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/12/2021] [Indexed: 11/18/2022] Open
Abstract
Background An increasing number of studies has indicated that the tumor microenvironment (TME), an important component of tumor tissue, has clinicopathological significance in predicting disease outcome and therapeutic efficacy. However, little evidence in prostate cancer (PCa) is available. Methods The cohort of TCGA-PRAD (n=477) was used in this study. Based on the proportion of 22 types of immune cells calculated by CIBERSORT, the TME was classified by K-means clustering and differentially expressed genes (DEGs) were determined. The TMEscore was calculated based on cluster signature genes, which were obtained from DEGs by the random forest method, and the samples were classified into two subtypes. Analyses of somatic mutation and copy number variation (CNVs) were further conducted to identify the genetic characteristics of the two subtypes. Correlation analysis was performed to explore the correlation between TMEscore and the tumor response to immune checkpoint inhibitors (ICIs) as well as the prognosis of PCa. Results Based on the distribution of infiltrating immune cells in the TME, we constructed the TMEscore model and classified PCa samples into high and low TMEscore groups. Survival analysis indicated that the high TMEscore group had significantly better survival outcome than the low TMEscore group. Correlation analysis showed a significantly positive correlation between TMEscore and the known prognostic factors of PCa. Conclusions Our study indicates that the TMEscore could be a potential prognostic biomarker in PCa. A comprehensive description of the characteristics of TME may help predict the response to therapies and provide new treatment strategies for PCa patients.
Collapse
Affiliation(s)
- Guoliang Lu
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Weijing Cai
- Shanghai Tongshu Biotechnology Co., Ltd., Shanghai, China
| | - Xiaojing Wang
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Baoxing Huang
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yang Zhao
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yuan Shao
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Dawei Wang
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
10
|
Brady L, Carlsson J, Baird AM, Casey O, Vlajnic T, Murchan P, Cormican D, Costigan D, Gray S, Sheils O, O'Neill A, Watson RW, Andren O, Finn S. Correlation of integrated ERG/PTEN assessment with biochemical recurrence in prostate cancer. Cancer Treat Res Commun 2021; 29:100451. [PMID: 34507017 DOI: 10.1016/j.ctarc.2021.100451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/19/2021] [Accepted: 08/29/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Prostate cancer is a heterogeneous disease, with a complex molecular landscape that evolves throughout disease progression. Common alterations in genes such as ERG and PTEN have been attributed to worse prognosis. This study aimed to further examine the clinical relevance of PTEN and ERG expression in a cohort of patients with prostate cancer post radical prostatectomy. METHODS Tissue microarrays were constructed from 132 patients with prostate cancer from the Irish Prostate Cancer Research Consortium and University Hospital of Orebro, Sweden. Patients were divided into three groups - Group 1: biochemical recurrence, Group 2: no biochemical recurrence and Group 3: immediate progression after surgery. PTEN and ERG immunohistochemical analysis was performed and the association between expression levels and clinical parameters were compared. RESULTS Pathological stage pT3 tumours were more common at borderline significantly higher levels amongst patients who biochemically recurred when compared to patients who did not recur after radical prostatectomy (p = 0.05). ERG and PTEN expression levels were compared separately and concurrently across all three patient groups. Lack of ERG expression was strongly associated with immediate progression after surgery (p = 0.029). Loss of/low PTEN trended towards an association with immediate progression, however this was not statistically significant (p = 0.066). CONCLUSION In this study, negative ERG expression was strongly associated with immediate biochemical progression after radical prostatectomy. Moreover, a trend towards a relationship between aberrant PTEN expression and progression was observed. Additional studies with long-term follow up data may provide further clinical insight into the genomic heterogeneity in this population.
Collapse
Affiliation(s)
- Lauren Brady
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Jessica Carlsson
- Department of Urology, Faculty of Medicine and Health, Örebro University, Orebro, Sweden
| | - Anne-Marie Baird
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Orla Casey
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Tatjana Vlajnic
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Switzerland
| | - Pierre Murchan
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - David Cormican
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Danielle Costigan
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Steven Gray
- Thoracic Oncology Research Group, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Orla Sheils
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Amanda O'Neill
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - R William Watson
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Ove Andren
- Department of Urology, Faculty of Medicine and Health, Örebro University, Orebro, Sweden
| | - Stephen Finn
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland; Department of Histopathology, St James's Hospital, Dublin, Ireland.
| |
Collapse
|
11
|
Wei T, Lu J, Ma T, Huang H, Kocher JP, Wang L. Re-Evaluate Fusion Genes in Prostate Cancer. Cancer Inform 2021; 20:11769351211027592. [PMID: 34234399 PMCID: PMC8226361 DOI: 10.1177/11769351211027592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 06/06/2021] [Indexed: 11/15/2022] Open
Abstract
Background: Thousands of gene fusions have been reported in prostate cancer, but their
authenticity, incidence, and tumor specificity have not been thoroughly
evaluated, nor have their genomic characteristics been carefully
explored. Methods: We developed FusionVet to dedicatedly validate known fusion genes using
RNA-seq alignments. Using FusionVet, we re-assessed 2727 gene fusions
reported from 36 studies using the RNA-seq data generated by The Cancer
Genome Atlas (TCGA). We also explored their genomic characteristics and
interrogated the transcriptomic and DNA methylomic consequences of the E26
transformation-specific (ETS) fusions. Results: We found that nearly two-thirds of reported fusions are intra-chromosomal,
and 80% of them were formed between 2 protein-coding genes. Although most
(76%) genes were fused to only 1 partner, we observed many fusion hub genes
that have multiple fusion partners, including ETS family genes, androgen
receptor signaling pathway genes, tumor suppressor genes, and
proto-oncogenes. More than 90% of the reported fusions cannot be validated
by TCGA RNA-seq data. For those fusions that can be validated, 5% were
detected from tumor and normal samples with similar frequencies, and only 4%
(120 fusions) were tumor-specific. The occurrences of ERG,
ETV1, and ETV4 fusions were mutually
exclusive, and their fusion statuses were tightly associated with
overexpressions. Besides, we found ERG fusions were
significantly co-occurred with PTEN deletion but mutually
exclusive with common genomic alterations such as SPOP
mutation and FOXA1 mutation. Conclusions: Most of the reported fusion genes cannot be validated by TCGA samples. The
ETS family and androgen response genes were significantly enriched in
prostate cancer–specific fusion genes. Transcription activity was
significantly repressed, and the DNA methylation was significantly increased
in samples carrying ERG fusion.
Collapse
Affiliation(s)
- Ting Wei
- Division of Computational Biology, College of Medicine and Science, Mayo Clinic, Rochester, MN, USA
| | - Ji Lu
- Department of Urology, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Tao Ma
- Division of Computational Biology, College of Medicine and Science, Mayo Clinic, Rochester, MN, USA
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Rochester, MN, USA
| | - Jean-Pierre Kocher
- Division of Computational Biology, College of Medicine and Science, Mayo Clinic, Rochester, MN, USA
| | - Liguo Wang
- Division of Computational Biology, College of Medicine and Science, Mayo Clinic, Rochester, MN, USA.,Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Rochester, MN, USA.,Bioinformatics and Computational Biology Graduate Program, University of Minnesota Rochester, Rochester, MN, USA
| |
Collapse
|
12
|
Endothelial ERG alleviates cardiac fibrosis via blocking endothelin-1-dependent paracrine mechanism. Cell Biol Toxicol 2021; 37:873-890. [PMID: 33469864 DOI: 10.1007/s10565-021-09581-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022]
Abstract
Cardiac endothelium communicates closely with adjacent cardiac cells by multiple cytokines and plays critical roles in regulating fibroblasts proliferation, activation, and collagen synthesis during cardiac fibrosis. E26 transformation-specific (ETS)-related gene (ERG) belongs to the ETS transcriptional factor family and is required for endothelial cells (ECs) homeostasis and cardiac development. This study aims at investigating the potential role and molecular basis of ERG in fibrotic remodeling within the adult heart. We observed that ERG was abundant in murine hearts, especially in cardiac ECs, but decreased during cardiac fibrosis. ERG knockdown within murine hearts caused spontaneously cardiac fibrosis and dysfunction, accompanied by the activation of multiple Smad-dependent and independent pathways. However, the direct silence of ERG in cardiac fibroblasts did not affect the expression of fibrotic markers. Intriguingly, ERG knockdown in human umbilical vein endothelial cells (HUVECs) promoted the secretion of endothelin-1 (ET-1), which subsequently accelerated the proliferation, phenotypic transition, and collagen synthesis of cardiac fibroblasts in a paracrine manner. Suppressing ET-1 with either a neutralizing antibody or a receptor blocker abolished ERG knockdown-mediated deleterious effect in vivo and in vitro. This pro-fibrotic effect was also negated by RGD (Arg-Gly-Asp)-peptide magnetic nanoparticles target delivery of ET-1 small interfering RNA to ECs in mice. More importantly, we proved that endothelial ERG overexpression notably prevented pressure overload-induced cardiac fibrosis. Collectively, endothelial ERG alleviates cardiac fibrosis via blocking ET-1-dependent paracrine mechanism and it functions as a candidate for treating cardiac fibrosis. • ERG is abundant in murine hearts, especially in cardiac ECs, but decreased during fibrotic remodeling. • ERG knockdown causes spontaneously cardiac fibrosis and dysfunction. • ERG silence in HUVECs promotes the secretion of endothelin-1, which in turn activates cardiac fibroblasts in a paracrine manner. • Endothelial ERG overexpression prevents pressure overload-induced cardiac fibrosis.
Collapse
|
13
|
Compérat E, Wasinger G, Oszwald A, Kain R, Cancel-Tassin G, Cussenot O. The Genetic Complexity of Prostate Cancer. Genes (Basel) 2020; 11:E1396. [PMID: 33255593 PMCID: PMC7760266 DOI: 10.3390/genes11121396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 01/09/2023] Open
Abstract
Prostate cancer (PCa) is a major concern in public health, with many genetically distinct subsets. Genomic alterations in PCa are extraordinarily complex, and both germline and somatic mutations are of great importance in the development of this tumor. The aim of this review is to provide an overview of genetic changes that can occur in the development of PCa and their role in potential therapeutic approaches. Various pathways and mechanisms proposed to play major roles in PCa are described in detail to provide an overview of current knowledge.
Collapse
Affiliation(s)
- Eva Compérat
- CeRePP/GRC5 Predictive Onco-Urology, Sorbonne University, 75020 Paris, France; (G.C.-T.); (O.C.)
