1
|
Dong L, Liu X, Wu B, Li C, Wei X, Wumaier G, Zhang X, Wang J, Xia J, Zhang Y, Yiminniyaze R, Zhu N, Li J, Zhou D, Zhang Y, Li S, Lv J, Li S. Mxi1-0 Promotes Hypoxic Pulmonary Hypertension Via ERK/c-Myc-dependent Proliferation of Arterial Smooth Muscle Cells. Front Genet 2022; 13:810157. [PMID: 35401684 PMCID: PMC8984142 DOI: 10.3389/fgene.2022.810157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/08/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Hypoxic pulmonary hypertension (HPH) is a challenging lung arterial disorder with remarkably high incidence and mortality, and so far patients have failed to benefit from therapeutics clinically available. Max interacting protein 1–0 (Mxi1-0) is one of the functional isoforms of Mxi1. Although it also binds to Max, Mxi1-0, unlike other Mxi1 isoforms, cannot antagonize the oncoprotein c-Myc because of its unique proline rich domain (PRD). While Mxi1-0 was reported to promote cell proliferation via largely uncharacterized mechanisms, it is unknown whether and how it plays a role in the pathogenesis of HPH. Methods: GEO database was used to screen for genes involved in HPH development, and the candidate players were validated through examination of gene expression in clinical HPH specimens. The effect of candidate gene knockdown or overexpression on cultured pulmonary arterial cells, e.g., pulmonary arterial smooth muscle cells (PASMCs), was then investigated. The signal pathway(s) underlying the regulatory role of the candidate gene in HPH pathogenesis was probed, and the outcome of targeting the aforementioned signaling was evaluated using an HPH rat model. Results: Mxi1 was significantly upregulated in the PASMCs of HPH patients. As the main effector isoform responding to hypoxia, Mxi1-0 functions in HPH to promote PASMCs proliferation. Mechanistically, Mxi1-0 improved the expression of the proto-oncogene c-Myc via activation of the MEK/ERK pathway. Consistently, both a MEK inhibitor, PD98059, and a c-Myc inhibitor, 10058F4, could counteract Mxi1-0-induced PASMCs proliferation. In addition, targeting the MEK/ERK signaling significantly suppressed the development of HPH in rats. Conclusion: Mxi1-0 potentiates HPH pathogenesis through MEK/ERK/c-Myc-mediated proliferation of PASMCs, suggesting its applicability in targeted treatment and prognostic assessment of clinical HPH.
Collapse
Affiliation(s)
- Liang Dong
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinning Liu
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Bo Wu
- Department of Lung Transplantation, Wuxi People’s Hospital, Wuxi, China
| | - Chengwei Li
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaomin Wei
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Gulinuer Wumaier
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiujuan Zhang
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Wang
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingwen Xia
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuanyuan Zhang
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruzetuoheti Yiminniyaze
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ning Zhu
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Li
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Daibing Zhou
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Youzhi Zhang
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuanghui Li
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Junzhu Lv
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shengqing Li
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Shengqing Li,
| |
Collapse
|
2
|
Kong X, Gong S, Su L, Li C, Kong Y. Expression signatures and roles of MicroRNAs in human oesophageal adenocarcinomas. J Cell Mol Med 2017; 22:123-130. [PMID: 28799211 PMCID: PMC5742716 DOI: 10.1111/jcmm.13300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 06/03/2017] [Indexed: 12/13/2022] Open
Abstract
The most common forms of oesophageal cancers are adenocarcinomas and squamous cell carcinoma (SCC). Although the incidence of SCC in the United States tends to be declining, the adenocarcinoma incidence caused by Barrett's oesophagus has been increasing. Oesophageal cancer is regarded as one of the most fatal malignancies with a short prognosis. Systemic manifestations of patients with PCNSL keep backward in spite of recent development of chemoradiotherapy. MicroRNAs are small non‐coding RNAs that can post‐transcriptionally down‐regulate the expression of genes by targeting mRNAs, causing their translational repression as well as degradation. MicroRNAs exert critical functions in many malignancy‐related biological processes, including cell apoptosis, metabolism, proliferation and differentiation. Many deregulated miRNAs have been identified in oesophageal adenocarcinomas, but their biological importance has not yet been fully elucidated. In this study, we review present evidence regarding the potential applications of oesophageal adenocarcinomas associated microRNAs for prognosis and diagnosis of this lethal disease.
