1
|
Wiśnik A, Jarych D, Krawiec K, Strzałka P, Potocka N, Czemerska M, Sałagacka-Kubiak A, Pluta A, Wierzbowska A, Zawlik I. Role of MicroRNAs in Acute Myeloid Leukemia. Genes (Basel) 2025; 16:446. [PMID: 40282406 PMCID: PMC12026923 DOI: 10.3390/genes16040446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
MicroRNA (miRNA), a significant class of regulatory non-coding RNA (ncRNA), can regulate the expression of numerous protein-coding messenger RNAs (mRNAs). miRNA plays an important part in shaping the human transcriptome. So far, in the human genome, about 2500 miRNAs have been found. Acute myeloid leukemia (AML) belongs to a malignant clonal disorder of hematopoietic stem cells and is characterized by the uncontrolled clonal proliferation of abnormal progenitor cells in the bone marrow and blood. For the past several years, significant scientific attention has been attracted to the role of miRNAs in AML, since alterations in the expression levels of miRNAs may contribute to AML development. This review describes the main functions of non-coding RNA classes and presents miRNA biogenesis. This study aims to review recent reports about altered microRNA expression and their influence on AML cell survival, cell cycle, and apoptotic potential. Additionally, it summarizes the correlations between miRNAs and their target mRNAs in AML and outlines the role of particular miRNAs in AML subtypes according to ELN recommendations.
Collapse
Affiliation(s)
- Aneta Wiśnik
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland
- Copernicus Memorial Multi-Specialist Oncology and Trauma Center, 93-510 Lodz, Poland
| | - Dariusz Jarych
- Laboratory of Virology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland
| | - Kinga Krawiec
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland
- Copernicus Memorial Multi-Specialist Oncology and Trauma Center, 93-510 Lodz, Poland
| | - Piotr Strzałka
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland
- Copernicus Memorial Multi-Specialist Oncology and Trauma Center, 93-510 Lodz, Poland
| | - Natalia Potocka
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, Collegium Medicum, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Magdalena Czemerska
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland
- Copernicus Memorial Multi-Specialist Oncology and Trauma Center, 93-510 Lodz, Poland
| | | | - Agnieszka Pluta
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland
- Copernicus Memorial Multi-Specialist Oncology and Trauma Center, 93-510 Lodz, Poland
| | - Agnieszka Wierzbowska
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland
- Copernicus Memorial Multi-Specialist Oncology and Trauma Center, 93-510 Lodz, Poland
| | - Izabela Zawlik
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, Collegium Medicum, University of Rzeszow, 35-959 Rzeszow, Poland
- Department of General Genetics, Faculty of Medicine, Collegium Medicum, University of Rzeszow, 35-959 Rzeszow, Poland
| |
Collapse
|
2
|
Xiao Y, Yang P, Xiao W, Yu Z, Li J, Li X, Lin J, Zhang J, Pei M, Hong L, Yang J, Lin Z, Jiang P, Xiang L, Li G, Ai X, Dai W, Tang W, Wang J. POU2F1 inhibits miR-29b1/a cluster-mediated suppression of PIK3R1 and PIK3R3 expression to regulate gastric cancer cell invasion and migration. Chin Med J (Engl) 2025; 138:838-850. [PMID: 39183556 PMCID: PMC11970810 DOI: 10.1097/cm9.0000000000003181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND The transcription factor POU2F1 regulates the expression levels of microRNAs in neoplasia. However, the miR-29b1/a cluster modulated by POU2F1 in gastric cancer (GC) remains unknown. METHODS Gene expression in GC cells was evaluated using reverse-transcription polymerase chain reaction (PCR), western blotting, immunohistochemistry, and RNA in situ hybridization. Co-immunoprecipitation was performed to evaluate protein interactions. Transwell migration and invasion assays were performed to investigate the biological behavior of GC cells. MiR-29b1/a cluster promoter analysis and luciferase activity assay for the 3'-UTR study were performed in GC cells. In vivo tumor metastasis was evaluated in nude mice. RESULTS POU2F1 is overexpressed in GC cell lines and binds to the miR-29b1/a cluster promoter. POU2F1 is upregulated, whereas mature miR-29b-3p and miR-29a-3p are downregulated in GC tissues. POU2F1 promotes GC metastasis by inhibiting miR-29b-3p or miR-29a-3p expression in vitro and in vivo . Furthermore, PIK3R1 and/or PIK3R3 are direct targets of miR-29b-3p and/or miR-29a-3p , and the ectopic expression of PIK3R1 or PIK3R3 reverses the suppressive effect of mature miR-29b-3p and/or miR-29a-3p on GC cell metastasis and invasion. Additionally, the interaction of PIK3R1 with PIK3R3 promotes migration and invasion, and miR-29b-3p , miR-29a-3p , PIK3R1 , and PIK3R3 regulate migration and invasion via the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway in GC cells. In addition, POU2F1 , PIK3R1 , and PIK3R3 expression levels negatively correlated with miR-29b-3p and miR-29a-3p expression levels in GC tissue samples. CONCLUSIONS The POU2F1 - miR-29b-3p / miR-29a-3p-PIK3R1 / PIK3R1 signaling axis regulates tumor progression and may be a promising therapeutic target for GC.
Collapse
Affiliation(s)
- Yizhi Xiao
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Ping Yang
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Wushuang Xiao
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhen Yu
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jiaying Li
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaofeng Li
- Department of Gastroenterology, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Jianjiao Lin
- Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen, Guangdong 518172, China
| | - Jieming Zhang
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Miaomiao Pei
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Linjie Hong
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Juanying Yang
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhizhao Lin
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ping Jiang
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Li Xiang
- Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen, Guangdong 518172, China
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xinbo Ai
- Department of Gastroenterology, Zhuhai People’s Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, Guangdong 519000, China
| | - Weiyu Dai
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Department of Gastroenterology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Weimei Tang
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jide Wang
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen, Guangdong 518172, China
| |
Collapse
|
3
|
Kesheh MM, Bayat M, Kobravi S, Lotfalizadeh MH, Heydari A, Memar MY, Baghi HB, Kermanshahi AZ, Ravaei F, Taghavi SP, Zarepour F, Nahand JS, Hashemian SMR, Mirzaei H. MicroRNAs and human viral diseases: A focus on the role of microRNA-29. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167500. [PMID: 39260679 DOI: 10.1016/j.bbadis.2024.167500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/01/2024] [Accepted: 08/01/2024] [Indexed: 09/13/2024]
Abstract
The viral replication can impress through cellular miRNAs. Indeed, either the antiviral responses or the viral infection changes through cellular miRNAs resulting in affecting many regulatory signaling pathways. One of the microRNA families that is effective in human cancers, diseases, and viral infections is the miR-29 family. Members of miR-29 family are effective in different viral infections as their roles have appeared in regulation of immunity pathways either in innate immunity including interferon and inflammatory pathways or in adaptive immunity including activation of T-cells and antibodies production. Although miR-29a affects viral replication by suppressing antiviral responses, it can inhibit the expression of viral mRNAs via binding to their 3'UTR. In the present work, we discuss the evidence related to miR-29a and viral infection through host immunity regulation. We also review roles of other miR-29 family members by focusing on their role as biomarkers for diagnosing and targets for viral diseases management.
Collapse
Affiliation(s)
- Mina Mobini Kesheh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepehr Kobravi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tehran Azad University, Tehran, Iran
| | | | - Azhdar Heydari
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran; Department of Physiology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefeh Zamani Kermanshahi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Ravaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
4
|
Mesaros O, Veres S, Onciul M, Matei E, Jimbu L, Neaga A, Zdrenghea M. Dysregulated MicroRNAs in Chronic Lymphocytic Leukemia. Cureus 2024; 16:e68770. [PMID: 39376808 PMCID: PMC11456419 DOI: 10.7759/cureus.68770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2024] [Indexed: 10/09/2024] Open
Abstract
MiRNAs are a class of non-coding RNAs acting as gene expression regulators by modulating the lifespan of messenger RNA. Commonly referred to as the most frequent leukemia in the Western world, chronic lymphocytic leukemia (CLL) is a lymphoproliferative malignancy characterized by clonal expansion of CD19, CD23, and CD5-positive mature B-cells. While this pathology is regarded as less aggressive and has a variety of treatment options, the cause of its clinical heterogeneity is not yet understood. Moreover, the prognostic markers and treatment recommendations based on predictive markers are limited. This review aims to investigate some miRNAs that are dysregulated and possibly involved in CLL pathogenesis as a starting point for the proposal of new prognostic and predictive markers and, as more agents targeting miRNA expression become available, their potential role as therapeutic targets.
Collapse
Affiliation(s)
- Oana Mesaros
- Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, ROU
- Hematology, Ion Chiricuta Oncology Institute, Cluj-Napoca, ROU
| | - Stefana Veres
- Otolaryngology, Policlinica Grigorescu, Cluj-Napoca, ROU
| | - Madalina Onciul
- Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, ROU
| | - Emilia Matei
- Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, ROU
- Pathology, Ion Chiricuta Oncology Institute, Cluj-Napoca, ROU
| | - Laura Jimbu
- Hematology, Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, ROU
- Hematology, Ion Chiricuta Oncology Institute, Cluj-Napoca, ROU
| | - Alexandra Neaga
- Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, ROU
| | - Mihnea Zdrenghea
- Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, ROU
| |
Collapse
|
5
|
Doyle C, Callaghan B, Roodnat AW, Armstrong L, Lester K, Simpson DA, Atkinson SD, Sheridan C, McKenna DJ, Willoughby CE. The TGFβ Induced MicroRNAome of the Trabecular Meshwork. Cells 2024; 13:1060. [PMID: 38920689 PMCID: PMC11201560 DOI: 10.3390/cells13121060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
Primary open-angle glaucoma (POAG) is a progressive optic neuropathy with a complex, multifactorial aetiology. Raised intraocular pressure (IOP) is the most important clinically modifiable risk factor for POAG. All current pharmacological agents target aqueous humour dynamics to lower IOP. Newer therapeutic agents are required as some patients with POAG show a limited therapeutic response or develop ocular and systemic side effects to topical medication. Elevated IOP in POAG results from cellular and molecular changes in the trabecular meshwork driven by increased levels of transforming growth factor β (TGFβ) in the anterior segment of the eye. Understanding how TGFβ affects both the structural and functional changes in the outflow pathway and IOP is required to develop new glaucoma therapies that target the molecular pathology in the trabecular meshwork. In this study, we evaluated the effects of TGF-β1 and -β2 treatment on miRNA expression in cultured human primary trabecular meshwork cells. Our findings are presented in terms of specific miRNAs (miRNA-centric), but given miRNAs work in networks to control cellular pathways and processes, a pathway-centric view of miRNA action is also reported. Evaluating TGFβ-responsive miRNA expression in trabecular meshwork cells will further our understanding of the important pathways and changes involved in the pathogenesis of glaucoma and could lead to the development of miRNAs as new therapeutic modalities in glaucoma.
Collapse
Affiliation(s)
- Chelsey Doyle
- Centre for Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine Campus, Coleraine BT52 1SA, UK; (C.D.); (A.W.R.); (L.A.); (S.D.A.); (D.J.M.)
| | - Breedge Callaghan
- Centre for Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine Campus, Coleraine BT52 1SA, UK; (C.D.); (A.W.R.); (L.A.); (S.D.A.); (D.J.M.)
| | - Anton W. Roodnat
- Centre for Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine Campus, Coleraine BT52 1SA, UK; (C.D.); (A.W.R.); (L.A.); (S.D.A.); (D.J.M.)
| | - Lee Armstrong
- Centre for Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine Campus, Coleraine BT52 1SA, UK; (C.D.); (A.W.R.); (L.A.); (S.D.A.); (D.J.M.)
| | - Karen Lester
- Centre for Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine Campus, Coleraine BT52 1SA, UK; (C.D.); (A.W.R.); (L.A.); (S.D.A.); (D.J.M.)
| | - David A. Simpson
- Wellcome Wolfson Institute for Experimental Medicine, Queens’ University, Belfast BT9 7BL, UK;
| | - Sarah D. Atkinson
- Centre for Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine Campus, Coleraine BT52 1SA, UK; (C.D.); (A.W.R.); (L.A.); (S.D.A.); (D.J.M.)
| | - Carl Sheridan
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK;
| | - Declan J. McKenna
- Centre for Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine Campus, Coleraine BT52 1SA, UK; (C.D.); (A.W.R.); (L.A.); (S.D.A.); (D.J.M.)
| | - Colin E. Willoughby
- Centre for Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine Campus, Coleraine BT52 1SA, UK; (C.D.); (A.W.R.); (L.A.); (S.D.A.); (D.J.M.)
| |
Collapse
|
6
|
Crosstalk of Transcriptional Regulators of Adaptive Immune System and microRNAs: An Insight into Differentiation and Development. Cells 2023; 12:cells12040635. [PMID: 36831302 PMCID: PMC9953855 DOI: 10.3390/cells12040635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/27/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
MicroRNAs (miRNAs), as small regulatory RNA molecules, are involved in gene expression at the post-transcriptional level. Hence, miRNAs contribute to gene regulation of various steps of different cell subsets' differentiation, maturation, and activation. The adaptive immune system arm, which exhibits the most specific immune responses, is also modulated by miRNAs. The generation and maturation of various T-cell subsets concomitant with B-cells is under precise regulation of miRNAs which function directly on the hallmark genes of each cell subset or indirectly through regulation of signaling pathway mediators and/or transcription factors involved in this maturation journey. In this review, we first discussed the origination process of common lymphocyte progenitors from hematopoietic stem cells, which further differentiate into various T-cell subsets under strict regulation of miRNAs and transcription factors. Subsequently, the differentiation of B-cells from common lymphocyte progenitors in bone marrow and periphery were discussed in association with a network of miRNAs and transcription factors.
