1
|
Gilene S, Knapke S, Leino D, Roy S, Raskin S. A novel POT1-TPD presentation: A germline pathogenic POT1 variant discovered in a patient with newly diagnosed posterior fossa ependymoma. Cancer Genet 2025; 292-293:38-43. [PMID: 39864275 DOI: 10.1016/j.cancergen.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/17/2024] [Accepted: 01/20/2025] [Indexed: 01/28/2025]
Abstract
INTRODUCTION POT1 tumor predisposition (POT1-TPD) is an autosomal dominant disorder characterized by increased lifetime malignancy risk. Melanoma, angiosarcoma, and chronic lymphocytic leukemia are the most frequently reported malignancies [1]. Protection of telomeres protein 1 (POT1) is part of the shelterin protein complex to maintain/protect telomeres [2]. Proposed mechanisms for oncogenesis with POT1 loss of function include telomere elongation and DNA damage response causing genomic instability [3]. Ependymomas are a heterogeneous group representing one-third of pediatric brain tumors and are locally aggressive with frequent recurrence [4]. CASE PRESENTATION A healthy 3-year-old male presented with worsening vertigo, headaches, and emesis. Radiographic studies demonstrated a midline posterior fossa mass in the fourth ventricle. Following a gross total resection, pathology demonstrated a posterior fossa ependymoma, group A. Next generation sequencing (NGS) using our institution's clinically validated panel, "CinCSeq," identified a POT1 splice site variant (c.1164-1G>A; variant allele fraction 46 %). Paired germline testing via the Molecular Characterization Initiative confirmed this variant as heterozygous in the patient. Genetic testing confirmed the POT1 pathogenic variant in his mother, who has a history of multiple nevi. The patient completed treatment with focal proton radiotherapy with no evidence of disease recurrence to date. DISCUSSION To our knowledge, this represents the first documented pediatric ependymoma patient with a familial, germline POT1 pathogenic variant. Somatic POT1 mutational frequency, as determined by NGS in over 60,000 solid tumors, is 2.94 %. Among this cohort, 48 cases were ependymomas with one non-benign POT1 mutation [5]. Alterations of telomere maintenance have been reported in intracranial ependymomas previously through increased human telomerase reverse transcriptase (hTERT) expression [6,7]. This case sheds light on a potential new predisposition for ependymoma development and the expanding phenotype of POT1-TPD. We recognize the POT1 pathogenic variant may have been discovered incidentally in this case. Further research is needed to advance our understanding of the association between POT1 genetic alterations and ependymomas.
Collapse
Affiliation(s)
- Stephen Gilene
- Cincinnati Children's Hospital Medical Center, Division of Oncology, Cincinnati, OH, USA
| | - Sara Knapke
- Cincinnati Children's Hospital Medical Center, Division of Human Genetics, Cincinnati, OH, USA
| | - Daniel Leino
- Cincinnati Children's Hospital Medical Center, Division of Pathology and Laboratory Medicine, Cincinnati, OH, USA; University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Somak Roy
- Cincinnati Children's Hospital Medical Center, Division of Pathology and Laboratory Medicine, Cincinnati, OH, USA; University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Scott Raskin
- Cincinnati Children's Hospital Medical Center, Division of Oncology, Cincinnati, OH, USA; University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
2
|
Ritzmann TA, Chapman RJ, Kilday JP, Thorp N, Modena P, Dineen RA, Macarthur D, Mallucci C, Jaspan T, Pajtler KW, Giagnacovo M, Jacques TS, Paine SML, Ellison DW, Bouffet E, Grundy RG. SIOP Ependymoma I: Final results, long-term follow-up, and molecular analysis of the trial cohort-A BIOMECA Consortium Study. Neuro Oncol 2022; 24:936-948. [PMID: 35018471 PMCID: PMC9159435 DOI: 10.1093/neuonc/noac012] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND SIOP Ependymoma I was a non-randomised trial assessing event free and overall survival (EFS/OS) of non-metastatic intracranial ependymoma in children aged 3-21 years treated with a staged management strategy. A further aim was to assess the response rate (RR) of subtotally resected (STR) ependymoma to vincristine, etoposide, and cyclophosphamide (VEC). We report final results with 12-year follow-up and post hoc analyses of recently described biomarkers. METHODS Seventy-four participants were eligible. Children with gross total resection (GTR) received radiotherapy, whilst those with STR received VEC before radiotherapy. DNA methylation, 1q, hTERT, ReLA, Tenascin-C, H3K27me3, and pAKT status were evaluated. RESULTS Five- and ten-year EFS was 49.5% and 46.7%, OS was 69.3% and 60.5%. GTR was achieved in 33/74 (44.6%) and associated with improved EFS (P = .003, HR = 2.6, 95% confidence interval (CI) 1.4-5.1). Grade 3 tumours were associated with worse OS (P = .005, HR = 2.8, 95%CI 1.3-5.8). 1q gain and hTERT expression were associated with poorer EFS (P = .003, HR = 2.70, 95%CI 1.49-6.10 and P = .014, HR = 5.8, 95%CI 1.2-28) and H3K27me3 loss with worse OS (P = .003, HR = 4.6, 95%CI 1.5-13.2). Methylation profiles showed expected patterns. 12 participants with STR did not receive chemotherapy; a protocol violation. However, best chemotherapy RR was 65.5% (19/29, 95%CI 45.7-82.1), exceeding the prespecified 45%. CONCLUSIONS Participants with totally resected ependymoma had the best outcomes. RR of STR to VEC exceeded the pre-specified efficacy criterion. However, cases of inaccurate stratification highlighted the need for rapid central review. 1q gain, H3K27me3 loss, and hTERT expression were all associated with poorer survival outcomes.
Collapse
Affiliation(s)
- Timothy A Ritzmann
- Children’s Brain Tumour Research Centre, University of Nottingham, Nottingham, UK
- Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Rebecca J Chapman
- Children’s Brain Tumour Research Centre, University of Nottingham, Nottingham, UK
| | - John-Paul Kilday
- Children’s Brain Tumour Research Network (CBTRN), Royal Manchester Children’s Hospital, Manchester, UK
- The Centre for Paediatric, Teenage and Young Adult Cancer, University of Manchester, Manchester, UK
| | - Nicola Thorp
- The Clatterbridge Cancer Centre, Liverpool, UK
- The Christie Hospital Proton Beam Therapy Centre, Manchester, UK
| | | | - Robert A Dineen
- Children’s Brain Tumour Research Centre, University of Nottingham, Nottingham, UK
- Nottingham University Hospitals NHS Trust, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham, UK
| | - Donald Macarthur
- Children’s Brain Tumour Research Centre, University of Nottingham, Nottingham, UK
- Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Conor Mallucci
- Alder Hey Children’s NHS Foundation Trust, Liverpool, UK
| | - Timothy Jaspan
- Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Kristian W Pajtler
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Thomas S Jacques
- UCL GOS Institute of Child Health, London, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Simon M L Paine
- Children’s Brain Tumour Research Centre, University of Nottingham, Nottingham, UK
- Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - David W Ellison
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Eric Bouffet
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Richard G Grundy
- Children’s Brain Tumour Research Centre, University of Nottingham, Nottingham, UK
- Nottingham University Hospitals NHS Trust, Nottingham, UK
| |
Collapse
|
3
|
Saleh AH, Samuel N, Juraschka K, Saleh MH, Taylor MD, Fehlings MG. The biology of ependymomas and emerging novel therapies. Nat Rev Cancer 2022; 22:208-222. [PMID: 35031778 DOI: 10.1038/s41568-021-00433-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/01/2021] [Indexed: 12/20/2022]
Abstract
Ependymomas are rare central nervous system tumours that can arise in the brain's supratentorial region or posterior fossa, or in the spinal cord. In 1924, Percival Bailey published the first comprehensive study of ependymomas. Since then, and especially over the past 10 years, our understanding of ependymomas has grown exponentially. In this Review, we discuss the evolution in knowledge regarding ependymoma subgroups and the resultant clinical implications. We also discuss key oncogenic and tumour suppressor signalling pathways that regulate tumour growth, the role of epigenetic dysregulation in the biology of ependymomas, and the various biological features of ependymoma tumorigenesis, including cell immortalization, stem cell-like properties, the tumour microenvironment and metastasis. We further review the limitations of current therapies such as relapse, radiation-induced cognitive deficits and chemotherapy resistance. Finally, we highlight next-generation therapies that are actively being explored, including tyrosine kinase inhibitors, telomerase inhibitors, anti-angiogenesis agents and immunotherapy.
Collapse
Affiliation(s)
- Amr H Saleh
- MD Program, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nardin Samuel
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Kyle Juraschka
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Mohammad H Saleh
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Michael D Taylor
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Michael G Fehlings
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.
- Division of Neurosurgery, University Health Network, Toronto Western Hospital, Toronto, ON, Canada.
