1
|
Márquez-López A, Fanarraga ML. AB Toxins as High-Affinity Ligands for Cell Targeting in Cancer Therapy. Int J Mol Sci 2023; 24:11227. [PMID: 37446406 DOI: 10.3390/ijms241311227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
Conventional targeted therapies for the treatment of cancer have limitations, including the development of acquired resistance. However, novel alternatives have emerged in the form of targeted therapies based on AB toxins. These biotoxins are a diverse group of highly poisonous molecules that show a nanomolar affinity for their target cell receptors, making them an invaluable source of ligands for biomedical applications. Bacterial AB toxins, in particular, are modular proteins that can be genetically engineered to develop high-affinity therapeutic compounds. These toxins consist of two distinct domains: a catalytically active domain and an innocuous domain that acts as a ligand, directing the catalytic domain to the target cells. Interestingly, many tumor cells show receptors on the surface that are recognized by AB toxins, making these high-affinity proteins promising tools for developing new methods for targeting anticancer therapies. Here we describe the structure and mechanisms of action of Diphtheria (Dtx), Anthrax (Atx), Shiga (Stx), and Cholera (Ctx) toxins, and review the potential uses of AB toxins in cancer therapy. We also discuss the main advances in this field, some successful results, and, finally, the possible development of innovative and precise applications in oncology based on engineered recombinant AB toxins.
Collapse
Affiliation(s)
- Ana Márquez-López
- The Nanomedicine Group, Institute Valdecilla-IDIVAL, 39011 Santander, Spain
| | - Mónica L Fanarraga
- The Nanomedicine Group, Institute Valdecilla-IDIVAL, 39011 Santander, Spain
- Molecular Biology Department, Faculty of Medicine, Universidad de Cantabria, 39011 Santander, Spain
| |
Collapse
|
2
|
Sánchez-Salazar MG, Álvarez MM, Trujillo-de Santiago G. Advances in 3D bioprinting for the biofabrication of tumor models. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.bprint.2020.e00120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
3
|
Patel MR, Jacobson BA, Ji Y, Hebbel RP, Kratzke RA. Blood Outgrowth Endothelial Cells as a Cellular Carrier for Oncolytic Vesicular Stomatitis Virus Expressing Interferon-β in Preclinical Models of Non-Small Cell Lung Cancer. Transl Oncol 2020; 13:100782. [PMID: 32422574 PMCID: PMC7231872 DOI: 10.1016/j.tranon.2020.100782] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 12/19/2022] Open
Abstract
Oncolytic viruses have demonstrated efficacy in numerous tumor models including non-small cell lung cancer (NSCLC). One limitation of viral therapy for metastatic lung cancer is that systemic administration can be hindered by complement and antiviral immunity. Thus, we investigated whether ex vivo-infected blood outgrowth endothelial cells (BOECs) could be used to deliver VSV-IFNβ in preclinical models of NSCLC. BOECs were obtained from human donors or C57/Bl6 mice. VSV was engineered to produce GFP or IFNβ. Human and murine BOECs could be infected by VSV-GFP and VSV-IFNβ. Infected BOECs resulted in killing of NSCLC cells in vitro and shielded VSV-IFNβ from antibody neutralization. Mouse BOECs localized to lungs of mice bearing syngeneic LM2 lung tumors, and infected murine BOECs reduced tumor burden in this model. In an immune-deficient A549 xenograft model, mice treated with VSV-IFNβ-infected human BOECs exhibited superior antitumor activity and survival of mice (n = 10, P < .05 compared to VSV-IFNβ alone). We conclude that BOECs can be used as a carrier for delivery of oncolytic VSV-IFNβ. This may be an effective strategy for clinical translation of oncolytic virotherapy for patients with metastatic NSCLC.
Collapse
Affiliation(s)
- Manish R Patel
- University of Minnesota, Department of Medicine, Division of Hematology, Oncology, and Transplantation, Minneapolis, MN, USA.
| | - Blake A Jacobson
- University of Minnesota, Department of Medicine, Division of Hematology, Oncology, and Transplantation, Minneapolis, MN, USA
| | - Yan Ji
- Health Partners Regions Cancer Care Center, St. Paul, MN, USA
| | - Robert P Hebbel
- University of Minnesota, Department of Medicine, Division of Hematology, Oncology, and Transplantation, Minneapolis, MN, USA
| | - Robert A Kratzke
- University of Minnesota, Department of Medicine, Division of Hematology, Oncology, and Transplantation, Minneapolis, MN, USA
| |
Collapse
|
4
|
Borgatti A, Fieberg A, Winter AL, Stuebner K, Taras E, Todhunter D, Masyr A, Rendhal A, Vallera DA, Koopmeiners JS, Modiano JF. Impact of repeated cycles of EGF bispecific angiotoxin (eBAT) administered at a reduced interval from doxorubicin chemotherapy in dogs with splenic haemangiosarcoma. Vet Comp Oncol 2020; 18:664-674. [PMID: 32187827 DOI: 10.1111/vco.12590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/13/2022]
Abstract
We previously reported that eBAT, an EGF-targeted angiotoxin, was safe and it improved the overall survival for dogs with splenic haemangiosarcoma when added to the standard of care in a single cycle of three administrations in the minimal residual disease setting. Our objective for the SRCBST-2 trial was to assess whether increased dosing through multiple cycles of eBAT would be well tolerated and would further enhance the benefits of eBAT. Eligibility was expanded to dogs with stage 3 haemangiosarcoma, provided that gross lesions could be surgically excised. The interval between eBAT and the start of chemotherapy was reduced, and the experimental therapy was expanded to three cycles, each administered at the biologically active dose (50 μg/kg) on a Monday/Wednesday/Friday schedule following splenectomy, and scheduled 1 week prior to the first, second and fifth doxorubicin chemotherapy. Twenty-five dogs were enrolled; six experienced acute hypotension with two requiring hospitalization. Self-limiting elevation of ALT was observed in one dog. A statistically significant survival benefit was not seen in this study in eBAT-treated dogs compared with a Contemporary comparison group of dogs with stages 1-3 haemangiosarcoma treated with standard of care alone. Our results indicate that repeated dosing cycles of eBAT starting 1 week prior to doxorubicin chemotherapy led to greater toxicity and reduced efficacy compared with a single cycle given between surgery and a delayed start of chemotherapy. Further work is needed to understand the precise mechanisms of action of eBAT in order to optimize its clinical benefits in the treatment of canine haemangiosarcoma and other tumours. IACUC Protocols 1110A06186 and 1507-32804A.