Collapse
Affiliation(s)
- Xiangyi Kong
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.,Department of Breast Oncology, National Cancer Center/Cancer Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shun Gong
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, PLA Institute of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Lijuan Su
- College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chen Li
- Cancer Epigenetic Laboratory, Department of Clinical Oncology, State Key Lab of Oncology in South China, Sir YK Pao Center for Cancer, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yanguo Kong
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Lal N, Willcox CR, Beggs A, Taniere P, Shikotra A, Bradding P, Adams R, Fisher D, Middleton G, Tselepis C, Willcox BE. Endothelial protein C receptor is overexpressed in colorectal cancer as a result of amplification and hypomethylation of chromosome 20q. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2017; 3:155-170. [PMID: 28770100 PMCID: PMC5527318 DOI: 10.1002/cjp2.70] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 04/12/2017] [Indexed: 01/22/2023]
Abstract
Endothelial Protein C Receptor (EPCR) is a Major Histocompatibility Complex homologue, with established roles downregulating coagulation and in endothelial protection. Expressed predominantly on endothelium, EPCR affects inflammatory, apoptotic and cell proliferation pathways by binding to activated protein C (APC). However, EPCR can also be expressed on cancer cells, although the underlying reasons are unclear. Moreover, although EPCR has been linked with chemosensitivity in lung cancer, its clinical significance in many tumours is unknown. Here, we explored its significance in colorectal cancer (CRC). Bioinformatic methods revealed EPCR overexpression in many epithelial cancers, which was confirmed on CRC epithelial tumour cells by immunohistochemistry. EPCR upregulation resulted from gene amplification and DNA hypomethylation, and occurred in concert with a cohort of neighbouring genes on chromosome 20q, a region previously implicated in chemoresistance. As in endothelial cells, EPCR reproducibly mediated ERK pathway activation in a model CRC cell line following APC treatment. However, EPCR knockdown studies failed to highlight compelling EPCR‐intrinsic impact on CRC cell phenotype, with limited effects on chemosensitivity and no effect on invasion observed, while EPCR appeared to decrease CRC cell migration. Consistent with these observations, differential EPCR expression did not influence response to chemotherapy in a human CRC cohort. Our results provide a compelling explanation for how EPCR is upregulated in diverse epithelial malignancies. They indicate that the clinical significance of EPCR varies across different tumour types. Furthermore, they raise the possibility that the prognostic significance of EPCR in certain tumours relates significantly to co‐upregulation of neighbouring genes on chromosome 20q. Therefore, efforts to exploit EPCR as a prognostic marker should be focussed on specific tumours, and in such scenarios EPCR‐co‐dysregulated genes may represent potential axes for therapeutic intervention.
Collapse
Affiliation(s)
- Neeraj Lal
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and ImmunotherapyUniversity of BirminghamEdgbaston, BirminghamUK
| | - Carrie R Willcox
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and ImmunotherapyUniversity of BirminghamEdgbaston, BirminghamUK
| | - Andrew Beggs
- Institute of Cancer and Genomic SciencesUniversity of BirminghamEdgbaston, BirminghamUK
| | - Philippe Taniere
- Department of HistopathologyQueen Elizabeth Hospital Birmingham, Mindelsohn WayEdgbaston, BirminghamUK
| | - Aarti Shikotra
- Department of Infection, Immunity and Inflammation, Institute for Lung HealthUniversity of LeicesterLeicesterUK
| | - Peter Bradding
- Department of Infection, Immunity and Inflammation, Institute for Lung HealthUniversity of LeicesterLeicesterUK
| | - Richard Adams
- Institute of Cancer & GeneticsCardiff University School of Medicine, Velindre HospitalCardiffUK
| | - David Fisher
- MRC Clinical Trials UnitUniversity College LondonLondonUK
| | - Gary Middleton
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and ImmunotherapyUniversity of BirminghamEdgbaston, BirminghamUK
| | - Chris Tselepis
- Institute of Cancer and Genomic SciencesUniversity of BirminghamEdgbaston, BirminghamUK
| | - Benjamin E Willcox
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and ImmunotherapyUniversity of BirminghamEdgbaston, BirminghamUK
| |
Collapse
|
4
|
Horniblow RD, Bedford M, Hollingworth R, Evans S, Sutton E, Lal N, Beggs A, Iqbal TH, Tselepis C. BRAF mutations are associated with increased iron regulatory protein-2 expression in colorectal tumorigenesis. Cancer Sci 2017; 108:1135-1143. [PMID: 28281325 PMCID: PMC5480081 DOI: 10.1111/cas.13234] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 01/01/2023] Open
Abstract
A role for iron in carcinogenesis is supported by evidence that iron metabolism proteins are modulated in cancer progression. To date, however, the expression of iron regulatory protein‐2 (IRP2), which is known to regulate several iron metabolism proteins, has not been assessed in colorectal cancer. Expression of IRP2 was assessed by quantitative RT‐PCR and immunohistochemistry in human colorectal cancer tissue. By interrogating The Cancer Genome Atlas (TCGA) database, expression of IRP2 and transferrin receptor‐1 (TfR1) was assessed relative to common mutations that are known to occur in cancer. The impact of suppressing IRP2 on cellular iron metabolism was also determined by using siRNA and by using the MEK inhibitor trametinib. IRP2 was overexpressed in colorectal cancer compared to normal colonic mucosa and its expression was positively correlated with TfR1 expression. In addition, IRP2 expression was associated with mutations in BRAF. The MEK inhibitor trametinib suppressed IRP2 and this was associated with a suppression in TfR1 and the labile iron pool (LIP). Moreover, epidermal growth factor stimulation resulted in decreased ferritin expression and an increase in the LIP which were independent of IRP2. Results presented here suggest that ablating IRP2 provides a therapeutic platform for intervening in colorectal tumorigenesis.