- Krembil Neuroscience Centre, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
4
|
Zhang C, Ostrom QT, Semmes EC, Ramaswamy V, Hansen HM, Morimoto L, de Smith AJ, Pekmezci M, Vaksman Z, Hakonarson H, Diskin SJ, Metayer C, Taylor MD, Wiemels JL, Bondy ML, Walsh KM. Genetic predisposition to longer telomere length and risk of childhood, adolescent and adult-onset ependymoma. Acta Neuropathol Commun 2020; 8:173. [PMID: 33115534 PMCID: PMC7592366 DOI: 10.1186/s40478-020-01038-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
Ependymoma is the third most common brain tumor in children, with well-described molecular characterization but poorly understood underlying germline risk factors. To investigate whether genetic predisposition to longer telomere length influences ependymoma risk, we utilized case-control data from three studies: a population-based pediatric and adolescent ependymoma case-control sample from California (153 cases, 696 controls), a hospital-based pediatric posterior fossa type A (EPN-PF-A) ependymoma case-control study from Toronto's Hospital for Sick Children and the Children's Hospital of Philadelphia (83 cases, 332 controls), and a multicenter adult-onset ependymoma case-control dataset nested within the Glioma International Case-Control Consortium (GICC) (103 cases, 3287 controls). In the California case-control sample, a polygenic score for longer telomere length was significantly associated with increased risk of ependymoma diagnosed at ages 12-19 (P = 4.0 × 10-3), but not with ependymoma in children under 12 years of age (P = 0.94). Mendelian randomization supported this observation, identifying a significant association between genetic predisposition to longer telomere length and increased risk of adolescent-onset ependymoma (ORPRS = 1.67; 95% CI 1.18-2.37; P = 3.97 × 10-3) and adult-onset ependymoma (PMR-Egger = 0.042), but not with risk of ependymoma diagnosed before age 12 (OR = 1.12; 95% CI 0.94-1.34; P = 0.21), nor with EPN-PF-A (PMR-Egger = 0.59). These findings complement emerging literature suggesting that augmented telomere maintenance is important in ependymoma pathogenesis and progression, and that longer telomere length is a risk factor for diverse nervous system malignancies.
Collapse
Affiliation(s)
- Chenan Zhang
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, USA
| | - Quinn T Ostrom
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, USA
| | - Eleanor C Semmes
- Medical Scientist Training Program, Duke University School of Medicine, Durham, USA
- Children's Health and Discovery Initiative, Department of Pediatrics, Duke University, Durham, USA
| | - Vijay Ramaswamy
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Helen M Hansen
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, USA
| | - Libby Morimoto
- School of Public Health, University of California, Berkeley, Berkeley, USA
| | - Adam J de Smith
- Center for Genetic Epidemiology, University of Southern California, Los Angeles, USA
| | - Melike Pekmezci
- Department of Pathology, University of California, San Francisco, San Francisco, USA
| | - Zalman Vaksman
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Sharon J Diskin
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Catherine Metayer
- School of Public Health, University of California, Berkeley, Berkeley, USA
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Joseph L Wiemels
- Center for Genetic Epidemiology, University of Southern California, Los Angeles, USA
| | - Melissa L Bondy
- Department of Epidemiology and Population Health, Stanford University, Palo Alto, CA, USA
| | - Kyle M Walsh
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, USA.
- Medical Scientist Training Program, Duke University School of Medicine, Durham, USA.
- Department of Neurosurgery and Duke Cancer Institute, Duke University School of Medicine, DUMC Box 3050, Durham, NC, 27710, USA.
| |
Collapse
|
5
|
Dewi FRP, Jiapaer S, Kobayashi A, Hazawa M, Ikliptikawati DK, Hartono, Sabit H, Nakada M, Wong RW. Nucleoporin TPR (translocated promoter region, nuclear basket protein) upregulation alters MTOR-HSF1 trails and suppresses autophagy induction in ependymoma. Autophagy 2020; 17:1001-1012. [PMID: 32207633 PMCID: PMC8078762 DOI: 10.1080/15548627.2020.1741318] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Children with ependymoma have high mortality rates because ependymoma is resistant to conventional therapy. Genomic and transcriptomic studies have identified potential targets as significantly altered genes in ependymoma patients. Although several candidate oncogenes in ependymoma were recently reported, the detailed mechanisms for the roles of these candidate oncogenes in ependymoma progression remain unclear. Here, we report an oncogenic role of the nucleoporin TPR (translocated promoter region, nuclear basket protein) in regulating HSF1 (heat shock transcription factor 1) mRNA trafficking, maintaining MTORC1 activity to phosphorylate ULK1, and preventing macroautophagy/autophagy induction in ependymoma. High expression of TPR were associated with increased HSF1 and HSPA/HSP70 expression in ependymoma patients. In an ependymoma mouse xenograft model, MTOR inhibition by rapamycin therapeutically suppressed TPR expression and reduced tumor size in vivo. Together, these results suggest that TPR may act as a biomarker for ependymoma, and pharmacological interventions targeting TPR-HSF1-MTOR may have therapeutic potential for ependymoma treatment. Abbreviations: ATG: autophagy related; BECN1: beclin 1; BSA: bovine serum albumin; CQ: chloroquine; DMSO: dimethyl sulfoxide; GEO: gene expression omnibus; GFP: green fluorescence protein; HSF1: heat shock transcription factor 1; HSPA/HSP70: heat shock protein family A (Hsp70); LMNB1: lamin B1; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MAPK: mitogen-activated protein kinase; MAPK8/JNK: mitogen-activated protein kinase 8; MTORC1: mechanistic target of rapamycin kinase complex 1; NPC: nuclear pore complex; NUP: nucleoporin; PBS: phosphate-buffered saline; q-PCR: quantitative real time PCR; SDS: sodium dodecyl sulfate; SQSTM1: sequestosome 1; STED: stimulated emission depletion microscopy; STX17: syntaxin 17; TCGA: the cancer genome atlas; TPR: translocated promoter region, nuclear basket protein; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Firli Rahmah Primula Dewi
- WPI Nano Life Science Institute (WPI-nanoLSI) & Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan.,Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
| | - Shabierjiang Jiapaer
- Department of Neurosurgery, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Akiko Kobayashi
- WPI Nano Life Science Institute (WPI-nanoLSI) & Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Masaharu Hazawa
- WPI Nano Life Science Institute (WPI-nanoLSI) & Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Dini Kurnia Ikliptikawati
- WPI Nano Life Science Institute (WPI-nanoLSI) & Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Hartono
- WPI Nano Life Science Institute (WPI-nanoLSI) & Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Hemragul Sabit
- Department of Neurosurgery, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Richard W Wong
- WPI Nano Life Science Institute (WPI-nanoLSI) & Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
6
|
Nuta O, Rothkamm K, Darroudi F. The Role of Telomerase in Radiation-Induced Genomic Instability. Radiat Res 2020; 193:451-459. [PMID: 32150497 DOI: 10.1667/rr15495.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Findings from previous studies have suggested that the telomerase system is involved in radiation-induced genomic instability. In this study, we investigated the involvement of telomerase in the development and processing of chromosomal damage at different cell cycle stages after irradiation of human fibroblasts. Several response criteria were investigated, including cell survival, chromosomal damage (using the micronucleus assay), G2-induced chromatid aberrations (using the conventional G2 assay as well as a chemically-induced premature chromosome condensation assay) and DNA double-strand breaks (DSBs; using γ-H2AX, 53BP1 and Rad51) in an isogenic pair of cell lines: BJ human foreskin fibroblasts and BJ1-hTERT, a telomerase-immortalized BJ cell line. To distinguish among G1, S and G2 phase, cells were co-immunostained for CENP-F and cyclin A, which are tightly regulated proteins in the cell cycle. After X-ray irradiation at doses in the range of 0.1-6 Gy, the results showed that for cell survival and micronuclei induction, where the overall effect is dominated by the cells in G1 and S phase, no difference was observed between the two cell types; in contrast, when radiation sensitivity at the G2 stage of the cell cycle was analyzed, a significantly higher number of chromatid-type aberrations (breaks and exchanges), and higher levels of γ-H2AX and of Rad51 foci were observed for the BJ cells compared to the BJ1-hTERT cells. Therefore, it can be concluded that telomerase appears to be involved in DNA DSB repair processes, mainly in the G2 phase. These data, taken overall, reinforce the notion that hTERT or other elements of the telomere/telomerase system may defend chromosome integrity in human fibroblasts by promoting repair in G2 phase of the cell cycle.
Collapse
Affiliation(s)
- Otilia Nuta
- Nazarbayev University, School of Sciences and Humanities, Department of Biology, Nur-Sultan, 010000, Kazakhstan
| | - Kai Rothkamm
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Firouz Darroudi
- Department of Genome Scan Unlimited, 2341AJ, Oegstgeest, The Netherlands
| |
Collapse
|
7
|
Khatua S, Mangum R, Bertrand KC, Zaky W, McCall D, Mack SC. Pediatric ependymoma: current treatment and newer therapeutic insights. Future Oncol 2018; 14:3175-3186. [PMID: 30418040 DOI: 10.2217/fon-2018-0502] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Advances in genomic, transcriptomic and epigenomic profiling now identifies pediatric ependymoma as a defined biological entity. Molecular interrogation has segregated these tumors into distinct biological subtypes based on anatomical location, age and clinical outcome, which now defines the need to tailor therapy even for histologically similar tumors. These findings now provide reasons for a paradigm shift in therapy, which should profile future clinical trials focused on targeted therapeutic strategies and risk-based treatment. The need to diagnose and differentiate the aggressive variants, which include the posterior fossa group A and the supratentorial RELA fusion subtypes, is imperative to escalate therapy and improve survival.