Collapse
Affiliation(s)
- Antonella Borgatti
- Animal Cancer Care and Research (ACCR) Program, University of Minnesota, St. Paul, Minnesota, USA.,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA.,Clinical Investigation Center, College of Veterinary Medicine, St. Paul, Minnesota, USA
| | - Ann Fieberg
- Coordinating Center for Biometric Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Amber L Winter
- Animal Cancer Care and Research (ACCR) Program, University of Minnesota, St. Paul, Minnesota, USA.,Clinical Investigation Center, College of Veterinary Medicine, St. Paul, Minnesota, USA
| | - Kathleen Stuebner
- Animal Cancer Care and Research (ACCR) Program, University of Minnesota, St. Paul, Minnesota, USA.,Clinical Investigation Center, College of Veterinary Medicine, St. Paul, Minnesota, USA
| | - Elizabeth Taras
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Radiation Oncology, School of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Deborah Todhunter
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Radiation Oncology, School of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Alison Masyr
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Aaron Rendhal
- Animal Cancer Care and Research (ACCR) Program, University of Minnesota, St. Paul, Minnesota, USA.,Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Daniel A Vallera
- Animal Cancer Care and Research (ACCR) Program, University of Minnesota, St. Paul, Minnesota, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Radiation Oncology, School of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Joseph S Koopmeiners
- Animal Cancer Care and Research (ACCR) Program, University of Minnesota, St. Paul, Minnesota, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA.,Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jaime F Modiano
- Animal Cancer Care and Research (ACCR) Program, University of Minnesota, St. Paul, Minnesota, USA.,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA.,Center for Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
5
|
Parakh S, King D, Gan HK, Scott AM. Current Development of Monoclonal Antibodies in Cancer Therapy. Recent Results Cancer Res 2019; 214:1-70. [PMID: 31473848 DOI: 10.1007/978-3-030-23765-3_1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Exploiting the unique specificity of monoclonal antibodies has revolutionized the treatment and diagnosis of haematological and solid organ malignancies; bringing benefit to millions of patients over the past decades. Recent achievements include conjugating antibodies with toxic payloads resulting in superior efficacy and/or reduced toxicity, development of molecular imaging techniques targeting specific antigens for use as predictive and prognostic biomarkers, the development of novel bi- and tri-specific antibodies to enhance therapeutic benefit and abrogate resistance and the success of immunotherapy agents. In this chapter, we review an overview of antibody structure and function relevant to cancer therapy and provide an overview of pivotal clinical trials which have led to regulatory approval of monoclonal antibodies in cancer treatment. We further discuss resistance mechanisms and the unique side effects of each class of antibody and provide an overview of emerging therapeutic agents.
Collapse
Affiliation(s)
- Sagun Parakh
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, VIC, 3084, Australia.,Department of Medical Oncology, Olivia Newton-John Cancer and Wellness Centre, Austin Health, Heidelberg, Melbourne, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Dylan King
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, VIC, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Hui K Gan
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, VIC, 3084, Australia.,Department of Medical Oncology, Olivia Newton-John Cancer and Wellness Centre, Austin Health, Heidelberg, Melbourne, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, VIC, 3084, Australia. .,School of Cancer Medicine, La Trobe University, Melbourne, Australia. .,Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia. .,Department of Medicine, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
6
|
Meng F, Meyer CM, Joung D, Vallera DA, McAlpine MC, Panoskaltsis-Mortari A. 3D Bioprinted In Vitro Metastatic Models via Reconstruction of Tumor Microenvironments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806899. [PMID: 30663123 PMCID: PMC6996245 DOI: 10.1002/adma.201806899] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/13/2018] [Indexed: 05/18/2023]
Abstract
The development of 3D in vitro models capable of recapitulating native tumor microenvironments could improve the translatability of potential anticancer drugs and treatments. Here, 3D bioprinting techniques are used to build tumor constructs via precise placement of living cells, functional biomaterials, and programmable release capsules. This enables the spatiotemporal control of signaling molecular gradients, thereby dynamically modulating cellular behaviors at a local level. Vascularized tumor models are created to mimic key steps of cancer dissemination (invasion, intravasation, and angiogenesis), based on guided migration of tumor cells and endothelial cells in the context of stromal cells and growth factors. The utility of the metastatic models for drug screening is demonstrated by evaluating the anticancer efficacy of immunotoxins. These 3D vascularized tumor tissues provide a proof-of-concept platform to i) fundamentally explore the molecular mechanisms of tumor progression and metastasis, and ii) preclinically identify therapeutic agents and screen anticancer drugs.
Collapse
Affiliation(s)
- Fanben Meng
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Carolyn M Meyer
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Daeha Joung
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Daniel A Vallera
- Department of Radiation Oncology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Michael C McAlpine
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Angela Panoskaltsis-Mortari
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
7
|
Dhanda SK, Grifoni A, Pham J, Vaughan K, Sidney J, Peters B, Sette A. Development of a strategy and computational application to select candidate protein analogues with reduced HLA binding and immunogenicity. Immunology 2017; 153:118-132. [PMID: 28833085 DOI: 10.1111/imm.12816] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/27/2017] [Accepted: 08/14/2017] [Indexed: 12/13/2022] Open
Abstract
Unwanted immune responses against protein therapeutics can reduce efficacy or lead to adverse reactions. T-cell responses are key in the development of such responses, and are directed against immunodominant regions within the protein sequence, often associated with binding to several allelic variants of HLA class II molecules (promiscuous binders). Herein, we report a novel computational strategy to predict 'de-immunized' peptides, based on previous studies of erythropoietin protein immunogenicity. This algorithm (or method) first predicts promiscuous binding regions within the target protein sequence and then identifies residue substitutions predicted to reduce HLA binding. Further, this method anticipates the effect of any given substitution on flanking peptides, thereby circumventing the creation of nascent HLA-binding regions. As a proof-of-principle, the algorithm was applied to Vatreptacog α, an engineered Factor VII molecule associated with unintended immunogenicity. The algorithm correctly predicted the two immunogenic peptides containing the engineered residues. As a further validation, we selected and evaluated the immunogenicity of seven substitutions predicted to simultaneously reduce HLA binding for both peptides, five control substitutions with no predicted reduction in HLA-binding capacity, and additional flanking region controls. In vitro immunogenicity was detected in 21·4% of the cultures of peptides predicted to have reduced HLA binding and 11·4% of the flanking regions, compared with 46% for the cultures of the peptides predicted to be immunogenic. This method has been implemented as an interactive application, freely available online at http://tools.iedb.org/deimmunization/.
Collapse
Affiliation(s)
- Sandeep Kumar Dhanda
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Alba Grifoni
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - John Pham
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Kerrie Vaughan
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| |
Collapse
|
8
|
Evolution of anti-HER2 therapies for cancer treatment. Cancer Treat Rev 2017; 59:1-21. [PMID: 28715775 DOI: 10.1016/j.ctrv.2017.06.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 01/13/2023]
Abstract
The development of HER2-directed monoclonal antibodies and tyrosine kinase inhibitors have provided benefits to cancer patients, as well as produced many insights into the biology of the ErbB receptor family. Current therapies based on ErbB family members have resulted in improved overall survival with associated improvements in quality of life for the cancer patients that respond to treatment. Compared to monotherapy using either two antibodies to block the HER2 receptor blockade or combinatorial approaches with HER2 antibodies and standard therapies has provided additional benefits. Despite the therapeutic success of existing HER2 therapies, personalising treatment and overcoming resistance to these therapies remains a significant challenge. The heterogeneous intra-tumoural HER2 expression and lack of fully predictive and prognostic biomarkers remain significant barriers to improving the use of HER2 antibodies. Imaging modalities using radiolabelled pertuzumab and trastuzumab allow quantitative assessment of intra-tumoural HER2 expression, HER2 antibody saturation and the success of different drug delivery systems to be assessed. Molecular imaging with HER2 antibodies has the potential to be a non-invasive, predictive and prognostic technique capable of influencing therapeutic decisions, predicting response and failure of treatments as well as providing insights into receptor recycling and signalling. Similarly, conjugating HER2 antibodies with novel toxic payloads or combining HER2 antibodies with cellular immunotherapy provide exciting new opportunities for the management of tumours overexpressing HER2. Future research will lead to higher therapeutic responses, lower toxicities and providing insight into the mechanisms of resistance to HER2-targeted treatments.