Collapse
|
7
|
Ma CX, Wei ZR, Sun T, Yang MH, Sun YQ, Kai KL, Shi JC, Zhou MJ, Wang ZW, Chen J, Li W, Wang TQ, Zhang SF, Xue L, Zhang M, Yin Q, Zang MX. Circ-sh3rf3/GATA-4/miR-29a regulatory axis in fibroblast-myofibroblast differentiation and myocardial fibrosis. Cell Mol Life Sci 2023; 80:50. [PMID: 36694058 PMCID: PMC11072806 DOI: 10.1007/s00018-023-04699-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/21/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023]
Abstract
The transdifferentiation from cardiac fibroblasts to myofibroblasts is an important event in the initiation of cardiac fibrosis. However, the underlying mechanism is not fully understood. Circ-sh3rf3 (circular RNA SH3 domain containing Ring Finger 3) is a novel circular RNA which was induced in hypertrophied ventricles by isoproterenol hydrochloride, and our work has established that it is a potential regulator in cardiac hypertrophy, but whether circ-sh3rf3 plays a role in cardiac fibrosis remains unclear, especially in the conversion of cardiac fibroblasts into myofibroblasts. Here, we found that circ-sh3rf3 was down-regulated in isoproterenol-treated rat cardiac fibroblasts and cardiomyocytes as well as during fibroblast differentiation into myofibroblasts. We further confirmed that circ-sh3rf3 could interact with GATA-4 proteins and reduce the expression of GATA-4, which in turn abolishes GATA-4 repression of miR-29a expression and thus up-regulates miR-29a expression, thereby inhibiting fibroblast-myofibroblast differentiation and myocardial fibrosis. Our work has established a novel Circ-sh3rf3/GATA-4/miR-29a regulatory cascade in fibroblast-myofibroblast differentiation and myocardial fibrosis, which provides a new therapeutic target for myocardial fibrosis.
Collapse
Affiliation(s)
- Cai-Xia Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Zhi-Ru Wei
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tong Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Ming-Hui Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Yu-Qie Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Kun-Lun Kai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Jia-Chen Shi
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meng-Jiao Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Zi-Wei Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Jing Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Wei Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Tian-Qi Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Shan-Feng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Lixiang Xue
- Medical Research Center, Peking University Third Hospital, 49 Huayuan North Road, Beijing, 100191, China
| | - Min Zhang
- Cardiovascular Division, Department of Cardiology, King's College London British Heart Foundation Centre of Research Excellence, London, UK
| | - Qianqian Yin
- Medical Research Center, Peking University Third Hospital, 49 Huayuan North Road, Beijing, 100191, China.
| | - Ming-Xi Zang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China.
| |
Collapse
|
8
|
Hasheminasabgorji E, Mishan MA, Tabari MAK, Bagheri A. miR-638: A Promising Cancer Biomarker with Therapeutic Potential. Curr Mol Med 2023; 23:377-389. [PMID: 35382724 DOI: 10.2174/1566524022666220405125900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/03/2022] [Accepted: 02/16/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND There is an unmet need to improve the diagnosis of cancer with precise treatment strategies. Therefore, more powerful diagnostic, prognostic, and therapeutic biomarkers are needed to overcome tumor cells. microRNAs (miRNAs, miRs), as a class of small non-coding RNAs, play essential roles in cancer through the tumor-suppressive or oncogenic effects by post-transcriptional regulation of their targets. Many studies have provided shreds of evidence on aberrantly expressed miRNAs in numerous cancers and have shown that miRNAs could play potential roles as diagnostic, prognostic, and even therapeutic biomarkers in patients with cancers. Findings have revealed that miR-638 over or underexpression might play a critical role in cancer initiation, development, and progression. However, the mechanistic effects of miR-638 on cancer cells are still controversial. CONCLUSION In the present review, we have focused on the diagnostic, prognostic, and therapeutic potentials of miR-638 and discussed its mechanistic roles in various types of cancers.
Collapse
Affiliation(s)
- Elham Hasheminasabgorji
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Arnie Charbonneau Cancer Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mohammad Amir Mishan
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abouzar Bagheri
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
9
|
Mir-29b in Breast Cancer: A Promising Target for Therapeutic Approaches. Diagnostics (Basel) 2022; 12:diagnostics12092139. [PMID: 36140539 PMCID: PMC9497770 DOI: 10.3390/diagnostics12092139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022] Open
Abstract
The miR-29 family comprises miR-29a, miR-29b, and miR-29c, and these molecules play crucial and partially overlapped functions in solid tumors, in which the different isoforms are variously de-regulated and mainly correlated with tumor suppression. miR-29b is the most expressed family member in cancer, in which it is involved in regulating gene expression at both transcriptional and post-transcriptional levels. This review focuses on the role of miR-29b in breast cancer, in which it plays a controversial role as tumor suppressor or onco-miRNA. Here we have highlighted the dual effect of miR-29b on breast tumor features, which depend on the prevailing function of this miRNA, on the mature miR-29b evaluated, and on the breast tumor characteristics. Remarkably, the analyzed miR-29b form emerged as a crucial element in the results obtained by various research groups, as the most abundant miR-29b-3p and the less expressed miR-29b1-5p seem to play distinct roles in breast tumors with different phenotypes. Of particular interest are the data showing that miR-29b1-5p counteracts cell proliferation and migration and reduces stemness in breast tumor cells with a triple negative phenotype. Even if further studies are required to define exactly the role of each miR-29b, our review highlights its possible implication in phenotype-specific management of breast tumors.
Collapse
|
10
|
Nguyen TTP, Suman KH, Nguyen TB, Nguyen HT, Do DN. The Role of miR-29s in Human Cancers—An Update. Biomedicines 2022; 10:biomedicines10092121. [PMID: 36140219 PMCID: PMC9495592 DOI: 10.3390/biomedicines10092121] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that directly bind to the 3’ untranslated region (3’-UTR) of the target mRNAs to inhibit their expression. The miRNA-29s (miR-29s) are suggested to be either tumor suppressors or oncogenic miRNAs that are strongly dysregulated in various types of cancer. Their dysregulation alters the expression of their target genes, thereby exerting influence on different cellular pathways including cell proliferation, apoptosis, migration, and invasion, thereby contributing to carcinogenesis. In the present review, we aimed to provide an overview of the current knowledge on the miR-29s biological network and its functions in cancer, as well as its current and potential applications as a diagnostic and prognostic biomarker and/or a therapeutic target in major types of human cancer.
Collapse
Affiliation(s)
- Thuy T. P. Nguyen
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kamrul Hassan Suman
- Department of Fisheries, Ministry of Fisheries and Livestock, Dhaka 1205, Bangladesh
| | - Thong Ba Nguyen
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Ha Thi Nguyen
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam
- Center for Molecular Biology, College of Medicine and Pharmacy, Duy Tan University, Danang 550000, Vietnam
- Correspondence: (H.T.N.); (D.N.D.)
| | - Duy Ngoc Do
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada
- Correspondence: (H.T.N.); (D.N.D.)
| |
Collapse
|
11
|
Grassilli S, Brugnoli F, Cairo S, Bianchi N, Judde JG, Bertagnolo V. Vav1 Selectively Down-Regulates Akt2 through miR-29b in Certain Breast Tumors with Triple Negative Phenotype. J Pers Med 2022; 12:jpm12060993. [PMID: 35743776 PMCID: PMC9224635 DOI: 10.3390/jpm12060993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 12/24/2022] Open
Abstract
Triple negative breast cancer (TNBC) represents the most aggressive breast tumor, showing a high intrinsic variability in terms of both histopathological features and response to therapies. Blocking the Akt signaling pathway is a well-studied approach in the treatment of aggressive breast tumors. The high homology among the Akt isoforms and their distinct, and possibly opposite, oncogenic functions made it difficult to develop effective drugs. Here we investigated the role of Vav1 as a potential down-regulator of individual Akt isozymes. We revealed that the over-expression of Vav1 in triple negative MDA-MB-231 cells reduced only the Akt2 isoform, acting at the post-transcriptional level through the up-modulation of miR-29b. The Vav1/miR-29b dependent decrease in Akt2 was correlated with a reduced lung colonization of circulating MDA-MB-231 cells. In cell lines established from PDX, the Vav1 induced down-modulation of Akt2 is strongly dependent on miR-29b and occurs only in some TNBC tumors. These findings may contribute to better classify breast tumors having the triple negative phenotype, and suggest that the activation of the Vav1/miR-29b axis, precisely regulating the amount of an Akt isozyme crucial for tumor dissemination, could have great potential for driving more accurate therapies to TNBCs, often not eligible or resistant to treatments.
Collapse
Affiliation(s)
- Silvia Grassilli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (S.G.); (F.B.); (N.B.)
- LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Federica Brugnoli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (S.G.); (F.B.); (N.B.)
| | - Stefano Cairo
- Xentech, 91000 Evry, France; (S.C.); (J.-G.J.)
- Istituto di Ricerca Pediatrica, 35127 Padova, Italy
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (S.G.); (F.B.); (N.B.)
| | | | - Valeria Bertagnolo
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (S.G.); (F.B.); (N.B.)
- Correspondence:
| |
Collapse
|
12
|
Saadi MI, Tahmasebijaroubi F, Noshadi E, Rahimikian R, Karimi Z, Owjfard M, Niknam A, Abdolyousefi EN, Salek S, Tabrizi R, Jamali E. Dysregulated Expression of MiR-19b, MiR-25, MiR-17, WT1, and CEBPA in Patients with Acute Myeloid Leukemia and Association with Graft versus Host Disease after Hematopoietic Stem Cell Transplantation. South Asian J Cancer 2022; 11:346-352. [PMID: 36756106 PMCID: PMC9902101 DOI: 10.1055/s-0042-1742593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Elham JamaliObjectives Acute myeloid leukemia (AML) is a blood malignancy characterized by the proliferation of aberrant cells in the bone marrow and blood that interfere with normal blood cells. We have investigated whether changes in the level of micro-ribonucleic acid (miR)-19b, miR-17, and miR-25, Wilms' tumor (WT1), and CCAAT enhancer-binding protein α (CEBPA) genes expression affect disease prognosis and clinical outcome in AML patients. Materials and Methods The expression level of miR-19-b, miR-17, and miR-25, as well as WT1 and CEBPA genes in a group of patients and controls as well as different risk groups (high, intermediate, and favorite risk), M3 versus non-M3, and graft-versus-host disease (GvHD) versus non-GvHD patients were assessed using a quantitative SYBR Green real-time polymerase chain reaction method. Results When compared with the baseline level at the period of diagnosis before chemotherapy, the expression of miR-19b and miR-17 in AML patients increased significantly after chemotherapy. The level of miR-19b and miR-25 expression in AML patients with M3 and non-M3 French-American-British subgroups differ significantly. MiR-19b and miR-25 expression was elevated in GvHD patients, while miR-19b and miR-25 expression was somewhat decreased in GvHD patients compared with non-GvHD patients, albeit the difference was not statistically significant. Also, patients with different cytogenetic aberrations had similar levels of miR-19-b and miR-25 expression. Conclusion MiR-19b, miR-17, and miR-25 are aberrantly expressed in AML patients' peripheral blood leukocytes, which may play a role in the development of acute GvHD following hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
| | | | - Esmat Noshadi
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Raha Rahimikian
- Department of Biochemistry, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Zahed Karimi
- Hematology and Oncology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran,Shiraz University of Applied Science and Technology (UAST), Shiraz, Iran,Address for correspondence Elham Jamali, MSc Hematology Research Center and Department of Bone Marrow Transplantation, Shiraz University of Medical SciencesShirazIran
| | - Ahmad Niknam
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Sanaz Salek
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Tabrizi
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran,Non Communicable Diseases Research Center (NCDC), Fasa University of Medical Sciences, Fasa, Iran
| | - Elham Jamali
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran,Address for correspondence Elham Jamali, MSc Hematology Research Center and Department of Bone Marrow Transplantation, Shiraz University of Medical SciencesShirazIran
| |
Collapse
|
13
|
The role of microRNAs in the development, progression and drug resistance of chronic myeloid leukemia and their potential clinical significance. Life Sci 2022; 296:120437. [DOI: 10.1016/j.lfs.2022.120437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/15/2022] [Accepted: 02/23/2022] [Indexed: 12/26/2022]
|
14
|
Eisa NH, Sudharsan PT, Herrero SM, Herberg SA, Volkman BF, Aguilar-Pérez A, Kondrikov D, Elmansi AM, Reitman C, Shi X, Fulzele S, McGee-Lawrence ME, Isales CM, Hamrick MW, Johnson MH, Chen J, Hill WD. Age-associated changes in microRNAs affect the differentiation potential of human mesenchymal stem cells: Novel role of miR-29b-1-5p expression. Bone 2021; 153:116154. [PMID: 34403754 PMCID: PMC8935397 DOI: 10.1016/j.bone.2021.116154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 06/01/2021] [Accepted: 08/11/2021] [Indexed: 11/18/2022]
Abstract
Age-associated osteoporosis is widely accepted as involving the disruption of osteogenic stem cell populations and their functioning. Maintenance of the local bone marrow (BM) microenvironment is critical for regulating proliferation and differentiation of the multipotent BM mesenchymal stromal/stem cell (BMSC) population with age. The potential role of microRNAs (miRNAs) in modulating BMSCs and the BM microenvironment has recently gained attention. However, miRNAs expressed in rapidly isolated BMSCs that are naïve to the non-physiologic standard tissue culture conditions and reflect a more accurate in vivo profile have not yet been reported. Here we directly isolated CD271 positive (+) BMSCs within hours from human surgical BM aspirates without culturing and performed microarray analysis to identify the age-associated changes in BMSC miRNA expression. One hundred and two miRNAs showed differential expression with aging. Target prediction and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that the up-regulated miRNAs targeting genes in bone development pathways were considerably enriched. Among the differentially up-regulated miRNAs the novel passenger strand miR-29b-1-5p was abundantly expressed as a mature functional miRNA with aging. This suggests a critical arm-switching mechanism regulates the expression of the miR-29b-1-5p/3p pair shifting the normally degraded arm, miR-29b-1-5p, to be the dominantly expressed miRNA of the pair in aging. The normal guide strand miR-29b-1-3p is known to act as a pro-osteogenic miRNA. On the other hand, overexpression of the passenger strand miR-29b-1-5p in culture-expanded CD271+ BMSCs significantly down-regulated the expression of stromal cell-derived factor 1 (CXCL12)/ C-X-C chemokine receptor type 4 (SDF-1(CXCL12)/CXCR4) axis and other osteogenic genes including bone morphogenetic protein-2 (BMP-2) and runt-related transcription factor 2 (RUNX2). In contrast, blocking of miR-29b-1-5p function using an antagomir inhibitor up-regulated expression of BMP-2 and RUNX2 genes. Functional assays confirmed that miR-29b-1-5p negatively regulates BMSC osteogenesis in vitro. These novel findings provide evidence of a pathogenic anti-osteogenic role for miR-29b-1-5p and other miRNAs in age-related defects in osteogenesis and bone regeneration.