Collapse
Affiliation(s)
- Richard D Horniblow
- Institutes of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Matthew Bedford
- Institutes of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Robert Hollingworth
- Institutes of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Sarah Evans
- Institutes of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Emily Sutton
- Institutes of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Neeraj Lal
- Immunity and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Andrew Beggs
- Institutes of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Tariq H Iqbal
- Institutes of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Chris Tselepis
- Institutes of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
5
|
Ross-Innes CS, Chettouh H, Achilleos A, Galeano-Dalmau N, Debiram-Beecham I, MacRae S, Fessas P, Walker E, Varghese S, Evan T, Lao-Sirieix PS, O'Donovan M, Malhotra S, Novelli M, Disep B, Kaye PV, Lovat LB, Haidry R, Griffin M, Ragunath K, Bhandari P, Haycock A, Morris D, Attwood S, Dhar A, Rees C, Rutter MD, Ostler R, Aigret B, Sasieni PD, Fitzgerald RC. Risk stratification of Barrett's oesophagus using a non-endoscopic sampling method coupled with a biomarker panel: a cohort study. Lancet Gastroenterol Hepatol 2017; 2:23-31. [PMID: 28404010 DOI: 10.1016/s2468-1253(16)30118-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND Barrett's oesophagus predisposes to adenocarcinoma. However, most patients with Barrett's oesophagus will not progress and endoscopic surveillance is invasive, expensive, and fraught by issues of sampling bias and the subjective assessment of dysplasia. We investigated whether a non-endoscopic device, the Cytosponge, could be coupled with clinical and molecular biomarkers to identify a group of patients with low risk of progression suitable for non-endoscopic follow-up. METHODS In this multicentre cohort study (BEST2), patients with Barrett's oesophagus underwent the Cytosponge test before their surveillance endoscopy. We collected clinical and demographic data and tested Cytosponge samples for a molecular biomarker panel including three protein biomarkers (P53, c-Myc, and Aurora kinase A), two methylation markers (MYOD1 and RUNX3), glandular atypia, and TP53 mutation status. We used a multivariable logistic regression model to compute the conditional probability of dysplasia status. We selected a simple model with high classification accuracy and applied it to an independent validation cohort. The BEST2 study is registered with ISRCTN, number 12730505. FINDINGS The discovery cohort consisted of 468 patients with Barrett's oesophagus and intestinal metaplasia. Of these, 376 had no dysplasia and 22 had high-grade dysplasia or intramucosal adenocarcinoma. In the discovery cohort, a model with high classification accuracy consisted of glandular atypia, P53 abnormality, and Aurora kinase A positivity, and the interaction of age, waist-to-hip ratio, and length of the Barrett's oesophagus segment. 162 (35%) of 468 of patients fell into the low-risk category and the probability of being a true non-dysplastic patient was 100% (99% CI 96-100) and the probability of having high-grade dysplasia or intramucosal adenocarcinoma was 0% (0-4). 238 (51%) of participants were classified as of moderate risk; the probability of having high-grade dysplasia was 14% (9-21). 58 (12%) of participants were classified as high-risk; the probability of having non-dysplastic endoscopic biopsies was 13% (5-27), whereas the probability of having high-grade dysplasia or intramucosal adenocarcinoma was 87% (73-95). In the validation cohort (65 patients), 51 were non-dysplastic and 14 had high-grade dysplasia. In this cohort, 25 (38%) of 65 patients were classified as being low-risk, and the probability of being non-dysplastic was 96·0% (99% CI 73·80-99·99). The moderate-risk group comprised 27 non-dysplastic and eight high-grade dysplasia cases, whereas the high-risk group (8% of the cohort) had no non-dysplastic cases and five patients with high-grade dysplasia. INTERPRETATION A combination of biomarker assays from a single Cytosponge sample can be used to determine a group of patients at low risk of progression, for whom endoscopy could be avoided. This strategy could help to avoid overdiagnosis and overtreatment in patients with Barrett's oesophagus. FUNDING Cancer Research UK.