Collapse
|
9
|
Recombinant Immunotoxin Therapy of Glioblastoma: Smart Design, Key Findings, and Specific Challenges. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7929286. [PMID: 28752098 PMCID: PMC5511670 DOI: 10.1155/2017/7929286] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/29/2017] [Indexed: 12/23/2022]
Abstract
Recombinant immunotoxins (RITs) refer to a group of recombinant protein-based therapeutics, which consists of two components: an antibody variable fragment or a specific ligand that allows RITs to bind specifically to target cells and an engineered toxin fragment that kills the target cells upon internalization. To date, over 1,000 RITs have been generated and significant success has been achieved in the therapy of hematological malignancies. However, the immunogenicity and off-target toxicities of RITs remain as significant barriers for their application to solid tumor therapy. A group of RITs have also been generated for the treatment of glioblastoma multiforme, and some have demonstrated evidence of tumor response and an acceptable profile of toxicity and safety in early clinical trials. Different from other solid tumors, how to efficiently deliver the RITs to intracranial tumors is more critical and needs to be solved urgently. In this article, we first review the design and expression of RITs, then summarize the key findings in the preclinical and clinical development of RIT therapy of glioblastoma multiforme, and lastly discuss the specific issues that still remain to forward RIT therapy to clinical practice.
Collapse
|
10
|
Borgatti A, Koopmeiners JS, Sarver AL, Winter AL, Stuebner K, Todhunter D, Rizzardi AE, Henriksen JC, Schmechel S, Forster CL, Kim JH, Froelich J, Walz J, Henson MS, Breen M, Lindblad-Toh K, Oh F, Pilbeam K, Modiano JF, Vallera DA. Safe and Effective Sarcoma Therapy through Bispecific Targeting of EGFR and uPAR. Mol Cancer Ther 2017; 16:956-965. [PMID: 28193671 PMCID: PMC5418099 DOI: 10.1158/1535-7163.mct-16-0637] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/19/2017] [Accepted: 01/23/2017] [Indexed: 01/12/2023]
Abstract
Sarcomas differ from carcinomas in their mesenchymal origin. Therapeutic advancements have come slowly, so alternative drugs and models are urgently needed. These studies report a new drug for sarcomas that simultaneously targets both tumor and tumor neovasculature. eBAT is a bispecific angiotoxin consisting of truncated, deimmunized Pseudomonas exotoxin fused to EGF and the amino terminal fragment of urokinase. Here, we study the drug in an in vivo "ontarget" companion dog trial as eBAT effectively kills canine hemangiosarcoma and human sarcoma cells in vitro We reasoned the model has value due to the common occurrence of spontaneous sarcomas in dogs and a limited lifespan allowing for rapid accrual and data collection. Splenectomized dogs with minimal residual disease were given one cycle of eBAT followed by adjuvant doxorubicin in an adaptive dose-finding, phase I-II study of 23 dogs with spontaneous, stage I-II, splenic hemangiosarcoma. eBAT improved 6-month survival from <40% in a comparison population to approximately 70% in dogs treated at a biologically active dose (50 μg/kg). Six dogs were long-term survivors, living >450 days. eBAT abated expected toxicity associated with EGFR targeting, a finding supported by mouse studies. Urokinase plasminogen activator receptor and EGFR are targets for human sarcomas, so thorough evaluation is crucial for validation of the dog model. Thus, we validated these markers for human sarcoma targeting in the study of 212 human and 97 canine sarcoma samples. Our results support further translation of eBAT for human patients with sarcomas and perhaps other EGFR-expressing malignancies. Mol Cancer Ther; 16(5); 956-65. ©2017 AACR.
Collapse
Affiliation(s)
- Antonella Borgatti
- Animal Cancer Care and Research (ACCR) Program, University of Minnesota, St. Paul, Minnesota.
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Joseph S Koopmeiners
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Aaron L Sarver
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Amber L Winter
- Clinical Investigation Center, College of Veterinary Medicine, St. Paul, Minnesota
| | - Kathleen Stuebner
- Clinical Investigation Center, College of Veterinary Medicine, St. Paul, Minnesota
| | - Deborah Todhunter
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Radiation Oncology, School of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Anthony E Rizzardi
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington
| | - Jonathan C Henriksen
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington
| | - Stephen Schmechel
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington
| | - Colleen L Forster
- BioNet Histology Research Laboratory, Academic Health Center, University of Minnesota, Minneapolis, Minnesota
| | - Jong-Hyuk Kim
- Animal Cancer Care and Research (ACCR) Program, University of Minnesota, St. Paul, Minnesota
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Jerry Froelich
- Department of Radiology, School of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Jillian Walz
- Animal Cancer Care and Research (ACCR) Program, University of Minnesota, St. Paul, Minnesota
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
| | - Michael S Henson
- Animal Cancer Care and Research (ACCR) Program, University of Minnesota, St. Paul, Minnesota
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, and Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina
- Cancer Genetics Program, University of North Carolina Lineberger Comprehensive Cancer Center, Raleigh, North Carolina
| | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Felix Oh
- Department of Radiation Oncology, School of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Kristy Pilbeam
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Jaime F Modiano
- Animal Cancer Care and Research (ACCR) Program, University of Minnesota, St. Paul, Minnesota
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota
| | - Daniel A Vallera
- Animal Cancer Care and Research (ACCR) Program, University of Minnesota, St. Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Radiation Oncology, School of Medicine, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
11
|
Parakh S, Parslow AC, Gan HK, Scott AM. Antibody-mediated delivery of therapeutics for cancer therapy. Expert Opin Drug Deliv 2015; 13:401-19. [PMID: 26654403 DOI: 10.1517/17425247.2016.1124854] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Antibody-conjugated therapies (ACTs) combine the specificity of monoclonal antibodies to target cancer cells directly with highly potent payloads, often resulting in superior efficacy and/or reduced toxicity. This represents a new approach to the treatment of cancer. There have been highly promising clinical trial results using this approach with improvements in linker and payload technology. The breadth of current trials examining ACTs in haematological malignancies and solid tumours indicate the potential for clinical impact. AREAS COVERED This review will provide an overview of ACTs currently in clinical development as well as the principles of antibody delivery and types of payloads used, including cytotoxic drugs, radiolabelled isotopes, nanoparticle-based siRNA particles and immunotoxins. EXPERT OPINION The focus of much of the clinical activity in ACTs has, understandably, been on their use as a monotherapy or in combination with standard of care drugs. This will continue, as will the search for better targets, linkers and payloads. Increasingly, as these drugs enter routine clinical care, important questions will arise regarding how to optimise ACT treatment approaches, including investigation of resistance mechanisms, biomarker and patient selection strategies, understanding of the unique toxicities of these drugs, and combinatorial approaches with standard therapies as well as emerging therapeutic agents like immunotherapy.