Collapse
Affiliation(s)
- Soumen Khatua
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ross Mangum
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Pediatric Hematology & Oncology, Texas Children's Cancer & Hematology Centers, Houston, TX 77030, USA
| | - Kelsey C Bertrand
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Pediatric Hematology & Oncology, Texas Children's Cancer & Hematology Centers, Houston, TX 77030, USA
| | - Wafik Zaky
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David McCall
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Stephen C Mack
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Pediatric Hematology & Oncology, Texas Children's Cancer & Hematology Centers, Houston, TX 77030, USA
| |
Collapse
|
8
|
Wang K, Wang RL, Liu JJ, Zhou J, Li X, Hu WW, Jiang WJ, Hao NB. The prognostic significance of hTERT overexpression in cancers: A systematic review and meta-analysis. Medicine (Baltimore) 2018; 97:e11794. [PMID: 30170373 PMCID: PMC6392887 DOI: 10.1097/md.0000000000011794] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Human telomerase reverse transcriptase (hTERT) plays an important role in cancer progression. Recently, several clinical studies investigated how the overexpression of hTERT predicts the poor prognosis of solid tumors. However, the results were inconclusive, partly because of the small numbers of patients included. METHOD We systematically searched PubMed, Web of Science, and Embase to identify relevant studies until August 2017. Hazard ratios (HRs) with 95% confidence intervals (CIs) were used to evaluate the association of hTERT expression and survival outcomes. RESULTS A total of 27studies enrolling 2530 solid tumor patients were included in this meta-analysis. There were strong significant associations between hTERT overexpression and all endpoints: overall survival (OS) (HR = 1.50, 95% CI: 1.31-1.73, P = .00), disease-free survival (HR = 1.84, 95% CI: 1.38-2.46; P = .00), and recurrence-free survival (HR = 1.79, 95% CI: 1.07-2.99; P = .028). In the subgroup analysis, it was found that the overexpression of hTERT induced poor OS in lung cancer (HR = 1.51, 95% CI: 1.21-1.89; P = .00). CONCLUSION Our comprehensive systematic review concluded that the overexpression of hTERT was associated with poor survival in human solid tumors. hTERT may be a valuable predictive biomarker for prognosis.
Collapse
Affiliation(s)
- Kai Wang
- New Era Stoke Care and Research Institute
| | - Rui-Ling Wang
- Department of Gastroenterology, General Hospital of the PLA Rocket Force; Beijing, China
| | - Jian-Jun Liu
- Department of Gastroenterology, General Hospital of the PLA Rocket Force; Beijing, China
| | - Ji Zhou
- New Era Stoke Care and Research Institute
| | - Xue Li
- Department of Gastroenterology, General Hospital of the PLA Rocket Force; Beijing, China
| | - Wen-Wei Hu
- Department of Gastroenterology, General Hospital of the PLA Rocket Force; Beijing, China
| | | | - Ning-Bo Hao
- Department of Gastroenterology, General Hospital of the PLA Rocket Force; Beijing, China
| |
Collapse
|
9
|
Gojo J, Lötsch D, Spiegl-Kreinecker S, Pajtler KW, Neumayer K, Korbel P, Araki A, Brandstetter A, Mohr T, Hovestadt V, Chavez L, Kirchhofer D, Ricken G, Stefanits H, Korshunov A, Pfister SM, Dieckmann K, Azizi AA, Czech T, Filipits M, Kool M, Peyrl A, Slavc I, Berger W, Haberler C. Telomerase activation in posterior fossa group A ependymomas is associated with dismal prognosis and chromosome 1q gain. Neuro Oncol 2018; 19:1183-1194. [PMID: 28371821 DOI: 10.1093/neuonc/nox027] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Ependymomas account for up to 10% of childhood CNS tumors and have a high rate of tumor recurrence despite gross total resection. Recently, classification into molecular ependymoma subgroups has been established, but the mechanisms underlying the aggressiveness of certain subtypes remain widely enigmatic. The aim of this study was to dissect the clinical and biological role of telomerase reactivation, a frequent mechanism of cancer cells to evade cellular senescence, in pediatric ependymoma. Methods We determined telomerase enzymatic activity, hTERT mRNA expression, promoter methylation, and the rs2853669 single nucleotide polymorphism located in the hTERT promoter in a well-characterized cohort of pediatric intracranial ependymomas. Results In posterior fossa ependymoma group A (PF-EPN-A) tumors, telomerase activity varied and was significantly associated with dismal overall survival, whereas telomerase reactivation was present in all supratentorial RelA fusion-positive (ST-EPN-RELA) ependymomas. In silico analysis of methylation patterns showed that only these two subgroups harbor hypermethylated hTERT promoters suggesting telomerase reactivation via epigenetic mechanisms. Furthermore, chromosome 1q gain, a well-known negative prognostic factor, was strongly associated with telomerase reactivation in PF-EPN-A. Additional in silico analyses of gene expression data confirmed this finding and further showed enrichment of the E-twenty-six factor, Myc, and E2F target genes in 1q gained ependymomas. Additionally, 1q gained tumors showed elevated expression of ETV3, an E-twenty-six factor gene located on chromosome 1q. Conclusion Taken together we describe a subgroup-specific impact of telomerase reactivation on disease progression in pediatric ependymoma and provide preliminary evidence for the involved molecular mechanisms.
Collapse
Affiliation(s)
- Johannes Gojo
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Austria; Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Austria; Neuromed Campus, Kepler University Hospital, Linz, Austria; Institute of Neurology, Medical University of Vienna, Austria; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neuropathology, University Hospital Heidelberg, Germany; Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neurosurgery, Medical University of Vienna, Austria; Department of Radiotherapy, Medical University of Vienna, Austria
| | - Daniela Lötsch
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Austria; Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Austria; Neuromed Campus, Kepler University Hospital, Linz, Austria; Institute of Neurology, Medical University of Vienna, Austria; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neuropathology, University Hospital Heidelberg, Germany; Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neurosurgery, Medical University of Vienna, Austria; Department of Radiotherapy, Medical University of Vienna, Austria
| | - Sabine Spiegl-Kreinecker
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Austria; Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Austria; Neuromed Campus, Kepler University Hospital, Linz, Austria; Institute of Neurology, Medical University of Vienna, Austria; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neuropathology, University Hospital Heidelberg, Germany; Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neurosurgery, Medical University of Vienna, Austria; Department of Radiotherapy, Medical University of Vienna, Austria
| | - Kristian W Pajtler
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Austria; Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Austria; Neuromed Campus, Kepler University Hospital, Linz, Austria; Institute of Neurology, Medical University of Vienna, Austria; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neuropathology, University Hospital Heidelberg, Germany; Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neurosurgery, Medical University of Vienna, Austria; Department of Radiotherapy, Medical University of Vienna, Austria
| | - Katharina Neumayer
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Austria; Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Austria; Neuromed Campus, Kepler University Hospital, Linz, Austria; Institute of Neurology, Medical University of Vienna, Austria; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neuropathology, University Hospital Heidelberg, Germany; Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neurosurgery, Medical University of Vienna, Austria; Department of Radiotherapy, Medical University of Vienna, Austria
| | - Pia Korbel
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Austria; Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Austria; Neuromed Campus, Kepler University Hospital, Linz, Austria; Institute of Neurology, Medical University of Vienna, Austria; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neuropathology, University Hospital Heidelberg, Germany; Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neurosurgery, Medical University of Vienna, Austria; Department of Radiotherapy, Medical University of Vienna, Austria
| | - Asuka Araki
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Austria; Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Austria; Neuromed Campus, Kepler University Hospital, Linz, Austria; Institute of Neurology, Medical University of Vienna, Austria; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neuropathology, University Hospital Heidelberg, Germany; Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neurosurgery, Medical University of Vienna, Austria; Department of Radiotherapy, Medical University of Vienna, Austria
| | - Anita Brandstetter
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Austria; Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Austria; Neuromed Campus, Kepler University Hospital, Linz, Austria; Institute of Neurology, Medical University of Vienna, Austria; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neuropathology, University Hospital Heidelberg, Germany; Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neurosurgery, Medical University of Vienna, Austria; Department of Radiotherapy, Medical University of Vienna, Austria
| | - Thomas Mohr
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Austria; Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Austria; Neuromed Campus, Kepler University Hospital, Linz, Austria; Institute of Neurology, Medical University of Vienna, Austria; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neuropathology, University Hospital Heidelberg, Germany; Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neurosurgery, Medical University of Vienna, Austria; Department of Radiotherapy, Medical University of Vienna, Austria
| | - Volker Hovestadt
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Austria; Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Austria; Neuromed Campus, Kepler University Hospital, Linz, Austria; Institute of Neurology, Medical University of Vienna, Austria; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neuropathology, University Hospital Heidelberg, Germany; Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neurosurgery, Medical University of Vienna, Austria; Department of Radiotherapy, Medical University of Vienna, Austria
| | - Lukas Chavez
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Austria; Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Austria; Neuromed Campus, Kepler University Hospital, Linz, Austria; Institute of Neurology, Medical University of Vienna, Austria; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neuropathology, University Hospital Heidelberg, Germany; Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neurosurgery, Medical University of Vienna, Austria; Department of Radiotherapy, Medical University of Vienna, Austria
| | - Dominik Kirchhofer
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Austria; Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Austria; Neuromed Campus, Kepler University Hospital, Linz, Austria; Institute of Neurology, Medical University of Vienna, Austria; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neuropathology, University Hospital Heidelberg, Germany; Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neurosurgery, Medical University of Vienna, Austria; Department of Radiotherapy, Medical University of Vienna, Austria
| | - Gerda Ricken
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Austria; Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Austria; Neuromed Campus, Kepler University Hospital, Linz, Austria; Institute of Neurology, Medical University of Vienna, Austria; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neuropathology, University Hospital Heidelberg, Germany; Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neurosurgery, Medical University of Vienna, Austria; Department of Radiotherapy, Medical University of Vienna, Austria
| | - Harald Stefanits
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Austria; Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Austria; Neuromed Campus, Kepler University Hospital, Linz, Austria; Institute of Neurology, Medical University of Vienna, Austria; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neuropathology, University Hospital Heidelberg, Germany; Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neurosurgery, Medical University of Vienna, Austria; Department of Radiotherapy, Medical University of Vienna, Austria