- Department of Pathology, Hôpital Tenon, Sorbonne University, 75020 Paris, France
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria; (G.W.); (A.O.); (R.K.)
| | - Gabriel Wasinger
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria; (G.W.); (A.O.); (R.K.)
| | - André Oszwald
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria; (G.W.); (A.O.); (R.K.)
| | - Renate Kain
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria; (G.W.); (A.O.); (R.K.)
| | - Geraldine Cancel-Tassin
- CeRePP/GRC5 Predictive Onco-Urology, Sorbonne University, 75020 Paris, France; (G.C.-T.); (O.C.)
| | - Olivier Cussenot
- CeRePP/GRC5 Predictive Onco-Urology, Sorbonne University, 75020 Paris, France; (G.C.-T.); (O.C.)
- Department of Urology, Hôpital Tenon, Sorbonne University, 75020 Paris, France
| |
Collapse
|
14
|
Luo L, Zheng Y, Li M, Lin X, Li X, Li X, Cui L, Luo H. TMPRSS2 Correlated With Immune Infiltration Serves as a Prognostic Biomarker in Prostatic Adenocarcinoma: Implication for the COVID-2019. Front Genet 2020; 11:575770. [PMID: 33193689 PMCID: PMC7556306 DOI: 10.3389/fgene.2020.575770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/07/2020] [Indexed: 01/11/2023] Open
Abstract
Type 2 transmembrane serine protease (TMPRSS2) is a new member of the serine proteases, and studies have shown that TMPRSS2 plays a role in the occurrence of prostate malignancies and is closely related to the occurrence of the coronavirus disease 2019 (COVID-19). However, the role of TMPRSS2 in prostatic adenocarcinoma (PRAD) remains largely unclear. To better explore its function in PRAD, we examined the expression level of TMPRSS2 in the GEO, tumor immune assessment resource (TIMER), as well as Oncomine databases and studied the association between TMPRSS2 and overall survival (OS) rates in the UALCAN and gene expression profiling interactive analysis (GEPIA) databases. In addition, we studied the correlation of the level of immune infiltration and markers of immune cell type in the TIMER database, analyzed the prognosis based on the expression level of TMPRSS2 in the related immune cell subsets, and determined the methylation profile of TMPRSS2 promoter by UALCAN database. Subsequently, we conducted a survival analysis and gene ontology (GO) pathway analysis in the TISID database and detected the expression of TMPRSS2 in the Human Protein Atlas (HPA) database. We also studied the protein-protein interaction (PPI) network of TMPRSS2 in the GENEMANIA database. Additionally, we used the microarray GSE56677 and GSE52920 to illustrate changes in TMPRSS2 expression in vivo and in vitro after severe acute respiratory syndrome-coronavirus (SARS-COV) infection, finding that expression of TMPRSS2 decreased after SARS-COV infection in vitro. The function of TMPRSS2 in the dataset was further verified by gene set enrichment analysis (GSEA). In conclusion, the expression of TMPRSS2 is significantly increased in PRAD, elevated TMPRSS2 is associated with immune infiltration, and prognosis is positively correlated. In addition, tumor tissue from COVID-19 patients with PRAD may be more susceptible to infection with SARS-COV-2, which may render the prognosis gets worse.
Collapse
Affiliation(s)
- Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Yushi Zheng
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Mingyue Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Xinjie Lin
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Xiaodi Li
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Xiaoling Li
- Animal Experiment Center, Guangdong Medical University, Zhanjiang, China
| | - Liao Cui
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
| | - Hui Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
15
|
Chakravarty D, Huang L, Kahn M, Tewari AK. Immunotherapy for Metastatic Prostate Cancer: Current and Emerging Treatment Options. Urol Clin North Am 2020; 47:487-510. [PMID: 33008499 DOI: 10.1016/j.ucl.2020.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The advent of immunotherapy has revolutionized cancer treatment. Prostate cancer has an immunosuppressive microenvironment and a low tumor mutation burden, resulting in low neoantigen expression. The consensus was that immunotherapy would be less effective in prostate cancer. However, recent studies have reported that prostate cancer does have a high number of DNA damage and repair gene defects. Immunotherapies that have been tested in prostate cancer so far have been mainly vaccines and checkpoint inhibitors. A combination of genomically targeted therapies, with approaches to alleviate immune response and thereby make the tumor microenvironment immunologically hot, is promising.
Collapse
Affiliation(s)
- Dimple Chakravarty
- Department of Urology and the Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Li Huang
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Matthew Kahn
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ashutosh K Tewari
- Department of Urology and the Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
16
|
Clonal evaluation of prostate cancer molecular heterogeneity in biopsy samples by dual immunohistochemistry and dual RNA in situ hybridization. Mod Pathol 2020; 33:1791-1801. [PMID: 32238875 DOI: 10.1038/s41379-020-0525-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
Abstract
Prostate cancer is frequently multifocal. Although there may be morphological variation, the genetic underpinnings of each tumor are not clearly understood. To assess the inter and intra tumor molecular heterogeneity in prostate biopsy samples, we developed a combined immunohistochemistry and RNA in situ hybridization method for the simultaneous evaluation of ERG, SPINK1, ETV1, and ETV4. Screening of 601 biopsy cores from 120 consecutive patients revealed multiple alterations in a mutually exclusive manner in 37% of patients, suggesting multifocal tumors with considerable genetic differences. Furthermore, the incidence of molecular heterogeneity was higher in African Americans patients compared with Caucasian American patients. About 47% of the biopsy cores with discontinuous tumor foci showed clonal differences with distinct molecular aberrations. ERG positivity occurred in low-grade cancer, whereas ETV4 expression was observed mostly in high-grade cancer. Further studies revealed correlation between the incidence of molecular markers and clinical and pathologic findings, suggesting potential implications for diagnostic pathology practice, such as defining dominant tumor nodules and discriminating juxtaposed but molecularly different tumors of different grade patterns.
Collapse
|
17
|
Hashim D, Gonzalez-Feliciano AG, Ahearn TU, Pettersson A, Barber L, Pernar CH, Ebot EM, Isikbay M, Finn SP, Giovannucci EL, Lis RT, Loda M, Parmigiani G, Lotan T, Kantoff PW, Mucci LA, Graff RE. Family history of prostate cancer and the incidence of ERG- and phosphatase and tensin homolog-defined prostate cancer. Int J Cancer 2020; 146:2694-2702. [PMID: 31318977 DOI: 10.1002/ijc.32577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 06/18/2019] [Accepted: 06/28/2019] [Indexed: 01/08/2023]
Abstract
Family history is among the strongest known risk factors for prostate cancer (PCa). Emerging data suggest molecular subtypes of PCa, including two somatic genetic aberrations: fusions of androgen-regulated promoters with ERG and, separately, phosphatase and tensin homolog (PTEN) loss. We examined associations between family history and incidence of these subtypes in 44,126 men from the prospective Health Professionals Follow-up Study. ERG and PTEN status were assessed by immunohistochemistry. Multivariable competing risks models were used to estimate hazard ratios (HR) and 95% confidence intervals (CI) for associations between self-reported family history of PCa and molecular subtypes of disease. Thirteen percent of men had a positive family history of PCa at baseline. During a median follow-up of 18.5 years, 5,511 PCa cases were diagnosed. Among them, 888 were assayed for ERG status (47% ERG-positive) and 715 were assayed for PTEN loss (14% PTEN null). Family history was more strongly associated with risk of ERG-negative (HR: 2.15; 95% CI: 1.71-2.70) than ERG-positive (HR: 1.49; 95% CI: 1.13-1.95) disease (pheterogeneity : 0.04). The strongest difference was among men with an affected father (HRERG-negative : 2.09; 95% CI: 1.64-2.66; HRERG-positive : 1.30; 95% CI: 0.96-1.76; pheterogeneity : 0.01). Family history of PCa was positively associated with both PTEN null (HR: 2.10; 95% CI: 1.26-3.49) and PTEN intact (HR: 1.72; 95% CI: 1.39-2.13) PCa (pheterogeneity : 0.47). Our results indicate that PCa family history may be positively associated with PCa in all ERG and PTEN subtypes, suggesting a role of genetic susceptibility in their development. It is possible that ERG-negative disease could be especially associated with positive family history.
Collapse
Affiliation(s)
- Dana Hashim
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY
| | | | - Thomas U Ahearn
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA.,Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Andreas Pettersson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA.,Clinical Epidemiology Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Lauren Barber
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Claire H Pernar
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Ericka M Ebot
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Masis Isikbay
- Department of Surgery, University of California, San Francisco, San Francisco, CA
| | - Stephen P Finn
- Department of Histopathology, St. James's Hospital and Trinity College Dublin Medical School, Dublin, Ireland
| | - Edward L Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA.,Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Rosina T Lis
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Massimo Loda
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Giovanni Parmigiani
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA.,Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Tamara Lotan
- Department of Pathology, Johns Hopkins Bayview Medical Center, Baltimore, MD
| | - Philip W Kantoff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA.,Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Rebecca E Graff
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA.,Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
18
|
Abstract
Multiple studies have confirmed that speckle-type pox virus and zinc finger (POZ) protein (SPOP) functions as a substrate adaptor of cullin 3-based E3 ligase and has a crucial role in various cellular processes via specific targeting of proteins for ubiquitination and subsequent proteasomal degradation. Dysregulation of SPOP-mediated proteolysis might be involved in the development and progression of human prostate and kidney cancers. In prostate cancer, SPOP seems to function as a tumour suppressor by targeting several proteins, including androgen receptor (AR), steroid receptor coactivator 3 (SRC3) and BRD4, for degradation, whereas it might function as an oncoprotein in kidney cancer, for example, by targeting phosphatase and tensin homologue (PTEN) for proteasomal degradation. In addition, nuclear SPOP targets AR for degradation and has a role as a tumour suppressor in prostate cancer; however, in kidney cancer, SPOP largely accumulates in the cytoplasm and fails to promote degradation of AR located in the nucleus, resulting in activation of AR-driven pathways and cancer progression. Owing to the context-dependent function of SPOP in human malignancies, further assessment of the molecular mechanisms involving SPOP in prostate and kidney cancers is needed to improve our understanding of its role in the development of these cancer types. Treatments that target SPOP might become therapeutic strategies in these malignancies in the future.