Collapse
Affiliation(s)
- Sagun Parakh
- a Tumour Targeting Laboratory , Olivia Newton-John Cancer Research Institute , Melbourne , Australia.,b Department of Medical Oncology, Olivia Newton-John Cancer and Wellness Centre , Austin Health , Heidelberg, Melbourne , Australia.,c School of Cancer Medicine , La Trobe University , Melbourne , Australia
| | - Adam C Parslow
- a Tumour Targeting Laboratory , Olivia Newton-John Cancer Research Institute , Melbourne , Australia.,c School of Cancer Medicine , La Trobe University , Melbourne , Australia
| | - Hui K Gan
- a Tumour Targeting Laboratory , Olivia Newton-John Cancer Research Institute , Melbourne , Australia.,b Department of Medical Oncology, Olivia Newton-John Cancer and Wellness Centre , Austin Health , Heidelberg, Melbourne , Australia.,c School of Cancer Medicine , La Trobe University , Melbourne , Australia
| | - Andrew M Scott
- a Tumour Targeting Laboratory , Olivia Newton-John Cancer Research Institute , Melbourne , Australia.,c School of Cancer Medicine , La Trobe University , Melbourne , Australia.,d Departmentof Molecular Imaging and Therapy , Austin Health , Melbourne , Australia.,e Department of Medicine , University of Melbourne , Melbourne , Australia
| |
Collapse
|
12
|
Schmohl JU, Todhunter D, Oh S, Vallera DA. Mutagenic Deimmunization of Diphtheria Toxin for Use in Biologic Drug Development. Toxins (Basel) 2015; 7:4067-82. [PMID: 26473923 PMCID: PMC4626721 DOI: 10.3390/toxins7104067] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/09/2015] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Targeted toxins require multiple treatments and therefore must be deimmunized. We report a method of protein deimmunization based on the point mutation of highly hydrophilic R, K, D, E, and Q amino acids on the molecular surface of truncated diphtheria-toxin (DT390). METHODS Based on their surface position derived from an X-ray-crystallographic model, residues were chosen for point mutation that were located in prominent positions on the molecular surface and away from the catalytic site. Mice were immunized with a targeted toxin containing either a mutated DT390 containing seven critical point mutations or the non-mutated parental toxin form. RESULTS Serum analysis revealed a significant 90% reduction in anti-toxin antibodies in mice immunized with the mutant, but not the parental drug form despite multiple immunizations. The experiment was repeated in a second strain of mice with a different MHC-haplotype to address whether point mutation removed T or B cell epitopes. Findings were identical indicating that B cell epitopes were eliminated from DT. The mutant drug form lost only minimal activity in vitro as well as in vivo. CONCLUSION These findings indicate that this method may be effective for deimmunizing of other proteins and that discovery of a deimmunized form of DT may lead to the development of more effective targeted toxin.
Collapse
Affiliation(s)
- Joerg U Schmohl
- University of Minnesota Masonic Cancer Center, Section of Molecular Cancer Therapeutics, Therapeutic Radiology-Radiation Oncology, University of Minnesota, Minneapolis, MN 55423, USA.
- Department for Hematology and Oncology, Department of Medicine 2, University Hospital of Tuebingen, Tuebingen 72076, Germany.
| | - Deborah Todhunter
- University of Minnesota Masonic Cancer Center, Section of Molecular Cancer Therapeutics, Therapeutic Radiology-Radiation Oncology, University of Minnesota, Minneapolis, MN 55423, USA.
| | - Seung Oh
- University of Minnesota Masonic Cancer Center, Section of Molecular Cancer Therapeutics, Therapeutic Radiology-Radiation Oncology, University of Minnesota, Minneapolis, MN 55423, USA.
| | - Daniel A Vallera
- University of Minnesota Masonic Cancer Center, Section of Molecular Cancer Therapeutics, Therapeutic Radiology-Radiation Oncology, University of Minnesota, Minneapolis, MN 55423, USA.
| |
Collapse
|
13
|
Ohlfest JR, Zellmer DM, Panyam J, Swaminathan SK, Oh S, Waldron NN, Toma S, Vallera DA. Immunotoxin targeting CD133(+) breast carcinoma cells. Drug Deliv Transl Res 2015; 3:195-204. [PMID: 25787984 DOI: 10.1007/s13346-012-0066-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
CD133 expression enriches for tumor-initiating cells and is a negative prognostic factor in numerous cancers. We previously developed an immunotoxin against CD133 by fusing a gene fragment encoding the scFv portion of an anti-CD133 antibody to a gene fragment encoding deimmunized PE38KDEL. The resulting fusion protein, dCD133KDEL, demonstrated potent antitumor activity following intratumoral delivery into head neck cell carcinoma xenografts. However, the efficacy against other tumors and the tolerability of systemic administration remained unclear. The purpose of this study was to evaluate the tolerability and efficacy of dCD133KDEL in a systemic human breast carcinoma model. Time course viability studies showed that dCD133KDEL selectively inhibited MDA-MB-231 ductal breast carcinoma cells that contained a minority CD133(+) subpopulation, implicating CD133(+) cells as a source for self-renewal within this cell line. Furthermore, systemic administration of dCD133KDEL caused regression or inhibition of tumor growth in mice bearing an intrasplenic MDA-MB-231 tumor challenge as a model for metastatic disease. In the same model, combined therapy with dCD133KDEL and another immunotoxin designed to target the bulk tumor mass was the most effective therapy, supporting the idea that such combination therapies might better address tumor heterogeneity. dCD133KDEL shows promise as a therapeutic agent and as a biologic tool to study cancer stem cells.