| | - Andrey Korshunov
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Austria; Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Austria; Neuromed Campus, Kepler University Hospital, Linz, Austria; Institute of Neurology, Medical University of Vienna, Austria; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neuropathology, University Hospital Heidelberg, Germany; Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neurosurgery, Medical University of Vienna, Austria; Department of Radiotherapy, Medical University of Vienna, Austria
| | - Stefan M Pfister
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Austria; Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Austria; Neuromed Campus, Kepler University Hospital, Linz, Austria; Institute of Neurology, Medical University of Vienna, Austria; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neuropathology, University Hospital Heidelberg, Germany; Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neurosurgery, Medical University of Vienna, Austria; Department of Radiotherapy, Medical University of Vienna, Austria
| | - Karin Dieckmann
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Austria; Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Austria; Neuromed Campus, Kepler University Hospital, Linz, Austria; Institute of Neurology, Medical University of Vienna, Austria; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neuropathology, University Hospital Heidelberg, Germany; Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neurosurgery, Medical University of Vienna, Austria; Department of Radiotherapy, Medical University of Vienna, Austria
| | - Amedeo A Azizi
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Austria; Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Austria; Neuromed Campus, Kepler University Hospital, Linz, Austria; Institute of Neurology, Medical University of Vienna, Austria; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neuropathology, University Hospital Heidelberg, Germany; Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neurosurgery, Medical University of Vienna, Austria; Department of Radiotherapy, Medical University of Vienna, Austria
| | - Thomas Czech
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Austria; Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Austria; Neuromed Campus, Kepler University Hospital, Linz, Austria; Institute of Neurology, Medical University of Vienna, Austria; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neuropathology, University Hospital Heidelberg, Germany; Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neurosurgery, Medical University of Vienna, Austria; Department of Radiotherapy, Medical University of Vienna, Austria
| | - Martin Filipits
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Austria; Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Austria; Neuromed Campus, Kepler University Hospital, Linz, Austria; Institute of Neurology, Medical University of Vienna, Austria; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neuropathology, University Hospital Heidelberg, Germany; Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neurosurgery, Medical University of Vienna, Austria; Department of Radiotherapy, Medical University of Vienna, Austria
| | - Marcel Kool
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Austria; Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Austria; Neuromed Campus, Kepler University Hospital, Linz, Austria; Institute of Neurology, Medical University of Vienna, Austria; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neuropathology, University Hospital Heidelberg, Germany; Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neurosurgery, Medical University of Vienna, Austria; Department of Radiotherapy, Medical University of Vienna, Austria
| | - Andreas Peyrl
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Austria; Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Austria; Neuromed Campus, Kepler University Hospital, Linz, Austria; Institute of Neurology, Medical University of Vienna, Austria; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neuropathology, University Hospital Heidelberg, Germany; Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neurosurgery, Medical University of Vienna, Austria; Department of Radiotherapy, Medical University of Vienna, Austria
| | - Irene Slavc
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Austria; Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Austria; Neuromed Campus, Kepler University Hospital, Linz, Austria; Institute of Neurology, Medical University of Vienna, Austria; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neuropathology, University Hospital Heidelberg, Germany; Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neurosurgery, Medical University of Vienna, Austria; Department of Radiotherapy, Medical University of Vienna, Austria
| | - Walter Berger
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Austria; Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Austria; Neuromed Campus, Kepler University Hospital, Linz, Austria; Institute of Neurology, Medical University of Vienna, Austria; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neuropathology, University Hospital Heidelberg, Germany; Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neurosurgery, Medical University of Vienna, Austria; Department of Radiotherapy, Medical University of Vienna, Austria
| | - Christine Haberler
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Austria; Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Austria; Neuromed Campus, Kepler University Hospital, Linz, Austria; Institute of Neurology, Medical University of Vienna, Austria; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neuropathology, University Hospital Heidelberg, Germany; Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neurosurgery, Medical University of Vienna, Austria; Department of Radiotherapy, Medical University of Vienna, Austria
| |
Collapse
|
10
|
Antileukemic effects of neurokinin-1 receptor inhibition on hematologic malignant cells. Anticancer Drugs 2018; 29:243-252. [DOI: 10.1097/cad.0000000000000591] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Asghari-Kia L, Bashash D, Safaroghli-Azar A, Momeny M, Hamidpour M, Ghaffari SH. Targeting human telomerase RNA component using antisense oligonucleotide induces rapid cell death and increases ATO-induced apoptosis in APL cells. Eur J Pharmacol 2017; 809:215-223. [PMID: 28533173 DOI: 10.1016/j.ejphar.2017.05.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/13/2017] [Accepted: 05/19/2017] [Indexed: 10/19/2022]
Abstract
The impressive advances carried out in designing pharmacological strategies with the aim of telomerase inhibition in cancers emerged a consensus that telomerase-targeted therapies could be exciting prospect in repertoire of future cancer strategies. The results of the present study indicated that targeting telomerase using an oligonucleotide-based molecule against human telomerase RNA template (hTR ASODN) reduced the survival rate of NB4 cells and induced a caspase-3-dependent apoptosis. Our finding was even noticeable in the synergistic experiments, where we found an enhanced reduction in the viability of the cells after short-term treatment with ATO in combination with the inhibitor. The resulting data delineated that short-term treatment of the cells with hTR ASODN either as single agent or in combination with ATO resulted in apoptotic cell death through activation of DNA damage response via up-regulation of p73 and ATM coupled with down-regulation of c-Myc. Moreover, we found that induction of p21 and subsequent disturbance of the death promoter to death repressor genes may contribute to the enhanced growth suppressive effect of the drugs combination. Overall, our findings support the idea that telomerase activity may have pivotal role in attenuating ATO effectiveness and combination of ATO with telomerase inhibitor seems to be a novel promising strategy, which may increase APL cure rates.
Collapse
Affiliation(s)
- Leila Asghari-Kia
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ava Safaroghli-Azar
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Momeny
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Hamidpour
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Araki A, Chocholous M, Gojo J, Dorfer C, Czech T, Heinzl H, Dieckmann K, Ambros IM, Ambros PF, Slavc I, Haberler C. Chromosome 1q gain and tenascin-C expression are candidate markers to define different risk groups in pediatric posterior fossa ependymoma. Acta Neuropathol Commun 2016; 4:88. [PMID: 27550150 PMCID: PMC4994287 DOI: 10.1186/s40478-016-0349-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/18/2016] [Indexed: 12/11/2022] Open
Abstract
Intracranial classic (WHO grade II) and anaplastic (WHO grade III) ependymomas are among the most common tumors in pediatric patients and have due to frequent recurrences and late relapses a relatively poor outcome. The impact of histopathological grading on patient outcome is controversial and therefore, molecular prognostic and predictive markers are needed to improve patient outcome. To date, the most promising candidate marker is chromosome 1q gain, which has been associated in independent studies with adverse outcome. Furthermore, gene expression and methylation profiles revealed distinct molecular subgroups in the supratentorial and posterior fossa (PF) compartment and Laminin alpha-2 (LAMA2) and Neural Epidermal Growth Factor Like-2 (NELL2) were suggested as surrogate markers for the two PF subgroups PF-EPN-A and PF-EPN-B. PF-EPN-A tumors were also characterized by tenascin-C (TNC) expression and tenascin-C has been suggested as candidate gene on 9q, involved in tumor progression. Therefore, we have analyzed the status of chromosome 1q, TNC, LAMA2, and NELL2 expression in a series of pediatric PF ependymomas in terms of their frequency, associations among themselves, and clinical parameters, as well as their prognostic impact. We confirm the negative prognostic impact of 1q gain and TNC expression and could classify PF ependymomas by these two markers into three molecular subgroups. Tumors with combined 1q gain and TNC expression had the poorest, tumors without 1q gain and TNC expression had a favorable and TNC positive 1q non-gained cases had an intermediate outcome. We found also differences in age and tumor grade in the three subgroups and thus, provide evidence that PF pediatric ependymomas can be divided by chromosome 1q status and TNC expression in three molecular subgroups with distinct clinico-pathological features. These analyses require only few amounts of tumor tissue, are broadly available in the routine clinical neuropathological setting and thus, could be used in further therapy trials to optimize treatment of ependymoma patients.
Collapse
|
13
|
Intratumoral diversity of telomere length in individual neuroblastoma tumors. Oncotarget 2016; 6:7493-503. [PMID: 25595889 PMCID: PMC4480695 DOI: 10.18632/oncotarget.2115] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 06/17/2014] [Indexed: 12/21/2022] Open
Abstract
The purpose of the work was to investigate telomere length (TL) and mechanisms involved in TL maintenance in individual neuroblastoma (NB) tumors. Primary NB tumors from 102 patients, ninety Italian and twelve Spanish, diagnosed from 2000 to 2008 were studied. TL was investigated by quantitative fluorescence in situ hybridization (IQ-FISH) that allows to analyze individual cells in paraffin-embedded tissues. Fluorescence intensity of chromosome 2 centromere was used as internal control to normalize TL values to ploidy. Human telomerase reverse transcriptase (hTERT) expression was detected by immunofluorescence in 99/102 NB specimens. The main findings are the following: 1) two intratumoral subpopulations of cancer cells displaying telomeres of different length were identified in 32/102 tumors belonging to all stages. 2) hTERT expression was detected in 99/102 tumors, of which 31 displayed high expression and 68 low expression. Alternative lengthening of telomeres (ALT)-mechanism was present in 60/102 tumors, 20 of which showed high hTERT expression. Neither ALT-mechanism nor hTERT expression correlated with heterogeneous TL. 3) High hTERT expression and ALT positivity were associated with significantly reduced Overall Survival. 4) High hTERT expression predicted relapse irrespective of patient age. Intratumoral diversity in TL represents a novel feature in NB. In conclusion, diversity of TL in individual NB tumors was strongly associated with disease progression and death, suggesting that these findings are of translational relevance. The combination of high hTERT expression and ALT positivity may represent a novel biomarker of poor prognosis that deserves further investigation.