Collapse
Affiliation(s)
- Caryn S Ross-Innes
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Hamza Chettouh
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Achilleas Achilleos
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Nuria Galeano-Dalmau
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Irene Debiram-Beecham
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Shona MacRae
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Petros Fessas
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Elaine Walker
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Sibu Varghese
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Theodore Evan
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Pierre S Lao-Sirieix
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Maria O'Donovan
- Department of Histopathology, Addenbrooke's Hospital, Cambridge, UK
| | - Shalini Malhotra
- Department of Histopathology, Addenbrooke's Hospital, Cambridge, UK
| | | | - Babett Disep
- Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Phillip V Kaye
- NIHR Nottingham Digestive Disease Biomedical Research Unit, Queens Medical Centre, Nottingham University Hospital NHS Trust, Nottingham, UK
| | | | | | | | - Krish Ragunath
- NIHR Nottingham Digestive Disease Biomedical Research Unit, Queens Medical Centre, Nottingham University Hospital NHS Trust, Nottingham, UK
| | | | | | - Danielle Morris
- East and North Hertfordshire NHS Trust, QEII and Lister Hospitals, Stevenage, UK
| | - Stephen Attwood
- Northern Region Endoscopy Group, UK; North Tyneside General Hospital, North Shields, UK
| | - Anjan Dhar
- Northern Region Endoscopy Group, UK; County Durham and Darlington NHS Foundation Trust, Durham, UK
| | - Colin Rees
- Northern Region Endoscopy Group, UK; South Tyneside NHS Foundation Trust, Tyne and Wear, UK
| | - Matt D Rutter
- Northern Region Endoscopy Group, UK; North Tees and Hartlepool NHS Foundation Trust, Hartlepool, UK
| | | | | | | | - Rebecca C Fitzgerald
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK.
| |
Collapse
|
6
|
Varghese S, Newton R, Ross-Innes CS, Lao-Sirieix P, Krishnadath KK, O'Donovan M, Novelli M, Wernisch L, Bergman J, Fitzgerald RC. Analysis of dysplasia in patients with Barrett's esophagus based on expression pattern of 90 genes. Gastroenterology 2015; 149:1511-1518.e5. [PMID: 26248086 DOI: 10.1053/j.gastro.2015.07.053] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 07/03/2015] [Accepted: 07/19/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Diagnoses of dysplasia, based on histologic analyses, dictate management decisions for patients with Barrett's esophagus (BE). However, there is much intra- and inter-observer variation in identification of dysplasia-particularly low-grade dysplasia. We aimed to identify a biomarker that could be used to assign patients with low-grade dysplasia to a low- or high-risk group. METHODS We performed a stringent histologic assessment of 150 frozen esophageal tissues samples collected from 4 centers in the United Kingdom (from 2000 through 2006). The following samples with homogeneous diagnoses were selected for gene expression profiling: 28 from patients with nondysplastic BE, 10 with low-grade dysplasia, 13 with high-grade dysplasia (HGD), and 8 from patients with esophageal adenocarcinoma. A leave-one-out cross-validation analysis was used identify a gene expression signature associated with HGD vs nondysplastic BE. Functional pathways associated with gene signature sets were identified using the MetaCore analysis. Gene expression signature sets were validated using gene expression data on BE and esophageal adenocarcinoma accessed through National Center for Biotechnology Information Gene Expression Omnibus, as well as a separate set of samples (n = 169) collected from patients who underwent endoscopy in the United Kingdom or the Netherlands and analyzed histologically. RESULTS We identified an expression pattern of 90 genes that could separate nondysplastic BE tissues from those with HGD (P < .0001). Genes in a pathway regulated by retinoic acid-regulated nuclear protein made the largest contribution to this gene set (P < .0001); the transcription factor MYC regulated at least 30% of genes within the signature (P < .0001). In the National Center for Biotechnology Information Gene Expression Omnibus validation set, the signature separated nondysplastic BE samples from esophageal adenocarcinoma samples (P = .0012). In the UK and Netherlands validation cohort, the signature identified dysplastic tissues with an area under the curve value of 0.87 (95% confidence interval: 0.82-0.93). Of samples with low-grade dysplasia (LGD), 64% were considered high risk according to the 90-gene signature; these patients had a higher rate of disease progression than those with a signature categorized as low risk (P = .047). CONCLUSIONS We identified an expression pattern of 90 genes in esophageal tissues of patients with BE that was associated with low- or high-risk for disease progression. This pattern might be used in combination with histologic analysis of biopsy samples to stratify patients for treatment. It would be most beneficial for analysis of patients without definitive evidence of HGD but for whom early endoscopic intervention is warranted.
