1
|
Saucedo-Mora L, Sanz MÁ, Montáns FJ, Benítez JM. A simple agent-based hybrid model to simulate the biophysics of glioblastoma multiforme cells and the concomitant evolution of the oxygen field. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 246:108046. [PMID: 38301393 DOI: 10.1016/j.cmpb.2024.108046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND AND OBJECTIVES Glioblastoma multiforme (GBM) is one of the most aggressive cancers of the central nervous system. It is characterized by a high mitotic activity and an infiltrative ability of the glioma cells, neovascularization and necrosis. GBM evolution entails the continuous interplay between heterogeneous cell populations, chemotaxis, and physical cues through different scales. In this work, an agent-based hybrid model is proposed to simulate the coupling of the multiscale biological events involved in the GBM invasion, specifically the individual and collective migration of GBM cells and the concurrent evolution of the oxygen field and phenotypic plasticity. An asset of the formulation is that it is conceptually and computationally simple but allows to reproduce the complexity and the progression of the GBM micro-environment at cell and tissue scales simultaneously. METHODS The migration is reproduced as the result of the interaction between every single cell and its micro-environment. The behavior of each individual cell is formulated through genotypic variables whereas the cell micro-environment is modeled in terms of the oxygen concentration and the cell density surrounding each cell. The collective behavior is formulated at a cellular scale through a flocking model. The phenotypic plasticity of the cells is induced by the micro-environment conditions, considering five phenotypes. RESULTS The model has been contrasted by benchmark problems and experimental tests showing the ability to reproduce different scenarios of glioma cell migration. In all cases, the individual and collective cell migration and the coupled evolution of both the oxygen field and phenotypic plasticity have been properly simulated. This simple formulation allows to mimic the formation of relevant hallmarks of glioblastoma multiforme, such as the necrotic cores, and to reproduce experimental evidences related to the mitotic activity in pseudopalisades. CONCLUSIONS In the collective migration, the survival of the clusters prevails at the expense of cell mitosis, regardless of the size of the groups, which delays the formation of necrotic foci and reduces the rate of oxygen consumption.
Collapse
Affiliation(s)
- Luis Saucedo-Mora
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040, Madrid, Spain; Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK; Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, MA 02139, USA
| | - Miguel Ángel Sanz
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040, Madrid, Spain
| | - Francisco Javier Montáns
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040, Madrid, Spain; Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, FL 32611, USA
| | - José María Benítez
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040, Madrid, Spain.
| |
Collapse
|
2
|
Elsherbiny ME, Shaaban M, El-Tohamy R, Elkholi IE, Hammam OA, Magdy M, Allalunis-Turner J, Emara M. Expression of Myoglobin in Normal and Cancer Brain Tissues: Correlation With Hypoxia Markers. Front Oncol 2021; 11:590771. [PMID: 33996536 PMCID: PMC8120281 DOI: 10.3389/fonc.2021.590771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 04/15/2021] [Indexed: 01/16/2023] Open
Abstract
Background Myoglobin (MB) is increasingly recognized as a key player in cancer growth and metastasis. Low oxygen tensions, commonly associated with highly aggressive and recurrent cancers, have been shown to regulate its expression in several cancers such as lung, neck, prostate and breast cancer. However, it is not yet known whether it contributes to the growth and spread of brain cancers especially Glioblastoma multiforme (GBM). Methods Here we investigate the expression of MB, and its correlation with the hypoxia markers carbonic anhydrase IX (CAIX) and lactate dehydrogenase A (LDHA), in human tissue microarrays of multiple organ tumors, brain tumors, and GBM tumors, and their respective cancer-adjacent normal tissues. Correlation between MB protein expression and tumor grade was also assessed. Results We show that MB protein is expressed in a wide variety of cancers, benign tumors, cancer-adjacent normal tissues, hyperplastic tissue samples and normal brain tissue, and low oxygen tensions modulate MB protein expression in different brain cancers, including GBM. Enhanced nuclear LDHA immune-reactivity in GBM was also observed. Finally, we report for the first time a positive correlation between MB expression and brain tumor grade. Conclusion Our data suggest that hypoxia regulate MB expression in different brain cancers (including GBM) and that its expression is associated with a more aggressive phenotype as indicated by the positive correlation with the brain tumor grade. Additionally, a role for nuclear LDHA in promoting aggressive tumor phenotype is also suggested based on enhanced nuclear expression which was observed only in GBM.