Collapse
|
14
|
Ernst A, Jones DTW, Maass KK, Rode A, Deeg KI, Jebaraj BMC, Korshunov A, Hovestadt V, Tainsky MA, Pajtler KW, Bender S, Brabetz S, Gröbner S, Kool M, Devens F, Edelmann J, Zhang C, Castelo-Branco P, Tabori U, Malkin D, Rippe K, Stilgenbauer S, Pfister SM, Zapatka M, Lichter P. Telomere dysfunction and chromothripsis. Int J Cancer 2016; 138:2905-14. [PMID: 26856307 DOI: 10.1002/ijc.30033] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 01/23/2016] [Accepted: 01/25/2016] [Indexed: 12/28/2022]
Abstract
Chromothripsis is a recently discovered form of genomic instability, characterized by tens to hundreds of clustered DNA rearrangements resulting from a single dramatic event. Telomere dysfunction has been suggested to play a role in the initiation of this phenomenon, which occurs in a large number of tumor entities. Here, we show that telomere attrition can indeed lead to catastrophic genomic events, and that telomere patterns differ between cells analyzed before and after such genomic catastrophes. Telomere length and telomere stabilization mechanisms diverge between samples with and without chromothripsis in a given tumor subtype. Longitudinal analyses of the evolution of chromothriptic patterns identify either stable patterns between matched primary and relapsed tumors, or loss of the chromothriptic clone in the relapsed specimen. The absence of additional chromothriptic events occurring between the initial tumor and the relapsed tumor sample points to telomere stabilization after the initial chromothriptic event which prevents further shattering of the genome.
Collapse
Affiliation(s)
- Aurélie Ernst
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David T W Jones
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kendra K Maass
- Division Functional Architecture of the Cell, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Agata Rode
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katharina I Deeg
- Genome Organization and Function, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Andrey Korshunov
- Department of Neuropathology University Hospital, Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Volker Hovestadt
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael A Tainsky
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI
| | - Kristian W Pajtler
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Bender
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Brabetz
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Susanne Gröbner
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marcel Kool
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frauke Devens
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Cindy Zhang
- Division of Pediatric Hematology-Oncology and the Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Pedro Castelo-Branco
- Division of Pediatric Hematology-Oncology and the Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Uri Tabori
- Division of Pediatric Hematology-Oncology and the Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - David Malkin
- Division of Hematology/Oncology and Department of Pediatrics, The Hospital for Sick Children and Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Karsten Rippe
- Genome Organization and Function, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Stefan M Pfister
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marc Zapatka
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
15
|
MicroRNA Regulation of Brain Tumour Initiating Cells in Central Nervous System Tumours. Stem Cells Int 2015; 2015:141793. [PMID: 26064134 PMCID: PMC4433683 DOI: 10.1155/2015/141793] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/19/2015] [Accepted: 04/10/2015] [Indexed: 12/19/2022] Open
Abstract
CNS tumours occur in both pediatric and adult patients and many of these tumours are associated with poor clinical outcome. Due to a paradigm shift in thinking for the last several years, these tumours are now considered to originate from a small population of stem-like cells within the bulk tumour tissue. These cells, termed as brain tumour initiating cells (BTICs), are perceived to be regulated by microRNAs at the posttranscriptional/translational levels. Proliferation, stemness, differentiation, invasion, angiogenesis, metastasis, apoptosis, and cell cycle constitute some of the significant processes modulated by microRNAs in cancer initiation and progression. Characterization and functional studies on oncogenic or tumour suppressive microRNAs are made possible because of developments in sequencing and microarray techniques. In the current review, we bring recent knowledge of the role of microRNAs in BTIC formation and therapy. Special attention is paid to two highly aggressive and well-characterized brain tumours: gliomas and medulloblastoma. As microRNA seems to be altered in the pathogenesis of many human diseases, “microRNA therapy” may now have potential to improve outcomes for brain tumour patients. In this rapidly evolving field, further understanding of miRNA biology and its contribution towards cancer can be mined for new therapeutic tools.
Collapse
|
16
|
A combination of the telomerase inhibitor, BIBR1532, and paclitaxel synergistically inhibit cell proliferation in breast cancer cell lines. Target Oncol 2015; 10:565-73. [DOI: 10.1007/s11523-015-0364-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 03/05/2015] [Indexed: 10/23/2022]
|
17
|
Andreiuolo F, Ferreira C, Puget S, Grill J. Current and evolving knowledge of prognostic factors for pediatric ependymomas. Future Oncol 2013; 9:183-91. [PMID: 23414469 DOI: 10.2217/fon.12.174] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ependymomas are one of the most common pediatric malignant brain tumors. Prognosis, especially in young children, remains poor due to their inherent chemo- and radio-resistance and effective treatment remains one of the more difficult tasks in pediatric oncology: up to half of the patients may die from the disease. The only reproducible prognostic factor is the extent of surgery; neither histological grading nor other biomarkers can be used to reliably make treatment decisions in clinical practice. None of the studies identifying new biomarkers have been conducted prospectively, only few have been undertaken within the context of a clinical trial and most have been conducted with limited samples (often including adults and childhood samples). International collaboration is needed to improve ependymoma prognostication.
Collapse
Affiliation(s)
- Felipe Andreiuolo
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 8203 Vectorology & Anticancer Therapeutics, Gustave Roussy Cancer Institute, Paris-Sud University, Villejuif, France
| | | | | | | |
Collapse
|
18
|
Gajjar A, Packer RJ, Foreman N, Cohen K, Haas-Kogan D, Merchant TE, on behalf of the COG Brain Tumor Committee. Children's Oncology Group's 2013 blueprint for research: central nervous system tumors. Pediatr Blood Cancer 2013; 60:1022-6. [PMID: 23255213 PMCID: PMC4184243 DOI: 10.1002/pbc.24427] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 11/09/2012] [Indexed: 12/29/2022]
Abstract
In the US, approximately 2,500 children are diagnosed annually with brain tumors. Their survival ranges from >90% to <10%. For children with medulloblastoma, the most common malignant brain tumor, 5-year survival ranges from >80% (standard-risk) to 60% (high-risk). For those with high-grade gliomas (HGGs) including diffuse intrinsic pontine gliomas, 5-year survival remains <10%. Sixty-five percent patients with ependymoma are cured after surgery and radiation therapy depending on the degree of resection and histopathology of the tumor. Phase II trials for brain tumors will investigate agents that act on cMET, PDGFRA, or EZH2 in HGG, DIPG, or medulloblastoma, respectively. Phase III trials will explore risk-based therapy stratification guided by molecular and clinical traits of children with medulloblastoma or ependymoma.
Collapse
Affiliation(s)
- Amar Gajjar
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Roger J. Packer
- Brain Tumor Institute, Children's National, Washington, District of Columbia
| | - N.K. Foreman
- Department of Pediatrics, University of Colorado, Denver
| | - Kenneth Cohen
- Oncology and Pediatrics, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Daphne Haas-Kogan
- Department of Radiation Oncology, Helen Diller Comprehensive Cancer Center, San Francisco, California
| | - Thomas E. Merchant
- Department of Radiological Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | |
Collapse
|
19
|
Kim JH, Huang Y, Griffin AS, Rajappa P, Greenfield JP. Ependymoma in children: molecular considerations and therapeutic insights. Clin Transl Oncol 2013; 15:759-65. [PMID: 23615979 DOI: 10.1007/s12094-013-1041-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/02/2013] [Indexed: 01/22/2023]
Abstract
A multi-modality approach that encompasses maximal surgical resection in combination with adjuvant therapy is critical for achieving optimal disease control in children with ependymoma. In view of its complex biology and variable response to therapy, ependymoma remains a challenge for clinicians involved in the care of these patients. Meanwhile, translation of molecular findings can characterize unique features of childhood ependymoma and their natural history. Furthermore, understanding the biology of pediatric ependymoma serves as a platform for development of future targeted therapies. In line with these goals, we review the molecular basis of pediatric ependymoma and its prognostic implications, as well as novel therapeutic advances in the management of ependymoma in children.