Collapse
|
19
|
Association of germline genetic variants with TMPRSS2-ERG fusion status in prostate cancer. Oncotarget 2020; 11:1321-1333. [PMID: 32341752 PMCID: PMC7170497 DOI: 10.18632/oncotarget.27534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/03/2020] [Indexed: 12/24/2022] Open
Abstract
Introduction: Oncogenic activation of ERG resulting from TMPRSS2-ERG gene fusion is a key molecular genetic alteration in prostate cancer (CaP). The frequency of ERG fusion is variable by race; however, there are limited data available on germline polymorphisms associating with ERG fusion status. The goal of this study is to identify the inherited risk variants associating with ERG status of CaP. Materials and Methods: SNP genotyping was performed on the Illumina platform using Infinium Oncoarray SNP chip on blood derived genomic DNA samples from 400 patients treated by radical prostatectomy at a single military institution. ERG status was determined in whole mounted prostate specimens by immuno-histochemistry (IHC) for ERG protein expression. Data analysis approaches included association analyses based on EMMAX and imputation by IMPUTE2. Imputed SNPs were validated by ddPCR. Results: SNP genotyping analysis using imputation identified rs34349373 (p 4.68 × 10-8) and rs2055272 (p 5.62 × 10-8) in TBC1D22B to be significantly associated with ERG fusion status in index tumor and non-index tumor foci. Imputed SNP rs2055272 was further experimentally validated by ddPCR with 98.04% (100/102) concordance. Initial discovery analysis based on SNPs on Oncoarray SNP chip, showed significant (p 10-5) association for SNPs (rs6698333, rs1889877, rs3798999, rs10215144, rs3818136, rs9380660 and rs1792695) with ERG fusion status. The study also replicated two previously known ERG fusion associated SNPs (rs11704416 in chromsome 22; rs16901979 in chromosome 8). Conclusions: This study identified SNPs associated with ERG status of CaP. Impact: The findings may contribute towards defining the underlying genetics of ERG positive and ERG negative CaP patients.
Collapse
|
20
|
Liu J, Yan J, Mao R, Ren G, Liu X, Zhang Y, Wang J, Wang Y, Li M, Qiu Q, Wang L, Liu G, Jin S, Ma L, Ma Y, Zhao N, Zhang H, Lin B. Exome sequencing identified six copy number variations as a prediction model for recurrence of primary prostate cancers with distinctive prognosis. Transl Cancer Res 2020; 9:2231-2242. [PMID: 35117583 PMCID: PMC8798897 DOI: 10.21037/tcr.2020.03.31] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/05/2020] [Indexed: 01/12/2023]
Abstract
Background Prostate cancer (PCa) is a common type of malignancy, which represents one of the leading causes of death among men worldwide. Copy number variations (CNVs) and gene fusions play important roles in PCa and may serve as markers for the prognosis of this condition. Methods We have presently conducted an analysis of CNVs and gene fusions in PCa, using whole exome sequencing (WES) data of primary tumors. For this, a cohort of 74 PCa patients, including 30 recurrent and 44 non-recurrent cases, were assessed during 5 years of follow-up. Results We have identified 66 CNVs that were specific to the primary tumor tissues from the recurrent PCa group. Most of duplicated genomic regions were located in 8q2, suggesting that this chromosomal region could be important for the prognosis of PCa. Meanwhile, we have developed a random forest model, using six selected CNVs, with an accuracy near 90% for predicting PCa recurrence according to a 10-fold cross validation. In addition, we have detected 16 recurrent oncogenic gene fusions in PCa. Among these, ALK (ALK receptor tyrosine kinase)-involved fusions were the most common type of gene fusion (n=7). Four of these fusions (i.e., EML4-ALK, STRN-ALK, CLTC-ALK, ETV6-ALK) were previously identified in other cancer types, while the remaining three gene fusions (FRYL-ALK, ABL1-ALK, and BCR-ALK) were here identified. Conclusions Our findings expand the current understanding in regard to prostate carcinogenesis. Current data might be further used for assay development as well as to predict PCa recurrence, using primary tissues.
Collapse
Affiliation(s)
- Jie Liu
- College of Life Science, Zhejiang University, Hangzhou 310027, China.,Systems Biology Division, Zhejiang-California International NanoSystems Institute (ZCNI), Zhejiang University, Hangzhou 310027, China
| | - Jiajun Yan
- Department of Urology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, China
| | - Ruifang Mao
- Systems Biology Division, Zhejiang-California International NanoSystems Institute (ZCNI), Zhejiang University, Hangzhou 310027, China
| | - Guoping Ren
- Department of Pathology, The First Affiliated Hospital, Zhejiang University Medical College, Hangzhou 310003, China
| | - Xiaoyan Liu
- Department of Pathology, The First Affiliated Hospital, Zhejiang University Medical College, Hangzhou 310003, China
| | - Yanling Zhang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University Medical College, Hangzhou 310003, China.,Department of Gynecology and Obstetrics, Sir Run Run Shaw Hospital, Zhejiang University Medical College, Hangzhou 310016, China
| | - Jili Wang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University Medical College, Hangzhou 310003, China
| | - Yan Wang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University Medical College, Hangzhou 310003, China
| | - Meiling Li
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, China
| | - Qingchong Qiu
- Systems Biology Division, Zhejiang-California International NanoSystems Institute (ZCNI), Zhejiang University, Hangzhou 310027, China
| | - Lin Wang
- Systems Biology Division, Zhejiang-California International NanoSystems Institute (ZCNI), Zhejiang University, Hangzhou 310027, China
| | - Guanfeng Liu
- Systems Biology Division, Zhejiang-California International NanoSystems Institute (ZCNI), Zhejiang University, Hangzhou 310027, China
| | - Shanshan Jin
- Systems Biology Division, Zhejiang-California International NanoSystems Institute (ZCNI), Zhejiang University, Hangzhou 310027, China
| | - Liang Ma
- Systems Biology Division, Zhejiang-California International NanoSystems Institute (ZCNI), Zhejiang University, Hangzhou 310027, China
| | - Yingying Ma
- Systems Biology Division, Zhejiang-California International NanoSystems Institute (ZCNI), Zhejiang University, Hangzhou 310027, China
| | - Na Zhao
- Systems Biology Division, Zhejiang-California International NanoSystems Institute (ZCNI), Zhejiang University, Hangzhou 310027, China
| | - Hongwei Zhang
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, China
| | - Biaoyang Lin
- College of Life Science, Zhejiang University, Hangzhou 310027, China.,Systems Biology Division, Zhejiang-California International NanoSystems Institute (ZCNI), Zhejiang University, Hangzhou 310027, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310027, China.,Department of Urology, University of Washington, Seattle, WA, USA
| |
Collapse
|
21
|
Plante G, Bories PN, Denjean L, Pigat N, Sibony M, Goffin V, Barry Delongchamps N. [TMPRSS2-Erg/AR-V7: Prognostic value of tests in urine and biopsy rince material in prostate cancer]. Prog Urol 2020; 30:162-171. [PMID: 32127312 DOI: 10.1016/j.purol.2020.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/11/2020] [Accepted: 01/31/2020] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Nowadays, diagnostic biomarker research is oriented on a genomic characterisation of prostate cancer (PCa). This study evaluated diagnostic values of TMPRSS2-Erg fusion transcripts expression (TE) and androgen receptor variant 7 (AR-V7) on urine (tU) and biopsic rince material (tLRB) samples. MATERIALS AND METHODS TE and AR-V7 have been tested by RT-PCR and RT-qPCR on urine and biopsies' rince liquid on 372 patients referred for prostate biopsies. RESULTS Two hundred thirty-three patients (62%) were diagnosed with PCa. tU.AR-V7 was positive for 15 healthy patients (28%) and 30 patients diagnosed with PCa (37%). tLRB.AR-V7 was positive for 66 patients (42%) diagnosed with PCa. Concerning TE for patients diagnosed with PCa, tU was positive for 59 patients (54%) and tLRB for 132 (55%). TE and TE/AR-V7 combination were significantly associated with PCa (P<0.001), as tLRB.AR-V7 (P<0.001). Sensitivity and specificity for TE/AR-V7 combination for PCa were respectively: tU.TE/AR-V7 67% and 70%, tLRB.TE/AR-V7 68.8% and 71%, and, tUtLRB.TE/AR-V7 83% and 60%. There was no benefit for AR-V7 and TE association versus TE alone when comparing AUC. CONCLUSION AR-V7 is not specific of PCa because of detection on healthy patients. This study did not managed to show a sufficient diagnostic value for TE/AR-V7 combination on urine and biospic rince material tests. LEVEL OF EVIDENCE 3.
Collapse
Affiliation(s)
- G Plante
- Service d'urologie, CHU Cochin - Port-Royal, AP-HP, 123, boulevard de Port-Royal, 75014 Paris, France.
| | - P-N Bories
- Service de biologie, CHU Cochin - Port-Royal, AP-HP, 27, rue du Faubourg-Saint-Jacques, 75014 Paris, France
| | - L Denjean
- Service de biologie, CHU Cochin - Port-Royal, AP-HP, 27, rue du Faubourg-Saint-Jacques, 75014 Paris, France
| | - N Pigat
- Inserm U1151, INEM, université Paris Descartes, Paris, France
| | - M Sibony
- Service d'anatomopathologie, CHU Cochin-Port-Royal, AP-HP, 27, rue du Faubourg-Saint-Jacques, 75014 Paris, France
| | - V Goffin
- Inserm U1151, INEM, université Paris Descartes, Paris, France
| | - N Barry Delongchamps
- Service d'urologie, CHU Cochin - Port-Royal, AP-HP, 123, boulevard de Port-Royal, 75014 Paris, France; Inserm U1151, INEM, université Paris Descartes, Paris, France
| |
Collapse
|
22
|
Badal S, Aiken W, Morrison B, Valentine H, Bryan S, Gachi A, Ragin C. Disparities in prostate cancer incidence and mortality rates: Solvable or not? Prostate 2020; 80:3-16. [PMID: 31702061 PMCID: PMC8378246 DOI: 10.1002/pros.23923] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 10/18/2019] [Indexed: 12/21/2022]
Abstract
Prostate cancer (PCa) is recognized as a disease possessing not only great variation in its geographic and racial distribution but also tremendous variation in its potential to cause morbidity and death and it, therefore, ought not to be considered a homogenous disease entity. Morbidity and death from PCa are disproportionately higher in men of African ancestry (MAA) who are generally observed to have more aggressive disease and worse outcomes following treatment compared to men of European ancestry (MEA). The higher rates of PCa among MAA relative to MEA appear to be multifactorial and related to inherent differences in biological aggressiveness; a continued lack of awareness of the disease and methods of prevention; a lower prevalence of screen-detected PCa; comparatively lower access to quality healthcare as well as systemic and institutionalized disparities in the administration of optimal care to MAA in developed countries such as the United States of America where high-quality care is available. Even when access to quality healthcare is assured in equal access settings, it appears that MAA still have worse outcomes after PCa treatment stage-for-stage and grade-for-grade compared to MEA, suggesting that, inherent racial, ethnic and biological differences are paramount in predicting poor outcomes. This review has explored the different contributing factors to the current disparities in PCa incidence and mortality rates with emphasis on the incongruence in how research has been conducted in understanding the disease towards developing therapies.