Collapse
Affiliation(s)
- Marwa E Elsherbiny
- Department of Pharmacology and Toxicology, Ahram Canadian University, 6th of October, Egypt
| | - Mohammed Shaaban
- Center for Aging and Associated Diseases, Zewail City of Science, Technology and Innovation, 6th of October, Egypt
| | - Rana El-Tohamy
- Center for Aging and Associated Diseases, Zewail City of Science, Technology and Innovation, 6th of October, Egypt
| | - Islam E Elkholi
- Center for Aging and Associated Diseases, Zewail City of Science, Technology and Innovation, 6th of October, Egypt
| | - Olfat Ali Hammam
- Department of Pathology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mona Magdy
- Department of Pathology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Joan Allalunis-Turner
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Marwan Emara
- Center for Aging and Associated Diseases, Zewail City of Science, Technology and Innovation, 6th of October, Egypt
| |
Collapse
|
3
|
Zhang H, Barralet JE. Mimicking oxygen delivery and waste removal functions of blood. Adv Drug Deliv Rev 2017; 122:84-104. [PMID: 28214553 DOI: 10.1016/j.addr.2017.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 12/20/2022]
Abstract
In addition to immunological and wound healing cell and platelet delivery, ion stasis and nutrient supply, blood delivers oxygen to cells and tissues and removes metabolic wastes. For decades researchers have been trying to develop approaches that mimic these two immediately vital functions of blood. Oxygen is crucial for the long-term survival of tissues and cells in vertebrates. Hypoxia (oxygen deficiency) and even at times anoxia (absence of oxygen) can occur during organ preservation, organ and cell transplantation, wound healing, in tumors and engineering of tissues. Different approaches have been developed to deliver oxygen to tissues and cells, including hyperbaric oxygen therapy (HBOT), normobaric hyperoxia therapy (NBOT), using biochemical reactions and electrolysis, employing liquids with high oxygen solubility, administering hemoglobin, myoglobin and red blood cells (RBCs), introducing oxygen-generating agents, using oxygen-carrying microparticles, persufflation, and peritoneal oxygenation. Metabolic waste accumulation is another issue in biological systems when blood flow is insufficient. Metabolic wastes change the microenvironment of cells and tissues, influence the metabolic activities of cells, and ultimately cause cell death. This review examines advances in blood mimicking systems in the field of biomedical engineering in terms of oxygen delivery and metabolic waste removal.
Collapse
|
4
|
Contribution of the Microenvironmental Niche to Glioblastoma Heterogeneity. BIOMED RESEARCH INTERNATIONAL 2017. [PMID: 28630875 PMCID: PMC5467280 DOI: 10.1155/2017/9634172] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Glioblastoma is the most aggressive cancer of the brain. The dismal prognosis is largely attributed to the heterogeneous nature of the tumor, which in addition to intrinsic molecular and genetic changes is also influenced by the microenvironmental niche in which the glioma cells reside. The cancer stem cells (CSCs) hypothesis suggests that all cancers arise from CSCs that possess the ability to self-renew and initiate tumor formation. CSCs reside in specialized niches where interaction with the microenvironment regulates their stem cell behavior. The reciprocal interaction between glioma stem cells (GSCs) and cells from the microenvironment, such as endothelial cells, immune cells, and other parenchymal cells, may also promote angiogenesis, invasion, proliferation, and stemness of the GSCs and be likely to have an underappreciated role in their responsiveness to therapy. This crosstalk may also promote molecular transition of GSCs. Hence the inherent plasticity of GSCs can be seen as an adaptive response, changing according to the signaling cue from the niche. Given the association of GSCs with tumor recurrence and treatment sensitivity, understanding this bidirectional crosstalk between GSCs and its niche may provide a framework to identify more effective therapeutic targets and improve treatment outcome.
Collapse
|
5
|
Alfonso JCL, Köhn-Luque A, Stylianopoulos T, Feuerhake F, Deutsch A, Hatzikirou H. Why one-size-fits-all vaso-modulatory interventions fail to control glioma invasion: in silico insights. Sci Rep 2016; 6:37283. [PMID: 27876890 PMCID: PMC5120360 DOI: 10.1038/srep37283] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/26/2016] [Indexed: 12/18/2022] Open
Abstract
Gliomas are highly invasive brain tumours characterised by poor prognosis and limited response to therapy. There is an ongoing debate on the therapeutic potential of vaso-modulatory interventions against glioma invasion. Prominent vasculature-targeting therapies involve tumour blood vessel deterioration and normalisation. The former aims at tumour infarction and nutrient deprivation induced by blood vessel occlusion/collapse. In contrast, the therapeutic intention of normalising the abnormal tumour vasculature is to improve the efficacy of conventional treatment modalities. Although these strategies have shown therapeutic potential, it remains unclear why they both often fail to control glioma growth. To shed some light on this issue, we propose a mathematical model based on the migration/proliferation dichotomy of glioma cells in order to investigate why vaso-modulatory interventions have shown limited success in terms of tumour clearance. We found the existence of a critical cell proliferation/diffusion ratio that separates glioma responses to vaso-modulatory interventions into two distinct regimes. While for tumours, belonging to one regime, vascular modulations reduce the front speed and increase the infiltration width, for those in the other regime, the invasion speed increases and infiltration width decreases. We discuss how these in silico findings can be used to guide individualised vaso-modulatory approaches to improve treatment success rates.
Collapse
Affiliation(s)
- J C L Alfonso
- Braunschweig Integrated Centre of Systems Biology and Helmholtz Center for Infectious Research, Braunschweig, Germany.,Center for Information Services and High Performance Computing, Technische Universität Dresden, Germany
| | - A Köhn-Luque
- Department of Biostatistics, Faculty of Medicine, University of Oslo, Norway.,BigInsight, Centre for Research-based Innovation (SFI), Oslo, Norway
| | - T Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - F Feuerhake
- Institute of Pathology, Medical School of Hannover, Germany.,Institute of Neuropathology, University Clinic Freiburg, Germany
| | - A Deutsch
- Center for Information Services and High Performance Computing, Technische Universität Dresden, Germany
| | - H Hatzikirou
- Braunschweig Integrated Centre of Systems Biology and Helmholtz Center for Infectious Research, Braunschweig, Germany
| |
Collapse
|
6
|
Vartanian A, Singh SK, Agnihotri S, Jalali S, Burrell K, Aldape KD, Zadeh G. GBM's multifaceted landscape: highlighting regional and microenvironmental heterogeneity. Neuro Oncol 2014; 16:1167-75. [PMID: 24642524 PMCID: PMC4136895 DOI: 10.1093/neuonc/nou035] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 02/16/2014] [Indexed: 01/29/2023] Open
Abstract
Gliomas are a heterogeneous group of tumors that show variable proliferative potential, invasiveness, aggressiveness, histological grading, and clinical behavior. In this review, we focus on glioblastoma multiforme (GBM), a grade IV glioma, which is the most common and malignant of primary adult brain tumors. Research over the past several decades has revealed the existence of extensive cellular, molecular, genetic, epigenetic, and metabolic heterogeneity among tumors of the same grade and even within individual tumors. Evaluation of different tumor types has shown that tumors with advanced grade and clinical aggressiveness also display enhanced molecular, cellular, and microenvironmental heterogeneity. From a therapeutic standpoint, this heterogeneity is a major clinical hurdle for devising effective therapeutic strategies for patients and challenges personalized medicine. In this review, we will highlight key aspects of GBM heterogeneity, directing special attention to regional heterogeneity, hypoxia, genomic heterogeneity, tumor-specific metabolic reprogramming, neovascularization or angiogenesis, and stromal immune cells. We will further discuss the clinical implications of GBM heterogeneity in the context of therapy.