Collapse
Affiliation(s)
- J-H Kim
- Department of Neurological Surgery, Weill Cornell Medical College, 525 East 68th Street, Box 99, New York, NY, 10065, USA,
| | | | | | | | | |
Collapse
|
20
|
Castelo-Branco P, Choufani S, Mack S, Gallagher D, Zhang C, Lipman T, Zhukova N, Walker EJ, Martin D, Merino D, Wasserman JD, Elizabeth C, Alon N, Zhang L, Hovestadt V, Kool M, Jones DTW, Zadeh G, Croul S, Hawkins C, Hitzler J, Wang JCY, Baruchel S, Dirks PB, Malkin D, Pfister S, Taylor MD, Weksberg R, Tabori U. Methylation of the TERT promoter and risk stratification of childhood brain tumours: an integrative genomic and molecular study. Lancet Oncol 2013; 14:534-42. [PMID: 23598174 DOI: 10.1016/s1470-2045(13)70110-4] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Identification of robust biomarkers of malignancy and methods to establish disease progression is a major goal in paediatric neuro-oncology. We investigated whether methylation of the TERT promoter can be a biomarker for malignancy and patient outcome in paediatric brain tumours. METHODS For the discovery cohort, we used samples obtained from patients with paediatric brain tumours and individuals with normal brain tissues stored at the German Cancer Research Center (Heidelberg, Germany). We used methylation arrays for genome-wide assessment of DNA. For the validation cohort, we used samples obtained from several tissues for which full clinical and follow-up data were available from two hospitals in Toronto (ON, Canada). We did methylation analysis using quantitative Sequenom and pyrosequencing of an identified region of the TERT promoter. We assessed TERT expression by real-time PCR. To establish whether the biomarker could be used to assess and predict progression, we analysed methylation in paired samples of tumours that transformed from low to high grade and from localised to metastatic, and in choroid plexus tumours of different grades. Finally, we investigated overall survival in patients with posterior fossa ependymomas in which the identified region was hypermethylated or not. All individuals responsible for assays were masked to the outcome of the patients. FINDINGS Analysis of 280 samples in the discovery cohort identified one CpG site (cg11625005) in which 78 (99%) of 79 samples from normal brain tissues and low-grade tumours were not hypermethylated, but 145 (72%) of 201 samples from malignant tumours were hypermethylated (>15% methylated; p<0.0001). Analysis of 68 samples in the validation cohort identified a subset of five CpG sites (henceforth, upstream of the transcription start site [UTSS]) that was hypermethylated in all malignant paediatric brain tumours that expressed TERT but not in normal tissues that did not express TERT (p<0.0001). UTSS had a positive predictive value of 1.00 (95% CI 0.95-1.00) and a negative predictive value of 0.95 (0.87-0.99). In two paired samples of paediatric gliomas, UTSS methylation increased during transformation from low to high grade; it also increased in two paired samples that progressed from localised to metastatic disease. Two of eight atypical papillomas that had high UTSS methylation progressed to carcinomas, while the other six assessed did not progress or require additional treatment. 5-year overall survival was 51% (95% CI 31-71) for 25 patients with hypermethylated UTSS posterior fossa ependymomas and 95% (86-100) for 20 with non-hypermethylated tumours (p=0.0008). 5-year progression-free survival was 86% (68-100) for the 25 patients with non-hypermethylated UTSS tumours and 30% (10-50) for those with hypermethylated tumours (p=0.0008). INTERPRETATION Hypermethylation of the UTSS region in the TERT promoter is associated with TERT expression in cancers. In paediatric brain tumours, UTSS hypermethylation is associated with tumour progression and poor prognosis. This region is easy to amplify, and the assay to establish hypermethylation can be done on most tissues in most clinical laboratories. Therefore the UTSS region is a potentially accessible biomarker for various cancers. FUNDING The Canadian Institute of Health Research and the Terry Fox Foundation.
Collapse
Affiliation(s)
- Pedro Castelo-Branco
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Valdiglesias V, Giunta S, Fenech M, Neri M, Bonassi S. γH2AX as a marker of DNA double strand breaks and genomic instability in human population studies. Mutat Res 2013; 753:24-40. [PMID: 23416207 DOI: 10.1016/j.mrrev.2013.02.001] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 01/30/2013] [Accepted: 02/04/2013] [Indexed: 10/27/2022]
Abstract
DNA double strand breaks (DSB) are the gravest form of DNA damage in eukaryotic cells. Failure to detect DSB and activate appropriate DNA damage responses can cause genomic instability, leading to tumorigenesis and possibly accelerated aging. Phosphorylated histone H2AX (γH2AX) is used as a biomarker of cellular response to DSB and its potential for monitoring DNA damage and repair in human populations has been explored in this review. A systematic search was conducted in PubMed for articles, in English, on human studies reporting γH2AX as a biomarker of either DNA repair or DNA damage. A total of 68 publications were identified. Thirty-four studies (50.0%) evaluated the effect of medical procedures or treatments on γH2AX levels; 20 (29.4%) monitored γH2AX in specific pathological conditions with a case/control or case/case design; 5 studies (7.4%) evaluated the effect of environmental genotoxic exposures, and 9 (13.2%) were descriptive studies on cancer and aging. Peripheral blood lymphocytes (44.6%) or biopsies/tissue specimens (24.3%) were the most commonly used samples. γH2AX was scored by optical microscopy as immunostained foci (78%), or by flow cytometry (16%). Critical features affecting the reliability of the assay, including protocols heterogeneity, specimen, cell cycle, kinetics, study design, and statistical analysis, are hereby discussed. Because of its sensitivity, efficiency and mechanistic relevance, the γH2AX assay has great potential as a DNA damage biomarker; however, the technical and epidemiological heterogeneity highlighted in this review infer a necessity for experimental standardization of the assay.
Collapse
Affiliation(s)
- Vanessa Valdiglesias
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Roma, Italy
| | - Simona Giunta
- CSIRO Preventative Health Flagship, Adelaide 5000, Australia
| | - Michael Fenech
- CSIRO Preventative Health Flagship, Adelaide 5000, Australia
| | - Monica Neri
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Roma, Italy
| | - Stefano Bonassi
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Roma, Italy.
| |
Collapse
|
22
|
Abstract
Brain tumors are the leading cause of cancer death in children, with ependymoma being the third most common and posing a significant clinical burden. Its mechanism of pathogenesis, reliable prognostic indicators, and effective treatments other than surgical resection have all remained elusive. Until recently, ependymoma research was hindered by the small number of tumors available for study, low resolution of cytogenetic techniques, and lack of cell lines and animal models. Ependymoma heterogeneity, which manifests as variations in tumor location, patient age, histological grade, and clinical behavior, together with the observation of a balanced genomic profile in up to 50% of cases, presents additional challenges in understanding the development and progression of this disease. Despite these difficulties, we have made significant headway in the past decade in identifying the genetic alterations and pathways involved in ependymoma tumorigenesis through collaborative efforts and the application of microarray-based genetic (copy number) and transcriptome profiling platforms. Genetic characterization of ependymoma unraveled distinct mRNA-defined subclasses and led to the identification of radial glial cells as its cell type of origin. This review summarizes our current knowledge in the molecular genetics of ependymoma and proposes future research directions necessary to further advance this field.
Collapse
Affiliation(s)
- Yuan Yao
- Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | |
Collapse
|
23
|
Abstract
Central nervous system tumors are the most frequent malignant tumor in children and the main cause of death in this age group after traffic accidents. The current estimates are that one adult in 2500 is a survivor of a brain tumor that occurred during childhood. These tumors are particularly heterogeneous in terms of histology/biology, treatment, and outcome. They share, however, a high risk of neurological and cognitive morbidity due to the disease itself and the treatment modalities (radiotherapy, surgery, and chemotherapy). Diagnosis is frequently delayed because symptoms are usually nonspecific at the beginning of the evolution. Posterior fossa is the most frequent site and the tumors present most frequently with signs of intracranial hypertension. Supratentorial tumors are more frequent in infants and in adolescents; seizures are not uncommon, especially for benign tumors. When adjuvant treatment is needed, radiotherapy is usually the mainstay apart from some histologies where chemotherapy may be sufficient: low-grade gliomas, desmoplastic medulloblastomas, malignant glial tumors in infants. Multidisciplinary care is best performed in tertiary care centers and should include early rehabilitation programs soon after surgery.
Collapse
Affiliation(s)
- Grill Jacques
- Brain Tumor Program, Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Institute, Villejuif, France.
| | | |
Collapse
|
24
|
Modena P, Buttarelli FR, Miceli R, Piccinin E, Baldi C, Antonelli M, Morra I, Lauriola L, Di Rocco C, Garrè ML, Sardi I, Genitori L, Maestro R, Gandola L, Facchinetti F, Collini P, Sozzi G, Giangaspero F, Massimino M. Predictors of outcome in an AIEOP series of childhood ependymomas: a multifactorial analysis. Neuro Oncol 2012; 14:1346-56. [PMID: 23076205 PMCID: PMC3480268 DOI: 10.1093/neuonc/nos245] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 08/08/2012] [Indexed: 01/04/2023] Open
Abstract
Several molecular biomarkers have been suggested as predictors of outcome for pediatric ependymomas but deserve further validation in independent case series. We analyzed intracranial ependymomas belonging to a series of 60 patients prospectively treated according to the protocol sponsored by the Italian Association of Pediatric Hematology-Oncology. We used a tissue microarray to analyze nucleolin (NCL), cyclin-dependent kinase inhibitor 2A (CDKN2A), tumor protein 53 (TP53), and epidermal growth factor receptor (EGFR) by immunohistochemistry and by 1q gain by fluorescent in situ hybridization. The mRNA expression levels of EGFR, human telomerase reverse-transcriptase (HTERT), and Prominin 1 (PROM 1)/CD133 were evaluated by quantitative real-time PCR from cases with fresh-frozen tumor material available. Univariate and multivariate analyses of updated clinical data confirmed the prognostic significance of surgery (P < .01) and tumor grading (P < .05) for both relapse-free survival (RFS) and overall survival (OS). Among biomolecular markers, HTERT mRNA expression emerged with the strongest association with OS at multivariate analysis (hazard ratio [HR] = 9.9; P = .011); the 5-year OS was 84% versus 48% in the subgroups with HTERT median value <6 versus ≥ 6, respectively (P = .005). Five-year RFS was 46% versus 20% in the subgroups with low versus high NCL protein expression, respectively (P = .004), while multivariate Cox analyses gave suggestively high HRs for high versus low NCL (HR = 1.9; P = .090). The other genes tested were not significant at multivariate analyses, and genetic alterations of CDKN2A, TP53, EGFR, and HTERT loci were rare. The PROM1/CD133 cancer stem cell marker was strongly expressed at both RNA and protein levels in a substantial fraction of cases and was suggestively associated with a more indolent form of the disease. We conclude that NCL and HTERT represent the strongest prognostic biomarkers of RFS and OS, respectively, in our ependymoma case series.