Collapse
Affiliation(s)
- Sibu Varghese
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, United Kingdom
| | | | - Caryn S Ross-Innes
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, United Kingdom
| | - Pierre Lao-Sirieix
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, United Kingdom
| | | | - Maria O'Donovan
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, United Kingdom
| | - Marco Novelli
- GI Services, University College Hospital, NHS Foundation Trust, London, United Kingdom
| | | | | | - Rebecca C Fitzgerald
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, United Kingdom.
| |
Collapse
|
7
|
Sharan RN, Vaiphei ST, Nongrum S, Keppen J, Ksoo M. Consensus reference gene(s) for gene expression studies in human cancers: end of the tunnel visible? Cell Oncol (Dordr) 2015; 38:419-31. [PMID: 26384826 DOI: 10.1007/s13402-015-0244-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Gene expression studies are increasingly used to provide valuable information on the diagnosis and prognosis of human cancers. Also, for in vitro and in vivo experimental cancer models gene expression studies are widely used. The complex algorithms of differential gene expression analyses require normalization of data against a reference or normalizer gene, or a set of such genes. For this purpose, mostly invariant housekeeping genes are used. Unfortunately, however, there are no consensus (housekeeping) genes that serve as reference or normalizer for different human cancers. In fact, scientists have employed a wide range of reference genes across different types of cancer for normalization of gene expression data. As a consequence, comparisons of these data and/or data harmonizations are difficult to perform and challenging. In addition, an inadequate choice for a reference gene may obscure genuine changes and/or result in erroneous gene expression data comparisons. METHODS In our effort to highlight the importance of selecting the most appropriate reference gene(s), we have screened the literature for gene expression studies published since the turn of the century on thirteen of the most prevalent human cancers worldwide. CONCLUSIONS Based on the analysis of the data at hand, we firstly recommend that in each study the suitability of candidate reference gene(s) should carefully be evaluated in order to yield reliable differential gene expression data. Secondly, we recommend that a combination of PPIA and either GAPDH, ACTB, HPRT and TBP, or appropriate combinations of two or three of these genes, should be employed in future studies, to ensure that results from different studies on different human cancers can be harmonized. This approach will ultimately increase the depth of our understanding of gene expression signatures across human cancers.
Collapse
Affiliation(s)
- R N Sharan
- Radiation and Molecular Biology Unit, Department of Biochemistry, North-Eastern Hill University (NEHU), Shillong, 793022, India.