Collapse
Affiliation(s)
- Alenoush Vartanian
- The Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada (A.V., S.K.S., S.A., S.J., K.B., G.Z.); Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada (G.Z.); Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas (K.D.A.)
| | - Sanjay K Singh
- The Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada (A.V., S.K.S., S.A., S.J., K.B., G.Z.); Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada (G.Z.); Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas (K.D.A.)
| | - Sameer Agnihotri
- The Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada (A.V., S.K.S., S.A., S.J., K.B., G.Z.); Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada (G.Z.); Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas (K.D.A.)
| | - Shahrzad Jalali
- The Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada (A.V., S.K.S., S.A., S.J., K.B., G.Z.); Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada (G.Z.); Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas (K.D.A.)
| | - Kelly Burrell
- The Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada (A.V., S.K.S., S.A., S.J., K.B., G.Z.); Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada (G.Z.); Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas (K.D.A.)
| | - Kenneth D Aldape
- The Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada (A.V., S.K.S., S.A., S.J., K.B., G.Z.); Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada (G.Z.); Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas (K.D.A.)
| | - Gelareh Zadeh
- The Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada (A.V., S.K.S., S.A., S.J., K.B., G.Z.); Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada (G.Z.); Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas (K.D.A.)
| |
Collapse
|
7
|
EMARA MARWAN, ALLALUNIS-TURNER JOAN. Effect of hypoxia on angiogenesis related factors in glioblastoma cells. Oncol Rep 2014; 31:1947-53. [DOI: 10.3892/or.2014.3037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 01/21/2014] [Indexed: 11/05/2022] Open
|
8
|
EMARA MARWAN, TURNER AROBERT, ALLALUNIS-TURNER JOAN. Hypoxia differentially upregulates the expression of embryonic, fetal and adult hemoglobin in human glioblastoma cells. Int J Oncol 2013; 44:950-8. [DOI: 10.3892/ijo.2013.2239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 11/25/2013] [Indexed: 11/06/2022] Open
|
9
|
EMARA MARWAN, TURNER AROBERT, ALLALUNIS-TURNER JOAN. Adult, embryonic and fetal hemoglobin are expressed in human glioblastoma cells. Int J Oncol 2013; 44:514-20. [DOI: 10.3892/ijo.2013.2186] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 10/07/2013] [Indexed: 11/06/2022] Open
|
10
|
Ponnala S, Chetty C, Veeravalli KK, Dinh DH, Klopfenstein JD, Rao JS. Metabolic remodeling precedes mitochondrial outer membrane permeabilization in human glioma xenograft cells. Int J Oncol 2011; 40:509-18. [PMID: 22076676 DOI: 10.3892/ijo.2011.1255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Accepted: 09/09/2011] [Indexed: 11/06/2022] Open
Abstract
Glioma cancer cells adapt to changing microenvironment and shift from mitochondrial oxidative phosphorylation to aerobic glycolysis for their metabolic needs irrespective of oxygen availability. In the present study, we show that silencing MMP-9 in combination with uPAR/cathepsin B switch the glycolytic metabolism of glioma cells to oxidative phosphorylation (OXPHOS) and generate reactive oxygen species (ROS) to predispose glioma cells to mitochondrial outer membrane permeabilization. shRNA for MMP-9 and uPAR (pMU) as well as shRNA for MMP-9 and cathepsin B (pMC) activated complexes of mitochondria involved in OXPHOS and inhibited glycolytic hexokinase expression. The decreased interaction of hexokinase 2 with mitochondria in the treated cells indicated the inhibition of glycolysis activation. Overexpression of Akt reversed the pMU- and pMC-mediated OXPHOS to glycolysis switch. The OXPHOS un-coupler oligomycin A altered the expression levels of the Bcl-2 family of proteins; treatment with pMU or pMC reversed this effect and induced mitochondrial outer membrane permeabilization. In addition, our results show changes in mitochondrial pore transition to release cytochrome c due to changes in the VDAC-Bcl-XL and BAX-BAK interaction with pMU and pMC treatments. Taken together, our results suggest that pMU and pMC treatments switch glioma cells from the glycolytic to the OXPHOS pathway through an inhibitory effect on Akt, ROS induction and an increase of cytosolic cytochrome c accumulation. These results demonstrate the potential of pMU and pMC as therapeutic candidates for the treatment of glioma.