Collapse
Affiliation(s)
- Simone Badal
- Department of Basic Medical Sciences, Faculty of Medical Sciences, University of the West Indies, Kingston, Jamaica
| | - William Aiken
- Department of Surgery, Faculty of Medical Sciences, University of the West Indies, Kingston, Jamaica
| | - Belinda Morrison
- Department of Surgery, Faculty of Medical Sciences, University of the West Indies, Kingston, Jamaica
| | - Henkel Valentine
- Department of Basic Medical Sciences, Faculty of Medical Sciences, University of the West Indies, Kingston, Jamaica
| | - Sophia Bryan
- Department of Basic Medical Sciences, Faculty of Medical Sciences, University of the West Indies, Kingston, Jamaica
| | - Andrew Gachi
- Department of pathology, Aga Khan University Hospital, 3 Avenue, Parklands, Nairobi, Kenya
| | - Camille Ragin
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- African Caribbean Cancer Consortium
| |
Collapse
|
23
|
The Genomic and Molecular Pathology of Prostate Cancer: Clinical Implications for Diagnosis, Prognosis, and Therapy. Adv Anat Pathol 2020; 27:11-19. [PMID: 31503032 DOI: 10.1097/pap.0000000000000245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Prostate cancer (PCa) is the most common noncutaneous malignancy affecting American men and the second most common cause of cancer death. The traditional risk classification schemes for PCa are limited due to the vast clinical and molecular heterogeneity of the disease. Fortunately, recent advancements in sequencing technologies have provided us with valuable insight into the genomics of PCa. To date, a wide array of recurrent genomic alterations in PCa have been identified. Incorporating these distinct molecular subtypes of PCa into prediction models provides opportunities for improved risk stratification and ultimately better patient outcomes. In this review, we summarize the key molecular subtypes of PCa and focus on those genomic alterations that have clinical implications for diagnosis, prognosis, and therapeutic response.
Collapse
|
24
|
Chen WS, Aggarwal R, Zhang L, Zhao SG, Thomas GV, Beer TM, Quigley DA, Foye A, Playdle D, Huang J, Lloyd P, Lu E, Sun D, Guan X, Rettig M, Gleave M, Evans CP, Youngren J, True L, Lara P, Kothari V, Xia Z, Chi KN, Reiter RE, Maher CA, Feng FY, Small EJ, Alumkal JJ. Genomic Drivers of Poor Prognosis and Enzalutamide Resistance in Metastatic Castration-resistant Prostate Cancer. Eur Urol 2019; 76:562-571. [PMID: 30928160 PMCID: PMC6764911 DOI: 10.1016/j.eururo.2019.03.020] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/13/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Metastatic castration-resistant prostate cancer (mCRPC) is the lethal form of the disease. Several recent studies have identified genomic alterations in mCRPC, but the clinical implications of these genomic alterations have not been fully elucidated. OBJECTIVE To use whole-genome sequencing (WGS) to assess the association between key driver gene alterations and overall survival (OS), and to use whole-transcriptome RNA sequencing to identify genomic drivers of enzalutamide resistance. DESIGN, SETTING, AND PARTICIPANTS We performed survival analyses and gene set enrichment analysis (GSEA) on WGS and RNA sequencing results for a cohort of 101 mCRPC patients. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS OS was the clinical endpoint for all univariate and multivariable survival analyses. Candidate drivers of enzalutamide resistance were identified in an unbiased manner, and mutations of the top candidate were further assessed for enrichment among enzalutamide-resistant patients using Fisher's exact test. RESULTS AND LIMITATIONS Harboring two DNA alterations in RB1 was independently predictive of poor OS (median 14.1 vs 42.0mo; p=0.007) for men with mCRPC. GSEA identified the Wnt/β-catenin pathway as the top differentially modulated pathway among enzalutamide-resistant patients. Furthermore, β-catenin mutations were exclusive to enzalutamide-resistant patients (p=0.01) and independently predictive of poor OS (median 13.6 vs 41.7mo; p=0.025). CONCLUSIONS The presence of two RB1 DNA alterations identified in our WGS analysis was independently associated with poor OS among men with mCRPC. The Wnt/β-catenin pathway plays an important role in enzalutamide resistance, with differential pathway expression and enrichment of β-catenin mutations in enzalutamide-resistant patients. Moreover, β-catenin mutations were predictive of poor OS in our cohort. PATIENT SUMMARY We observed a correlation between genomic findings for biopsy samples from metastases from men with metastatic castration-resistant prostate cancer (mCRPC) and clinical outcomes. This work sheds new light on clinically relevant genomic alterations in mCRPC and provides a roadmap for the development of new personalized treatment regimens in mCRPC.
Collapse
Affiliation(s)
- William S Chen
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA; Yale School of Medicine, New Haven, CT, USA
| | - Rahul Aggarwal
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA; Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Li Zhang
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | | | - George V Thomas
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Tomasz M Beer
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - David A Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Adam Foye
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA; Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Denise Playdle
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA; Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | - Paul Lloyd
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA; Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Eric Lu
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Duanchen Sun
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Xiangnan Guan
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Matthew Rettig
- University of California Los Angeles, Los Angeles, CA, USA; VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | | | | | - Jack Youngren
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA; Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | - Primo Lara
- University of California Davis, Davis, CA, USA
| | - Vishal Kothari
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Zheng Xia
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Kim N Chi
- University of British Columbia, Vancouver, Canada
| | | | | | - Felix Y Feng
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA; Departments of Radiation Oncology and Urology, University of California San Francisco, San Francisco, CA, USA
| | - Eric J Small
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA; Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| | - Joshi J Alumkal
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | | |
Collapse
|
25
|
Pseudogene Associated Recurrent Gene Fusion in Prostate Cancer. Neoplasia 2019; 21:989-1002. [PMID: 31446281 PMCID: PMC6713813 DOI: 10.1016/j.neo.2019.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 02/08/2023] Open
Abstract
We present the functional characterization of a pseudogene associated recurrent gene fusion in prostate cancer. The fusion gene KLK4-KLKP1 is formed by the fusion of the protein coding gene KLK4 with the noncoding pseudogene KLKP1. Screening of a cohort of 659 patients (380 Caucasian American; 250 African American, and 29 patients from other races) revealed that the KLK4-KLKP1 is expressed in about 32% of prostate cancer patients. Correlative analysis with other ETS gene fusions and SPINK1 revealed a concomitant expression pattern of KLK4-KLKP1 with ERG and a mutually exclusive expression pattern with SPINK1, ETV1, ETV4, and ETV5. Development of an antibody specific to KLK4-KLKP1 fusion protein confirmed the expression of the full-length KLK4-KLKP1 protein in prostate tissues. The in vitro and in vivo functional assays to study the oncogenic properties of KLK4-KLKP1 confirmed its role in cell proliferation, cell invasion, intravasation, and tumor formation. Presence of strong ERG and AR binding sites located at the fusion junction in KLK4-KLKP1 suggests that the fusion gene is regulated by ERG and AR. Correlative analysis of clinical data showed an association of KLK4-KLKP1 with lower preoperative PSA values and in young men (<50 years) with prostate cancer. Screening of patient urine samples showed that KLK4-KLKP1 can be detected noninvasively in urine. Taken together, we present KLK4-KLKP1 as a class of pseudogene associated fusion transcript in cancer with potential applications as a biomarker for routine screening of prostate cancer.
Collapse
|
26
|
Bhatia V, Ateeq B. Molecular Underpinnings Governing Genetic Complexity of ETS-Fusion-Negative Prostate Cancer. Trends Mol Med 2019; 25:1024-1038. [PMID: 31353123 DOI: 10.1016/j.molmed.2019.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/18/2019] [Accepted: 07/03/2019] [Indexed: 01/16/2023]
Abstract
Inter- and intra-patient molecular heterogeneity of primary and metastatic prostate cancer (PCa) confers variable clinical outcome and poses a formidable challenge in disease management. High-throughput integrative genomics and functional approaches have untangled the complexity involved in this disease and revealed a spectrum of diverse aberrations prevalent in various molecular subtypes, including ETS fusion negative. Emerging evidence indicates that SPINK1 upregulation, mutations in epigenetic regulators or chromatin modifiers, and SPOP are associated with the ETS-fusion negative subtype. Additionally, patients with defects in a DNA-repair pathway respond to poly-(ADP-ribose)-polymerase (PARP) inhibition therapies. Furthermore, a new class of immunogenic subtype defined by CDK12 biallelic loss has also been identified in ETS-fusion-negative cases. This review focuses on the emerging molecular underpinnings driving key oncogenic aberrations and advancements in therapeutic strategies of this disease.
Collapse
Affiliation(s)
- Vipul Bhatia
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, U.P., India
| | - Bushra Ateeq
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, U.P., India.
| |
Collapse
|
27
|
Latysheva NS, Babu MM. Molecular Signatures of Fusion Proteins in Cancer. ACS Pharmacol Transl Sci 2019; 2:122-133. [PMID: 32219217 PMCID: PMC7088938 DOI: 10.1021/acsptsci.9b00019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Indexed: 01/07/2023]
Abstract
![]()
Although gene fusions
are recognized as driver mutations in a wide
variety of cancers, the general molecular mechanisms underlying oncogenic
fusion proteins are insufficiently understood. Here, we employ large-scale
data integration and machine learning and (1) identify three functionally
distinct subgroups of gene fusions and their molecular signatures;
(2) characterize the cellular pathways rewired by fusion events across
different cancers; and (3) analyze the relative importance of over
100 structural, functional, and regulatory features of ∼2200
gene fusions. We report subgroups of fusions that likely act as driver
mutations and find that gene fusions disproportionately affect pathways
regulating cellular shape and movement. Although fusion proteins are
similar across different cancer types, they affect cancer type-specific
pathways. Key indicators of fusion-forming proteins include high and
nontissue specific expression, numerous splice sites, and higher centrality
in protein-interaction networks. Together, these findings provide
unifying and cancer type-specific trends across diverse oncogenic
fusion proteins.
Collapse
Affiliation(s)
- Natasha S Latysheva
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - M Madan Babu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
28
|
Hernández G, Ramírez JL, Pedroza-Torres A, Herrera LA, Jiménez-Ríos MA. The Secret Life of Translation Initiation in Prostate Cancer. Front Genet 2019; 10:14. [PMID: 30761182 PMCID: PMC6363655 DOI: 10.3389/fgene.2019.00014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 01/11/2019] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is the second most prevalent cancer in men worldwide. Despite the advances understanding the molecular processes driving the onset and progression of this disease, as well as the continued implementation of screening programs, PCa still remains a significant cause of morbidity and mortality, in particular in low-income countries. It is only recently that defects of the translation process, i.e., the synthesis of proteins by the ribosome using a messenger (m)RNA as a template, have begun to gain attention as an important cause of cancer development in different human tissues, including prostate. In particular, the initiation step of translation has been established to play a key role in tumorigenesis. In this review, we discuss the state-of-the-art of three key aspects of protein synthesis in PCa, namely, misexpression of translation initiation factors, dysregulation of the major signaling cascades regulating translation, and the therapeutic strategies based on pharmacological compounds targeting translation as a novel alternative to those based on hormones controlling the androgen receptor pathway.