| | - S Thangminlal Vaiphei
- Radiation and Molecular Biology Unit, Department of Biochemistry, North-Eastern Hill University (NEHU), Shillong, 793022, India
| | - Saibadaiahun Nongrum
- Radiation and Molecular Biology Unit, Department of Biochemistry, North-Eastern Hill University (NEHU), Shillong, 793022, India
| | - Joshua Keppen
- Radiation and Molecular Biology Unit, Department of Biochemistry, North-Eastern Hill University (NEHU), Shillong, 793022, India
| | - Mandahakani Ksoo
- Radiation and Molecular Biology Unit, Department of Biochemistry, North-Eastern Hill University (NEHU), Shillong, 793022, India
| |
Collapse
|
8
|
Diolaiti D, McFerrin L, Carroll PA, Eisenman RN. Functional interactions among members of the MAX and MLX transcriptional network during oncogenesis. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1849:484-500. [PMID: 24857747 PMCID: PMC4241192 DOI: 10.1016/j.bbagrm.2014.05.016] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 04/23/2014] [Accepted: 05/14/2014] [Indexed: 01/27/2023]
Abstract
The transcription factor MYC and its related family members MYCN and MYCL have been implicated in the etiology of a wide spectrum of human cancers. Compared to other oncoproteins, such as RAS or SRC, MYC is unique because its protein coding region is rarely mutated. Instead, MYC's oncogenic properties are unleashed by regulatory mutations leading to unconstrained high levels of expression. Under both normal and pathological conditions MYC regulates multiple aspects of cellular physiology including proliferation, differentiation, apoptosis, growth and metabolism by controlling the expression of thousands of genes. How a single transcription factor exerts such broad effects remains a fascinating puzzle. Notably, MYC is part of a network of bHLHLZ proteins centered on the MYC heterodimeric partner MAX and its counterpart, the MAX-like protein MLX. This network includes MXD1-4, MNT, MGA, MONDOA and MONDOB proteins. With some exceptions, MXD proteins have been functionally linked to cell cycle arrest and differentiation, while MONDO proteins control cellular metabolism. Although the temporal expression patterns of many of these proteins can differ markedly they are frequently expressed simultaneously in the same cellular context, and potentially bind to the same, or similar DNA consensus sequence. Here we review the activities and interactions among these proteins and propose that the broad spectrum of phenotypes elicited by MYC deregulation is intimately connected to the functions and regulation of the other network members. Furthermore, we provide a meta-analysis of TCGA data suggesting that the coordinate regulation of the network is important in MYC driven tumorigenesis. This article is part of a Special Issue entitled: Myc proteins in cell biology and pathology.
Collapse
Affiliation(s)
- Daniel Diolaiti
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, USA
| | - Lisa McFerrin
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, USA
| | - Patrick A Carroll
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, USA
| | - Robert N Eisenman
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, USA.
| |
Collapse
|
9
|
Erichsen DA, Armstrong MB, Wechsler DS. Mxi1 and mxi1-0 antagonize N-myc function and independently mediate apoptosis in neuroblastoma. Transl Oncol 2015; 8:65-74. [PMID: 25749179 PMCID: PMC4350643 DOI: 10.1016/j.tranon.2015.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 01/19/2015] [Indexed: 12/18/2022] Open
Abstract
Neuroblastoma (NB) is the third most common malignancy of childhood, and outcomes for children with advanced disease remain poor; amplification of the MYCN gene portends a particularly poor prognosis. Mxi1 antagonizes N-Myc by competing for binding to Max and E-boxes. Unlike N-Myc, Mxi1 mediates transcriptional repression and suppresses cell proliferation. Mxi1 and Mxi1-0 (an alternatively transcribed Mxi1 isoform) share identical Max and DNA binding domains but differ in amino-terminal sequences. Because of the conservation of these critical binding domains, we hypothesized that Mxi1-0 antagonizes N-Myc activity similar to Mxi1. SHEP NB cells and SHEP cells stably transfected with MYCN (SHEP/MYCN) were transiently transfected with vectors containing full-length Mxi1, full-length Mxi1-0, or the common Mxi domain encoded by exons 2 to 6 (ex2-6). After incubation in low serum, parental SHEP/MYCN cell numbers were reduced compared with SHEP cells. Activated caspase-3 staining and DNA fragmentation ELISA confirmed that SHEP/MYCN cells undergo apoptosis in low serum, while SHEP/MYCN cells transfected with Mxi1 or Mxi1-0 do not. However, SHEP/MYCN cells transfected with Mxi1 or Mxi1-0 and grown in normal serum showed proliferation rates similar to SHEP cells. Mxi ex2-6 did not affect cell number in low or normal serum, suggesting that amino terminal domains of Mxi1 and Mxi1-0 are critical for antagonism. In the absence of N-Myc, Mxi1 and Mxi1-0 induce apoptosis independently through the caspase-8-dependent extrinsic pathway, while N-Myc activates the caspase-9-dependent intrinsic pathway. Together, these data indicate that Mxi1 and Mxi1-0 antagonize N-Myc but also independently impact NB cell survival.