Collapse
Affiliation(s)
- Shivani Ponnala
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
| | | | | | | | | | | |
Collapse
|
11
|
Fang J, Ma I, Allalunis-Turner J. Knockdown of cytoglobin expression sensitizes human glioma cells to radiation and oxidative stress. Radiat Res 2011; 176:198-207. [PMID: 21631290 DOI: 10.1667/rr2517.1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cytoglobin is a recently identified vertebrate globin whose functions include scavenging reactive oxygen and nitrosative species. In tumor cells, CYGB may function as a tumor suppressor gene. Here we show that knockdown of cytoglobin expression can sensitize human glioma cells to oxidative stress induced by chemical inhibitors of the electron transport chain and as well can increase cellular radiosensitivity. When treated with antimycin A, an inhibitor of the mitochondrial electron transport chain, cytoglobin-deficient cells showed significantly higher H₂O₂ levels, whereas H₂O₂ levels were significantly reduced in cytoglobin-overexpressing cells. In addition, cytoglobin knockdown significantly decreased the doubling time of glioma cell lines, consistent with a putative tumor suppressor function. These finding suggest that modulating cytoglobin levels may be a promising treatment strategy for sensitizing human glioma cells to oxidative stress that is induced by ionizing radiation, certain chemotherapies and ischemia-reperfusion.
Collapse
Affiliation(s)
- Jingye Fang
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
12
|
Wolf A, Agnihotri S, Guha A. Targeting metabolic remodeling in glioblastoma multiforme. Oncotarget 2010; 1:552-62. [PMID: 21317451 PMCID: PMC3035636 DOI: 10.18632/oncotarget.190] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 10/27/2010] [Indexed: 02/06/2023] Open
Abstract
A key aberrant biological difference between tumor cells and normal differentiated cells is altered metabolism, whereby cancer cells acquire a number of stable genetic and epigenetic alterations to retain proliferation, survive under unfavorable microenvironments and invade into surrounding tissues. A classic biochemical adaptation is the metabolic shift to aerobic glycolysis rather than mitochondrial oxidative phosphorylation, regardless of oxygen availability, a phenomenon termed the "Warburg Effect". Aerobic glycolysis, characterized by high glucose uptake, low oxygen consumption and elevated production of lactate, is associated with a survival advantage as well as the generation of substrates such as fatty acids, amino acids and nucleotides necessary in rapidly proliferating cells. This review discusses the role of key metabolic enzymes and their association with aerobic glycolysis in Glioblastoma Multiforme (GBM), an aggressive, highly glycolytic and deadly brain tumor. Targeting key metabolic enzymes involved in modulating the "Warburg Effect" may provide a novel therapeutic approach either singularly or in combination with existing therapies in GBMs.
Collapse
Affiliation(s)
- Amparo Wolf
- The Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital
for Sick Children Research Institute, University of Toronto, Toronto, Ontario, Canada,
M5G 1L7
| | - Sameer Agnihotri
- The Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital
for Sick Children Research Institute, University of Toronto, Toronto, Ontario, Canada,
M5G 1L7
| | - Abhijit Guha
- The Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital
for Sick Children Research Institute, University of Toronto, Toronto, Ontario, Canada,
M5G 1L7
- Division of Neurosurgery, Toronto Western Hospital, University of
Toronto, Toronto, Ontario, Canada, M5T 2S8
| |
Collapse
|
13
|
Emara M, Turner AR, Allalunis-Turner J. Hypoxic regulation of cytoglobin and neuroglobin expression in human normal and tumor tissues. Cancer Cell Int 2010; 10:33. [PMID: 20828399 PMCID: PMC2945342 DOI: 10.1186/1475-2867-10-33] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 09/09/2010] [Indexed: 05/07/2023] Open
Abstract
Background Cytoglobin (Cygb) and neuroglobin (Ngb) are recently identified globin molecules that are expressed in vertebrate tissues. Upregulation of Cygb and Ngb under hypoxic and/or ischemic conditions in vitro and in vivo increases cell survival, suggesting possible protective roles through prevention of oxidative damage. We have previously shown that Ngb is expressed in human glioblastoma multiforme (GBM) cell lines, and that expression of its transcript and protein can be significantly increased after exposure to physiologically relevant levels of hypoxia. In this study, we extended this work to determine whether Cygb is also expressed in GBM cells, and whether its expression is enhanced under hypoxic conditions. We also compared Cygb and Ngb expression in human primary tumor specimens, including brain tumors, as well as in human normal tissues. Immunoreactivity of carbonic anhydrase IX (CA IX), a hypoxia-inducible metalloenzyme that catalyzes the hydration of CO2 to bicarbonate, was used as an endogenous marker of hypoxia. Results Cygb transcript and protein were expressed in human GBM cells, and this expression was significantly increased in most cells following 48 h incubation under hypoxia. We also showed that Cygb and Ngb are expressed in both normal tissues and human primary cancers, including GBM. Among normal tissues, Cygb and Ngb expression was restricted to distinct cell types and was especially prominent in ductal cells. Additionally, certain normal organs (e.g. stomach fundus, small bowel) showed distinct regional co-localization of Ngb, Cygb and CA IX. In most tumors, Ngb immunoreactivity was significantly greater than that of Cygb. In keeping with previous in vitro results, tumor regions that were positively stained for CA IX were also positive for Ngb and Cygb, suggesting that hypoxic upregulation of Ngb and Cygb also occurs in vivo. Conclusions Our finding of hypoxic up-regulation of Cygb/Ngb in GBM cell lines and human tumor tissues suggests that these globin molecules may be part of the repertoire of defense mechanisms that allow cancer cells to survive in hypoxic microenvironments.