Collapse
|
25
|
Bouffet E, Hawkins CE, Ballourah W, Taylor MD, Bartels UK, Schoenhoff N, Tsangaris E, Huang A, Kulkarni A, Mabbot DJ, Laperriere N, Tabori U. Survival Benefit for Pediatric Patients With Recurrent Ependymoma Treated With Reirradiation. Int J Radiat Oncol Biol Phys 2012; 83:1541-8. [DOI: 10.1016/j.ijrobp.2011.10.039] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 09/26/2011] [Accepted: 10/17/2011] [Indexed: 11/26/2022]
|
26
|
Bashash D, Ghaffari SH, Zaker F, Hezave K, Kazerani M, Ghavamzadeh A, Alimoghaddam K, Mosavi SA, Gharehbaghian A, Vossough P. Direct short-term cytotoxic effects of BIBR 1532 on acute promyelocytic leukemia cells through induction of p21 coupled with downregulation of c-Myc and hTERT transcription. Cancer Invest 2012; 30:57-64. [PMID: 22236190 DOI: 10.3109/07357907.2011.629378] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Acute promyelocytic leukemia (APL) is characterized by specific t(15;17), distinct morphologic picture, and clinical coagulopathy that contribute to the morbidity and mortality of the disease. This study aims to investigate the effects of antitelomerase compound BIBR1532 on APL cells (NB4). BIBR 1532 exerts a direct short-term growth suppressive effect in a concentration-dependent manner probably through downregulation of c-Myc and hTERT expression. Our results also suggest that induction of p21 and subsequent disturbance of Bax/Bcl-2 balanced ratio as well as decreased telomerase activity may be rational mechanisms for the potent/direct short-term cytotoxicity of high doses of BIBR1532 against NB4 cells.
Collapse
Affiliation(s)
- D Bashash
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Ependymomas remain a therapeutic challenge in pediatric neuro-oncology. These tumors are chemoresistant and rather radioresistant and until recently little was known about their biology. RECENT FINDINGS Histopathological grading of ependymomas according to the WHO classification is neither reproducible, nor correlated with outcome, especially in young children. Characterization of molecular abnormalities in ependymomas offers now a better understanding of their initiation and progression; different biological subtypes of tumors have been described and would need further validation. The identification of new prognostic biomarkers, such as tenascin-C overexpression or chromosome 1q gain, will considerably help patient stratification in future trials. Finally, the recent discovery of specific pathways involved in ependymomas oncogenesis, such as Notch-1or EPHB2 offers new perspectives for the development of targeted therapies. SUMMARY A comprehensive biological work-out including CGHarray and immunohistochemistry for specific biomarkers should now be recommended for the current management of pediatric ependymoma, especially in young children if radiotherapy has to be omitted in the first line of treatment.
Collapse
|
28
|
Castelo-Branco P, Zhang C, Lipman T, Fujitani M, Hansford L, Clarke I, Harley CB, Tressler R, Malkin D, Walker E, Kaplan DR, Dirks P, Tabori U. Neural tumor-initiating cells have distinct telomere maintenance and can be safely targeted for telomerase inhibition. Clin Cancer Res 2011; 17:111-21. [PMID: 21208905 DOI: 10.1158/1078-0432.ccr-10-2075] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE Cancer recurrence is one of the major setbacks in oncology. Maintaining telomeres is essential for sustaining the limitless replicative potential of such cancers. Because telomerase is thought to be active in all tumor cells and normal stem cells, telomerase inhibition may be nonspecific and have detrimental effects on tissue maintenance and development by affecting normal stem cell self-renewal. METHODS We examined telomerase activity, telomere maintenance, and stem cell maturation in tumor subpopulations from freshly resected gliomas, long-term, primary, neural tumor-initiating cells (TIC) and corresponding normal stem cell lines. We then tested the efficacy of the telomerase inhibitor Imetelstat on propagation and self-renewal capacity of TIC and normal stem cells in vitro and in vivo. RESULTS Telomerase was undetectable in the majority of tumor cells and specific to the TIC subpopulation that possessed critically short telomeres. In contrast, normal tissue stem cells had longer telomeres and undetectable telomerase activity and were insensitive to telomerase inhibition, which results in proliferation arrest, cell maturation, and DNA damage in neural TIC. Significant survival benefit and late tumor growth arrest of neuroblastoma TIC were observed in a xenograft model (P = 0.02). Furthermore, neural TIC exhibited irreversible loss of self-renewal and stem cell capabilities even after cessation of treatment in vitro and in vivo. CONCLUSIONS TIC exhaustion with telomerase inhibition and lack of telomerase dependency in normal stem cells add new dimensions to the telomere hypothesis and suggest that targeting TIC with telomerase inhibitors may represent a specific and safe therapeutic approach for tumors of neural origin.
Collapse
Affiliation(s)
- Pedro Castelo-Branco
- The Arthur and Sonia Labatt Brain Tumor Research Centre, Cell Biology Program, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Costa FF, Bischof JM, Vanin EF, Lulla RR, Wang M, Sredni ST, Rajaram V, de Fátima Bonaldo M, Wang D, Goldman S, Tomita T, Soares MB. Identification of microRNAs as potential prognostic markers in ependymoma. PLoS One 2011; 6:e25114. [PMID: 22053178 PMCID: PMC3203863 DOI: 10.1371/journal.pone.0025114] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 08/24/2011] [Indexed: 02/07/2023] Open
Abstract
Introduction We have examined expression of microRNAs (miRNAs) in ependymomas to identify molecular markers of value for clinical management. miRNAs are non-coding RNAs that can block mRNA translation and affect mRNA stability. Changes in the expression of miRNAs have been correlated with many human cancers. Materials and Methods We have utilized TaqMan Low Density Arrays to evaluate the expression of 365 miRNAs in ependymomas and normal brain tissue. We first demonstrated the similarity of expression profiles of paired frozen tissue (FT) and paraffin-embedded specimens (FFPE). We compared the miRNA expression profiles of 34 FFPE ependymoma samples with 8 microdissected normal brain tissue specimens enriched for ependymal cells. miRNA expression profiles were then correlated with tumor location, histology and other clinicopathological features. Results We have identified miRNAs that are over-expressed in ependymomas, such as miR-135a and miR-17-5p, and down-regulated, such as miR-383 and miR-485-5p. We have also uncovered associations between expression of specific miRNAs which portend a worse prognosis. For example, we have identified a cluster of miRNAs on human chromosome 14q32 that is associated with time to relapse. We also found that miR-203 is an independent marker for relapse compared to the parameters that are currently used. Additionally, we have identified three miRNAs (let-7d, miR-596 and miR-367) that strongly correlate to overall survival. Conclusion We have identified miRNAs that are differentially expressed in ependymomas compared with normal ependymal tissue. We have also uncovered significant associations of miRNAs with clinical behavior. This is the first report of clinically relevant miRNAs in ependymomas.