Collapse
Affiliation(s)
- Nada H Eisa
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States of America; Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Periyasamy T Sudharsan
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, United States of America; Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Sergio Mas Herrero
- Universitat de Barcelona, Unitat Farmacologia, Dpt. Fonaments Clínics, 08036 Barcelona, Spain
| | - Samuel A Herberg
- Departments of Ophthalmology and Visual Sciences, and Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, United States of America
| | - Brian F Volkman
- Biochemistry Department, Medical College of Wisconsin, Milwaukee, WI 53226, United States of America
| | - Alexandra Aguilar-Pérez
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Anatomy and Cell Biology, Indiana University School of Medicine in Indianapolis, IN, United States of America; Department of Cellular and Molecular Biology, School of Medicine, Universidad Central del Caribe, Bayamon 00956, Puerto Rico
| | - Dmitry Kondrikov
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States of America
| | - Ahmed M Elmansi
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States of America
| | - Charles Reitman
- Department of Orthopaedics and Physical Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America
| | - Xingming Shi
- Department of Orthopaedics and Physical Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Sadanand Fulzele
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Meghan E McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Carlos M Isales
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Division of Endocrinology, Diabetes and Metabolism, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Mark W Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Maribeth H Johnson
- Department of Population Health Sciences, Division of Biostatistics and Data Science Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Jie Chen
- Department of Population Health Sciences, Division of Biostatistics and Data Science Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - William D Hill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States of America; Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America.
| |
Collapse
|
15
|
Li Z, Liu X, Li Y, Wang W, Wang N, Xiao F, Gao H, Guo H, Li H, Wang S. Chicken C/EBPζ gene: Expression profiles, association analysis, and identification of functional variants for abdominal fat. Domest Anim Endocrinol 2021; 76:106631. [PMID: 33979717 DOI: 10.1016/j.domaniend.2021.106631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
CCAAT enhancer binding protein ζ (C/EBPζ) plays an important role in adipose proliferation and differentiation in humans. However, very little is known about the effect of C/EBPζ on the growth and development of adipose tissues in domesticated animals. The present study attempted to investigate the mRNA expression profiles of chicken C/EBPζ in a variety of tissues; analyze the association of its variants with abdominal fat; and identify the functional variants for abdominal fat. The tissue expression profiles revealed that C/EBPζ was highly expressed in 19 tissues obtained from broilers. The expression level of C/EBPζ in fat broilers was significantly lower than that in lean broilers in the duodenum, ileum, cecum, kidney, pectoral muscle, and liver (P < 0.05). Among 170 polymorphic loci of C/EBPζ, 9 single nucleotide polymorphisms (SNPs) demonstrated a significant association with chicken abdominal fat traits (P < 0.05) as well as significant discrepancies in their allelic frequencies between fat and lean birds. Particularly, only C/EBPζ g.7085A>C exhibited significant correlation with abdominal fat traits (P < 0.00015) using the Bonferroni method. The results revealed that, in preadipocyte immortalized cells (ICPI), the luciferase activity of the A allele of g.7085A>C locus was remarkably stronger than that of the C allele (P < 0.05). In silico analysis showed that g.7085A>C locus was located in the binding region of the transcription factor SOX5, which possesses the ability to transform C/EBPζ transcription efficiency through binding with SOX5. In summary, the data obtained from this study suggested that C/EBPζ is a potential candidate gene responsible for abdominal fat deposition in chicken and that g.7085A>C is a functional SNP that can be promisingly leveraged for marker assisted selection (MAS) in future chicken breeding programs.
Collapse
Affiliation(s)
- Z Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - X Liu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Y Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - W Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - N Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - F Xiao
- Fujian Sunnzer Biotechnology Development Co., Ltd, 354100, Guangze, Fujian Province, China
| | - H Gao
- Fujian Sunnzer Biotechnology Development Co., Ltd, 354100, Guangze, Fujian Province, China
| | - H Guo
- Fujian Sunnzer Biotechnology Development Co., Ltd, 354100, Guangze, Fujian Province, China
| | - H Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - S Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
16
|
Bai Y, Chen C, Guo X, Ding T, Yang X, Yu J, Yang J, Ruan J, Zheng X, Chen Z. miR-638 in circulating leukaemia cells as a non-invasive biomarker in diagnosis, treatment response and MRD surveillance of acute promyelocytic leukaemia. Cancer Biomark 2021; 29:125-137. [PMID: 32568176 DOI: 10.3233/cbm-190899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND MicroRNA (miRNA) expression has been implicated in leukaemia. In recent years, miRNAs have been under investigation for their potential as non-invasive biomarkers in acute promyelocytic leukaemia (APL). We investigated whether miR-638 in circulating leukaemia cells is a non-invasive biomarker in diagnosis, assessment of the treatment response and minimal residual disease (MRD) surveillance of APL. METHODS Sixty cases of acute myeloid leukaemia (AML), including 30 cases of APL and 30 cases of non-APL AML, were selected. Thirty healthy controls were also selected. Bone marrow (BM) and peripheral blood (PB) samples were collected from APL patients at diagnosis and post-induction. Microarray analysis and quantitative real-time PCR (qRT-PCR) were performed for miRNA profiling and miR-638 expression analysis, respectively. For statistical analysis, Mann-Whitney U test, Wilcoxon Signed Rank test, receiver operating characteristic (ROC) curve analysis and Spearman's rho correlation test were used. RESULTS Both microarray and qRT-PCR data showed that miR-638 was significantly upregulated in BM after APL patients received induction therapy. Moreover, miR-638, which is specifically downregulated in APL cell lines, was upregulated after all-trans retinoic acid (ATRA)-induced myeloid differentiation. Receiver operating characteristic (ROC) curve analyses revealed that miR-638 could serve as a valuable biomarker for differentiating APL from controls or non-APL AML. Furthermore, miR-638 expression was sharply increased after induction therapy and complete remission (CR). An inverse correlation was observed between miR-638 and PML-RARα transcripts levels in BM samples, while a positive correlation was revealed between PB miR-638 and BM miR-638 levels in APL patients after induction therapy. CONCLUSIONS Our study suggested that miR-638 may serve as a potential APL biomarker for diagnosis and assessment of the response to targeted therapy, and PB miR-638 could be used for non-invasive MRD surveillance in APL.
Collapse
Affiliation(s)
- Yuanyuan Bai
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Cheng Chen
- Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoling Guo
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ting Ding
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinyun Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian Yu
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junjun Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jichen Ruan
- Department of Pediatric Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoqun Zheng
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhanguo Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
17
|
Epigenetic silencing of miR564 contributes to the leukemogenesis of t(8;21) acute myeloid leukemia. Clin Sci (Lond) 2021; 134:3079-3091. [PMID: 33201243 DOI: 10.1042/cs20200786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/03/2020] [Accepted: 11/17/2020] [Indexed: 01/20/2023]
Abstract
The AML1-ETO oncoprotein, which results from t(8;21) translocation, is considered an initial event of t(8;21) acute myeloid leukemia (AML). However, the precise mechanisms of the oncogenic activity of AML1-ETO is yet to be fully determined. The present study demonstrates that AML1-ETO triggers the heterochromatic silencing of microRNA-564 (miR564) by binding at the AML1 binding site along the miR564 promoter region and recruiting chromatin-remodeling enzymes. Suppression of miR564 enhances the oncogenic activity of the AML1-ETO oncoprotein by directly inhibiting the expression of CCND1 and the DNMT3A genes. Ectopic expression of miR564 can induce retardation of G1/S transition, reperform differentiation, promote apoptosis, as well as inhibit the proliferation and colony formation of AML1-ETO+ leukemia cells in vitro. Enhanced miR564 levels can significantly inhibit the tumor proliferation of t(8;21)AML in vivo. We first identify an unexpected and important epigenetic circuitry of AML1-ETO/miR564/CCND1/DNMT3A that contributes to the leukemogenesis in vitro/vivo of AML1-ETO+ leukemia, indicating that miR564 enhancement could provide a potential therapeutic method for AML1-ETO+ leukemia.
Collapse
|
18
|
Li L, Ren S, Hao X, Zhen Z, Ji L, Ji H. MicroRNA-29b inhibits human vascular smooth muscle cell proliferation via targeting the TGF-β/Smad3 signaling pathway. Exp Ther Med 2021; 21:492. [PMID: 33791001 PMCID: PMC8005700 DOI: 10.3892/etm.2021.9923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 12/05/2019] [Indexed: 12/11/2022] Open
Abstract
Intracranial aneurysms (IAs) are bulges of blood vessels in the cerebral area. The development and progression of IAs are associated with the proliferation of vascular smooth muscle cells (VSMCs) during phenotypic modulation under environmental cues. MicroRNA-29b (miR-29b) has been studied extensively and demonstrated to reduce cell proliferation in various diseases by binding to the 3'-untranslated region (3'-UTR) of a variety of target messenger RNAs (mRNAs), thereby inhibiting their translation. The present study aimed to investigate the role of miR-29b on the proliferation of VSMCs and human umbilical artery smooth muscle cells. The results indicated that the overexpression of miR-29b reduced cell migration and proliferation. Western blotting results indicated that this effect may be attributed to the attenuation of a signaling pathway involving transforming growth factor β (TGF-β) and Smad3 proteins. Luciferase assay confirmed the binding of miR-29b to TGF-β1 and the knockdown of TGF-β1 reduced miR-29b inhibitor-induced cell migration. The present study indicates that miR-29b downregulates the expression of TGF-β1 by targeting the 3'-UTR of its mRNA and modulates cell migration and proliferation via the TGF-β1/Smad3 signaling pathway.
Collapse
Affiliation(s)
- Lirong Li
- Department of Neurosurgery of Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Shaohua Ren
- Department of Neurosurgery of Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Xudong Hao
- Department of Neurosurgery of Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Zigang Zhen
- Department of Neurosurgery of Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Lei Ji
- Department of Neurosurgery of Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Hongming Ji
- Department of Neurosurgery of Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| |
Collapse
|
19
|
Horita M, Farquharson C, Stephen LA. The role of miR-29 family in disease. J Cell Biochem 2021; 122:696-715. [PMID: 33529442 PMCID: PMC8603934 DOI: 10.1002/jcb.29896] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/05/2021] [Accepted: 01/10/2021] [Indexed: 02/06/2023]
Abstract
MicroRNAs are small noncoding RNAs that can bind to the target sites in the 3’‐untranslated region of messenger RNA to regulate posttranscriptional gene expression. Increasing evidence has identified the miR‐29 family, consisting of miR‐29a, miR‐29b‐1, miR‐29b‐2, and miR‐29c, as key regulators of a number of biological processes. Moreover, their abnormal expression contributes to the etiology of numerous diseases. In the current review, we aimed to summarize the differential expression patterns and functional roles of the miR‐29 family in the etiology of diseases including osteoarthritis, osteoporosis, cardiorenal, and immune disease. Furthermore, we highlight the therapeutic potential of targeting members of miR‐29 family in these diseases. We present miR‐29s as promoters of osteoblast differentiation and apoptosis but suppressors of chondrogenic and osteoclast differentiation, fibrosis, and T cell differentiation, with clear avenues for therapeutic manipulation. Further research will be crucial to identify the precise mechanism of miR‐29 family in these diseases and their full potential in therapeutics.
Collapse
Affiliation(s)
- Masahiro Horita
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, Scotland, UK
| | - Colin Farquharson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, Scotland, UK
| | - Louise A Stephen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, Scotland, UK
| |
Collapse
|
20
|
Abstract
Despite the decline in death rate from breast cancer and recent advances in targeted therapies and combinations for the treatment of metastatic disease, metastatic breast cancer remains the second leading cause of cancer-associated death in U.S. women. The invasion-metastasis cascade involves a number of steps and multitudes of proteins and signaling molecules. The pathways include invasion, intravasation, circulation, extravasation, infiltration into a distant site to form a metastatic niche, and micrometastasis formation in a new environment. Each of these processes is regulated by changes in gene expression. Noncoding RNAs including microRNAs (miRNAs) are involved in breast cancer tumorigenesis, progression, and metastasis by post-transcriptional regulation of target gene expression. miRNAs can stimulate oncogenesis (oncomiRs), inhibit tumor growth (tumor suppressors or miRsupps), and regulate gene targets in metastasis (metastamiRs). The goal of this review is to summarize some of the key miRNAs that regulate genes and pathways involved in metastatic breast cancer with an emphasis on estrogen receptor α (ERα+) breast cancer. We reviewed the identity, regulation, human breast tumor expression, and reported prognostic significance of miRNAs that have been documented to directly target key genes in pathways, including epithelial-to-mesenchymal transition (EMT) contributing to the metastatic cascade. We critically evaluated the evidence for metastamiRs and their targets and miRNA regulation of metastasis suppressor genes in breast cancer progression and metastasis. It is clear that our understanding of miRNA regulation of targets in metastasis is incomplete.