Collapse
Affiliation(s)
- Marwan Emara
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada.
| | | | | |
Collapse
|
14
|
Sgier D, Zuberbuehler K, Pfaffen S, Neri D. Isolation and characterization of an inhibitory human monoclonal antibody specific to the urokinase-type plasminogen activator, uPA. Protein Eng Des Sel 2010; 23:261-9. [DOI: 10.1093/protein/gzp089] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
15
|
Emara M, Salloum N, Allalunis-Turner J. Expression and hypoxic up-regulation of neuroglobin in human glioblastoma cells. Mol Oncol 2008; 3:45-53. [PMID: 19383366 DOI: 10.1016/j.molonc.2008.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 11/24/2008] [Accepted: 11/27/2008] [Indexed: 10/21/2022] Open
Abstract
Neuroglobin is a recently identified globin molecule that is expressed predominantly in the vertebrate brain. Neuroglobin expression increases in oxygen-deprived neurons, suggesting it protects neurons from ischemic cell death. We report that neuroglobin transcript and protein are expressed in human glioblastoma cells, and that this expression increases in hypoxia in vitro. We also show that neuroglobin is up-regulated in hypoxic microregions of glioblastoma tumor xenografts. Our finding of hypoxic up-regulation of neuroglobin in human glioblastoma cells may provide insight into how tumor cells adapt to and survive in hypoxic microenvironments.
Collapse
Affiliation(s)
- Marwan Emara
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta, T6G 1Z2, Canada
| | | | | |
Collapse
|
16
|
BH3 mimetics reactivate autophagic cell death in anoxia-resistant malignant glioma cells. Neoplasia 2008; 10:873-85. [PMID: 18670645 DOI: 10.1593/neo.07842] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 05/21/2008] [Accepted: 05/21/2008] [Indexed: 11/18/2022] Open
Abstract
Here, we investigated the specific roles of Bcl-2 family members in anoxia tolerance of malignant glioma. Flow cytometry analysis of cell death in 17 glioma cell lines revealed drastic differences in their sensitivity to oxygen withdrawal (<0.1% O(2)). Cell death correlated with mitochondrial depolarization, cytochrome C release, and translocation of green fluorescent protein (GFP)-tagged light chain 3 to autophagosomes but occurred in the absence of caspase activation or phosphatidylserine exposure. In both sensitive and tolerant glioma cell lines, anoxia caused a significant up-regulation of BH3-only genes previously implicated in mediating anoxic cell death in other cell types (BNIP3, NIX, PUMA, and Noxa). In contrast, we detected a strong correlation between anoxia resistance and high expression levels of antiapoptotic Bcl-2 family proteins Bcl-xL, Bcl-2, and Mcl-1 that function to neutralize the proapoptotic activity of BH3-only proteins. Importantly, inhibition of both Bcl-2 and Bcl-xL with the small-molecule BH3 mimetics HA14-1 and BH3I-2' and by RNA interference reactivated anoxia-induced autophagic cell death in previously resistant glioma cells. Our data suggest that endogenous BH3-only protein induction may not be able to compensate for the high expression of antiapoptotic Bcl-2 family proteins in anoxia-resistant astrocytomas. They also support the conjecture that BH3 mimetics may represent an exciting new approach for the treatment of malignant glioma.
Collapse
|
17
|
Spence AM, Muzi M, Swanson KR, O'Sullivan F, Rockhill JK, Rajendran JG, Adamsen TCH, Link JM, Swanson PE, Yagle KJ, Rostomily RC, Silbergeld DL, Krohn KA. Regional hypoxia in glioblastoma multiforme quantified with [18F]fluoromisonidazole positron emission tomography before radiotherapy: correlation with time to progression and survival. Clin Cancer Res 2008; 14:2623-30. [PMID: 18451225 DOI: 10.1158/1078-0432.ccr-07-4995] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE Hypoxia is associated with resistance to radiotherapy and chemotherapy and activates transcription factors that support cell survival and migration. We measured the volume of hypoxic tumor and the maximum level of hypoxia in glioblastoma multiforme before radiotherapy with [(18)F]fluoromisonidazole positron emission tomography to assess their impact on time to progression (TTP) or survival. EXPERIMENTAL DESIGN Twenty-two patients were studied before biopsy or between resection and starting radiotherapy. Each had a 20-minute emission scan 2 hours after i.v. injection of 7 mCi of [(18)F]fluoromisonidazole. Venous blood samples taken during imaging were used to create tissue to blood concentration (T/B) ratios. The volume of tumor with T/B values above 1.2 defined the hypoxic volume (HV). Maximum T/B values (T/B(max)) were determined from the pixel with the highest uptake. RESULTS Kaplan-Meier plots showed shorter TTP and survival in patients whose tumors contained HVs or tumor T/B(max) ratios greater than the median (P < or = 0.001). In univariate analyses, greater HV or tumor T/B(max) were associated with shorter TTP or survival (P < 0.002). Multivariate analyses for survival and TTP against the covariates HV (or T/B(max)), magnetic resonance imaging (MRI) T1Gd volume, age, and Karnovsky performance score reached significance only for HV (or T/B(max); P < 0.03). CONCLUSIONS The volume and intensity of hypoxia in glioblastoma multiforme before radiotherapy are strongly associated with poorer TTP and survival. This type of imaging could be integrated into new treatment strategies to target hypoxia more aggressively in glioblastoma multiforme and could be applied to assess the treatment outcomes.