Collapse
Affiliation(s)
- Greco Hernández
- Translation and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer, Mexico City, Mexico
| | - Jorge L. Ramírez
- Translation and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer, Mexico City, Mexico
| | - Abraham Pedroza-Torres
- Cátedra-CONACyT Program, Hereditary Cancer Clinic, National Institute of Cancer, Mexico City, Mexico
| | - Luis A. Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, The National Autonomous University of Mexico, Mexico City, Mexico
| | | |
Collapse
|
29
|
Characterize the difference between TMPRSS2-ERG and non-TMPRSS2-ERG fusion patients by clinical and biological characteristics in prostate cancer. Gene 2018; 679:186-194. [PMID: 30195632 DOI: 10.1016/j.gene.2018.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/10/2018] [Accepted: 09/05/2018] [Indexed: 11/23/2022]
Abstract
The TMPRSS2-ERG gene fusion were frequently found in prostate cancer, and thought to play some fundamental mechanisms for the development of prostate cancer. However, until now, the clinical and prognostic significance of TMPRSS2-ERG gene fusion was not fully understood. In this study, based on the 281 prostate cancers that constructed from a historical watchful waiting cohort, the statistically significant associations between TMPRSS2-ERG gene fusion and clinicopathologic characteristics were identified. In addition, the Elastic Net algorithm was used to predict the patients with TMPRSS2-ERG fusion status, and good predictive results were obtained, indicating that this algorithm was suitable to this prediction problem. The differential gene network was constructed from the network, and the KEGG enrichment analysis demonstrated that the module genes were significantly enriched in several important pathways.
Collapse
|
30
|
Song C, Chen H. Predictive significance of TMRPSS2- ERG fusion in prostate cancer: a meta-analysis. Cancer Cell Int 2018; 18:177. [PMID: 30459527 PMCID: PMC6233278 DOI: 10.1186/s12935-018-0672-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/31/2018] [Indexed: 11/23/2022] Open
Abstract
Background Prostate cancer is a major malignancy in males. TMPRSS2-ERG is a high-frequency fusion gene expressed in prostate cancer and plays a vital role in carcinogenesis. Recent studies showed that TMPRSS2-ERG is a potential predictive biomarker for prostate cancer. However, the predictive value of TMPRSS2-ERG fusion is yet unclear. Methods A total of 76 relevant articles, published from 2015 to 2017, were obtained from PubMed, Web of Science, EMBASE, Scopus, the Cochrane Library, and CNKI databases to investigate the predictive significance of TMPRSS2-ERG fusion in prostate cancer. Pooled odds ratio (ORs) with 95% confidence intervals (CIs) were calculated to estimate the correlation between TMPRSS2-ERG fusion gene and tumor features. Results The pooled or stratified analysis showed that the TMPRSS2-ERG fusion gene had a highly predictive potential. First, TMPRSS2-ERG fusion was associated with T-stage at diagnosis (T3–4 vs. T1–2 OR: 1.40; 95% CI 1.33–1.48) and metastasis (M1 vs. M0 OR: 1.35; 95% CI 1.02–1.78) but not with biochemical recurrence or prostate cancer-specific mortality. Furthermore, the subgroup analysis found that the TMPRSS2-ERG fusion gene was correlated with Gleason (G) scores, and the fusion was common in prostate cancer with G ≤ 7. Additionally, the meta-analysis demonstrated that the fusion was likely to occur in young patients (> 65 vs. ≤ 65 OR: 0.68; 95% CI 0.52–0.89), in patients with high PSA levels (> 10 vs. ≤ 10 OR: 1.30; 95% CI 1.21–1.38), and in patients with peripheral involvement (positive vs. negative OR: 1.17; 95% CI 1.08–1.28), while not associated with tumor volume. Finally, the subgroup analysis of different fusion types demonstrated that the deletion-type fusion was significantly associated with the malignant degree of prostate cancer (pooled OR: 5.67; 95% CI 2.85–11.28). Moreover, the deletion-type was common in Africa patients, followed by Caucasian patients, and no significant difference was observed in the incidence of different fusion types in the Asian population. Conclusions The meta-analysis findings suggested that the TMPRSS2-ERG fusion gene might be a predictive marker for prostate cancer patients, and might be valuable for assessing the characteristics of prostate cancer for individualized treatment and prognosis evaluation. Electronic supplementary material The online version of this article (10.1186/s12935-018-0672-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chunjiao Song
- 1Medical Research Center, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), No. 568 Zhongxing Bei Road, Shaoxing, 312000 Zhejiang People's Republic of China
| | - Huan Chen
- 2Zhejiang Institute of Microbiology (Key Laboratory of Microorganism Technology and Bioinformatics Research of Zhejiang Province), Hangzhou, Zhejiang China
| |
Collapse
|
31
|
Xu Z, Wang Y, Xiao ZG, Zou C, Zhang X, Wang Z, Wu D, Yu S, Chan FL. Nuclear receptor ERRα and transcription factor ERG form a reciprocal loop in the regulation of TMPRSS2:ERG fusion gene in prostate cancer. Oncogene 2018; 37:6259-6274. [PMID: 30042415 PMCID: PMC6265259 DOI: 10.1038/s41388-018-0409-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 05/17/2018] [Accepted: 06/19/2018] [Indexed: 11/08/2022]
Abstract
The TMPRSS2:ERG (T:E) fusion gene is generally believed to be mainly regulated by the activated androgen receptor (AR) signaling in androgen-dependent prostate cancer. However, its persistent expression in castration-resistant and neuroendocrine prostate cancers implies that other transcription factors might also regulate its expression. Here, we showed that up-regulation of nuclear receptor estrogen-related receptor alpha (ERRα) was closely associated with the oncogenic transcription factor ERG expression in prostate cancer, and their increased coexpression patterns were closely associated with high Gleason scores and metastasis in patients. Both ERRα and ERG exhibited a positive expression correlation in a castration-resistant prostate cancer (CRPC) xenograft model VCaP-CRPC. We showed that ERRα could directly transactivate T:E fusion gene in both AR-positive and -negative prostate cancer cells via both ERR-binding element- and AR-binding element-dependent manners. Ectopic T:E expression under ERRα regulation could promote both in vitro invasion and in vivo metastasis capacities of AR-negative prostatic cells. Intriguingly, ERG expressed by the T:E fusion could also transactivate the ERRα (ESRRA) gene. Hereby, ERRα and ERG can synergistically regulate each other and form a reciprocal regulatory loop to promote the advanced growth of prostate cancer. Inhibition of ERRα activity by ERRα inverse agonist could suppress T:E expression in prostate cancer cells, implicating that targeting ERRα could be a potential therapeutic strategy for treating the aggressive T:E-positive prostate cancer.
Collapse
Affiliation(s)
- Zhenyu Xu
- Department of Pharmacy, Yijishan Affiliated Hospital, Wannan Medical College, Wuhu, Anhui, China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuliang Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhan Gang Xiao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Department of Pharmacology, Southwest Medical University, Luzhou, China
| | - Chang Zou
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Clinical Medical Research Center, Shenzhen People's Hospital, Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Xian Zhang
- Department of Pharmacy, Yijishan Affiliated Hospital, Wannan Medical College, Wuhu, Anhui, China
| | - Zhu Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Dinglan Wu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Shan Yu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Franky Leung Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
32
|
Delliaux C, Tian TV, Bouchet M, Fradet A, Vanpouille N, Flourens A, Deplus R, Villers A, Leroy X, Clézardin P, de Launoit Y, Bonnelye E, Duterque-Coquillaud M. TMPRSS2:ERG gene fusion expression regulates bone markers and enhances the osteoblastic phenotype of prostate cancer bone metastases. Cancer Lett 2018; 438:32-43. [PMID: 30201302 DOI: 10.1016/j.canlet.2018.08.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/31/2018] [Accepted: 08/26/2018] [Indexed: 12/11/2022]
Abstract
Prostate cancers have a strong propensity to metastasize to bone and promote osteoblastic lesions. TMPRSS2:ERG is the most frequent gene rearrangement identified in prostate cancer, but whether it is involved in prostate cancer bone metastases is largely unknown. We exploited an intratibial metastasis model to address this issue and we found that ectopic expression of the TMPRSS2:ERG fusion enhances the ability of prostate cancer cell lines to induce osteoblastic lesions by stimulating bone formation and inhibiting the osteolytic response. In line with these in vivo results, we demonstrate that the TMPRSS2:ERG fusion protein increases the expression of osteoblastic markers, including Collagen Type I Alpha 1 Chain and Alkaline Phosphatase, as well as Endothelin-1, a protein with a documented role in osteoblastic bone lesion formation. Moreover, we determined that the TMPRSS2:ERG fusion protein is bound to the regulatory regions of these genes in prostate cancer cell lines, and we report that the expression levels of these osteoblastic markers are correlated with the expression of the TMPRSS2:ERG fusion in patient metastasis samples. Taken together, our results reveal that the TMPRSS2:ERG gene fusion is involved in osteoblastic lesion formation induced by prostate cancer cells.
Collapse
Affiliation(s)
- Carine Delliaux
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - Mechanisms of Tumorigenesis and Target Therapies, F-59021, Lille, France; Montreal Clinical Research Institute (IRCM), QC H2W 1R7, Montreal, Canada
| | - Tian V Tian
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - Mechanisms of Tumorigenesis and Target Therapies, F-59021, Lille, France; Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, S-08003, Barcelona, Spain
| | - Mathilde Bouchet
- Unité INSERM U1033, F-69372, Lyon, France; Université Claude Bernard Lyon 1, F-69008, Lyon, France
| | - Anais Fradet
- Unité INSERM U1033, F-69372, Lyon, France; Université Claude Bernard Lyon 1, F-69008, Lyon, France
| | - Nathalie Vanpouille
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - Mechanisms of Tumorigenesis and Target Therapies, F-59021, Lille, France
| | - Anne Flourens
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - Mechanisms of Tumorigenesis and Target Therapies, F-59021, Lille, France
| | - Rachel Deplus
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - Mechanisms of Tumorigenesis and Target Therapies, F-59021, Lille, France
| | - Arnauld Villers
- Département d'Urologie, CHRU, Université de Lille, F-59037, Lille, France
| | - Xavier Leroy
- Institut de Pathologie-Centre de Biologie-Pathologie, Centre Hospitalier Régional et Universitaire, F-59037, Lille, France
| | - Philippe Clézardin
- Unité INSERM U1033, F-69372, Lyon, France; Université Claude Bernard Lyon 1, F-69008, Lyon, France
| | - Yvan de Launoit
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - Mechanisms of Tumorigenesis and Target Therapies, F-59021, Lille, France
| | - Edith Bonnelye
- Unité INSERM U1033, F-69372, Lyon, France; Université Claude Bernard Lyon 1, F-69008, Lyon, France
| | - Martine Duterque-Coquillaud
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - Mechanisms of Tumorigenesis and Target Therapies, F-59021, Lille, France.