Collapse
Affiliation(s)
- Belinda J Petri
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| |
Collapse
|
21
|
Neaga A, Bagacean C, Tempescul A, Jimbu L, Mesaros O, Blag C, Tomuleasa C, Bocsan C, Gaman M, Zdrenghea M. MicroRNAs Associated With a Good Prognosis of Acute Myeloid Leukemia and Their Effect on Macrophage Polarization. Front Immunol 2021; 11:582915. [PMID: 33519805 PMCID: PMC7845488 DOI: 10.3389/fimmu.2020.582915] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/24/2020] [Indexed: 12/24/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive myeloid malignancy with poor outcomes despite very intensive therapeutic approaches. For the majority of patients which are unfit and treated less intensively, the prognosis is even worse. There has been unspectacular progress in outcome improvement over the last decades and the development of new approaches is of tremendous interest. The tumor microenvironment is credited with an important role in supporting cancer growth, including leukemogenesis. Macrophages are part of the tumor microenvironment and their contribution in this setting is increasingly being deciphered, these cells being credited with a tumor supporting role. Data on macrophage role and polarization in leukemia is scarce. MicroRNAs (miRNAs) have a role in the post-transcriptional regulation of gene expression, by impending translation and promoting degradation of messenger RNAs. They are important modulators of cellular pathways, playing major roles in normal hematopoietic differentiation. miRNA expression is significantly correlated with the prognosis of hematopoietic malignancies, including AML. Oncogenic miRNAs correlate with poor prognosis, while tumor suppressor miRNAs, which inhibit the expression of proto-oncogenes, are correlated with a favorable prognosis. miRNAs are proposed as biomarkers for diagnosis and prognosis and are regarded as therapeutic approaches in many cancers, including AML. miRNAs with epigenetic or modulatory activity, as well as with synergistic activity with chemotherapeutic agents, proved to be promising therapeutic targets in experimental, pre-clinical approaches. The clinical availability of emerging compounds with mimicking or suppressor activity provides the opportunity for future therapeutic targeting of miRNAs. The present paper is focusing on miRNAs which, according to current knowledge, favorably impact on AML outcomes, being regarded as tumor suppressors, and reviews their role in macrophage polarization. We are focusing on miRNA expression in the setting of AML, but data on correlations between miRNA expression and macrophage polarization is mostly coming from studies involving normal tissue.
Collapse
Affiliation(s)
- Alexandra Neaga
- Department of Hematology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Bagacean
- Department of Hematology, Brest University Medical School Hospital, Brest, France.,U1227 B Lymphocytes and Autoimmunity, University of Brest, INSERM, IBSAM, Brest, France
| | - Adrian Tempescul
- Department of Hematology, Brest University Medical School Hospital, Brest, France.,U1227 B Lymphocytes and Autoimmunity, University of Brest, INSERM, IBSAM, Brest, France
| | - Laura Jimbu
- Department of Hematology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Oana Mesaros
- Department of Hematology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Blag
- Department of Pediatrics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ciprian Tomuleasa
- Department of Hematology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Hematology, Ion Chiricuta Oncology Institute, Cluj-Napoca, Romania
| | - Corina Bocsan
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihaela Gaman
- Department of Hematology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihnea Zdrenghea
- Department of Hematology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Hematology, Ion Chiricuta Oncology Institute, Cluj-Napoca, Romania
| |
Collapse
|
22
|
Wang C, Li L, Li M, Wang W, Liu Y, Wang S. Silencing long non-coding RNA XIST suppresses drug resistance in acute myeloid leukemia through down-regulation of MYC by elevating microRNA-29a expression. Mol Med 2020; 26:114. [PMID: 33228517 PMCID: PMC7685636 DOI: 10.1186/s10020-020-00229-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) are biomarkers participating in multiple disease development including acute myeloid leukemia (AML). Here, we investigated molecular mechanism of X Inactive-Specific Transcript (XIST) in regulating cellular viability, apoptosis and drug resistance in AML. Methods XIST, miR-29a and myelocytomatosis oncogene (MYC) expression in AML bone marrow cells collected from 62 patients was evaluated by RT-qPCR and Western blot analysis. Besides, the relationship among XIST, miR-29a and MYC was analyzed by dual luciferase reporter assay, RIP, and RNA pull down assays. AML KG-1 cells were treated with anti-tumor drug Adriamycin. The role of XIST/miR-29a/MYC in cellular viability, apoptosis and drug resistance in AML was accessed via gain- and loss-of-function approaches. At last, we evaluated role of XIST/miR-29a/MYC on tumorigenesis in vivo. Results XIST and MYC were up-regulated, and miR-29a was down-regulated in AML bone marrow cells. Silencing XIST inhibited cellular activity and drug resistance but promoted cellular apoptosis of KG-1 cells by down-regulating MYC. XIST inhibited miR-29a expression to up-regulate MYC. Moreover, silencing XIST inhibited tumorigenesis of AML cells in vivo. Conclusions Overall, down-regulation of XIST decreased MYC expression through releasing the inhibition on miR-29a, thereby reducing drug resistance, inhibiting viability and promoting apoptosis of AML cells.
Collapse
Affiliation(s)
- Chong Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, Henan, P. R. China.
| | - Lingling Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, Henan, P. R. China
| | - Mengya Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, Henan, P. R. China
| | - Weiqiong Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, Henan, P. R. China
| | - Yanfang Liu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, Henan, P. R. China
| | - Shujuan Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, Henan, P. R. China
| |
Collapse
|
23
|
Lin XC, Yang Q, Fu WY, Lan LB, Ding H, Zhang YM, Li N, Zhang HT. Integrated analysis of microRNA and transcription factors in the bone marrow of patients with acute monocytic leukemia. Oncol Lett 2020; 21:50. [PMID: 33281961 PMCID: PMC7709554 DOI: 10.3892/ol.2020.12311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 10/22/2020] [Indexed: 12/17/2022] Open
Abstract
Acutemonocytic leukemia (AMoL) is a distinct subtype of acute myeloid leukemia (AML) with poor prognosis. However, the molecular mechanisms and key regulators involved in the global regulation of gene expression levels in AMoL are poorly understood. In order to elucidate the role of microRNAs (miRNAs/miRs) and transcription factors (TFs) in AMoL pathogenesis at the network level, miRNA and TF expression level profiles were systematically analyzed by miRNA sequencing and TF array, respectively; this identified 285 differentially expressed miRNAs and 139 differentially expressed TFs in AMoL samples compared with controls. By combining expression level profile data and bioinformatics tools available for predicting TF and miRNA targets, a comprehensive AMoL-specific miRNA-TF-mediated regulatory network was constructed. A total of 26 miRNAs and 23 TFs were identified as hub nodes in the network. Among these hubs, miR-29b-3p, MYC, TP53 and NFKB1 were determined to be potential AMoL regulators, and were subsequently extracted to construct sub-networks. A hypothetical pathway model was also proposed for miR-29b-3p to reveal the potential co-regulatory mechanisms of miR-29b-3p, MYC, TP53 and NFKB1 in AMoL. The present study provided an effective approach to discover critical regulators via a comprehensive regulatory network in AMoL, in addition to enhancing understanding of the pathogenesis of this disease at the molecular level.
Collapse
Affiliation(s)
- Xiao-Cong Lin
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Qin Yang
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Wei-Yu Fu
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Liu-Bo Lan
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Hang Ding
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Yu-Ming Zhang
- Department of Hematology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Ning Li
- Department of Hematology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Hai-Tao Zhang
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| |
Collapse
|
24
|
Alfaifi M, Verma AK, Alshahrani MY, Joshi PC, Alkhathami AG, Ahmad I, Hakami AR, Beg MMA. Assessment of Cell-Free Long Non-Coding RNA-H19 and miRNA-29a, miRNA-29b Expression and Severity of Diabetes. Diabetes Metab Syndr Obes 2020; 13:3727-3737. [PMID: 33116722 PMCID: PMC7569053 DOI: 10.2147/dmso.s273586] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus [T2DM] has been one of the common diseases and is characterized by increased blood glucose levels and suggested that cell-free non-coding RNAs and microRNAs (miRNAs) have been demonstrated to serve as important diagnostic/prognostic biomarkers in diabetes. MATERIALS/METHODS The present study included clinically confirmed newly diagnosed 200 cases of T2DM and 200 healthy subjects, and all the parameters were taken care in diagnosis. Blood samples collected in plain vials were used for cell-free total RNA extraction and after that 100ng of total RNA was used to synthesize the cDNA for cell-free lncRNA H19, miRNA-29a, and miRNA-29b expression using quantitative real-time PCR method. Serum Biochemical parameters were analyzed after collection of the sample to observe the changes among T2DM cases and healthy controls. RESULTS It was observed that type 2 diabetic patients had decreased [0.59 fold] lncRNA H19 expression while increased miRNA-29a [5.62 fold] and miRNA-29b [5.58 fold] expression. Decreased expression of lncRNA H19 was observed to be associated with gender [p=0.004], hypertension [p<0.0001], weight loss [p=0.02] and fatigue [p=0.02]. Increased miRNA29a expression was linked with hypertension [p<0.0001], alcoholism [p=0.04], and smoking [p<0.0001] as well as miRNA-29b expression was associated with hypertension [p=0.0001], weight loss [p=0.002], smoking [p=0.0002], alcoholism [p<0.0001]. Low [≤1 fold] and high [>1 fold] expression of lncRNA H19 expression was linked with miRNA-29a [p=0.005] and miRNA-29b [p<0.0001] expression. lncRNA H19 expression showed negative correlation with miRNA-29a expression [r= -27, p<0.0001] and miRNA-29b [r= -47, p<0.0001]. CONCLUSION The present study concluded that lower lncRNA H19 expression, and increased miRNA-29b, a miRNA-29b expression associated with the severity of T2DM patients. Decreased lncRNA H19 expression, and increased miRNA-29b, miRNA-29b expression observed to be interrelated with clinicopathological findings of T2DM patients could involve in pathogenesis disease.
Collapse
Affiliation(s)
- Mohammed Alfaifi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Amit Kumar Verma
- Department of Zoology and Environmental Sciences, GKV, Haridwar, India
| | - Mohammad Yahya Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Prakash C Joshi
- Department of Zoology and Environmental Sciences, GKV, Haridwar, India
| | - Ali G Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Abdulrahim Refdan Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mirza Masroor Ali Beg
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi, India
- Department of Biochemistry, Maulana Azad Medical College, New Delhi, India
| |
Collapse
|
25
|
Wang W, Wang M, Xu J, Long F, Zhan X. Overexpressed GATA3 enhances the sensitivity of colorectal cancer cells to oxaliplatin through regulating MiR-29b. Cancer Cell Int 2020; 20:339. [PMID: 32760217 PMCID: PMC7379773 DOI: 10.1186/s12935-020-01424-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/14/2020] [Indexed: 12/31/2022] Open
Abstract
Background GATA binding protein 3 (GATA3) and miR-29b are related to colorectal cancer (CRC). The current study explored the regulatory relationship between GATA3 and miR-29b, and the mechanism of the two in the drug resistance of CRC cells to oxaliplatin. Method Apoptosis of CRC cells induced by oxaliplatin at various doses was detected by flow cytometry. CRC cells were separately transfected with overexpression and knockdown of GATA3, miR-29b agomir and antagomir, and treated by oxaliplatin to detect the cell viability and apoptosis by performing Cell Couting Kit-8 (CCK-8) and flow cytometry. The expression levels of GATA3, caspase3 and cleaved caspase3 were determined by Western blot, and the expression of miR-29b was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Animal experiments were performed to examine the changes of transplanted tumors in nude mouse xenograft studies and observed by in vivo imaging. TUNEL staining was performed to detect tumor cell apoptosis. Result Both GATA3 and miR-29b agomir inhibited the activity of the CRC cells, promoted apoptosis and Cleaved caspase3 expression, and reduced the resistance of the cells to chemotherapy drug oxaliplatin. Although GATA3 could up-regulate miR-29b expression, the tumor-suppressive effect of GATA3 was partially reversed by miR-29b antagomir. In vivo experiments showed that down-regulating the expression of GATA3 promoted the growth rate and volume of transplanted tumors, while overexpressing GATA3 had no significant effect on tumor growth. TUNEL staining results showed that knocking down or overexpression of GATA3 did not cause significant changes to apoptotic bodies of CRC cells, while oxaliplatin treatment increased the number of apoptotic bodies. Conclusion GATA3 inhibits the cell viability of CRC cells, promotes apoptosis, and reduces oxaliplatin resistance of CRC cells through regulating miR-29b.
