1
|
Futuro Neto HA, Macedo SM, Silva NF, Cabral AM, Pires JGP. Central 5-HT(2A) receptors modulate the vagal bradycardia in response to activation of the von Bezold-Jarisch reflex in anesthetized rats. Braz J Med Biol Res 2011; 44:224-8. [PMID: 21344136 DOI: 10.1590/s0100-879x2011007500016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 01/19/2011] [Indexed: 11/22/2022] Open
Abstract
Activation of 5-hydroxytryptamine (5-HT) 5-HT(1A), 5-HT(2C), 5-HT(3), and 5-HT(7) receptors modulates the excitability of cardiac vagal motoneurones, but the precise role of 5-HT(2A/2B) receptors in these phenomena is unclear. We report here the effects of intracisternal (ic) administration of selective 5-HT(2A/2B) antagonists on the vagal bradycardia elicited by activation of the von Bezold-Jarisch reflex with phenylbiguanide. The experiments were performed on urethane-anesthetized male Wistar rats (250-270 g, N = 7-9 per group). The animals were placed in a stereotaxic frame and their atlanto-occipital membrane was exposed to allow ic injections. The rats received atenolol (1 mg/kg, iv) to block the sympathetic component of the reflex bradycardia; 20-min later, the cardiopulmonary reflex was induced with phenylbiguanide (15 µg/kg, iv) injected at 15-min intervals until 3 similar bradycardias were obtained. Ten minutes after the last pre-drug bradycardia, R-96544 (a 5-HT(2A) antagonist; 0.1 µmol/kg), SB-204741 (a 5-HT(2B) antagonist; 0.1 µmol/kg) or vehicle was injected ic. The subsequent iv injections of phenylbiguanide were administered 5, 20, 35, and 50 min after the ic injection. The selective 5-HT(2A) receptor antagonism attenuated the vagal bradycardia and hypotension, with maximal effect at 35 min after the antagonist (pre-drug = -200 ± 11 bpm and -42 ± 3 mmHg; at 35 min = -84 ± 10 bpm and -33 ± 2 mmHg; P < 0.05). Neither the 5-HT(2B) receptor antagonists nor the vehicle changed the reflex. These data suggest that central 5-HT(2A) receptors modulate the central pathways of the parasympathetic component of the von Bezold-Jarisch reflex.
Collapse
Affiliation(s)
- H A Futuro Neto
- Departamento de Morfologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES, Brasil
| | | | | | | | | |
Collapse
|
2
|
Poole DP, Littler RA, Smith BL, McLeay LM. Effects and mechanisms of action of the ergopeptides ergotamine and ergovaline and the effects of peramine on reticulum motility of sheep. Am J Vet Res 2009; 70:270-6. [DOI: 10.2460/ajvr.70.2.270] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Meyers NL, Hickling RI. Pharmacology and metabolism of renzapride : a novel therapeutic agent for the potential treatment of irritable bowel syndrome. Drugs R D 2008; 9:37-63. [PMID: 18095752 DOI: 10.2165/00126839-200809010-00004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Renzapride (ATL-1251), a novel benzamide, is currently under clinical development for the treatment of irritable bowel syndrome (IBS). Previous in vitro and in vivo experimental studies have characterized renzapride as a full serotonin 5-HT(4) receptor agonist on the gut and a 5-HT(3) receptor antagonist. Clinical studies have confirmed the therapeutic efficacy, tolerability and safety of renzapride in patients with constipation-predominant IBS. This study set out to characterize the pharmacological profile of renzapride and its potential metabolic products at both 5-HT and other monoamine receptors in the gut. METHODS The affinity of renzapride, its (+) and (-) enantiomers, and its primary metabolite, renzapride N-oxide and its enantiomers, for serotonin receptors was assessed by means of in vitro radioligand binding inhibition studies. After membranes prepared from animal tissue or membranes of cell lines transfected with cloned human receptors had been incubated with radiolabelled ligand with high affinity for a specific receptor, renzapride was added to competitively inhibit this binding. Levels of bound radioligand were measured by filtration and counting of the bound radioactivity. In instances where >50% inhibition of radioligand binding had occurred, the inhibition constant (K(i)) was calculated. Metabolism of renzapride by liver microsomes was assessed by incubating 10 micromol/L renzapride with human liver microsome samples for 60 minutes at 37 degrees C. After the reaction was stopped, the samples were centrifuged and the supernatant analysed for metabolites by high-pressure liquid chromatography (HPLC). The potential inhibitory effects of renzapride on cytochrome P450 (CYP) enzymes were assessed by incubating renzapride at various concentrations over a 1-500 micromol/L concentration range with microsomes genetically engineered to express a single CYP. RESULTS Renzapride was selective for serotonergic receptors and, in particular, had high affinity for human 5-HT(3) and guinea-pig 5-HT(4) receptors (K(i) 17 and 477 nm, respectively). Inhibitory properties at 5-HT(2B) receptors were also identified for renzapride, as well as some affinity for 5-HT(2A) and 5-HT(2C) receptors. Renzapride N-oxide and its enantiomers demonstrated much lower affinity for all 5-HT receptors compared with renzapride. Renzapride was metabolized by liver microsomes to a limited extent and there was no significant non-microsomal metabolism of renzapride. Renzapride did not inhibit the major CYP drug-metabolizing enzymes CYP2C9, CYP2D6, CYP1A2, CYP2A6, CYP2C19, CYP2E1 or CYP3A4 at concentrations consistent with use in a clinical setting. CONCLUSIONS These results confirm and extend earlier studies in animal and human receptors that show renzapride is a potent and generally full 5-HT(4) receptor agonist and 5-HT(3) receptor antagonist. The results reported in the present study indicate that the metabolites of renzapride are minor and are unlikely to contribute to its therapeutic profile or lead to interaction of renzapride with other drugs that inhibit the major drug-metabolizing enzymes in the liver at therapeutic doses. These data contribute to the understanding of the pharmacological actions and metabolic fate of renzapride in vivo.