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW This review will examine the taxonomy of PCa subclasses across disease states, explore the relationship among specific alterations, and highlight current clinical relevance. RECENT FINDINGS Prostate cancer (PCa) is driven by multiple genomic alterations, with distinct patterns and clinical implications. Alterations occurring early in the timeline of the disease define core subtypes of localized, treatment-naive PCa. With time, an increase in number and severity of genomic alterations adds molecular complexity and is associated with progression to metastasis. These later events are not random and are influenced by the underlying subclasses. All the subclasses of localized disease initially respond to androgen deprivation therapy (ADT), but with progression to castrate-resistant PCa (CRPC), mechanisms of resistance against ADT shift the molecular landscape. In CRPC, resistance mechanisms largely define the biology and sub-classification of these cancers, while clinical relevance and opportunities for precision therapy are still being defined.
Collapse
Affiliation(s)
- Kaveri Arora
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, BRB 1452, 413 East 69th Street, New York, NY, 10021, USA.,Department of Urology, Weill Cornell Medicine, New York, NY, USA
| | - Christopher E Barbieri
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, BRB 1452, 413 East 69th Street, New York, NY, 10021, USA. .,Department of Urology, Weill Cornell Medicine, New York, NY, USA. .,Englander Institute for Precision Medicine of Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, NY, USA.
| |
Collapse
|
34
|
Chen S, Liu M, Huang T, Liao W, Xu M, Gu J. GeneFuse: detection and visualization of target gene fusions from DNA sequencing data. Int J Biol Sci 2018; 14:843-848. [PMID: 29989075 PMCID: PMC6036752 DOI: 10.7150/ijbs.24626] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/06/2018] [Indexed: 12/31/2022] Open
Abstract
In recent years, gene fusion detection for cancer treatment has become increasingly important since more therapeutic agents have been developed to suppress fusion kinases. Although a number of tools have been developed to detect gene fusions from DNA sequencing data, most of them are not sensitive enough for processing the data from the samples with low tumor DNA composition, like cell-free tumor DNA. In this paper, we will introduce GeneFuse, a tool to detect and visualize gene fusions with high sensitivity and specificity. GeneFuse focuses on the curated gene fusions, which are available in COSMIC (the Catalogue of Somatic Mutations in Cancer) database. For each detected fusion, GeneFuse reports its genome locus, inferred protein forms, and supporting sequencing reads. The fusion detection results are visualized in an HTML page for cloud-friendly validation. GeneFuse is an open source tool available at GitHub: https://github.com/OpenGene/GeneFuse
Collapse
Affiliation(s)
- Shifu Chen
- HaploX Biotechnology, Shenzhen, China.,Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ming Liu
- HaploX Biotechnology, Shenzhen, China
| | | | | | | | - Jia Gu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
35
|
Bhanushali A, Rao P, Raman V, Kokate P, Ambekar A, Mandva S, Bhatia S, Das BR. Status of TMPRSS2- ERG fusion in prostate cancer patients from India: correlation with clinico-pathological details and TMPRSS2 Met160Val polymorphism. Prostate Int 2018; 6:145-150. [PMID: 30505817 PMCID: PMC6251948 DOI: 10.1016/j.prnil.2018.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 10/26/2022] Open
Abstract
Background Prostate cancer (PCa) shows considerable clinical heterogeneity that has been primarily attributed to variable molecular alterations. TMPRSS2-ERG fusion is one such molecular subtype that has been associated with predominantly poor prognosis. More recently, a single nucleotide polymorphism (SNP) in the TMPRSS2 gene rs12329760 C>T (Met160Val) has been shown to positively correlate with the fusion status and also to be associated with increased risk for PCa. The aim of the present study is to determine the frequency of TMPRSS2-ERG fusion and association of rs12329760 in Indian PCa patients with fusion status. Methods TMPRSS2-ERG fusion by fluorescence in situ hybridization was determined in 102 of 150 PCa biopsy-proven cases. Genotyping for rs12329760 was performed on the entire cohort of 150 cases by Sanger sequencing. Results TMPRSS2-ERG fusion was seen in 27 of 102 (26%) cases. Fusion-positive patterns in this study showed fusion by translocation in nine of 27 cases (33.5%), by deletion in six of 27 (22%) cases, and by insertion in 12 of 27 cases (44.5%). No association of the fusion status with Gleason Score, pattern, or perineural invasion was seen. The TMPRSS2 SNP rs12329760 'T' allele was prevalent with a frequency of 0.27 in the PCa patients. The SNP was significantly associated with fusion [odds ratio (OR) = 2.176, 95% confidence interval (CI) = 1.012-4.684, P = 0.04], more specifically fusion by deletion (P = 0.04). Conclusion The results provided here determine the frequency of TMPRSS2-ERG fusions (26%) in a fairly large cohort of Indian PCa cases and also the association of rs12329760 SNP with TMPRSS2-ERG fusion. No association with other clinico-pathological features was observed. Future studies with clinical outcomes are warranted in this population.
Collapse
Affiliation(s)
| | - Pranesh Rao
- Research and Development, SRL Ltd, Mumbai 400 062, India
| | | | | | | | | | - Simi Bhatia
- Department of Histopathology, SRL Ltd, India
| | - B R Das
- Research and Development, SRL Ltd, Mumbai 400 062, India
| |
Collapse
|
36
|
Latysheva NS, Oates ME, Maddox L, Flock T, Gough J, Buljan M, Weatheritt RJ, Babu MM. Molecular Principles of Gene Fusion Mediated Rewiring of Protein Interaction Networks in Cancer. Mol Cell 2017; 63:579-592. [PMID: 27540857 PMCID: PMC5003813 DOI: 10.1016/j.molcel.2016.07.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/14/2016] [Accepted: 07/14/2016] [Indexed: 11/26/2022]
Abstract
Gene fusions are common cancer-causing mutations, but the molecular principles by which fusion protein products affect interaction networks and cause disease are not well understood. Here, we perform an integrative analysis of the structural, interactomic, and regulatory properties of thousands of putative fusion proteins. We demonstrate that genes that form fusions (i.e., parent genes) tend to be highly connected hub genes, whose protein products are enriched in structured and disordered interaction-mediating features. Fusion often results in the loss of these parental features and the depletion of regulatory sites such as post-translational modifications. Fusion products disproportionately connect proteins that did not previously interact in the protein interaction network. In this manner, fusion products can escape cellular regulation and constitutively rewire protein interaction networks. We suggest that the deregulation of central, interaction-prone proteins may represent a widespread mechanism by which fusion proteins alter the topology of cellular signaling pathways and promote cancer.
Collapse
Affiliation(s)
- Natasha S Latysheva
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Matt E Oates
- Department of Computer Science, University of Bristol, Bristol BS8 1UB, UK
| | - Louis Maddox
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Tilman Flock
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Julian Gough
- Department of Computer Science, University of Bristol, Bristol BS8 1UB, UK
| | - Marija Buljan
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Robert J Weatheritt
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - M Madan Babu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
37
|
Overcoming Oncogenic Mediated Tumor Immunity in Prostate Cancer. Int J Mol Sci 2017; 18:ijms18071542. [PMID: 28714919 PMCID: PMC5536030 DOI: 10.3390/ijms18071542] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 06/26/2017] [Accepted: 06/29/2017] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy is being tested intensively in clinical trials for prostate cancer; it includes immune checkpoint inhibition, prostate specific antigen (PSA) vaccines and dendritic cell-based strategies. Despite increasing evidence for clinical responses, the consensus of multiple trials is that prostate cancers are poorly responsive to immunotherapy. Prostate cancer has a high degree of pathological and genetic heterogeneity compared to other cancer types, which may account for immunotherapeutic resistance. This hypothesis also implies that select types of prostate tumors may be differentially responsive to immune-based strategies and that the clinical stage, pathological grade and underlying genetic landscape may be important criteria in identifying tumors that respond to immune therapies. One strategy is to target oncogenic driver pathways in combination with immunotherapies with the goal of overcoming tumor immunity and broadening the number of patients achieving a clinical response. In this analysis, we address the hypothesis that driver oncogenic signaling pathways regulate cancer progression, tumor immunity and resistance to current immune therapeutics in prostate cancer. We propose that increased responsiveness may be achieved through the combined use of immunotherapies and inhibitors targeting tumor cell autonomous pathways that contribute towards anti-tumor immunity in patients with prostate cancer.
Collapse
|
38
|
Ali A, Hoyle A, Baena E, Clarke NW. Identification and evaluation of clinically significant prostate cancer: a step towards personalized diagnosis. Curr Opin Urol 2017; 27:217-224. [PMID: 28212121 DOI: 10.1097/mou.0000000000000385] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Prostate cancer (PCa) diagnostics are evolving rapidly. The quest to differentiate 'clinically significant' from 'clinically insignificant' disease has gathered momentum, leading to substantial change in traditional diagnostic approaches. Herein, we review the relevant information on currently available biomarkers and assess their ability to help physicians and patients in making a shared and personalized decision based on their individual risk of harbouring clinically significant disease. RECENT FINDINGS Serum, urine, tissue and imaging biomarkers have been evaluated to improve the identification of clinically significant disease, and this international effort has yielded promising, but not always consistent results. Changes in MRI technology have realized a quantum change, and this facility is now becoming more widely incorporated into diagnostic and disease risk-stratification protocols. However, standardization and further validation is required. SUMMARY Acceptance and widespread adoption of serum, urine and genetic markers is awaited, but novel and promising techniques alone and in combination have emerged. With validation and further focus, these may be adopted more widely.
Collapse
Affiliation(s)
- Adnan Ali
- aProstate Oncobiology bCancer Research UK Manchester Institute cBelfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, University of Manchester dDepartment of Surgery, The Christie NHS Foundation Trust, Manchester eDepartment of Urology, Salford NHS Foundation Trust, Salford, UK
| | | | | | | |
Collapse
|
39
|
Giannico GA, Arnold SA, Gellert LL, Hameed O. New and Emerging Diagnostic and Prognostic Immunohistochemical Biomarkers in Prostate Pathology. Adv Anat Pathol 2017; 24:35-44. [PMID: 27941540 PMCID: PMC10182893 DOI: 10.1097/pap.0000000000000136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The diagnosis of minimal prostatic adenocarcinoma can be challenging on prostate needle biopsy, and immunohistochemistry may be used to support the diagnosis of cancer. The International Society of Urologic Pathology currently recommends the use of the basal cell markers high-molecular-weight cytokeraratin and p63, and α-methylacyl-coenzyme-A racemase. However, there are caveats associated with the interpretation of these markers, particularly with benign mimickers. Another issue is that of early detection of presence and progression of disease and prediction of recurrence after clinical intervention. There remains a lack of reliable biomarkers to accurately predict low-risk cancer and avoid over treatment. As such, aggressive forms of prostate cancer may be missed and indolent disease may be subjected to unnecessary radical therapy. New biomarker discovery promises to improve early detection and prognosis and to provide targets for therapeutic interventions. In this review, we present the emerging immunohistochemical biomarkers of prostate cancer PTEN, ERG, FASN, MAGI-2, and SPINK1, and address their diagnostic and prognostic advantages and limitations.