Collapse
Affiliation(s)
- Alexander M Spence
- Department of Neurology, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Graded hypoxia modulates the invasive potential of HT1080 fibrosarcoma and MDA MB231 carcinoma cells. Clin Exp Metastasis 2008; 25:253-64. [PMID: 18188670 DOI: 10.1007/s10585-007-9139-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2007] [Accepted: 12/21/2007] [Indexed: 12/26/2022]
Abstract
Spatial and temporal oxygen heterogeneity exists in most solid tumour microenvironments due to an inadequate vascular network supplying a dense population of tumour cells. An imbalance between oxygen supply and demand leads to hypoxia within a significant proportion of a tumour, which has been correlated to the likelihood of metastatic dissemination in both rodent tumour models and human patients. Experimentally, it has been demonstrated that near-anoxic in vitro exposure results in transiently increased metastatic potential in some tumour cell lines. The purpose of this study was to examine the effect of graded low oxygen conditions on the invasive phenotype of human tumour cells using an in vitro model of basement membrane invasion, in which we measured oxygen availability directly at the invasion surface of the transwell chamber. Our results show a relationship between culture vessel geometry and time to achieve hypoxia which may affect the interpretation of low oxygen experiments. We exposed the human tumour cell lines, HT1080 and MDA MB231, to graded normobaric oxygen (5% O(2)-0.2% O(2)) either during or prior to in vitro basement membrane invasion to simulate conditions of intravasation and extravasation. A secondary aim was to investigate the potential regulation of matrix metalloproteinase activity by oxygen availability. We identified significant reductions in invasive ability under low oxygen conditions for the HT1080 cell line and an increase in invasion at intermediate oxygen conditions for the MDA MB231 cell line. There were differences in the absolute activity of the individual matrix metalloproteinases, MMP-2, -9, -14, between the two cell lines, however there were no significant changes following exposure to hypoxic conditions. This study demonstrates cell line specific effects of graded oxygen levels on invasive potential and suggests that intermediate levels of low oxygen may increase metastatic dissemination.
Collapse
|
19
|
Bussink J, Kaanders JHAM, van der Kogel AJ. Microenvironmental transformations by VEGF- and EGF-receptor inhibition and potential implications for responsiveness to radiotherapy. Radiother Oncol 2006; 82:10-7. [PMID: 17141899 DOI: 10.1016/j.radonc.2006.10.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 10/19/2006] [Accepted: 10/25/2006] [Indexed: 01/12/2023]
Abstract
The microregional distribution and dynamics of tumor cell hypoxia and proliferation are important determinants of tumor aggressiveness and resistance to treatment. Modulation of these elements by biological targeted drugs such as EGFR- and VEGFR-inhibitors may improve the effect of radiotherapy significantly. These combinations are being evaluated in clinical trials and evidence of their effectiveness is accumulating. However, the mechanistic basis of this cooperative effect and the role and behavior of the microregional tumor phenotype under EGF- and VEGF-blockage is poorly understood. Unfolding of these interactions and effects further downstream is necessary to exploit these biological modifiers most profitably to unravel questions such as: (1) can microregional phenotypes be modulated by EGFR- or VEGFR-blockage and how do downstream effects in the signaling pathways relate to these changes? (2) How do the microregional changes induced by EGFR- and VEGF-blockage affect the responsiveness of tumors to ionizing radiation? Answering these questions will improve our understanding of tumor growth related phenotypic transformations at the microregional level and how these can be influenced by modulation of the EGF- and VEGF-signaling pathways. This knowledge can be used to identify and improve therapeutic combinations with the novel biological modifiers and test a variety of biological-based treatment approaches.
Collapse
Affiliation(s)
- Johan Bussink
- Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | |
Collapse
|
20
|
Fenton BM, Paoni SF, Ding I. Pathophysiological Effects of Vascular Endothelial Growth Factor Receptor-2-Blocking Antibody plus Fractionated Radiotherapy on Murine Mammary Tumors. Cancer Res 2004; 64:5712-9. [PMID: 15313911 DOI: 10.1158/0008-5472.can-04-0434] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although clinical trials of antiangiogenic strategies have been disappointing when administered as single agents, such approaches can play an important role in cancer treatment when combined with conventional therapies. Previous studies have shown that DC101, an antiangiogenic monoclonal antibody against vascular endothelial growth factor receptor-2, can produce significant growth inhibition in spontaneous and transplanted tumors but can also induce substantial hypoxia. Because DC101 appears to potentiate radiotherapy in some tumors, the present studies were undertaken to characterize pathophysiological changes following combined therapy and to determine whether radioresponse is enhanced despite the induction of hypoxia. MCa-4 and MCa-35 mammary carcinomas were treated with: (a) DC101; (b) 5 x 6 Gy radiation fractions; or (c) the combination. Image analysis of frozen tumor sections was used to quantitate: (a) hypoxia; (b) spacing of total and perfused blood vessels; and (c) endothelial and tumor cell apoptosis. For MCa-4, combination treatment schedules produced significant and prolonged delays in tumor growth, whereas single-modality treatments had minor effects. For MCa-35, radiation or the combination led to equivalent growth inhibition. In all tumors, hypoxia increased markedly after either radiation or DC101 alone. Although combination therapy produced no immediate pathophysiological changes, hypoxia ultimately increased after cessation of therapy. Preferential increases in endothelial apoptosis following combination treatment suggest that in addition to blocking tumor angiogenesis, DC101 enhances radiotherapy by specifically sensitizing endothelial cells, leading to degeneration of newly formed blood vessels.