Collapse
Affiliation(s)
- John R Ohlfest
- Department of Pediatrics, Masonic Cancer Center of the University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Hall WA, Li YM, Vallera DA. Diphtheria toxin-based targeted toxins that target glioblastoma multiforme. TOXIN REV 2014. [DOI: 10.3109/15569543.2014.897731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Waldron NN, Barsky SH, Dougherty PR, Vallera DA. A bispecific EpCAM/CD133-targeted toxin is effective against carcinoma. Target Oncol 2013; 9:239-49. [PMID: 23900680 DOI: 10.1007/s11523-013-0290-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/21/2013] [Indexed: 01/06/2023]
Abstract
The discovery of chemoresistant cancer stem cells (CSCs) in carcinomas has created the need for therapies that specifically target these subpopulations of cells. Here, we characterized a bispecific targeted toxin that is composed of two antibody fragments and a catalytic protein toxin allowing it to bind two CSC markers on the same cell killing this resistant subpopulation. CD133 is a well-known CSC marker and has been successfully targeted and caused regression of head and neck squamous cell carcinoma (HNSCC) in vivo. To enable it to bind a broader range of CSCs, an anti-epithelial cell adhesion molecule (EpCAM) scFv was added to create dEpCAMCD133KDEL, a deimmunized bispecific targeted toxin on a single amino acid chain. This bispecific potently inhibited protein translation and proliferation in vitro in three different types of carcinoma. Furthermore, in a CSC spheroid model dEpCAMCD133KDEL eliminated Mary-X spheroids, an inflammatory breast carcinoma. Finally, this bispecific also caused tumor regression in an in vivo model of HNSCC. This represents the first bispecific CSC-targeted toxin and warrants further development as a possible therapy for carcinoma.
Collapse
Affiliation(s)
- Nate N Waldron
- Department of Pharmacology, University of Minnesota, 210 Delaware Street Southeast, Minneapolis, MN, 55455, USA
| | | | | | | |
Collapse
|
16
|
Li YM, Vallera DA, Hall WA. Diphtheria toxin-based targeted toxin therapy for brain tumors. J Neurooncol 2013; 114:155-64. [PMID: 23695514 DOI: 10.1007/s11060-013-1157-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 05/12/2013] [Indexed: 11/24/2022]
Abstract
Targeted toxins (TT) are molecules that bind cell surface antigens or receptors such as the transferrin or interleukin-13 receptor that are overexpressed in cancer. After internalization, the toxin component kills the cell. These recombinant proteins consist of an antibody or carrier ligand coupled to a modified plant or bacterial toxin such as diphtheria toxin (DT). These fusion proteins are very effective against brain cancer cells that are resistant to radiation therapy and chemotherapy. TT have shown an acceptable profile for toxicity and safety in animal studies and early clinical trials have demonstrated a therapeutic response. This review summarizes the characteristics of DT-based TT, the animal studies in malignant brain tumors and early clinical trial results. Obstacles to the successful treatment of brain tumors include poor penetration into tumor, the immune response to DT and cancer heterogeneity.
Collapse
Affiliation(s)
- Yan Michael Li
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA.
| | | | | |
Collapse
|
17
|
Waldron NN, Oh S, Vallera DA. Bispecific targeting of EGFR and uPAR in a mouse model of head and neck squamous cell carcinoma. Oral Oncol 2012; 48:1202-7. [PMID: 22818892 DOI: 10.1016/j.oraloncology.2012.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 05/25/2012] [Accepted: 06/01/2012] [Indexed: 01/17/2023]
Abstract
OBJECTIVES To investigate the efficacy of the bispecific targeted toxin, dEGFATFKDEL, on head and neck carcinoma cell lines in vitro and in vivo. MATERIALS AND METHODS A deimmunized bispecific anti-cancer agent was constructed to simultaneously target both the overexpressed EGF receptor on carcinomas and the urokinase receptor (uPAR), that is found on the endothelial cells of the neovasculature within tumors. Flow cytometry assays were performed to determine the level of EGFR expressed on a variety of carcinoma lines. These lines were then tested in tritiated leucine incorporation assays to determine the efficacy of dEGFATFKDEL. Human vein endothelial primary cells were also tested to determine the effectiveness of the ATF portion of the molecule that binds uPAR. Furthermore, mouse studies were performed to determine whether dEGFATFKDEL was effective at inhibiting tumor growth in vivo. RESULTS UMSCC-11B and NA, two head and neck squamous cell carcinomas, highly expressed EGFR. Both the carcinoma lines and the human vein endothelial cells were inhibited at sub-nanomolar concentrations by dEGFATFKDEL. The tumor studies showed that the tumors treated with dEGFATFKDEL were significantly inhibited whereas the negative control and untreated tumors progressed. In a separate in vivo study involving another carcinoma line, MDA-MB-231, the effectiveness of dEGFATFKDEL was confirmed. No toxicity was seen at the doses used in either of these mouse studies. CONCLUSIONS This bispecific agent is effective in a mouse model of head and neck squamous cell carcinoma. Further study of this reagent for use in the treatment of carcinomas is warranted.
Collapse
Affiliation(s)
- Nate N Waldron
- University of Minnesota, Department of Pharmacology, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
18
|
A deimmunized bispecific ligand-directed toxin that shows an impressive anti-pancreatic cancer effect in a systemic nude mouse orthotopic model. Pancreas 2012; 41:789-96. [PMID: 22258068 PMCID: PMC3336038 DOI: 10.1097/mpa.0b013e31823b5f2e] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The objective was to test a bispecific ligand-directed toxin (BLT), with reduced immunogenicity for enhanced efficacy in targeting orthotopic pancreatic cancer in vivo. METHOD A new BLT was created in which both human epidermal growth factor (EGF) and interleukin 4 cytokines were cloned onto the same single chain molecule with deimmunized pseudomonas exotoxin (dEGF4KDEL). Key amino acids dictating B-cell generation of neutralizing antitoxin antibodies were mutated. Bioassays were used to determine whether mutation reduced potency, and enzyme-linked immunosorbent assay studies were performed to determine whether antitoxin antibodies were reduced. A genetically altered luciferase MIA PaCa-2 xenograft model was used to image in real time and determine effects on systemic malignant human cancer. Bispecific ligand-directed toxins targeting B cells were used as specificity controls. RESULTS Deimmunized EGF4KDEL was significantly effective after systemic injection against established orthotopic MIA PaCa-2 pancreatic cancer and selectively prevented metastasis. Mutagenesis significantly reduced antitoxin levels in vivo with no apparent activity loss in vitro. The drug was effective against 3 human pancreatic cancer lines in vitro, MIA PaCa-2, SW1990, and S2VP10. CONCLUSIONS Despite the metastatic nature of the MIA PaCa-2 orthotopic tumor xenografted in nude mice, high percentages of tumors responded to extended dEGFKDEL treatment resulting in significant anticancer effects and disease-free survivors.