Collapse
Affiliation(s)
- Giovanna A. Giannico
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center
| | - Shanna A. Arnold
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center
- Department of Veterans Affairs, Nashville, TN
| | - Lan L. Gellert
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center
| | - Omar Hameed
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center
| |
Collapse
|
40
|
Kim H, Skowronski J, Den RB. Prognostic outlier genes for enhanced prostate cancer treatment. Future Oncol 2016; 13:249-261. [PMID: 27728977 DOI: 10.2217/fon-2016-0223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
AIM To review the current landscape of outlier genes in the field of prostate cancer. METHODS A comprehensive review was performed. RESULTS Prostate cancer continues to be a significant worldwide health issue. In the era of personalized medicine, more emphasis is being placed on the ability to determine the timing, intensity and type of treatment, according to each patient's unique disease. Several commercial tests are available to determine the risk of aggressive prostate cancer based on genomic biomarkers and gene expression. Outlier genes represent a form of cancer classification that focuses on bimodal expression of a gene in a specific subset of patients. Outlier genes identified in prostate cancer include TMPRSS2-ERG, SPINK1, ScHLAP1, NVL, SMC4 and SQLE. CONCLUSION Classifying patient prostate cancers by outlier genes may allow for individualized cancer therapies and improved cancer therapy outcomes.
Collapse
Affiliation(s)
- Hyun Kim
- Department of Radiation Oncology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jenna Skowronski
- Department of Radiation Oncology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Robert B Den
- Department of Radiation Oncology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
41
|
Androgen deprivation modulates gene expression profile along prostate cancer progression. Hum Pathol 2016; 56:81-8. [DOI: 10.1016/j.humpath.2016.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 06/01/2016] [Accepted: 06/11/2016] [Indexed: 11/20/2022]
|
42
|
Abou-Ouf H, Zhao L, Bismar TA. ERG expression in prostate cancer: biological relevance and clinical implication. J Cancer Res Clin Oncol 2016; 142:1781-93. [PMID: 26711283 DOI: 10.1007/s00432-015-2096-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 12/10/2015] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Screening for increased levels of prostate-specific antigen (PSA) has allowed early detection of a large majority of prostate cancer (PCa) cases. However, the relative lack of specificity of PSA has resulted in significant over-diagnosis and unnecessary treatment for indolent tumors. The fusion of the transmembrane protease serine 2 with E26 transformation-specific family genes, particularly ERG, is the most widespread genetic alteration in prostate cancer, and data suggest that it is more specific for neoplastic prostate disease and may be of added prognostic value and point toward molecular subtype of PCa. METHODS In this review, retrospective studies and clinical trials were analyzed to highlight the recent advances in our understanding of the cellular consequence of ERG rearrangement, describe its interactions with other genetic and molecular pathways, and discuss its potential diagnostic and prognostic value. CONCLUSION ERG over-expression has an emerging role in the diagnosis of PCa pathology, although there is still debate about its prognostic value. Elucidation of the mechanisms of ERG gene rearrangements and expression promises novel therapeutic and diagnostic avenues for prostate cancer.
Collapse
Affiliation(s)
- Hatem Abou-Ouf
- Department of Pathology and Laboratory Medicine, University of Calgary and Calgary Laboratory Services, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute and Tom Baker Cancer Center, Calgary, AB, Canada
| | - Liena Zhao
- Department of Pathology and Laboratory Medicine, University of Calgary and Calgary Laboratory Services, Calgary, AB, Canada
| | - Tarek A Bismar
- Department of Pathology and Laboratory Medicine, University of Calgary and Calgary Laboratory Services, Calgary, AB, Canada.
- Departments of Oncology, Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada.
- Arnie Charbonneau Cancer Institute and Tom Baker Cancer Center, Calgary, AB, Canada.
| |
Collapse
|
43
|
Abstract
Although most prostate cancer (PCa) cases are not life-threatening, approximately 293 000 men worldwide die annually due to PCa. These lethal cases are thought to be caused by coordinated genomic alterations that accumulate over time. Recent genome-wide analyses of DNA from subjects with PCa have revealed most, if not all, genetic changes in both germline and PCa tumor genomes. In this article, I first review the major, somatically acquired genomic characteristics of various subtypes of PCa. I then recap key findings on the relationships between genomic alterations and clinical parameters, such as biochemical recurrence or clinical relapse, metastasis and cancer-specific mortality. Finally, I outline the need for, and challenges with, validation of recent findings in prospective studies for clinical utility. It is clearer now than ever before that the landscape of somatically acquired aberrations in PCa is highlighted by DNA copy number alterations (CNAs) and TMPRSS2-ERG fusion derived from complex rearrangements, numerous single nucleotide variations or mutations, tremendous heterogeneity, and continuously punctuated evolution. Genome-wide CNAs, PTEN loss, MYC gain in primary tumors, and TP53 loss/mutation and AR amplification/mutation in advanced metastatic PCa have consistently been associated with worse cancer prognosis. With this recently gained knowledge, it is now an opportune time to develop DNA-based tests that provide more accurate patient stratification for prediction of clinical outcome, which will ultimately lead to more personalized cancer care than is possible at present.
Collapse
Affiliation(s)
- Wennuan Liu
- Program for Personalized Cancer Care, Research Institute, NorthShore University HealthSystem, Evanston, IL, USA
| |
Collapse
|
44
|
High alpha-methylacyl-CoA racemase (AMACR) is associated with ERG expression and with adverse clinical outcome in patients with localized prostate cancer. Tumour Biol 2016; 37:12287-12299. [PMID: 27271990 DOI: 10.1007/s13277-016-5075-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/05/2016] [Indexed: 10/21/2022] Open
Abstract
Alpha-methylacyl-CoA racemase (AMACR) is a well-characterized marker extensively utilized in prostate cancer (PCA) diagnosis. However, the prognostic value of AMACR expression and its relation to TMPRSS2-ERG gene rearrangement as one of the most common molecular alterations in PCA is not fully explored. AMACR expression was investigated in a cohort of 218 men with localized PCA treated by radical prostatectomy and correlated with ERG and various clinical and pathological parameters. In vitro studies assessed AMACR changes to ERG knockdown and other related genes. In addition, bioinformatics validated the significance of AMACR/ERG expression and assessed relevant genetic signatures in relation to AMACR/ERG expression. AMACR expression was significantly associated with disease progression and with ERG (p ∼0). Seventeen percent of cancer foci showed negative/weak AMACR expression while being ERG positive. High AMACR expression was significantly associated with positive surgical margins (p = 0.01), specifically in tumors with lower Gleason score <7, with ∼95 % exhibiting positive surgical margin (p = 0.008). High AMACR showed marginal association with PSA biochemical recurrence (BCR) (p = 0.06) which was slightly more pronounced in ERG-positive tumors (p = 0.04). This was validated in other public cohorts. However, in this cohort, the association with BCR was not statistically significant in multivariate analysis (p = 0.09). Using in vitro cellular models, AMACR messenger RNA (mRNA) expression, but not protein levels, showed an association with ERG expression. We report for the first time a significant association between AMACR and ERG with prognostic implication. Patients with high AMACR/ERG-positive PCA may be at higher risk for disease progression, and additional studies in larger cohorts are needed to confirm the above findings. Functional studies investigating the molecular pathways connecting AMACR and ERG may provide an additional insight into PCA progression pathways.