Collapse
Affiliation(s)
- Bruce M Fenton
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York 14642, USA.
| | | | | |
Collapse
|
21
|
DeHaan C, Habibi-Nazhad B, Yan E, Salloum N, Parliament M, Allalunis-Turner J. Mutation in mitochondrial complex I ND6 subunit is associated with defective response to hypoxia in human glioma cells. Mol Cancer 2004; 3:19. [PMID: 15248896 PMCID: PMC481082 DOI: 10.1186/1476-4598-3-19] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Accepted: 07/12/2004] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Hypoxia-tolerant human glioma cells reduce oxygen consumption rate in response to oxygen deficit, a defense mechanism that contributes to survival under moderately hypoxic conditions. In contrast, hypoxia-sensitive cells lack this ability. As it has been previously shown that hypoxia-tolerant (M006x, M006xLo, M059K) and -sensitive (M010b) glioma cells express differences in mitochondrial function, we investigated whether mitochondrial DNA-encoded mutations are associated with differences in the initial response to oxygen deficit. RESULTS The mitochondrial genome was sequenced and 23 mtDNA alterations were identified, one of which was an unreported mutation (T-C transition in base pair 14634) in the hypoxia-sensitive cell line, M010b, that resulted in a single amino acid change in the gene encoding the ND6 subunit of NADH:ubiquinone oxidoreductase (Complex I). The T14634C mutation did not abrogate ND6 protein expression, however, M010b cells were more resistant to rotenone, an agent used to screen for Complex I mutations, and adriamycin, an agent activated by redox cycling. The specific function of mtDNA-encoded, membrane-embedded Complex I ND subunits is not known at present. Current models suggest that the transmembrane arm of Complex I may serve as a conformationally driven proton channel. As cellular respiration is regulated, in part, by proton flux, we used homology-based modeling and computational molecular biology to predict the 3D structure of the wild type and mutated ND6 proteins. These models predict that the T14634C mutation alters the structure and orientation of the trans-membrane helices of the ND6 protein. CONCLUSION Complex I ND subunits are mutational hot spots in tumor mtDNA. Genetic changes that alter Complex I structure and function may alter a cell's ability to respond to oxygen deficit and consolidate hypoxia rescue mechanisms, and may contribute to resistance to chemotherapeutic agents that require redox cycling for activation.
Collapse
Affiliation(s)
- Carrie DeHaan
- Departments of Oncology, University of Alberta, and Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta, Canada T6G 1Z2
- Department of Medicine St. Vincent's, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Bahram Habibi-Nazhad
- Departments of Pharmacology, University of Alberta, Edmonton, Alberta, Canada T6G 2E1
| | - Elizabeth Yan
- Departments of Oncology, University of Alberta, and Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta, Canada T6G 1Z2
- Department of Radiation Oncology, Tom Baker Cancer Centre, 1331 29 St. NW, Calgary AB, Canada T2N 4N2
| | - Nicole Salloum
- Departments of Oncology, University of Alberta, and Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta, Canada T6G 1Z2
| | - Matthew Parliament
- Departments of Oncology, University of Alberta, and Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta, Canada T6G 1Z2
| | - Joan Allalunis-Turner
- Departments of Oncology, University of Alberta, and Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta, Canada T6G 1Z2
| |
Collapse
|
22
|
Murray D, Mirzayans R, Scott AL, Allalunis-Turner MJ. Influence of Oxygen on the Radiosensitivity of Human Glioma Cell Lines. Am J Clin Oncol 2003; 26:e169-77. [PMID: 14528093 DOI: 10.1097/01.coc.0000091359.11281.f4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have investigated the influence of hypoxia on the radiosensitivity of 4 early-passage tumor cell lines that were established from malignant glioma patients at our Institute. These cell lines were M006, M059J (a highly radiosensitive line), M059K (a radioresistant line derived from the same biopsy as M059J), and M010b. The GM637 human fibroblast cell line was used as a normal control. The oxygen enhancement ratios (OERs) for these cell lines, determined using a clonogenic survival assay, were approximately 3.6 (GM637), approximately 3.7 (M006), approximately 2.5 (M010b), approximately 2.1 (M059K), and approximately 3.5 (M059J). The broad range of OERs for these glioma lines was not related to cellular glutathione levels or to differences in intrinsic cellular radiosensitivity. Because studies with rodent cell lines indicate that defects in certain DNA repair genes, including ERCC1, can greatly influence cellular OERs, and because several such repair genes, including ERCC1, localize to a region of chromosome 19q that is close to a common deletion in human glioma, we reasoned that such deletions might contribute to the diverse OERs of these tumor cell lines. However, measurements of ERCC1 protein levels using immunofluorescence staining or Western blotting, of ERCC1 mRNA levels using Northern blotting, and of functional nucleotide excision repair capability using the UV/adenovirus reactivation assay, failed to indicate any deficit in these activities. Thus, although the effect of hypoxia on the radiosensitivity of different human glioma cell lines can vary widely, the mechanism of this effect remains unknown. The potential implications of this finding for radiation therapy, and especially for hypoxia imaging-guided intensity-modulated radiation therapy (IMRT) treatment planning, are discussed.