Collapse
Affiliation(s)
- Fabricio F. Costa
- Cancer Biology and Epigenomics Program, Children's Memorial Research Center and Department of Pediatrics, Northwestern University's Feinberg School of Medicine, Chicago, Illinois, United States of America
- * E-mail: (MBS); (FFC)
| | - Jared M. Bischof
- Cancer Biology and Epigenomics Program, Children's Memorial Research Center and Department of Pediatrics, Northwestern University's Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Elio F. Vanin
- Cancer Biology and Epigenomics Program, Children's Memorial Research Center and Department of Pediatrics, Northwestern University's Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Rishi R. Lulla
- Cancer Biology and Epigenomics Program, Children's Memorial Research Center and Department of Pediatrics, Northwestern University's Feinberg School of Medicine, Chicago, Illinois, United States of America
- Pediatric Neuro-oncology, Children's Memorial Hospital, Chicago, Illinois, United States of America
| | - Min Wang
- Cancer Biology and Epigenomics Program, Children's Memorial Research Center and Department of Pediatrics, Northwestern University's Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Simone T. Sredni
- Cancer Biology and Epigenomics Program, Children's Memorial Research Center and Department of Pediatrics, Northwestern University's Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Veena Rajaram
- Department of Pathology and Laboratory of Medicine, Children's Memorial Hospital, Chicago, Illinois, United States of America
| | - Maria de Fátima Bonaldo
- Cancer Biology and Epigenomics Program, Children's Memorial Research Center and Department of Pediatrics, Northwestern University's Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Deli Wang
- Biostatistics Research Core, Children's Memorial Hospital, Chicago, Illinois, United States of America
| | - Stewart Goldman
- Pediatric Neuro-oncology, Children's Memorial Hospital, Chicago, Illinois, United States of America
| | - Tadanori Tomita
- Pediatric Neurosurgery, Children's Memorial Hospital, Chicago, Illinois, United States of America
| | - Marcelo B. Soares
- Cancer Biology and Epigenomics Program, Children's Memorial Research Center and Department of Pediatrics, Northwestern University's Feinberg School of Medicine, Chicago, Illinois, United States of America
- * E-mail: (MBS); (FFC)
| |
Collapse
|
30
|
Hawkins C, Walker E, Mohamed N, Zhang C, Jacob K, Shirinian M, Alon N, Kahn D, Fried I, Scheinemann K, Tsangaris E, Dirks P, Tressler R, Bouffet E, Jabado N, Tabori U. BRAF-KIAA1549 fusion predicts better clinical outcome in pediatric low-grade astrocytoma. Clin Cancer Res 2011; 17:4790-8. [PMID: 21610142 DOI: 10.1158/1078-0432.ccr-11-0034] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Recent studies have revealed that the majority of pediatric low-grade astrocytomas (PLGA) harbor the BRAF-KIAA1549 (B-K) fusion gene resulting in constitutive activation of the RAS/MAPK pathway. However, the clinical significance of this genetic alteration is yet to be determined. We aimed to test the prognostic role of the B-K fusion in progression of incompletely resected PLGA. EXPERIMENTAL DESIGN We retrospectively identified 70 consecutive patients with incompletely resected "clinically relevant" PLGA. We added 76 tumors diagnosed at our institution between 1985 and 2010 as controls. We examined BRAF alterations by reverse transcriptase PCR, FISH, and single-nucleotide polymorphism array analysis and correlated that with progression-free survival (PFS). RESULTS Overall, 60% of tumors were B-K fusion positive. All patients with B-K fused PLGA are still alive. Five-year PFS was 61% ± 8% and 18% ± 8% for fusion positive and negative patients, respectively (P = 0.0004). B-K fusion resulted in similarly significant favorable PFS for patients who received chemotherapy. Multivariate analysis revealed that B-K fusion was the most significant favorable prognostic factor in incompletely resected PLGA and was independent of location, pathology, and age. In vitro, BRAF overexpression resulted in growth arrest associated with DNA damage (γH2AX expression). Five-year PFS was 68% ± 15% and 0% for patients with B-K fused and γH2AX-expressing PLGA versus negative tumors (P = 0.001). CONCLUSION These data suggest that B-K fusion confers a less aggressive clinical phenotype on PLGA and may explain their tendency to growth arrest. Combined analysis of B-K fusion and γH2AX expression can determine prognosis and may be a powerful tool to tailor therapy for these patients.
Collapse
Affiliation(s)
- Cynthia Hawkins
- Division of Pathology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Dunham C. Pediatric brain tumors: a histologic and genetic update on commonly encountered entities. Semin Diagn Pathol 2010; 27:147-59. [DOI: 10.1053/j.semdp.2010.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Abstract
Ependymomas are rare primary central nervous system tumors in adults. They occur most commonly in the spinal cord, where histopathologic evaluation is critical to differentiate the grade I myxopapillary ependymoma from the grade II ependymoma or grade III anaplastic ependymoma. Brain ependymomas are either grade II or III. Treatment for all grades and types includes maximum surgical resection. For myxopapillary ependymoma, complete removal while maintaining capsule integrity may be curative. Some grade II ependymomas may be observed carefully after imaging confirms complete resection, but grade III tumors require adjuvant radiation treatment. Radiation commonly is given to the region of tumor, except in cases in which there is imaging or cerebrospinal fluid evidence of tumor dissemination. Chemotherapy has not been studied extensively, although most reports suggest only modest benefit. Ongoing laboratory studies have uncovered important signal transduction pathways that may be better therapeutic targets, leading to the development of clinical trials using targeted agents.
Collapse
Affiliation(s)
- Mark R Gilbert
- Department of Neuro-oncology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77025, USA.
| | | | | |
Collapse
|
33
|
Wong VCH, Morrison A, Tabori U, Hawkins CE. Telomerase inhibition as a novel therapy for pediatric ependymoma. Brain Pathol 2010; 20:780-6. [PMID: 20184588 DOI: 10.1111/j.1750-3639.2010.00372.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Ependymomas are the third most common pediatric brain tumor with an overall survival of approximately 50%. Recently, we showed that telomerase [human telomerase reverse transcriptase (hTERT)] expression is a predictor of poor outcome in pediatric ependymoma. Thus, we hypothesized that ependymomas with functional telomerase may behave more aggressively and that these patients may benefit from anti-telomerase therapy. To address our hypothesis, we investigated the effect of telomerase inhibition on primary ependymoma cells harvested at the time of surgery, as no animal models or established cell lines are readily available for this tumor. The cells were characterized for glial fibrillary acidic protein (GFAP) and hTERT expression, initial telomere length and telomerase activity. They were then subjected to telomerase inhibition (MST-312, 1 microM) and tested for effects on cell viability (MTT assay), proliferation (MIB-1), apoptosis (cleaved caspase 3) and DNA damage (gammaH2AX). After 72 h of telomerase inhibition, primary ependymoma cells showed a significant decrease in cell number (P < 0.001), accompanied by increased DNA damage (gammaH2AX expression) (P < 0.01) and decreased proliferative index (MIB-1) (P < 0.01). Half showed an increase in apoptosis (cleaved caspase 3). These data suggest that telomerase inhibition may be an effective adjuvant therapy in pediatric ependymoma, potentially inducing tumor growth arrest in the short term, independent of telomere shortening.
Collapse
Affiliation(s)
- Vincent C H Wong
- Division of Pathology, The Hospital for Sick Children, Toronto, Canada
| | | | | | | |
Collapse
|
34
|
Ependymoma: lessons from the past, prospects for the future. Childs Nerv Syst 2009; 25:1383-4; author reply 1385. [PMID: 19562351 DOI: 10.1007/s00381-009-0915-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Indexed: 10/20/2022]
|
35
|
Abstract
In recent years, brain tumors have become the single most frequent cause of cancer-related mortality in children, although their frequency is approximately 50% less than leukemia. According to the classification of the World Health Organization, histopathological diagnosis is of paramount importance for clinicians to choose the most appropriate treatment option and tailor treatment intensity to disease risk. However, histopathological assessment is often difficult, and adding molecular information to classic neuropathological analyses may help ensure diagnostic accuracy, improve risk stratification of patients within a given tumor entity, and help in identifying novel therapeutic targets for an individualized treatment approach. Therefore, this review focuses both on established histopathology as well as on molecular features in the most important brain tumors in children.
Collapse
Affiliation(s)
- Stefan Pfister
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| | | | | |
Collapse
|
36
|
Bouffet E, Capra M, Bartels U. Salvage chemotherapy for metastatic and recurrent ependymoma of childhood. Childs Nerv Syst 2009; 25:1293-301. [PMID: 19360417 DOI: 10.1007/s00381-009-0883-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Chemotherapy has limited role in the up-front management of ependymoma. At the time of recurrence, the role of chemotherapy is also ill defined and the choice of chemotherapeutic agents is often arbitrary, based on anecdotal data and personal experience. METHODS The purpose of this review is to describe and critically analyze the published literature on chemotherapy in patients with recurrent and metastatic ependymoma. DISCUSSION The disappointing response rate with single agents (12.9%) and combinations (17.4%) emphasizes the need to re-evaluate the current chemotherapeutic approach of intracranial ependymoma, and biological studies are needed to identify targets that may be considered for clinical trials.
Collapse
Affiliation(s)
- Eric Bouffet
- Paediatric Neuro-Oncology Program, The Hospital for Sick Children, 555 University Avenue, Toronto, M5G1X8, Canada.
| | | | | |
Collapse
|
37
|
Sangra M, Thorp N, May P, Pizer B, Mallucci C. Management strategies for recurrent ependymoma in the paediatric population. Childs Nerv Syst 2009; 25:1283-91. [PMID: 19484246 DOI: 10.1007/s00381-009-0914-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Indexed: 11/29/2022]
Abstract
INTRODUCTION The management of recurrent ependymoma within the paediatric population remains a therapeutic challenge. The options available are varied and patients may have already received prior radio- or chemotherapy. As yet, no consensus exists regarding their optimal treatment. We review the literature and present our contemporary management strategies for this interesting group of patients. RESULTS AND DISCUSSION Survival following recurrence is poor and those prognostic factors that predispose to recurrence include extent of surgical resection and the timing of administration of adjuvant therapy. The extent of resection at re-operation can confer a survival advantage, without a necessary increase in morbidity. Strategies aimed at improving surgical resection at first diagnosis include improving and centralising post-surgical radiological review, defining what are true residuals, and centralising surgical review of incompletely resected tumours. Re-irradiation can improve survival, and with the use of conformal radiation fields need not necessarily lead to neuropsychological damage. Cisplatin and etoposide remain the most effective chemotherapeutic agents to date and with an increase in the understanding of tumour biology this may improve further. Because of the complex nature of this group of patients, decisions regarding their management require the involvement of a paediatric neurosurgeon, paediatric neuro-oncologist and paediatric radiation oncologist.
Collapse
Affiliation(s)
- M Sangra
- Department of Neurosurgery, Royal Liverpool Children's Hospital NHS Trust, Liverpool, L12 2AP, UK.
| | | | | | | | | |
Collapse
|
38
|
Telomerase and DNA repair in glioma. Biochim Biophys Acta Mol Basis Dis 2009; 1792:275-9. [DOI: 10.1016/j.bbadis.2009.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 02/06/2009] [Accepted: 02/06/2009] [Indexed: 02/07/2023]
|