Collapse
Affiliation(s)
- Wei Wang
- Department of Oncology, Changhai Hospital of Shanghai, The Second Military Medical University, 168 Changhai Road, Yangpu District, Shanghai, 200433 China
| | - Mei Wang
- Department of Oncology, North Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Xu
- Department of Oncology, Changhai Hospital of Shanghai, The Second Military Medical University, 168 Changhai Road, Yangpu District, Shanghai, 200433 China
| | - Fei Long
- Department of Oncology, Changhai Hospital of Shanghai, The Second Military Medical University, 168 Changhai Road, Yangpu District, Shanghai, 200433 China
| | - Xianbao Zhan
- Department of Oncology, Changhai Hospital of Shanghai, The Second Military Medical University, 168 Changhai Road, Yangpu District, Shanghai, 200433 China
| |
Collapse
|
26
|
Javanmard AR, Dokanehiifard S, Bohlooli M, Soltani BM. LOC646329 long non-coding RNA sponges miR-29b-1 and regulates TGFβ signaling in colorectal cancer. J Cancer Res Clin Oncol 2020; 146:1205-1215. [PMID: 32034483 DOI: 10.1007/s00432-020-03145-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/01/2020] [Indexed: 12/19/2022]
Abstract
Non-coding RNAs (ncRNAs) are reported to be regulators of signaling pathways that are involved in colorectal cancer (CRC) progression. Aiming at finding ncRNAs (miRNAs) that are differentially expressed in tumor versus normal colorectal tissue samples, online RNA-seq data were analyzed. Of between 18 candidate miRNAs, hsa-miR-29b-1 (miR-29b-1) represented the highest fold change of expression level. Hsa-miR-29b-1 is encoded from the third intron of LOC646329 long ncRNA gene. Surprisingly, two miR-29b sponging sites were predicted within exons of LOC646329 gene. Then, dual luciferase assay supported the interaction of miR-29b-1 with LOC646329-variant D transcript. Also, a direct indication of miR-29b-1 with 3'UTR sequence of SMAD3 gene was verified through dual luciferase assay and RT-qPCR analysis. Furthermore, a reverse pattern of expression was detected between miR-29b-1 and LOC646329-variant D transcript in about 25 pairs of CRC tumor samples, detected by RTqPCR. Consistently, overexpression of LOC646329-variant D transcript was followed by increased SMAD3 and p21 genes expression level and downregulation of CyclinD1 genes in HCT116 cells, detected by RT-qPCR, and western analysis. Also, overexpression of it was followed by increased G1 cell population of HCT-116 cells. All of these data suggested a tumor suppressor effect for LOC646329-variant D in CRC tumor tissue samples, consistent to its reduced expression level at late stages of CRC progression. Data also indicated that LOC646329-variant D exerts its suppression effect on CRC progression through sponging miR-29b, which in turn regulates Wnt and TGFB signaling pathways. This makes LOC646329-variant D transcript as a novel potential therapy target.
Collapse
Affiliation(s)
- Amir-Reza Javanmard
- Molecular Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sadat Dokanehiifard
- Molecular Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Bahram M Soltani
- Molecular Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
27
|
Kabekkodu SP, Shukla V, Varghese VK, Adiga D, Vethil Jishnu P, Chakrabarty S, Satyamoorthy K. Cluster miRNAs and cancer: Diagnostic, prognostic and therapeutic opportunities. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1563. [PMID: 31436881 DOI: 10.1002/wrna.1563] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/05/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023]
Abstract
MiRNAs are class of noncoding RNA important for gene expression regulation in many plants, animals and viruses. MiRNA clusters contain a set of two or more miRNA encoding genes, transcribed together as polycistronic miRNAs. Currently, there are approximately 159 miRNA clusters reported in the human genome consisting of miRNAs ranging from two or more miRNA genes. A large proportion of clustered miRNAs resides in and around the fragile sites or cancer associated genomic hotspots and plays an important role in carcinogenesis. Altered expression of miRNA cluster can be pro-tumorigenic or anti-tumorigenic and can be targeted for clinical management of cancer. Over the past few years, manipulation of miRNA clusters expression is attempted for experimental purpose as well as for diagnostic, prognostic and therapeutic applications in cancer. Re-expression of miRNAs by epigenetic therapy, genome editing such as clustered regulatory interspaced short palindromic repeats (CRISPR) and miRNA mowers showed promising results in cancer therapy. In this review, we focused on the potential of miRNA clusters as a biomarker for diagnosis, prognosis, targeted therapy as well as strategies for modulating their expression in a therapeutic context. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Processing > Processing of Small RNAs RNA in Disease and Development > RNA in Disease Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs.
Collapse
Affiliation(s)
- Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vaibhav Shukla
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vinay Koshy Varghese
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Padacherri Vethil Jishnu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
28
|
Liu Y, Afzal J, Vakrou S, Greenland GV, Talbot CC, Hebl VB, Guan Y, Karmali R, Tardiff JC, Leinwand LA, Olgin JE, Das S, Fukunaga R, Abraham MR. Differences in microRNA-29 and Pro-fibrotic Gene Expression in Mouse and Human Hypertrophic Cardiomyopathy. Front Cardiovasc Med 2019; 6:170. [PMID: 31921893 PMCID: PMC6928121 DOI: 10.3389/fcvm.2019.00170] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/08/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Hypertrophic cardiomyopathy (HCM) is characterized by myocyte hypertrophy and fibrosis. Studies in two mouse models (R92W-TnT/R403Q-MyHC) at early HCM stage revealed upregulation of endothelin (ET1) signaling in both mutants, but TGFβ signaling only in TnT mutants. Dysregulation of miR-29 expression has been implicated in cardiac fibrosis. But it is unknown whether expression of miR-29a/b/c and profibrotic genes is commonly regulated in mouse and human HCM. Methods: In order to understand mechanisms underlying fibrosis in HCM, and examine similarities/differences in expression of miR-29a/b/c and several profibrotic genes in mouse and human HCM, we performed parallel studies in rat cardiac myocyte/fibroblast cultures, examined gene expression in two mouse models of (non-obstructive) HCM (R92W-TnT, R403Q-MyHC)/controls at early (5 weeks) and established (24 weeks) disease stage, and analyzed publicly available mRNA/miRNA expression data from obstructive-HCM patients undergoing septal myectomy/controls (unused donor hearts). Results: Myocyte cultures: ET1 increased superoxide/H2O2, stimulated TGFβ expression/secretion, and suppressed miR-29a expression in myocytes. The effect of ET1 on miR-29 and TGFβ expression/secretion was antagonized by N-acetyl-cysteine, a reactive oxygen species scavenger. Fibroblast cultures: ET1 had no effect on pro-fibrotic gene expression in fibroblasts. TGFβ1/TGFβ2 suppressed miR-29a and increased collagen expression, which was abolished by miR-29a overexpression. Mouse and human HCM: Expression of miR-29a/b/c was lower, and TGFB1/collagen gene expression was higher in TnT mutant-LV at 5 and 24 weeks; no difference was observed in expression of these genes in MyHC mutant-LV and in human myectomy tissue. TGFB2 expression was higher in LV of both mutant mice and human myectomy tissue. ACE2, a negative regulator of the renin-angiotensin-aldosterone system, was the most upregulated transcript in human myectomy tissue. Pathway analysis predicted upregulation of the anti-hypertrophic/anti-fibrotic liver X receptor/retinoid X receptor (LXR/RXR) pathway only in human myectomy tissue. Conclusions: Our in vitro studies suggest that activation of ET1 signaling in cardiac myocytes increases reactive oxygen species and stimulates TGFβ secretion, which downregulates miR-29a and increases collagen in fibroblasts, thus contributing to fibrosis. Our gene expression studies in mouse and human HCM reveal allele-specific differences in miR-29 family/profibrotic gene expression in mouse HCM, and activation of anti-hypertrophic/anti-fibrotic genes and pathways in human HCM.
Collapse
Affiliation(s)
- Yamin Liu
- Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, University of California, San Francisco, San Francisco, CA, United States.,Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, MD, United States
| | - Junaid Afzal
- Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, University of California, San Francisco, San Francisco, CA, United States.,Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, MD, United States
| | - Styliani Vakrou
- Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, MD, United States
| | - Gabriela V Greenland
- Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, University of California, San Francisco, San Francisco, CA, United States.,Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, MD, United States
| | - C Conover Talbot
- Johns Hopkins School of Medicine, Institute for Basic Biomedical Sciences, Baltimore, MD, United States
| | - Virginia B Hebl
- Intermountain Medical Center, Intermountain Heart Institute, Murray, UT, United States
| | - Yufan Guan
- Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, MD, United States
| | - Rehan Karmali
- Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, University of California, San Francisco, San Francisco, CA, United States
| | - Jil C Tardiff
- Sarver Heart Center, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Leslie A Leinwand
- Molecular, Cellular and Developmental Biology, Biofrontiers Institute, University of Colorado, Boulder, CO, United States
| | - Jeffrey E Olgin
- Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, University of California, San Francisco, San Francisco, CA, United States
| | - Samarjit Das
- Department of Anesthesia and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Ryuya Fukunaga
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - M Roselle Abraham
- Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, University of California, San Francisco, San Francisco, CA, United States.,Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
29
|
Zhao W, Cheng L, Quek C, Bellingham SA, Hill AF. Novel miR-29b target regulation patterns are revealed in two different cell lines. Sci Rep 2019; 9:17449. [PMID: 31767948 PMCID: PMC6877611 DOI: 10.1038/s41598-019-53868-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 11/06/2019] [Indexed: 12/26/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene or protein expression by targeting mRNAs and triggering either translational repression or mRNA degradation. Distinct expression levels of miRNAs, including miR-29b, have been detected in various biological fluids and tissues from a large variety of disease models. However, how miRNAs "react" and function in different cellular environments is still largely unknown. In this study, the regulation patterns of miR-29b between human and mouse cell lines were compared for the first time. CRISPR/Cas9 gene editing was used to stably knockdown miR-29b in human cancer HeLa cells and mouse fibroblast NIH/3T3 cells with minimum off-targets. Genome editing revealed mir-29b-1, other than mir-29b-2, to be the main source of generating mature miR-29b. The editing of miR-29b decreased expression levels of its family members miR-29a/c via changing the tertiary structures of surrounding nucleotides. Comparing transcriptome profiles of human and mouse cell lines, miR-29b displayed common regulation pathways involving distinct downstream targets in macromolecular complex assembly, cell cycle regulation, and Wnt and PI3K-Akt signalling pathways; miR-29b also demonstrated specific functions reflecting cell characteristics, including fibrosis and neuronal regulations in NIH/3T3 cells and tumorigenesis and cellular senescence in HeLa cells.
Collapse
Affiliation(s)
- Wenting Zhao
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Lesley Cheng
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Camelia Quek
- Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Shayne A Bellingham
- Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Andrew F Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
30
|
Thacker G, Mishra M, Sharma A, Singh AK, Sanyal S, Trivedi AK. CDK2 destabilizes tumor suppressor C/EBPα expression through ubiquitin‐mediated proteasome degradation in acute myeloid leukemia. J Cell Biochem 2019; 121:2839-2850. [DOI: 10.1002/jcb.29516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/08/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Gatha Thacker
- Division of Cancer BiologyCSIR‐Central Drug Research Institute Lucknow UP India
| | - Mukul Mishra
- Division of Cancer BiologyCSIR‐Central Drug Research Institute Lucknow UP India
| | - Akshay Sharma
- Division of Cancer BiologyCSIR‐Central Drug Research Institute Lucknow UP India
| | | | - Sabyasachi Sanyal
- Division of Cancer BiologyCSIR‐Central Drug Research Institute Lucknow UP India
| | - Arun Kumar Trivedi
- Division of Cancer BiologyCSIR‐Central Drug Research Institute Lucknow UP India
- Academy of Scientific and Innovative Research (AcSIR), CSIR‐CDRI Lucknow UP India
| |
Collapse
|
31
|
Sonkar R, Kay MK, Choudhury M. PFOS Modulates Interactive Epigenetic Regulation in First-Trimester Human Trophoblast Cell Line HTR-8/SV neo. Chem Res Toxicol 2019; 32:2016-2027. [PMID: 31508952 DOI: 10.1021/acs.chemrestox.9b00198] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Organic compounds have been linked to adverse pregnancy complications. Perfluorooctanesulfonic acid (PFOS), a man-made fluorosurfactant and global pollutant, has been shown to induce oxidative stress in various cell types. Oxidative stress plays a key role in leading several placental diseases including preeclampsia (PE), gestational diabetes, spontaneous abortion, preterm labor, and intrauterine growth restriction. Recently, epigenetic regulation such as histone modifications, DNA methylation, and microRNAs (miRNAs), are shown to be associated with oxidative stress as well as pregnancy complications such as PE. However, whether PFOS exerts its detrimental effects in the placenta through epigenetics remains to be unveiled. Therefore, we aimed to investigate the effect of PFOS-induced reactive oxygen species (ROS) generation in first trimester human trophoblast cell line (HTR-8/SVneo) and whether epigenetic regulation is involved in this process. When treated with a range of PFOS doses at 24 and 48 h, even at 10 μM, it significantly increased the ROS production and decreased gene and protein expression, respectively, of the DNA methyltransferases DNMT1 (p < 0.001; p < 0.05), DNMT3A (p < 0.001; p < 0.05), and DNMT3B (p < 0.01; p < 0.01) and the sirtuins, for example, SIRT1 (p < 0.001; p < 0.001) and SIRT3 (p < 0.001; p < 0.05), while reducing global DNA methylation (p < 0.01) and increasing protein lysine acetylation (p < 0.001) as compared to vehicle controls. Interestingly, PFOS (10 μM) significantly increased miR29-b (p < 0.01), which has been previously reported to be associated with PE. The observed epigenetic effects were shown to be dependent on the expression of miR-29b, as knockdown of miR-29b significantly alters the gene and protein expression of DNMT1, DNMT3A, DNMT3B, SIRT1, and SIRT3 and ROS production as well as global DNA methylation and protein acetylation. This study provides for the first time a novel insight into PFOS-induced ROS generation via regulation of sets of the interactive epigenetic circuit in the placenta, which may lead to pregnancy complications.