Collapse
|
19
|
Huang J, Li YM, Massague J, Sicheneder A, Vallera DA, Hall WA. Intracerebral infusion of the bispecific targeted toxin DTATEGF in a mouse xenograft model of a human metastatic non-small cell lung cancer. J Neurooncol 2012; 109:229-38. [PMID: 22696210 DOI: 10.1007/s11060-012-0904-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/28/2012] [Indexed: 10/28/2022]
Abstract
The aim of this study is to investigate the anti-cancer effect of the bispecific diphtheria toxin (DT) based immunotoxin DTATEGF, which targets both the epidermal growth factor (EGF) receptor (EGFR) and the urokinase-type plasminogen activator (uPA) receptor (uPAR) in vitro and in vivo when delivered by convection-enhanced delivery (CED) via an osmotic minipump in a human metastatic non-small cell lung cancer (NSCLC) brain tumor mouse xenograft model. The effects of the bispecific immunotoxin DTATEGF, and monospecific DTAT, DTEGF and control DT at various concentrations were tested for their ability to inhibit the proliferation of human metastatic NSCLC PC9-BrM3 cells in vitro by MTT assay. A xenograft model of human metastatic NSCLC intracranial model was established in nude mice using the human NSCLC PC9-BrM3 cell line genetically marked with a firefly luciferase reporter gene. One microgram of DTATEGF in the treatment group or control DT in the control group was delivered intracranially by CED via an osmotic minipump. The bioluminescent imaging (BLI) was performed at day 7, 14, 1 month, 2 months, and 3 months. Kaplan-Meier survival curves for the two groups were generated. The brain tissue samples were stained by hematoxylin and eosin for histopathological assessment. In vitro, DTATEGF could selectively kill PC9-BrM3 cells and showed an IC(50) less than 0.001 nM, representing a more than 100- to 1000-fold increase in activity as compared to monospecific DTAT and DTEGF. In vivo, mice with tumors were treated intracranially with drug via CED where the results showed the treatment was successful in providing a survival benefit with the median survival of mice treated with DTATEGF being significantly prolonged relative to controls (87 vs. 63 days, P = 0.006). The results of these experiments indicate that DTATEGF kills the NSCLC PC9-BrM3 cell line in vitro, and when it is delivered via CED intracranially, it is highly efficacious against metastatic NSCLC brain tumors. DTATEGF is a safe and effective drug where further preclinical and clinical development is warranted for the management of metastatic brain tumors.
Collapse
Affiliation(s)
- Jun Huang
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Monoclonal antibodies are widely used for the treatment of cancer, inflammatory and infectious diseases and other disorders. Most of the marketed antibodies are monospecific and therefore capable of interacting and interfering with a single target. However, complex diseases are often multifactorial in nature, and involve redundant or synergistic action of disease mediators or upregulation of different receptors, including crosstalk between their signaling networks. Consequently, blockade of multiple, different pathological factors and pathways may result in improved therapeutic efficacy. This result can be achieved by combining different drugs, or use of the dual targeting strategies applying bispecific antibodies that have emerged as an alternative to combination therapy. This review discusses the various dual targeting strategies for which bispecific antibodies have been developed and provides an overview of the established bispecific antibody formats.
Collapse
Affiliation(s)
- Roland E Kontermann
- Institut für Zellbiologie und Immunologie; Universität Stuttgart; Stuttgart, Germany
| |
Collapse
|
21
|
Burt BM, Bader A, Winter D, Rodig SJ, Bueno R, Sugarbaker DJ. Expression of interleukin-4 receptor alpha in human pleural mesothelioma is associated with poor survival and promotion of tumor inflammation. Clin Cancer Res 2012; 18:1568-77. [PMID: 22261806 DOI: 10.1158/1078-0432.ccr-11-1808] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The origin and pathogenesis of malignant pleural mesothelioma (MPM) are closely aligned with inflammation. MPM tumors express interleukin-4 receptor α (IL-4Rα), the principal subunit of the IL-4 receptor. We set out to determine the biologic function and clinical relevance of IL-4Rα in human MPM. EXPERIMENTAL DESIGN Expression of IL-4Rα by human MPM tumors was determined by quantitative real-time PCR (n = 37) and immunohistochemistry (n = 52). Intracellular cytokine analysis of T-cell-derived IL-4 was carried out on matched tumor and blood samples from eight patients with MPM. Four human MPM cell lines were used to determine the direct effects of IL-4 on MPM tumor cells. RESULTS High tumor mRNA expression of IL-4Rα was an independent predictor of poor survival in patients with epithelial MPM [HR, 3.13, 95% confidence interval (CI), 1.68-7.15; P = <0.0001]. Ninety-seven percent of epithelial MPM tumors and 95% of nonepithelial MPM tumors expressed IL-4Rα protein by immunohistochemistry, and strong IL-4Rα staining correlated with worse survival in patients with epithelial histology (P = 0.04). A greater percentage of tumor-infiltrating T cells produced IL-4 compared with matched blood T cells (21% ± 7% vs. 4% ± 2%, P = 0.0002). In response to IL-4, human MPM cells showed increased STAT-6 phosphorylation and increased production of IL-6, IL-8, and VEGF, without effect on proliferation or apoptosis. CONCLUSIONS Tumor expression of IL-4Rα is inversely correlated with survival in patients undergoing surgical resection for epithelial MPM. Tumor-infiltrating T cells in MPMs are polarized to produce IL-4 and may provide endogenous activation signals to MPM tumor cells in situ. The IL-4/IL-4 receptor axis is a potential therapeutic target in human MPM.
Collapse
Affiliation(s)
- Bryan M Burt
- Department of Pathology, The Brigham & Women's Hospital, Boston, MA, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Waldron NN, Kaufman DS, Oh S, Inde Z, Hexum MK, Ohlfest JR, Vallera DA. Targeting tumor-initiating cancer cells with dCD133KDEL shows impressive tumor reductions in a xenotransplant model of human head and neck cancer. Mol Cancer Ther 2011; 10:1829-38. [PMID: 21862685 PMCID: PMC3191276 DOI: 10.1158/1535-7163.mct-11-0206] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A novel anticancer agent was constructed by fusing a gene encoding the scFV that targets both glycosylated and unglycosylated forms of CD133 to a gene fragment encoding deimmunized PE38KDEL. The resulting fusion protein, dCD133KDEL, was studied to determine its ability to bind and kill tumor-initiating cells in vitro and in vivo. The anti-CD133 scFV selectively bound HEK293 cells transfected with the CD133 receptor gene. Time course viability studies showed that dCD133KDEL selectively inhibited NA-SCC and UMSCC-11B, 2 head and neck squamous cell carcinomas that contain a CD133 expressing subpopulation. Importantly, the drug did not inhibit the viability of hematopoietic lineages measured by long-term culture-initiating cell and colony-forming assays from sorted human CD34+ progenitor cells. In addition to in vitro studies, in vivo tumor initiation experiments confirmed that CD133-sorted cells implanted into the flanks of nude mice grew faster and larger than unsorted cells. In contrast, cells that were pretreated with dCD133KDEL before implantation showed the slowest and lowest incidence of tumors. Furthermore, UMSCC-11B-luc tumors treated with multiple intratumoral injections of dCD133KDEL showed marked growth inhibition, leading to complete degradation of the tumors that was not observed with an irrelevant control-targeted toxin. Experiments in immunocompetent mice showed that toxin deimmunization resulted in a 90% reduction in circulating antitoxin levels. These studies show that dCD133KDEL is a novel anticancer agent effective at inhibiting cell proliferation, tumor initiation, and eliminating established tumors by targeting the CD133 subpopulation. This agent shows significant promise for potential development as a clinically useful therapy.