Collapse
Affiliation(s)
- David A Erichsen
- Section of Pediatric Hematology-Oncology, Department of Pediatrics and Communicable Diseases, The University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Michael B Armstrong
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Daniel S Wechsler
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
10
|
N-Myc differentially regulates expression of MXI1 isoforms in neuroblastoma. Neoplasia 2014; 15:1363-70. [PMID: 24403858 DOI: 10.1593/neo.11606] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 11/18/2013] [Accepted: 11/18/2013] [Indexed: 12/15/2022] Open
Abstract
Amplification of the MYCN proto-oncogene is associated with a poor prognosis in patients with metastatic neuroblastoma (NB). MYCN encodes the N-Myc protein, a transcriptional regulator that dimerizes with the Max transcription factor, binds to E-box DNA sequences, and regulates genes involved in cell growth and apoptosis. Overexpression of N-Myc leads to transcriptional activation and an increase in NB cell proliferation. Mxi1, a member of the Myc family of transcriptional regulators, also binds to Max. However, Mxi1 is a transcriptional repressor and inhibits proliferation of NB cells, suggesting that Mxi1 functions as an N-Myc antagonist. Our laboratory previously identified Mxi1-0, an alternatively transcribed Mxi1 isoform. Mxi1-0 has properties distinct from those of Mxi1; in contrast to Mxi1, Mxi1-0 is unable to suppress c-Myc-dependent transcription. We now show that Mxi1-0 expression increases in response to MYCN overexpression in NB cells, with a positive correlation between MYCN and MXI1-0 RNA levels. We also show that N-Myc expression differentially regulates the MXI1 and MXI1-0 promoters: Increased MYCN expression suppresses MXI1 promoter activity while enhancing transcription through the MXI1-0 promoter. Finally, induction of Mxi1-0 leads to increased proliferation, whereas expression of Mxi1 inhibits cell growth, indicating differential roles for these two proteins. These data suggest that N-Myc differentially regulates the expression of MXI1 and MXI1-0 and can alter the balance between the two transcription factors. Furthermore, MXI1-0 appears to be a downstream target of MYCN-dependent signaling pathways and may contribute to N-Myc-dependent cell growth and proliferation.
Collapse
|
11
|
Ecevit O, Khan MA, Goss DJ. Kinetic analysis of the interaction of b/HLH/Z transcription factors Myc, Max, and Mad with cognate DNA. Biochemistry 2010; 49:2627-35. [PMID: 20170194 PMCID: PMC2852888 DOI: 10.1021/bi901913a] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Myc, Mad, and Max proteins belong to the basic helix-loop-helix leucine zipper family of transcription factors. They bind to a specific hexanucleotide element of DNA, the E-box (CACGTG). To be biologically active, Myc and Mad require dimerization with Max. For the route of complex assembly of these dimers, there are two proposed pathways. In the monomer pathway, two monomers bind DNA sequentially and assemble their dimerization interface while bound to DNA. In the dimer pathway, two monomers form a dimer first prior to association with DNA. The monomer pathway is kinetically favored. In this report, stopped-flow polarization was utilized to determine the rates and temperature dependence of all of the individual steps for both assembly pathways. Myc.Max dimerization had a rate constant approximately 5- and approximately 2-fold higher than those of Max.Max and Mad.Max dimerization, respectively. The protein dimerization rates as well as the dimer-DNA rates were found to be independent of concentration, suggesting conformational changes were rate-limiting. The Arrhenius activation energies for the dimerization of Myc, Mad, and Max with Max were 20.4 +/- 0.8, 29 +/- 0.6, and 40 +/- 0.2 kJ/mol, respectively. Further, rate constants for Max.Max homodimer DNA binding are significantly higher than for Myc.Max and Mad.Max heterodimers binding to DNA. Monomer-DNA binding showed a faster rate than dimer-DNA binding. These studies show the rate-limiting step for the dimer pathway is the formation of protein dimers, and this reaction is slower than formation of protein dimers on the DNA interface, kinetically favoring the monomer pathway.