Collapse
Affiliation(s)
- Ravi Sonkar
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy , Texas A&M Health Science Center , 312 REYN, MS 1114 , College Station , Texas 77843 , United States
| | - Matthew K Kay
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy , Texas A&M Health Science Center , 312 REYN, MS 1114 , College Station , Texas 77843 , United States
| | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy , Texas A&M Health Science Center , 312 REYN, MS 1114 , College Station , Texas 77843 , United States
| |
Collapse
|
32
|
Wang W, Xia X, Mao L, Wang S. The CCAAT/Enhancer-Binding Protein Family: Its Roles in MDSC Expansion and Function. Front Immunol 2019; 10:1804. [PMID: 31417568 PMCID: PMC6684943 DOI: 10.3389/fimmu.2019.01804] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
Immunosuppressive cells have been highlighted in research due to their roles in tumor progression and treatment failure. Myeloid-derived suppressor cells (MDSCs) are among the major immunosuppressive cell populations in the tumor microenvironment, and transcription factors (TFs) are likely involved in MDSC expansion and activation. As key regulatory TFs, members of the CCAAT/enhancer-binding protein (C/EBP) family possibly modulate many biological processes, including cell growth, differentiation, metabolism, and death. Current evidence suggests that C/EBPs maintain critical regulation of MDSCs and are involved in the differentiation and function of MDSCs within the tumor microenvironment. To better understand the MDSC-associated transcriptional network and identify new therapy targets, we herein review recent findings about the C/EBP family regarding their participation in the expansion and function of MDSCs.
Collapse
Affiliation(s)
- Wenxin Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
- Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xueli Xia
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
- Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Lingxiang Mao
- Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
- Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
33
|
Liu Y, Cheng Z, Pang Y, Cui L, Qian T, Quan L, Zhao H, Shi J, Ke X, Fu L. Role of microRNAs, circRNAs and long noncoding RNAs in acute myeloid leukemia. J Hematol Oncol 2019; 12:51. [PMID: 31126316 PMCID: PMC6534901 DOI: 10.1186/s13045-019-0734-5] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/16/2019] [Indexed: 12/16/2022] Open
Abstract
Acute myeloid leukemia (AML) is a malignant tumor of the immature myeloid hematopoietic cells in the bone marrow (BM). It is a highly heterogeneous disease, with rising morbidity and mortality in older patients. Although researches over the past decades have improved our understanding of AML, its pathogenesis has not yet been fully elucidated. Long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) are three noncoding RNA (ncRNA) molecules that regulate DNA transcription and translation. With the development of RNA-Seq technology, more and more ncRNAs that are closely related to AML leukemogenesis have been discovered. Numerous studies have found that these ncRNAs play an important role in leukemia cell proliferation, differentiation, and apoptosis. Some may potentially be used as prognostic biomarkers. In this systematic review, we briefly described the characteristics and molecular functions of three groups of ncRNAs, including lncRNAs, miRNAs, and circRNAs, and discussed their relationships with AML in detail.
Collapse
Affiliation(s)
- Yan Liu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China.,Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Zhiheng Cheng
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Yifan Pang
- Department of Medicine, William Beaumont Hospital, Royal Oak, MI, 48073, USA
| | - Longzhen Cui
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Tingting Qian
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Liang Quan
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Hongyou Zhao
- Department of Laser Medicine, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jinlong Shi
- Department of Biomedical Engineering, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiaoyan Ke
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Lin Fu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China. .,Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China. .,Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, 475000, China.
| |
Collapse
|
34
|
Alizadeh M, Safarzadeh A, Beyranvand F, Ahmadpour F, Hajiasgharzadeh K, Baghbanzadeh A, Baradaran B. The potential role of miR‐29 in health and cancer diagnosis, prognosis, and therapy. J Cell Physiol 2019; 234:19280-19297. [DOI: 10.1002/jcp.28607] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Mohsen Alizadeh
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Ali Safarzadeh
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Fatemeh Beyranvand
- Department of Pharmacology and Toxicology, Faculty of Pharmacy Lorestan University of Medical Sciences Khorramabad Iran
| | - Fatemeh Ahmadpour
- Department of Biochemistry, Faculty of Medicine Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| | | | - Amir Baghbanzadeh
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Behzad Baradaran
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
35
|
Scoville SD, Nalin AP, Chen L, Chen L, Zhang MH, McConnell K, Beceiro Casas S, Ernst G, Traboulsi AAR, Hashi N, Williams M, Zhang X, Hughes T, Mishra A, Benson DM, Saultz JN, Yu J, Freud AG, Caligiuri MA, Mundy-Bosse BL. Human AML activates the aryl hydrocarbon receptor pathway to impair NK cell development and function. Blood 2018; 132:1792-1804. [PMID: 30158248 PMCID: PMC6202909 DOI: 10.1182/blood-2018-03-838474] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/22/2018] [Indexed: 12/19/2022] Open
Abstract
Acute myeloid leukemia (AML) can evade the mouse and human innate immune system by suppressing natural killer (NK) cell development and NK cell function. This is driven in part by the overexpression of microRNA (miR)-29b in the NK cells of AML patients, but how this occurs is unknown. In the current study, we demonstrate that the transcription factor aryl hydrocarbon receptor (AHR) directly regulates miR-29b expression. We show that human AML blasts activate the AHR pathway and induce miR-29b expression in NK cells, thereby impairing NK cell maturation and NK cell function, which can be reversed by treating NK cells with an AHR antagonist. Finally, we show that inhibition of constitutive AHR activation in AML blasts lowers their threshold for apoptosis and decreases their resistance to NK cell cytotoxicity. Together, these results identify the AHR pathway as a molecular mechanism by which AML impairs NK cell development and function. The results lay the groundwork in establishing AHR antagonists as potential therapeutic agents for clinical development in the treatment of AML.
Collapse
MESH Headings
- Animals
- Gene Expression Regulation, Leukemic/genetics
- Humans
- Killer Cells, Natural/cytology
- Killer Cells, Natural/immunology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/metabolism
- Mice
- MicroRNAs/biosynthesis
- Receptors, Aryl Hydrocarbon/metabolism
- Signal Transduction/physiology
Collapse
Affiliation(s)
| | - Ansel P Nalin
- Medical Scientist Training Program
- Comprehensive Cancer Center
| | - Luxi Chen
- Medical Scientist Training Program
- Comprehensive Cancer Center
| | | | | | | | | | | | | | | | | | | | - Tiffany Hughes
- Comprehensive Cancer Center
- Division of Hematology, Department of Internal Medicine
| | - Anjali Mishra
- Comprehensive Cancer Center
- Division of Dermatology, Department of Internal Medicine, and
| | - Don M Benson
- Comprehensive Cancer Center
- Division of Hematology, Department of Internal Medicine
| | - Jennifer N Saultz
- Comprehensive Cancer Center
- Division of Hematology, Department of Internal Medicine
| | - Jianhua Yu
- Comprehensive Cancer Center
- Division of Hematology, Department of Internal Medicine
| | - Aharon G Freud
- Comprehensive Cancer Center
- Department of Pathology, The Ohio State University, Columbus, OH; and
| | | | | |
Collapse
|
36
|
An AML1-ETO/miR-29b-1 regulatory circuit modulates phenotypic properties of acute myeloid leukemia cells. Oncotarget 2018; 8:39994-40005. [PMID: 28611288 PMCID: PMC5522207 DOI: 10.18632/oncotarget.18127] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 04/24/2017] [Indexed: 12/21/2022] Open
Abstract
Acute myeloid leukemia (AML) is characterized by an aggressive clinical course and frequent cytogenetic abnormalities that include specific chromosomal translocations. The 8;21 chromosomal rearrangement disrupts the key hematopoietic RUNX1 transcription factor, and contributes to leukemia through recruitment of co-repressor complexes to RUNX1 target genes, altered subnuclear localization, and deregulation of the myeloid gene regulatory program. However, a role of non-coding microRNAs (miRs) in t(8;21)-mediated leukemogenesis is minimally understood. We present evidence of an interplay between the tumor suppressor miR-29b-1 and the AML1-ETO (also designated RUNX1-RUNX1T1) oncogene that is encoded by the t(8;21). We find that AML1-ETO and corepressor NCoR co-occupy the miR-29a/b-1 locus and downregulate its expression in leukemia cells. Conversely, re-introduction of miR-29b-1 in leukemia cells expressing AML1-ETO causes significant downregulation at the protein level through direct targeting of the 3’ untranslated region of the chimeric transcript. Restoration of miR-29b-1 expression in leukemia cells results in decreased cell growth and increased apoptosis. The AML1-ETO-dependent differentiation block and transcriptional program are partially reversed by miR-29b-1. Our findings establish a novel regulatory circuit between the tumor-suppressive miR-29b-1 and the oncogenic AML1-ETO that controls the leukemic phenotype in t(8;21)-carrying acute myeloid leukemia.
Collapse
|
37
|
Vezzali F, Grassilli S, Lambertini E, Brugnoli F, Patergnani S, Nika E, Piva R, Pinton P, Capitani S, Bertagnolo V. Vav1 is necessary for PU.1 mediated upmodulation of miR-29b in acute myeloid leukaemia-derived cells. J Cell Mol Med 2018. [PMID: 29532991 PMCID: PMC5980196 DOI: 10.1111/jcmm.13594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
It has been recently demonstrated that high pre‐treatment levels of miR‐29b positively correlated with the response of patients with acute myeloid leukaemia (AML) to hypomethylating agents. Upmodulation of miR‐29b by restoring its transcriptional machinery appears indeed a tool to improve therapeutic response in AML. In cells from acute promyelocytic leukaemia (APL), miR‐29b is regulated by PU.1, in turn upmodulated by agonists currently used to treat APL. We explored here the ability of PU.1 to also regulate miR‐29b in non‐APL cells, in order to identify agonists that, upmodulating PU.1 may be beneficial in hypomethylating agents‐based therapies. We found that PU.1 may regulate miR‐29b in the non‐APL Kasumi‐1 cells, showing the t(8;21) chromosomal rearrangement, which is prevalent in AML and correlated with a relatively low survival. We demonstrated that the PU.1‐mediated contribution of the 2 miR‐29b precursors is cell‐related and almost completely dependent on adequate levels of Vav1. Nuclear PU.1/Vav1 association accompanies the transcription of miR‐29b but, at variance with the APL‐derived NB4 cells, in which the protein is required for the association of PU.1 with both miRNA promoters, Vav1 is part of molecular complexes to the PU.1 consensus site in Kasumi‐1. Our results add new information on the transcriptional machinery that regulates miR‐29b expression in AML‐derived cells and may help in identifying drugs useful in upmodulation of this miRNA in pre‐treatment of patients with non‐APL leukaemia who can take advantage from hypomethylating agent‐based therapies.
Collapse
Affiliation(s)
- Federica Vezzali
- Department of Morphology, Surgery and Experimental Medicine, Section of Anatomy and Histology, University of Ferrara, Ferrara, Italy
| | - Silvia Grassilli
- Department of Morphology, Surgery and Experimental Medicine, Section of Anatomy and Histology, University of Ferrara, Ferrara, Italy
| | - Elisabetta Lambertini
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Federica Brugnoli
- Department of Morphology, Surgery and Experimental Medicine, Section of Anatomy and Histology, University of Ferrara, Ferrara, Italy
| | - Simone Patergnani
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Ervin Nika
- Department of Morphology, Surgery and Experimental Medicine, Section of Anatomy and Histology, University of Ferrara, Ferrara, Italy
| | - Roberta Piva
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy.,Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Silvano Capitani
- Department of Morphology, Surgery and Experimental Medicine, Section of Anatomy and Histology, University of Ferrara, Ferrara, Italy.,Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Valeria Bertagnolo
- Department of Morphology, Surgery and Experimental Medicine, Section of Anatomy and Histology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
38
|
Trino S, Lamorte D, Caivano A, Laurenzana I, Tagliaferri D, Falco G, Del Vecchio L, Musto P, De Luca L. MicroRNAs as New Biomarkers for Diagnosis and Prognosis, and as Potential Therapeutic Targets in Acute Myeloid Leukemia. Int J Mol Sci 2018; 19:ijms19020460. [PMID: 29401684 PMCID: PMC5855682 DOI: 10.3390/ijms19020460] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/12/2018] [Accepted: 01/12/2018] [Indexed: 02/07/2023] Open
Abstract
Acute myeloid leukemias (AML) are clonal disorders of hematopoietic progenitor cells which are characterized by relevant heterogeneity in terms of phenotypic, genotypic, and clinical features. Among the genetic aberrations that control disease development there are microRNAs (miRNAs). miRNAs are small non-coding RNAs that regulate, at post-transcriptional level, translation and stability of mRNAs. It is now established that deregulated miRNA expression is a prominent feature in AML. Functional studies have shown that miRNAs play an important role in AML pathogenesis and miRNA expression signatures are associated with chemotherapy response and clinical outcome. In this review we summarized miRNA signature in AML with different cytogenetic, molecular and clinical characteristics. Moreover, we reviewed the miRNA regulatory network in AML pathogenesis and we discussed the potential use of cellular and circulating miRNAs as biomarkers for diagnosis and prognosis and as therapeutic targets.
Collapse
MESH Headings
- Animals
- Antagomirs/genetics
- Antagomirs/metabolism
- Antagomirs/therapeutic use
- Biomarkers, Tumor/agonists
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Chromosome Aberrations
- Extracellular Vesicles/metabolism
- Extracellular Vesicles/pathology
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/therapy
- Mice
- MicroRNAs/agonists
- MicroRNAs/antagonists & inhibitors
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Molecular Targeted Therapy
- Oligoribonucleotides/genetics
- Oligoribonucleotides/metabolism
- Oligoribonucleotides/therapeutic use
- Oncogene Proteins, Fusion/antagonists & inhibitors
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Prognosis
- Signal Transduction
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Stefania Trino
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture, Italy.
| | - Daniela Lamorte
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture, Italy.
| | - Antonella Caivano
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture, Italy.
| | - Ilaria Laurenzana
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture, Italy.
| | - Daniela Tagliaferri
- Biogem Scarl, Istituto di Ricerche Genetiche 'Gaetano Salvatore', 83031 Ariano Irpino, Italy.
| | - Geppino Falco
- Biogem Scarl, Istituto di Ricerche Genetiche 'Gaetano Salvatore', 83031 Ariano Irpino, Italy.