Collapse
Affiliation(s)
- Nate N Waldron
- Department of Pharmacology, Masonic Cancer Center, University of Minnesota, MMC: 367, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Zielinski R, Lyakhov I, Hassan M, Kuban M, Shafer-Weaver K, Gandjbakhche A, Capala J. HER2-affitoxin: a potent therapeutic agent for the treatment of HER2-overexpressing tumors. Clin Cancer Res 2011; 17:5071-81. [PMID: 21791637 PMCID: PMC3149757 DOI: 10.1158/1078-0432.ccr-10-2887] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Cancers overexpressing the HER2/neu gene are usually more aggressive and are associated with poor prognosis. Although trastuzumab has significantly improved the outcome, many tumors do not respond or acquire resistance to current therapies. To provide an alternative HER2-targeted therapy, we have developed and characterized a novel recombinant protein combining an HER2-specific Affibody and modified Pseudomonas aeruginosa exotoxin A (PE 38), which, after binding to HER2, is internalized and delivered to the cytosol of the tumor cell, where it blocks protein synthesis by ADP ribosylation of eEF-2. EXPERIMENTAL DESIGN The effect of the Affitoxin on cell viability was assessed using CellTiter-Glo (Promega). To assess HER2-specific efficacy, athymic nude mice bearing BT-474 breast cancer, SK-OV-3 ovarian cancer, and NCI-N87 gastric carcinoma xenografts were treated with the Affitoxin (HER2- or Tag-specific), which was injected every third day. Affitoxin immunogenicity in female BALB/c mice was investigated using standard antibody production and splenocyte proliferation assays. RESULTS In vitro experiments proved that HER2-Affitoxin is a potent agent that eliminates HER2-overexpressing cells at low picomolar concentrations. Therapeutic efficacy studies showed complete eradication of relatively large BT-474 tumors and significant effects on SK-OV-3 and NCI-N87 tumors. HER2-Affitoxin cleared quickly from circulation (T(1/2) < 10 minutes) and was well tolerated by mice at doses of 0.5 mg/kg and below. Immunogenicity studies indicated that HER2-Affitoxin induced antibody development after the third injected dose. CONCLUSIONS Our findings showed that HER2-Affitoxin is an effective anticancer agent and a potential candidate for clinical studies.
Collapse
Affiliation(s)
- Rafal Zielinski
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Ilya Lyakhov
- Protein Chemistry Laboratory, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD
| | - Moinuddin Hassan
- Section on Analytical and Functional Biophotonics, Program on Pediatric Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Monika Kuban
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kimberly Shafer-Weaver
- Laboratory of Cell-Mediated Immunity, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD
| | - Amir Gandjbakhche
- Section on Analytical and Functional Biophotonics, Program on Pediatric Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Jacek Capala
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
24
|
Tsai AK, Oh S, Chen H, Shu Y, Ohlfest JR, Vallera DA. A novel bispecific ligand-directed toxin designed to simultaneously target EGFR on human glioblastoma cells and uPAR on tumor neovasculature. J Neurooncol 2011; 103:255-66. [PMID: 20830604 PMCID: PMC3098297 DOI: 10.1007/s11060-010-0392-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 08/09/2010] [Indexed: 01/21/2023]
Abstract
A bispecific ligand-directed toxin (BLT), called EGFATFKDEL, consisting of human epidermal growth factor, a fragment of urokinase, and truncated pseudomonas exotoxin (PE38) was assembled in order to target human glioblastoma. Immunogenicity was reduced by mutating seven immunodominant B-cell epitopes on the PE38 molecule to create a new agent, EGFATFKDEL 7mut. In vitro, the drug selectively killed several human glioblastoma cell lines. EGFATFKDEL is our first BLT designed to simultaneously target EGFR on solid tumors and uPAR on the tumor neovasculature. In vitro assays revealed that the agent is effective against glioblastoma cell lines as well as human umbilical vein endothelial cells (HUVEC). Additionally, the bispecific drug displayed enhanced binding to overexpressed epidermal growth factor receptor and urokinase receptor when compared to similar monospecific drugs, EGFKDEL and ATFKDEL. In vivo, an aggressive human glioblastoma cell line was genetically marked with a firefly luciferase reporter gene and administered to the flanks of nude mice. Treatment with intratumoral injections of EGFATFKDEL 7mut eradicated small tumors in over half of the treated mice, which survived with tumor free status at least 100 days post tumor inoculation. ATFKDEL, which primarily targets the tumor neovasculature, prevented tumor growth but did not result in tumor-free mice in most cases. Specificity was shown by treating with an irrelevant BLT control which did not protect mice. Finally, immunization experiments in immunocompetent mice revealed significantly reduced anti-toxin production in EGFATFKDEL 7mut treated groups. Thus, EGFATFKDEL 7mut is an effective drug for glioblastoma therapy in this murine model and warrants further study.
Collapse
Affiliation(s)
- Alexander K. Tsai
- Department of Therapeutic Radiology-Radiation Oncology, Section on Molecular Cancer Therapeutics, University of Minnesota Masonic Cancer Center, MMC: 367, Minneapolis, MN 55455, USA
| | - Seunguk Oh
- Department of Therapeutic Radiology-Radiation Oncology, Section on Molecular Cancer Therapeutics, University of Minnesota Masonic Cancer Center, MMC: 367, Minneapolis, MN 55455, USA
| | - Hua Chen
- Department of Therapeutic Radiology-Radiation Oncology, Section on Molecular Cancer Therapeutics, University of Minnesota Masonic Cancer Center, MMC: 367, Minneapolis, MN 55455, USA
| | - Yanqun Shu
- Department of Therapeutic Radiology-Radiation Oncology, Section on Molecular Cancer Therapeutics, University of Minnesota Masonic Cancer Center, MMC: 367, Minneapolis, MN 55455, USA
| | - John R. Ohlfest
- Department of Pediatrics, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
| | - Daniel A. Vallera
- Department of Therapeutic Radiology-Radiation Oncology, Section on Molecular Cancer Therapeutics, University of Minnesota Masonic Cancer Center, MMC: 367, Minneapolis, MN 55455, USA
| |
Collapse
|
25
|
Oh S, Tsai AK, Ohlfest JR, Panoskaltsis-Mortari A, Vallera DA. Evaluation of a bispecific biological drug designed to simultaneously target glioblastoma and its neovasculature in the brain. J Neurosurg 2011; 114:1662-71. [PMID: 21294620 DOI: 10.3171/2010.11.jns101214] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The authors of this study aimed to genetically design a bispecific targeted toxin that would simultaneously target overexpressed markers on glioma as well as the tumor vasculature, to mutate certain amino acids to reduce the immunogenicity of this new drug, and to determine whether the drug was able to effectively reduce aggressive human brain tumors in a rat xenograft model via a novel hollow fiber (HF) catheter delivery system. METHODS A new bispecific ligand-directed toxin (BLT) was created in which 2 human cytokines-epidermal growth factor ([EGF], targeting overexpressed EGF receptor) and amino acid terminal fragment ([ATF], targeting urokinase plasminogen activator receptor)-were cloned onto the same single-chain molecule with truncated Pseudomonas exotoxin with a terminal lysyl-aspartyl-glutamyl-leucine (KDEL) sequence. Site-specific mutagenesis was used to mutate amino acids in 7 key epitopic toxin regions that dictate the B cell generation of neutralizing antitoxin antibodies to deimmunize the drug, now called "EGFATFKDEL 7mut." Bioassays were used to determine whether mutation reduced the drug's potency, and enzyme-linked immunosorbent assay studies were performed to determine whether antitoxin antibodies were decreased. Aggressive brain tumors were intracranially established in nude rats by using human U87 glioma genetically marked with a firefly luciferase reporter gene (U87-luc), and the rats were stereotactically treated with 2 intracranial injections of deimmunized EGFATFKDEL via convection-enhanced delivery (CED). Drug was administered through a novel HF catheter to reduce drug backflow upon delivery. RESULTS In vitro, EGFATFKDEL 7mut selectively killed the human glioblastoma cell line U87-luc as well as cultured human endothelial cells in the form of the human umbilical vein endothelial cells. Deimmunization did not reduce drug activity. In vivo, when rats with brain tumors were intracranially treated with drug via CED and a novel HF catheter to reduce backflow, there were significant tumor reductions in 2 experiments (p < 0.01). Some rats survived with a tumor-free status until 130 days post-tumor inoculation. An irrelevant BLT control did not protect establishing specificity. The maximal tolerated dose of EGFATFKDEL 7mut was established at 2 μg/injection or 8.0 μg/kg, and data indicated that this dose was nontoxic. Antitoxin antibodies were reduced by at least 90%. CONCLUSIONS First, data indicated that the BLT framework is effective for simultaneously targeting glioma and its neovasculature. Second, in the rodent CED studies, newly developed HF catheters that limit backflow are effective for drug delivery. Third, by mutating critical amino acids, the authors reduced the threat of the interference of neutralizing antibodies that are generated against the drug. The authors' experiments addressed some of the most urgent limitations in the targeted toxin field.