Collapse
Affiliation(s)
- Ozgur Ecevit
- Department of Chemistry and Biochemistry, Hunter College and Graduate Center of the City University of New York, New York, NY 10065
| | - Mateen A Khan
- Department of Chemistry and Biochemistry, Hunter College and Graduate Center of the City University of New York, New York, NY 10065
| | - Dixie J Goss
- Department of Chemistry and Biochemistry, Hunter College and Graduate Center of the City University of New York, New York, NY 10065
| |
Collapse
|
12
|
Vispé S, DeVries L, Créancier L, Besse J, Bréand S, Hobson DJ, Svejstrup JQ, Annereau JP, Cussac D, Dumontet C, Guilbaud N, Barret JM, Bailly C. Triptolide is an inhibitor of RNA polymerase I and II-dependent transcription leading predominantly to down-regulation of short-lived mRNA. Mol Cancer Ther 2009; 8:2780-90. [PMID: 19808979 DOI: 10.1158/1535-7163.mct-09-0549] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Triptolide, a natural product extracted from the Chinese plant Tripterygium wilfordii, possesses antitumor properties. Despite numerous reports showing the proapoptotic capacity and the inhibition of NF-kappaB-mediated transcription by triptolide, the identity of its cellular target is still unknown. To clarify its mechanism of action, we further investigated the effect of triptolide on RNA synthesis in the human non-small cell lung cancer cell line A549. Triptolide inhibited both total RNA and mRNA de novo synthesis, with the primary action being on the latter pool. We used 44K human pan-genomic DNA microarrays and identified the genes primarily affected by a short treatment with triptolide. Among the modulated genes, up to 98% are down-regulated, encompassing a large array of oncogenes including transcription factors and cell cycle regulators. We next observed that triptolide induced a rapid depletion of RPB1, the RNA polymerase II main subunit that is considered a hallmark of a transcription elongation blockage. However, we also show that triptolide does not directly interact with the RNA polymerase II complex nor does it damage DNA. We thus conclude that triptolide is an original pharmacologic inhibitor of RNA polymerase activity, affecting indirectly the transcription machinery, leading to a rapid depletion of short-lived mRNA, including transcription factors, cell cycle regulators such as CDC25A, and the oncogenes MYC and Src. Overall, the data shed light on the effect of triptolide on transcription, along with its novel potential applications in cancers, including acute myeloid leukemia, which is in part driven by the aforementioned oncogenic factors.
Collapse
Affiliation(s)
- Stéphane Vispé
- Centre de Recherche en Oncologie Expérimentale, Institut de Recherche Pierre Fabre, 3 rue des satellites, BP94244, Toulouse Cedex 4, 31432 France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Mathé EA, Nguyen GH, Bowman ED, Zhao Y, Budhu A, Schetter AJ, Braun R, Reimers M, Kumamoto K, Hughes D, Altorki NK, Casson AG, Liu CG, Wang XW, Yanaihara N, Hagiwara N, Dannenberg AJ, Miyashita M, Croce CM, Harris CC. MicroRNA expression in squamous cell carcinoma and adenocarcinoma of the esophagus: associations with survival. Clin Cancer Res 2009; 15:6192-200. [PMID: 19789312 DOI: 10.1158/1078-0432.ccr-09-1467] [Citation(s) in RCA: 304] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE The dismal outcome of esophageal cancer patients highlights the need for novel prognostic biomarkers, such as microRNAs (miRNA). Although recent studies have established the role of miRNAs in esophageal carcinoma, a comprehensive multicenter study investigating different histologic types, including squamous cell carcinoma (SCC) and adenocarcinoma with or without Barrett's, is still lacking. EXPERIMENTAL DESIGN miRNA expression was measured in cancerous and adjacent noncancerous tissue pairs collected from 100 adenocarcinoma and 70 SCC patients enrolled at four clinical centers from the United States, Canada, and Japan. Microarray-based expression was measured in a subset of samples in two cohorts and was validated in all available samples. RESULTS In adenocarcinoma patients, miR-21, miR-223, miR-192, and miR-194 expression was elevated, whereas miR-203 expression was reduced in cancerous compared with noncancerous tissue. In SCC patients, we found elevated miR-21 and reduced miR-375 expression levels in cancerous compared with noncancerous tissue. When comparing cancerous tissue expression between adenocarcinoma and SCC patients, miR-194 and miR-375 were elevated in adenocarcinoma patients. Significantly, elevated miR-21 expression in noncancerous tissue of SCC patients and reduced levels of miR-375 in cancerous tissue of adenocarcinoma patients with Barrett's were strongly associated with worse prognosis. Associations with prognosis were independent of tumor stage or nodal status, cohort type, and chemoradiation therapy. CONCLUSIONS Our multicenter-based results highlight miRNAs involved in major histologic types of esophageal carcinoma and uncover significant associations with prognosis. Elucidating miRNAs relevant to esophageal carcinogenesis is potentially clinically useful for developing prognostic biomarkers and identifying novel drug targets and therapies.
Collapse
Affiliation(s)
- Ewy A Mathé
- Laboratory of Human Carcinogenesis, National Cancer Institute/NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Affiliation(s)
- Waihay J Wong
- School of Medicine, and Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|