- Department of Biology, University of Naples Federico II, 80147 Naples, Italy.
| | - Luigi Del Vecchio
- CEINGE Biotecnologie Avanzate s.c.a r.l., 80147 Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80138 Naples, Italy.
| | - Pellegrino Musto
- Scientific Direction, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture, Potenza, Italy.
| | - Luciana De Luca
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture, Italy.
| |
Collapse
|
39
|
Chakraborty C, Sharma AR, Patra BC, Bhattacharya M, Sharma G, Lee SS. MicroRNAs mediated regulation of MAPK signaling pathways in chronic myeloid leukemia. Oncotarget 2018; 7:42683-42697. [PMID: 26967056 PMCID: PMC5173166 DOI: 10.18632/oncotarget.7977] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/20/2016] [Indexed: 01/08/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a severe problem throughout the world and requires identification of novel targets for its treatment. This multifactorial disease accounts for about 15% of the all diagnosed leukemia cases. Mitogen-activated protein kinase (MAPK) signaling pathway is crucial for the cell survival and its dysregulation is being implicated in various types of cancers. In here, we have discussed the potential role of various miRNAs that are found involved in regulating the proteins cascades of MAPK signaling pathway associated with CML. An emphasis has been paid to summarize the influence of various miRNAs in elevating or suppressing the expression level of significant proteins such as miR-203, miR-196a, miR-196b, miR-30a, miR-29b, miR-138 in BCR-ABL tyrosine kinase; miR-126, miR-221, miR-128, miR-15a, miR-188-5p, miR-17 in CRK family proteins; miR-155, miR-181a with SOS proteins; miR-155, miR-19a, with KRAS proteins; miR-19a with RAF1 protein; and miR-17, miR-19a, miR-17-92 cluster with MAPK/ERK proteins. In light of ever-increasing importance and ever-widening regulatory roles of miRNAs in cells, we have reviewed the recent progress in the field of miRNAs and have tried to suggest them as controlling targets for various protein cascades of MAPK signaling pathway. An understanding of the supervisory mechanism of MAPK by miRNAs might provide novel targets for treating CML.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, Korea.,Department of Bio-informatics, School of Computer and Information Sciences, Galgotias University, Greater Noida, Uttar Pradesh, 203201, India
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, Korea
| | - Bidhan Chandra Patra
- Aquaculture Research Unit, Department of Zoology, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Manojit Bhattacharya
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, Korea.,Aquaculture Research Unit, Department of Zoology, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Garima Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, Korea
| |
Collapse
|
40
|
MicroRNAs and acute myeloid leukemia: therapeutic implications and emerging concepts. Blood 2017; 130:1290-1301. [PMID: 28751524 DOI: 10.1182/blood-2016-10-697698] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 07/24/2017] [Indexed: 02/08/2023] Open
Abstract
Acute myeloid leukemia (AML) is a deadly hematologic malignancy characterized by the uncontrolled growth of immature myeloid cells. Over the past several decades, we have learned a tremendous amount regarding the genetic aberrations that govern disease development in AML. Among these are genes that encode noncoding RNAs, including the microRNA (miRNA) family. miRNAs are evolutionarily conserved small noncoding RNAs that display important physiological effects through their posttranscriptional regulation of messenger RNA targets. Over the past decade, studies have identified miRNAs as playing a role in nearly all aspects of AML disease development, including cellular proliferation, survival, and differentiation. These observations have led to the study of miRNAs as biomarkers of disease, and efforts to therapeutically manipulate miRNAs to improve disease outcome in AML are ongoing. Although much has been learned regarding the importance of miRNAs in AML disease initiation and progression, there are many unanswered questions and emerging facets of miRNA biology that add complexity to their roles in AML. Moving forward, answers to these questions will provide a greater level of understanding of miRNA biology and critical insights into the many translational applications for these small regulatory RNAs in AML.
Collapse
|
41
|
The miR-29 transcriptome in endocrine-sensitive and resistant breast cancer cells. Sci Rep 2017; 7:5205. [PMID: 28701793 PMCID: PMC5507892 DOI: 10.1038/s41598-017-05727-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/01/2017] [Indexed: 01/08/2023] Open
Abstract
Aberrant microRNA expression contributes to breast cancer progression and endocrine resistance. We reported that although tamoxifen stimulated miR-29b-1/a transcription in tamoxifen (TAM)-resistant breast cancer cells, ectopic expression of miR-29b-1/a did not drive TAM-resistance in MCF-7 breast cancer cells. However, miR-29b-1/a overexpression significantly repressed TAM-resistant LCC9 cell proliferation, suggesting that miR-29b-1/a is not mediating TAM resistance but acts as a tumor suppressor in TAM-resistant cells. The target genes mediating this tumor suppressor activity were unknown. Here, we identify miR-29b-1 and miR-29a target transcripts in both MCF-7 and LCC9 cells. We find that miR-29b-1 and miR-29a regulate common and unique transcripts in each cell line. The cell-specific and common downregulated genes were characterized using the MetaCore Gene Ontology (GO) enrichment analysis algorithm. LCC9-sepecific miR-29b-1/a-regulated GO processes include oxidative phosphorylation, ATP metabolism, and apoptosis. Extracellular flux analysis of cells transfected with anti- or pre- miR-29a confirmed that miR-29a inhibits mitochondrial bioenergetics in LCC9 cells. qPCR,luciferase reporter assays, and western blot also verified the ATP synthase subunit genes ATP5G1 and ATPIF1 as bone fide miR29b-1/a targets. Our results suggest that miR-29 repression of TAM-resistant breast cancer cell proliferation is mediated in part through repression of genes important in mitochondrial bioenergetics.
Collapse
|
42
|
Wurm AA, Zjablovskaja P, Kardosova M, Gerloff D, Bräuer-Hartmann D, Katzerke C, Hartmann JU, Benoukraf T, Fricke S, Hilger N, Müller AM, Bill M, Schwind S, Tenen DG, Niederwieser D, Alberich-Jorda M, Behre G. Disruption of the C/EBPα-miR-182 balance impairs granulocytic differentiation. Nat Commun 2017; 8:46. [PMID: 28663557 PMCID: PMC5491528 DOI: 10.1038/s41467-017-00032-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 04/30/2017] [Indexed: 02/04/2023] Open
Abstract
Transcription factor C/EBPα is a master regulator of myelopoiesis and its inactivation is associated with acute myeloid leukemia. Deregulation of C/EBPα by microRNAs during granulopoiesis or acute myeloid leukemia development has not been studied. Here we show that oncogenic miR-182 is a strong regulator of C/EBPα. Moreover, we identify a regulatory loop between C/EBPα and miR-182. While C/EBPα blocks miR-182 expression by direct promoter binding during myeloid differentiation, enforced expression of miR-182 reduces C/EBPα protein level and impairs granulopoiesis in vitro and in vivo. In addition, miR-182 expression is highly elevated particularly in acute myeloid leukemia patients with C-terminal CEBPA mutations, thereby depicting a mechanism by which C/EBPα blocks miR-182 expression. Furthermore, we present miR-182 expression as a prognostic marker in cytogenetically high-risk acute myeloid leukemia patients. Our data demonstrate the importance of a controlled balance between C/EBPα and miR-182 for the maintenance of healthy granulopoiesis. C/EBPα is a critical transcription factor involved in myelopoiesis and its inactivation is associated with acute myeloid leukemia (AML). Here the authors show a negative feedback loop between C/EBPα and miR-182 and identify this miRNA as a marker of high-risk AML.
Collapse
Affiliation(s)
- Alexander Arthur Wurm
- Division of Hematology and Oncology, Leipzig University Hospital, Johannisallee 32a, Leipzig, 04103, Germany
| | - Polina Zjablovskaja
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, 142 20, Czech Republic
| | - Miroslava Kardosova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, 142 20, Czech Republic
| | - Dennis Gerloff
- Division of Hematology and Oncology, Leipzig University Hospital, Johannisallee 32a, Leipzig, 04103, Germany
| | - Daniela Bräuer-Hartmann
- Division of Hematology and Oncology, Leipzig University Hospital, Johannisallee 32a, Leipzig, 04103, Germany
| | - Christiane Katzerke
- Division of Hematology and Oncology, Leipzig University Hospital, Johannisallee 32a, Leipzig, 04103, Germany
| | - Jens-Uwe Hartmann
- Division of Hematology and Oncology, Leipzig University Hospital, Johannisallee 32a, Leipzig, 04103, Germany
| | - Touati Benoukraf
- Cancer Science Institute, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore
| | - Stephan Fricke
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, Leipzig, 04103, Germany
| | - Nadja Hilger
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, Leipzig, 04103, Germany
| | - Anne-Marie Müller
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, Leipzig, 04103, Germany
| | - Marius Bill
- Division of Hematology and Oncology, Leipzig University Hospital, Johannisallee 32a, Leipzig, 04103, Germany
| | - Sebastian Schwind
- Division of Hematology and Oncology, Leipzig University Hospital, Johannisallee 32a, Leipzig, 04103, Germany
| | - Daniel G Tenen
- Cancer Science Institute, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore.,Harvard Stem Cell Institute, Harvard Medical School, 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Dietger Niederwieser
- Division of Hematology and Oncology, Leipzig University Hospital, Johannisallee 32a, Leipzig, 04103, Germany
| | - Meritxell Alberich-Jorda
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, 142 20, Czech Republic
| | - Gerhard Behre
- Division of Hematology and Oncology, Leipzig University Hospital, Johannisallee 32a, Leipzig, 04103, Germany.
| |
Collapse
|
43
|
Dooley J, Lagou V, Garcia-Perez JE, Himmelreich U, Liston A. miR-29a-deficiency does not modify the course of murine pancreatic acinar carcinoma. Oncotarget 2017; 8:26911-26917. [PMID: 28460473 PMCID: PMC5432306 DOI: 10.18632/oncotarget.15850] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 02/20/2017] [Indexed: 11/25/2022] Open
Abstract
The development of cancers involves the complex dysregulation of multiple cellular processes. With key functions in simultaneous regulation of multiple pathways, microRNA (miR) are thought to have important roles in the oncogenic formation process. miR-29a is among the most abundantly expressed miR in the pancreas. Together with altered expression in pancreatic cancer cell lines and biopsies, and known oncogenic functions in leukemia, this expression data has identified miR-29a as a key candidate for miR involvement in pancreatic cancer biology. Here we used miR-29a-deficient mice and the TAg model of pancreatic acinar carcinoma to functionally test the role of miR-29a in vivo. We found no impact of miR-29a loss on the development or growth of pancreatic tumours, nor on the survival of tumour-bearing mice. These results suggest that, despite differential expression, miR-29a is oncogenically neutral in the pancreatic acinar carcinoma context. If these results are extended to other models of pancreatic cancer, they would reduce the attractiveness of miR-29a as a potential therapeutic target in pancreatic cancer.
Collapse
Affiliation(s)
- James Dooley
- VIB Center for Brain and Disease Research, Leuven, Belgium
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Leuven, Belgium
| | - Vasiliki Lagou
- VIB Center for Brain and Disease Research, Leuven, Belgium
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Leuven, Belgium
| | - Josselyn E. Garcia-Perez
- VIB Center for Brain and Disease Research, Leuven, Belgium
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Leuven, Belgium
| | - Uwe Himmelreich
- KU Leuven-University of Leuven, Department of Imaging and Pathology, Molecular Small Animal Imaging Center (MOSAIC), Leuven, Belgium
| | - Adrian Liston
- VIB Center for Brain and Disease Research, Leuven, Belgium
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Leuven, Belgium
| |
Collapse
|
44
|
Nijhuis A, Curciarello R, Mehta S, Feakins R, Bishop CL, Lindsay JO, Silver A. MCL-1 is modulated in Crohn's disease fibrosis by miR-29b via IL-6 and IL-8. Cell Tissue Res 2017; 368:325-335. [PMID: 28190086 PMCID: PMC5397660 DOI: 10.1007/s00441-017-2576-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/03/2017] [Indexed: 12/15/2022]
Abstract
The miR-29 family is involved in fibrosis in multiple organs, including the intestine where miR-29b facilitates TGF-β-mediated up-regulation of collagen in mucosal fibroblasts from Crohn’s disease (CD) patients. Myeloid cell leukemia-1 (MCL-1), a member of the B-cell CLL/Lymphoma 2 (BCL-2) apoptosis family, is involved in liver fibrosis and is targeted by miR-29b via its 3’-UTR in cultured cell lines. We investigate the role of MCL-1 and miR-29b in primary intestinal fibroblasts and tissue from stricturing CD patients. Transfection of CD intestinal fibroblasts with pre-miR-29b resulted in a significant increase in the mRNA expression of MCL-1 isoforms [MCL-1Long (L)/Extra Short (ES) and MCL-1Short (S)], although MCL-1S was expressed at significantly lower levels. Western blotting predominantly detected the anti-apoptotic MCL-1L isoform, and immunofluorescence showed that staining was localised in discrete nuclear foci. Transfection with pre-miR-29b or anti-miR-29b resulted in a significant increase or decrease, respectively, in MCL-1L foci. CD fibroblasts treated with IL-6 and IL-8, inflammatory cytokines upstream of MCL-1, increased the total mass of MCL-1L-positive foci. Furthermore, transfection of intestinal fibroblasts with pre-miR-29b resulted in an increase in mRNA and protein levels of IL-6 and IL-8. Finally, immunohistochemistry showed reduced MCL-1 protein expression in fibrotic CD samples compared to non-stricturing controls. Together, our findings suggest that induction of MCL-1 by IL-6/IL-8 may surmount any direct down-regulation by miR-29b via its 3’-UTR. We propose that an anti-fibrotic miR-29b/IL-6 IL-8/MCL-1L axis may influence intestinal fibrosis in CD. In the future, therapeutic modulation of this pathway might contribute to the management of fibrosis in CD.