Collapse
Affiliation(s)
- David Murray
- Division of Experimental Oncology, Department of Oncology, The University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | |
Collapse
|
23
|
Rijken PFJW, Peters JPW, Van der Kogel AJ. Quantitative analysis of varying profiles of hypoxia in relation to functional vessels in different human glioma xenograft lines. Radiat Res 2002; 157:626-32. [PMID: 12005540 DOI: 10.1667/0033-7587(2002)157[0626:qaovpo]2.0.co;2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Tissue oxygenation influences the radiation response of tumors. To further investigate the underlying mechanisms of tumor hypoxia, the spatial distribution of hypoxic cells in relation to the vasculature was studied. In a panel of three human glioma xenograft lines (E2, E102, E106) with different growth characteristics, tumor line-specific patterns of hypoxia (pimonidazole) and (functional) vasculature (Hoechst 33342) were observed. Two of the three glioma lines showed a more homogeneous distribution of perfused vessels (E102 and E106) than the third glioma line (E2). Although all tumors showed hypoxia, the distance at which the steepest part of the gradient of the hypoxia marker was found varied significantly among the different glioma lines. The faster-growing E102 tumors had the longest distance (>300 microm). These results indicate that tumor line-specific factors, rather than vascular geometry alone, may determine the oxygenation status of a tumor. As a consequence, vascular density cannot be used as a surrogate parameter for tumor hypoxia when comparing different tumors. Additional hypoxia and perfusion markers will further improve our understanding of changes in tumor physiology at the microregional level explaining the relationship between the low oxygen levels and the response of tumors to treatment.
Collapse
Affiliation(s)
- P F J W Rijken
- Institute of Radiotherapy, University Medical Centre St. Radboud, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | |
Collapse
|
24
|
Turcotte ML, Parliament M, Franko A, Allalunis-Turner J. Variation in mitochondrial function in hypoxia-sensitive and hypoxia-tolerant human glioma cells. Br J Cancer 2002; 86:619-24. [PMID: 11870546 PMCID: PMC2375290 DOI: 10.1038/sj.bjc.6600087] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2001] [Revised: 09/20/2001] [Accepted: 11/19/2001] [Indexed: 11/18/2022] Open
Abstract
We have shown previously that human glioblastoma multiforme cells vary in their ability to survive under hypoxic conditions. Under oxygen limiting conditions, hypoxia-tolerant cells decrease their oxygen consumption rate whereas hypoxia-sensitive cells continue to consume oxygen at a relatively steady rate until the oxygen supply becomes exhausted. We now show that hypoxia-tolerant and hypoxia-sensitive cells exhibit distinct patterns of mitochondrial function in response to hypoxic challenge. Hypoxia-tolerant cell lines retain stable mitochondrial membrane potential and ATP concentration when incubated under oxygen limiting conditions. In addition, hypoxia-tolerant cell lines are consistently more sensitive to a wide spectrum of inhibitors of mitochondrial function than are hypoxia-sensitive cells. In contrast, the hypoxia-sensitive cells are unable to maintain stable mitochondrial membrane potential and ATP levels when incubated at reduced oxygen tension. These results demonstrate significant differences in the mitochondrial function between these two phenotypes and reinforce previous data that suggest a regulatory role for mitochondria in the development of hypoxia tolerance.
Collapse
Affiliation(s)
- M L Turcotte
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
25
|
Parliament MB, Allalunis-Turner MJ, Franko AJ, Olive PL, Mandyam R, Santos C, Wolokoff B. Vascular endothelial growth factor expression is independent of hypoxia in human malignant glioma spheroids and tumours. Br J Cancer 2000; 82:635-41. [PMID: 10682677 PMCID: PMC2363312 DOI: 10.1054/bjoc.1999.0975] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We recently showed that severe hypoxia was not universally present adjacent to necrosis in human glioma xenografts and spheroids established from the M059K, M006, M006X, M006XLo and M010b cell lines. Using these glioma models, we wished to test whether oxygen serves as a regulator of cellular VEGF expression in situ. In situ hybridization (ISH) and immunohistochemistry (IHC) were used to detect vascular endothelial growth factor (VEGF) mRNA and protein expression in sections of glioma xenografts and spheroids in which hypoxic regions and regions with well-oxygenated necrosis were identified on contiguous sections by use of the hypoxia-specific marker, 3H-misonidazole. Independent validation of the presence of radiobiologically hypoxic cells in M006 xenografts was undertaken using the comet assay. Northern blotting analyses of monolayer cells demonstrated significant up-regulation of VEGF mRNA in the M006X line at oxygen concentrations of 6% and below. ISH analysis of VEGF mRNA showed unexpectedly strong staining for VEGF mRNA across the entire viable rim of M006X and M006XLo glioma spheroids. Similarly, in virtually all xenograft tumours of the M059K, M006 and M010b lines, VEGF ISH showed similar staining across all regions of healthy cells up to the border of necrosis. Only in one M006X tumour was there a suggestion of increased VEGF expression in cells adjacent to necrosis. IHC for VEGF showed good concordance with the ISH results. IHC analysis of the VEGF receptor flt-1 showed strong tumour cell staining in M006XLo glioma cells. In human glioma spheroids and xenograft tumours, regions of severe hypoxia do not correspond to areas of up-regulated VEGF expression; in fact, VEGF expression is quite uniform. Furthermore, this and our previous study demonstrate that levels of VEGF expression vary among sublines (M006, M006X and M006XLo) derived from a single human glioma specimen.
Collapse
Affiliation(s)
- M B Parliament
- Divisions of Radiation, Cross Cancer Institute, Edmonton, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|