Collapse
|
45
|
Roudier MP, Winters BR, Coleman I, Lam HM, Zhang X, Coleman R, Chéry L, True LD, Higano CS, Montgomery B, Lange PH, Snyder LA, Srivistava S, Corey E, Vessella RL, Nelson PS, Üren A, Morrissey C. Characterizing the molecular features of ERG-positive tumors in primary and castration resistant prostate cancer. Prostate 2016; 76:810-22. [PMID: 26990456 PMCID: PMC5589183 DOI: 10.1002/pros.23171] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 02/10/2016] [Indexed: 11/11/2022]
Abstract
BACKGROUND The TMPRSS2-ERG gene fusion is detected in approximately half of primary prostate cancers (PCa) yet the prognostic significance remains unclear. We hypothesized that ERG promotes the expression of common genes in primary PCa and metastatic castration-resistant PCa (CRPC), with the objective of identifying ERG-associated pathways, which may promote the transition from primary PCa to CRPC. METHODS We constructed tissue microarrays (TMA) from 127 radical prostatectomy specimens, 20 LuCaP patient-derived xenografts (PDX), and 152 CRPC metastases obtained immediately at time of death. Nuclear ERG was assessed by immunohistochemistry (IHC). To characterize the molecular features of ERG-expressing PCa, a subset of IHC confirmed ERG+ or ERG- specimens including 11 radical prostatectomies, 20 LuCaP PDXs, and 45 CRPC metastases underwent gene expression analysis. Genes were ranked based on expression in primary PCa and CRPC. Common genes of interest were targeted for IHC analysis and expression compared with biochemical recurrence (BCR) status. RESULTS IHC revealed that 43% of primary PCa, 35% of the LuCaP PDXs, and 18% of the CRPC metastases were ERG+ (12 of 48 patients [25%] had at least one ERG+ metastasis). Based on gene expression data and previous literature, two proteins involved in calcium signaling (NCALD, CACNA1D), a protein involved in inflammation (HLA-DMB), CD3 positive immune cells, and a novel ERG-associated protein, DCLK1 were evaluated in primary PCa and CRPC metastases. In ERG+ primary PCa, a weak association was seen with NCALD and CACNA1D protein expression. HLA-DMB association with ERG was decreased and CD3 cell number association with ERG was changed from positive to negative in CRPC metastases compared to primary PCa. DCLK1 was upregulated at the protein level in unpaired ERG+ primary PCa and CRPC metastases (P = 0.0013 and P < 0.0001, respectively). In primary PCa, ERG status or expression of targeted proteins was not associated with BCR-free survival. However, for primary PCa, ERG+DCLK1+ patients exhibited shorter time to BCR (P = 0.06) compared with ERG+DCLK1- patients. CONCLUSIONS This study examined ERG expression in primary PCa and CRPC. We have identified altered levels of inflammatory mediators associated with ERG expression. We determined expression of DCLK1 correlates with ERG expression and may play a role in primary PCa progression to metastatic CPRC. Prostate 76:810-822, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Martine P Roudier
- Department of Urology, University of Washington, Seattle, WA
- To whom all correspondence should be addressed: Colm Morrissey Ph.D. Genitourinary Cancer Research Laboratory, Department of Urology, Box 356510, University of Washington, Seattle, WA 98195, Telephone: 206-543-1461, Fax: 206-543-1146,
| | - Brian R Winters
- Department of Urology, University of Washington, Seattle, WA
- To whom all correspondence should be addressed: Colm Morrissey Ph.D. Genitourinary Cancer Research Laboratory, Department of Urology, Box 356510, University of Washington, Seattle, WA 98195, Telephone: 206-543-1461, Fax: 206-543-1146,
| | - Ilsa Coleman
- Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Hung-Ming Lam
- Department of Urology, University of Washington, Seattle, WA
| | - Xiaotun Zhang
- Department of Urology, University of Washington, Seattle, WA
| | | | - Lisly Chéry
- Department of Urology, University of Washington, Seattle, WA
| | | | | | | | - Paul H. Lange
- Department of Urology, University of Washington, Seattle, WA
- Department of Veterans Affairs Medical Center, Seattle, WA
| | | | - Shiv Srivistava
- Uniformed Services University of the Health Sciences, Rockville, MD
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA
| | - Robert L. Vessella
- Department of Urology, University of Washington, Seattle, WA
- Department of Veterans Affairs Medical Center, Seattle, WA
| | - Peter S. Nelson
- Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Aykut Üren
- Georgetown University Medical Center, Washington, D. C
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA
| |
Collapse
|
46
|
Pan X, Zhang X, Gong J, Tan J, Yin X, Tang Q, Shu K, Shen P, Zeng H, Chen N. The expression profile and prognostic value of SPINK1 in initially diagnosed bone metastatic prostate cancer. Prostate 2016; 76:823-33. [PMID: 27159572 DOI: 10.1002/pros.23173] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 02/16/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND SPINK1 has been described to be mutually exclusively expressed in prostate cancer (PCa), but its expression profiles and the probable roles in bone metastatic PCa have not been thoroughly explored. METHODS Total of 155 biopsy specimens from initially diagnosed bone metastatic PCa were obtained between 2009.1 and 2012.12. SPINK1 and ERG were detected by using immunohistochemical staining. Factors included age, ECOG score, clinical T stage, Gleason scores (GS), expression of SPINK1 and ERG, baseline PSA, baseline ALP, baseline HGB and PSA normalization, and the association of SPINK1 and ERG with clinical outcomes (CRPC-free survival and overall survival) were analyzed. RESULTS Totally, SPINK1 and ERG were mutually independently expressed in the primary tissues of those patients, and their positivity were only 13.5% (21/155) and 10.9% (17/155), respectively. Positive expression of SPINK1 was completely detected in cases with primary Gleason score 4 or 5; on the contrary, the frequency of ERG was much lower. Correlative analysis only found that SPINK1 was linked with PSA response to androgen deprivation therapy (χ(2) = 11.101, P = 0.001). Survival analysis showed that, ERG was not associated with clinical outcomes in all cases, especially in cases with higher GS (8-10) (n = 90); but SPINK1 was an independent prognostic factor which was associated with adverse CFS of patients with GS 8-10 (CFS: HR = 5.141, 95%CI: 1.108-25.552, P = 0.017). CONCLUSIONS It is the first time to simultaneously detect SPINK1 and ERG expression in initially diagnosed bone metastatic PCa. The over-expression of SPINK1 was not only related to poor PSA response, but also significantly associated with the occurrence of CRPC, especially in those with much more aggressive phenotype (GS 8-10). So, SPINK1 could be considered as a useful prognostic predictor for bone metastatic PCa at the time of diagnosis, and further prospective studies are needed to verify the conclusions. Prostate 76:823-833, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiuyi Pan
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Xingming Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Gong
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Junya Tan
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoxue Yin
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Qidun Tang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Kunpeng Shu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Pengfei Shen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Zeng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Ni Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
47
|
Latysheva NS, Babu MM. Discovering and understanding oncogenic gene fusions through data intensive computational approaches. Nucleic Acids Res 2016; 44:4487-503. [PMID: 27105842 PMCID: PMC4889949 DOI: 10.1093/nar/gkw282] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/24/2016] [Indexed: 12/21/2022] Open
Abstract
Although gene fusions have been recognized as important drivers of cancer for decades, our understanding of the prevalence and function of gene fusions has been revolutionized by the rise of next-generation sequencing, advances in bioinformatics theory and an increasing capacity for large-scale computational biology. The computational work on gene fusions has been vastly diverse, and the present state of the literature is fragmented. It will be fruitful to merge three camps of gene fusion bioinformatics that appear to rarely cross over: (i) data-intensive computational work characterizing the molecular biology of gene fusions; (ii) development research on fusion detection tools, candidate fusion prioritization algorithms and dedicated fusion databases and (iii) clinical research that seeks to either therapeutically target fusion transcripts and proteins or leverages advances in detection tools to perform large-scale surveys of gene fusion landscapes in specific cancer types. In this review, we unify these different-yet highly complementary and symbiotic-approaches with the view that increased synergy will catalyze advancements in gene fusion identification, characterization and significance evaluation.
Collapse
Affiliation(s)
- Natasha S Latysheva
- MRC Laboratory of Molecular Biology, Francis Crick Ave, Cambridge CB2 0QH, United Kingdom
| | - M Madan Babu
- MRC Laboratory of Molecular Biology, Francis Crick Ave, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
48
|
Prognostic value of ERG, PTEN, CRISP3 and SPINK1 in predicting biochemical recurrence in prostate cancer. Oncol Lett 2016; 11:3621-3630. [PMID: 27284364 PMCID: PMC4887942 DOI: 10.3892/ol.2016.4459] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 03/15/2016] [Indexed: 11/18/2022] Open
Abstract
The established prognostic factors associated with prostatic adenocarcinoma are the Gleason score, pathological T staging and serum prostatic-specific antigen (PSA) level. However, these prognostic factors alone are not sufficient for predicting prognostic characteristics, including early stage or advanced prostate cancer, presence of metastasis or disease-related mortality. The purpose of the present study was to simultaneously evaluate the prognostic value and associations of four biomarkers, namely, transcriptional regulator ERG (ERG), phosphatase and tensin homolog (PTEN), cysteine-rich secretory protein 3 (CRISP3) and serine protease inhibitor Kazal type I (SPINK1), and to conduct risk stratification of prostate cancer for use in patient management. A total of 68 formalin-fixed, paraffin-embedded, prostate cancer samples from radical prostatectomies were obtained in the Kyung Hee University Hospital (Seoul, Korea) and were studied immunohistochemically for ERG, PTEN, CRISP3 and SPINK1 to determine the proportion and intensity of staining. SPINK1 expression was mutually exclusive of ERG expression (P=0.001). The loss of PTEN and high CRISP3 expression are unfavorable indicators for prostate cancer, as PTEN loss was associated with shorter biochemical recurrence (BCR) (P=0.039), and high CRISP3 expression was associated with increased BCR (P<0.001) and cancer-related mortalities (P=0.011). Using the combination of low PTEN and high CRISP3 expression enables attention to be focused on patients who exhibit a poor prognosis. Subgrouping of patients, into high-risk and low-risk categories, was correlated with BCR-free survival in prostate cancer upon multivariate analysis (P=0.030). Overall, low PTEN and high CRISP3 expression significantly characterize the subgroups of prostate cancer that have a poor prognosis for BCR.
Collapse
|
49
|
Subbannayya Y, Pinto SM, Gowda H, Prasad TSK. Proteogenomics for understanding oncology: recent advances and future prospects. Expert Rev Proteomics 2016; 13:297-308. [PMID: 26697917 DOI: 10.1586/14789450.2016.1136217] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The concept of proteogenomics has emerged rapidly as a valuable approach to integrate mass spectrometry-derived proteomic data with genomic and transcriptomic data. It is used to harness the full potential of the former dataset in the discovery of potential biomarkers, therapeutic targets and novel proteins associated with various biological processes including diseases. Proteogenomic strategies have been successfully utilized to identify novel genes and redefine annotation of existing gene models in various genomes. In recent years, this approach has been extended to the field of cancer biology to unravel complexities in the tumor genomes and proteomes. Standard proteomics workflows employing translated cancer genomes and transcriptomes can potentially identify peptides from mutant proteins, splice variants and fusion proteins in the tumor proteome, which in addition to the currently available biomarker panels can serve as potential diagnostic and prognostic biomarkers, besides having therapeutic utility. This review focuses on the role of proteogenomics to understand cancer biology.
Collapse
Affiliation(s)
- Yashwanth Subbannayya
- a YU-IOB Center for Systems Biology and Molecular Medicine , Yenepoya University , Mangalore, India.,b Institute of Bioinformatics , Bangalore , India
| | - Sneha M Pinto
- a YU-IOB Center for Systems Biology and Molecular Medicine , Yenepoya University , Mangalore, India.,b Institute of Bioinformatics , Bangalore , India
| | - Harsha Gowda
- a YU-IOB Center for Systems Biology and Molecular Medicine , Yenepoya University , Mangalore, India.,b Institute of Bioinformatics , Bangalore , India
| | - T S Keshava Prasad
- a YU-IOB Center for Systems Biology and Molecular Medicine , Yenepoya University , Mangalore, India.,b Institute of Bioinformatics , Bangalore , India.,c NIMHANS-IOB Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre , National Institute of Mental Health and Neurosciences , Bangalore , India
| |
Collapse
|
50
|
Biomarkers for prostate cancer: present challenges and future opportunities. Future Sci OA 2015; 2:FSO72. [PMID: 28031932 PMCID: PMC5137959 DOI: 10.4155/fso.15.72] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/10/2015] [Indexed: 01/30/2023] Open
Abstract
Prostate cancer (PCa) has variable biological potential with multiple treatment options. A more personalized approach, therefore, is needed to better define men at higher risk of developing PCa, discriminate indolent from aggressive disease and improve risk stratification after treatment by predicting the likelihood of progression. This may improve clinical decision-making regarding management, improve selection for active surveillance protocols and minimize morbidity from treatment. Discovery of new biomarkers associated with prostate carcinogenesis present an opportunity to provide patients with novel genetic signatures to better understand their risk of developing PCa and help forecast their clinical course. In this review, we examine the current literature evaluating biomarkers in PCa. We also address current limitations and present several ideas for future studies.
Collapse
|