Collapse
Affiliation(s)
- Anke Nijhuis
- Centre for Genomics and Child Health and National Centre for Bowel Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark St, Whitechapel, E1 2AT, London, UK
| | - Renata Curciarello
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark St, Whitechapel, E1 2AT, London, UK
| | - Shameer Mehta
- Centre for Genomics and Child Health and National Centre for Bowel Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark St, Whitechapel, E1 2AT, London, UK
| | - Roger Feakins
- Department of Histopathology, The Royal London Hospital, London, UK
| | - Cleo L Bishop
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - James O Lindsay
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark St, Whitechapel, E1 2AT, London, UK.
| | - Andrew Silver
- Centre for Genomics and Child Health and National Centre for Bowel Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark St, Whitechapel, E1 2AT, London, UK.
| |
Collapse
|
45
|
Kota J, Hancock J, Kwon J, Korc M. Pancreatic cancer: Stroma and its current and emerging targeted therapies. Cancer Lett 2017; 391:38-49. [PMID: 28093284 DOI: 10.1016/j.canlet.2016.12.035] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/22/2016] [Accepted: 12/23/2016] [Indexed: 12/20/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human malignancies with a 5-year survival rate of 8%. Dense, fibrotic stroma associated with pancreatic tumors is a major obstacle for drug delivery to the tumor bed and plays a crucial role in pancreatic cancer progression. Targeting stroma is considered as a potential therapeutic strategy to improve anti-cancer drug efficacy and patient survival. Although numerous stromal depletion therapies have reached the clinic, they add little to overall survival and are often associated with toxicity. Furthermore, increasing evidence suggests the anti-tumor properties of stroma. Its complete ablation enhanced tumor progression and reduced survival. Consequently, efforts are now focused on developing stromal-targeted therapies that normalize the reactive stroma and avoid the extremes: stromal abundance vs. complete depletion. In this review, we summarized the state of current and emerging anti-stromal targeted therapies, with major emphasis on the role of miRNAs in PDAC stroma and their potential use as novel therapeutic agents to modulate PDAC tumor-stromal interactions.
Collapse
Affiliation(s)
- Janaiah Kota
- Department of Medical and Molecular Genetics, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA; The Melvin and Bren Simon Cancer Center, IUSM, Indianapolis, IN, USA; Center for Pancreatic Cancer Research, Indiana University and Purdue University-Indianapolis (IUPUI), Indianapolis, IN, USA.
| | - Julie Hancock
- Department of Medical and Molecular Genetics, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA
| | - Jason Kwon
- Department of Medical and Molecular Genetics, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA
| | - Murray Korc
- The Melvin and Bren Simon Cancer Center, IUSM, Indianapolis, IN, USA; Center for Pancreatic Cancer Research, Indiana University and Purdue University-Indianapolis (IUPUI), Indianapolis, IN, USA; Department of Biochemistry and Molecular Biology, IUSM, Indianapolis, IN, USA; Department of Medicine, IUSM, Indianapolis, IN, USA
| |
Collapse
|
46
|
Muluhngwi P, Krishna A, Vittitow SL, Napier JT, Richardson KM, Ellis M, Mott JL, Klinge CM. Tamoxifen differentially regulates miR-29b-1 and miR-29a expression depending on endocrine-sensitivity in breast cancer cells. Cancer Lett 2016; 388:230-238. [PMID: 27986463 DOI: 10.1016/j.canlet.2016.12.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 12/21/2022]
Abstract
Endocrine-resistance develops in ∼40% of breast cancer patients after tamoxifen (TAM) therapy. Although microRNAs are dysregulated in breast cancer, their contribution to endocrine-resistance is not yet understood. Previous microarray analysis identified miR-29a and miR-29b-1 as repressed by TAM in MCF-7 endocrine-sensitive breast cancer cells but stimulated by TAM in LY2 endocrine-resistant breast cancer cells. Here we examined the mechanism for the differential regulation of these miRs by TAM in MCF-7 versus TAM-resistant LY2 and LCC9 breast cancer cells and the functional role of these microRNAs in these cells. Knockdown studies revealed that ERα is responsible for TAM regulation of miR-29b-1/a transcription. We also demonstrated that transient overexpression of miR-29b-1/a decreased MCF-7, LCC9, and LY2 proliferation and inhibited LY2 cell migration and colony formation but did not sensitize LCC9 or LY2 cells to TAM. Furthermore, TAM reduced DICER1 mRNA and protein in LY2 cells, a known target of miR-29. Supporting this observation, anti-miR-29b-1 or anti-miR-29a inhibited the suppression of DICER by 4-OHT. These results suggest miR-29b-1/a has tumor suppressor activity in TAM-resistant cells and does not appear to play a role in mediating TAM resistance.
Collapse
Affiliation(s)
- Penn Muluhngwi
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Abirami Krishna
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Stephany L Vittitow
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Joshua T Napier
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Kirsten M Richardson
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Mackenzie Ellis
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Justin L Mott
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| |
Collapse
|
47
|
Hughes JM, Legnini I, Salvatori B, Masciarelli S, Marchioni M, Fazi F, Morlando M, Bozzoni I, Fatica A. C/EBPα-p30 protein induces expression of the oncogenic long non-coding RNA UCA1 in acute myeloid leukemia. Oncotarget 2016; 6:18534-44. [PMID: 26053097 PMCID: PMC4621908 DOI: 10.18632/oncotarget.4069] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/13/2015] [Indexed: 12/30/2022] Open
Abstract
Accumulating evidences indicate that different long non-coding RNAs (lncRNAs) might play a relevant role in tumorigenesis, with their expression and function already associated to cancer development and progression. CCAAT/enhancer-binding protein-α (CEBPA) is a critical regulator of myeloid differentiation whose inactivation contributes to the development of acute myeloid leukemia (AML). Mutations in C/EBPα occur in around 10% of AML cases, leading to the expression of a 30-kDa dominant negative isoform (C/EBPα-p30). In this study, we identified the oncogenic urothelial carcinoma associated 1 (UCA1) lncRNA as a novel target of the C/EBPα-p30. We show that wild-type C/EBPα and C/EBPα-p30 isoform can bind the UCA1 promoter but have opposite effects on UCA1 expression. While wild-type C/EBPα represses, C/EBPα-p30 can induce UCA1 transcription. Notably, we also show that UCA1 expression increases in cytogenetically normal AML cases carrying biallelic CEBPA mutations. Furthermore, we demonstrate that UCA1 sustains proliferation of AML cells by repressing the expression of the cell cycle regulator p27kip1. Thus, we identified, for the first time, an oncogenic lncRNA functioning in concert with the dominant negative isoform of C/EBPα in AML.
Collapse
Affiliation(s)
- James M Hughes
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Ivano Legnini
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Beatrice Salvatori
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy.,Department of Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Silvia Masciarelli
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Marcella Marchioni
- Institute of Biology, Molecular Medicine and Nanobiotechnology, CNR, Sapienza University of Rome, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Mariangela Morlando
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Irene Bozzoni
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy.,Institute of Biology, Molecular Medicine and Nanobiotechnology, CNR, Sapienza University of Rome, Rome, Italy.,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy.,Institute Pasteur Fondazione Cenci-Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Alessandro Fatica
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
48
|
Zhang G, Dong F, Luan C, Zhang X, Shao H, Liu J, Sun C. Overexpression of CCAAT Enhancer-Binding Protein α Inhibits the Growth of K562 Cells via the Foxo3a-Bim Pathway. Acta Haematol 2016; 136:65-70. [PMID: 27161125 DOI: 10.1159/000444517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/07/2016] [Indexed: 11/19/2022]
Abstract
We aimed to investigate the role of CCAAT enhancer-binding protein α (C/EBPα) in the pathogenesis of chronic myeloid leukemia (CML) and the mechanism underlying its effect. Bone marrow specimens from 50 patients with CML and peripheral blood specimens from 20 healthy individuals were collected. K562 cells were treated with imatinib. Subsequently, a stable cell line, K562-C/EBPα, was constructed. Cell proliferation was assayed with cell counting kit-8, and mRNA levels of C/EBPα, forkhead transcription factor FKHRL1 (Foxo3a) and Bim were detected by semiquantitative PCR. The correlation of C/EBPα and BCR-ABL was assessed by Spearman's correlation analysis. The results showed that C/EBPα mRNA levels were significantly reduced in CML patients compared with healthy subjects (p < 0.001) and were negatively correlated with BCR-ABL1 (r = -0.5046, p < 0.01). Additionally, imatinib enhanced the expression of C/EBPα in K562 cells compared with untreated cells (p < 0.05). Overexpression of C/EBPα significantly decreased cell proliferation and upregulated the expressions of the apoptosis-related genes Foxo3a (p < 0.01) and Bim (p < 0.05) in K562 cells. In conclusion, C/EBPα expression was decreased in patients with CML. Imatinib enhances the expression of C/EBPα in K562 cells, and the overexpression of C/EBPα inhibits cell proliferation and increases apoptosis via the Foxo3a-Bim pathway.
Collapse
Affiliation(s)
- Guili Zhang
- Department of Laboratory, Yantai Yuhuangding Hospital, Medical College, Qingdao University, Yantai, China
| | | | | | | | | | | | | |
Collapse
|
49
|
Kurkewich JL, Bikorimana E, Nguyen T, Klopfenstein N, Zhang H, Hallas WM, Stayback G, McDowell MA, Dahl R. The mirn23a microRNA cluster antagonizes B cell development. J Leukoc Biol 2016; 100:665-677. [PMID: 27084569 DOI: 10.1189/jlb.1hi0915-398rr] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 03/21/2016] [Indexed: 12/20/2022] Open
Abstract
Ablation of microRNA synthesis by deletion of the microRNA-processing enzyme Dicer has demonstrated that microRNAs are necessary for normal hematopoietic differentiation and function. However, it is still unclear which specific microRNAs are required for hematopoiesis and at what developmental stages they are necessary. This is especially true for immune cell development. We previously observed that overexpression of the products of the mirn23a gene (microRNA-23a, -24-2, and 27a) in hematopoietic progenitors increased myelopoiesis with a reciprocal decrease in B lymphopoiesis, both in vivo and in vitro. In this study, we generated a microRNA-23a, -24-2, and 27a germline knockout mouse to determine whether microRNA-23a, -24-2, and 27a expression was essential for immune cell development. Characterization of hematopoiesis in microRNA-23a, -24-2, and 27a-/- mice revealed a significant increase in B lymphocytes in both the bone marrow and the spleen, with a concomitant decrease in myeloid cells (monocytes/granulocytes). Analysis of the bone marrow progenitor populations revealed a significant increase in common lymphoid progenitors and a significant decrease in both bone marrow common myeloid progenitors and granulocyte monocyte progenitors. Gene-expression analysis of primary hematopoietic progenitors and multipotent erythroid myeloid lymphoid cells showed that microRNA-23a, -24-2, and 27a regulates essential B cell gene-expression networks. Overexpression of microRNA-24-2 target Tribbles homolog 3 can recapitulate the microRNA-23a, -24-2, and 27a-/- phenotype in vitro, suggesting that increased B cell development in microRNA-23a, -24-2, and 27a null mice can be partially explained by a Tribbles homolog 3-dependent mechanism. Data from microRNA-23a, -24-2, and 27a-/- mice support a critical role for this microRNA cluster in regulating immune cell populations through repression of B lymphopoiesis.
Collapse
Affiliation(s)
- Jeffrey L Kurkewich
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - Emmanuel Bikorimana
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, Indiana, USA
| | - Tan Nguyen
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, Indiana, USA
| | - Nathan Klopfenstein
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, Indiana, USA
| | - Helen Zhang
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - William M Hallas
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, Indiana, USA
| | - Gwen Stayback
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA; Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA; and
| | - Mary Ann McDowell
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA; Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA; and
| | - Richard Dahl
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, Indiana, USA
| |
Collapse
|
50
|
miR-29s: a family of epi-miRNAs with therapeutic implications in hematologic malignancies. Oncotarget 2016; 6:12837-61. [PMID: 25968566 PMCID: PMC4536984 DOI: 10.18632/oncotarget.3805] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 03/18/2015] [Indexed: 02/06/2023] Open
Abstract
A wealth of studies has highlighted the biological complexity of hematologic malignancies and the role of dysregulated signal transduction pathways. Along with the crucial role of genetic abnormalities, epigenetic aberrations are nowadays emerging as relevant players in cancer development, and significant research efforts are currently focusing on mechanisms by which histone post-translational modifications, DNA methylation and noncoding RNAs contribute to the pathobiology of cancer. As a consequence, these studies have provided the rationale for the development of epigenetic drugs, such as histone deacetylase inhibitors and demethylating compounds, some of which are currently in advanced phase of pre-clinical investigation or in clinical trials. In addition, a more recent body of evidence indicates that microRNAs (miRNAs) might target effectors of the epigenetic machinery, which are aberrantly expressed or active in cancers, thus reverting those epigenetic abnormalities driving tumor initiation and progression. This review will focus on the broad epigenetic activity triggered by members of the miR-29 family, which underlines the potential of miR-29s as candidate epi-therapeutics for the treatment of hematologic malignancies.
Collapse
|