Collapse
Affiliation(s)
- Seunguk Oh
- Department of Therapeutic Radiology-Radiation Oncology, Section on Molecular Cancer Therapeutics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
26
|
Toxin-based therapeutic approaches. Toxins (Basel) 2010; 2:2519-83. [PMID: 22069564 PMCID: PMC3153180 DOI: 10.3390/toxins2112519] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 10/25/2010] [Accepted: 10/26/2010] [Indexed: 01/08/2023] Open
Abstract
Protein toxins confer a defense against predation/grazing or a superior pathogenic competence upon the producing organism. Such toxins have been perfected through evolution in poisonous animals/plants and pathogenic bacteria. Over the past five decades, a lot of effort has been invested in studying their mechanism of action, the way they contribute to pathogenicity and in the development of antidotes that neutralize their action. In parallel, many research groups turned to explore the pharmaceutical potential of such toxins when they are used to efficiently impair essential cellular processes and/or damage the integrity of their target cells. The following review summarizes major advances in the field of toxin based therapeutics and offers a comprehensive description of the mode of action of each applied toxin.
Collapse
|
27
|
Oh S, Stish BJ, Vickers SM, Buchsbaum DJ, Saluja AK, Vallera DA. A new drug delivery method of bispecific ligand-directed toxins, which reduces toxicity and promotes efficacy in a model of orthotopic pancreatic cancer. Pancreas 2010; 39:913-22. [PMID: 20182395 PMCID: PMC2907476 DOI: 10.1097/mpa.0b013e3181cbd908] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVE Biologicals targeting epidermal growth factor (EGF) and interleukin 13 receptors not only react with overexpressed markers on cancer cells but also react with receptors on normal cells. Because we developed novel bispecific ligand-directed toxins synthesized by cloning EGF and interleukin 13 on the same molecule with toxin, our objective was to determine whether we could block normal receptors while still targeting receptors overexpressed on cancer cells, thereby decreasing toxicity while maintaining efficacy. METHODS A method, toxicity blocking (ToxBloc), was developed in which a bolus intraperitoneal dose of recombinant EGF13 (without toxin) was given to mice approximately 15 to 20 minutes before DTEGF13. Experiments were then performed to determine whether the maximal tolerated dose (MTD) was reduced and whether we were still able to eliminate progression of aggressive human, metastatic, pancreatic cancer induced by orthotopic injection (OT) in nude mice. RESULTS ToxBloc permitted us to safely exceed the DTEGF13 maximal tolerated dose by 15-fold. This approach permitted repetitive high dosing with the bispecific ligand-directed toxin resulting in tumor regression (P < 0.01). Tumor effects were documented using a tumor imaging model in which OT tumor growth was monitored noninvasively in real time. ToxBloc was selective because other bispecific peptides did not block. CONCLUSIONS ToxBloc represents a new method of drug delivery and a potential solution to the problem of toxicity.
Collapse
Affiliation(s)
- Seunguk Oh
- Therapeutic Radiology and daggerSurgery, University of Minnesota Cancer Center, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
28
|
Vallera DA, Oh S, Chen H, Shu Y, Frankel AE. Bioengineering a unique deimmunized bispecific targeted toxin that simultaneously recognizes human CD22 and CD19 receptors in a mouse model of B-cell metastases. Mol Cancer Ther 2010; 9:1872-83. [PMID: 20530709 PMCID: PMC2884080 DOI: 10.1158/1535-7163.mct-10-0203] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A drug of high potency and reduced immunogenicity is needed to develop a targeted biological drug that when injected systemically can penetrate to malignant B cells. Therefore, a novel deimmunized bispecific ligand-directed toxin targeted by dual high-affinity single-chain Fvs (scFv) spliced to PE38 with a KDEL COOH-terminus was genetically engineered. The aims were to reduce toxin immunogenicity using mutagenesis, measure the ability of mutated drug to elicit antitoxin antibody responses, and show that mutated drug was effective against systemic B-cell lymphoma in vivo. Both human anti-CD22 scFv and anti-CD19 scFv were cloned onto the same single-chain molecule with truncated pseudomonas exotoxin (PE38) to create the drug. Site-specific mutagenesis was used to mutate amino acids in seven key epitopic toxin regions that dictate B-cell generation of neutralizing antitoxin antibodies. Bioassays were used to determine whether mutation reduced potency, and ELISAs were done to determine whether antitoxin antibodies were reduced. Finally, a powerful genetically altered luciferase xenograft model was used that could be imaged in real time to determine the effect on systemic malignant human B-cell lymphoma, Raji-luc. Patient B-lineage acute lymphoblastic leukemia, B-cell chronic lymphocytic leukemia, and B lymphoma were high in CD22 and CD19 expression. 2219KDEL7mut was significantly effective against systemic Raji-luc in mice and prevented metastatic spread. Mutagenesis reduced neutralizing antitoxin antibodies by approximately 80% with no apparent loss in in vitro or in vivo activity. Because 2219KDEL7mut immunogenicity was significantly reduced and the drug was highly effective in vivo, we can now give multiple drug treatments with targeted toxins in future clinical trials.
Collapse
Affiliation(s)
- Daniel A Vallera
- Masonic Cancer Center, Section on Molecular Cancer Therapeutics, Department of Therapeutic Radiology-Radiation Oncology, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | |
Collapse
|