Collapse
|
4
|
Serotonin pharmacology in the gastrointestinal tract: a review. Naunyn Schmiedebergs Arch Pharmacol 2008; 377:181-203. [PMID: 18398601 DOI: 10.1007/s00210-008-0276-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Accepted: 02/15/2008] [Indexed: 12/17/2022]
Abstract
Serotonin (5-hydroxytryptamine or 5-HT) plays a critical physiological role in the regulation of gastrointestinal (GI) function. 5-HT dysfunction may also be involved in the pathophysiology of a number of functional GI disorders, such as chronic constipation, irritable bowel syndrome and functional dyspepsia. This article describes the role of 5-HT in the enteric nervous system (ENS) of the mammalian GI tract and the receptors with which it interacts. Existing serotonergic therapies that have proven effective in the treatment of GI functional disorders and the potential of drugs currently in development are also highlighted. Advances in our understanding of the physiological and pathophysiological roles of 5-HT in the ENS and the identification of selective receptor ligands bodes well for the future development of more efficacious therapies for patients with functional GI disorders.
Collapse
|
5
|
Nagai S, Tsurumaki T, Abe H, Higuchi H. Functional serotonin and histamine receptor subtypes in porcine ciliary artery in comparison with middle cerebral artery. Eur J Pharmacol 2007; 570:159-66. [PMID: 17588559 DOI: 10.1016/j.ejphar.2007.05.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Revised: 05/16/2007] [Accepted: 05/23/2007] [Indexed: 11/21/2022]
Abstract
Functional serotonin (5-HT) and histamine receptor subtypes were investigated in porcine middle cerebral and ciliary arteries. An H(1) antagonist, mepyramine, antagonized histamine-induced responses with pK(B) values of 8.91-9.10. In the presence of 1 muM mepyramine, however, histamine caused dilation through H(2) receptors in the middle cerebral but not in the ciliary artery. A 5-HT(2A) antagonist, ketanserin, antagonized 5-HT-induced responses, causing rightward shifts in the concentration-response curves with pK(B) values of 8.52-8.71. A 5-HT(1B) antagonist, SB224289, produced rightward shifts of the concentration-response curves to sumatriptan with pK(B) values (6.66) only in the middle cerebral artery. In contrast, a 5-HT(1D) antagonist, BRL15572, had no effect in either artery. An RT-PCR study demonstrated the gene expression of the mRNAs of all three receptors (5HT(1B), 5HT(1D) and 5HT(2A)) in both arteries. These results suggest that histamine-induced contraction is mediated only through functional H(1) receptor in these arteries. Interestingly, there are functional 5-HT(2A) and 5-HT(1B) receptor subtypes in the middle cerebral artery, whereas the only functional receptor is 5-HT(2A) in the ciliary artery. The difference may be important for treatment with 5-HT(1B/1D) agonists (e.g. for migraine) without ocular side effect.
Collapse
Affiliation(s)
- Shingo Nagai
- Division of Pharmacology, Department of Molecular Genetics and Signal Transduction Research, Course for Molecular and Cellular Medicine, 1-757 Asahimachi-dori, Niigata 951-8510, Japan
| | | | | | | |
Collapse
|
6
|
Engel L, Kobel B, Ontsouka EC, Graber HU, Blum JW, Steiner A, Meylan M. Distribution of mRNA coding for 5-hydroxytryptamine receptor subtypes in the intestines of healthy dairy cows and dairy cows with cecal dilatation-dislocation. Am J Vet Res 2006; 67:95-101. [PMID: 16426218 DOI: 10.2460/ajvr.67.1.95] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate the distribution of mRNA coding for 7 subtypes of 5-hydroxytryptamine receptors (5-HTRs) in the intestines of healthy dairy cows and dairy cows with cecal dilatation-dislocation (CDD). SAMPLE POPULATION Full-thickness intestinal wall biopsy specimens were obtained from the ileum, cecum, proximal loop of the ascending colon, and external loop of the spiral colon (ELSC) of 15 cows with CDD (group 1) and 15 healthy dairy cows allocated to 2 control groups (specimens collected during routine laparotomy [group 2] or after cows were slaughtered [group 3]). PROCEDURE Amounts of mRNA coding for 7 subtypes of 5-HTRs (5-HT1A, 5-HT1B, 5-HT1D, 5-HT1F, 5-HT2A, 5-HT2B, and 5-HT4) were measured by quantitative real-time reverse transcriptase-PCR assay. Results were expressed as the percentage of mRNA expression of a housekeeping gene. RESULTS Expression of mRNA coding for 5-HTR1B, 5-HTR2B, and 5-HTR4 was significantly lower in cows with CDD than in healthy cows. For 5-HTR2B and 5-HTR4, significant differences between cows with CDD and control cows were most pronounced for the ELSC. Expression of mRNA for 5-HTR1D, 5-HTR1F, and 5-HTR2A was extremely low in all groups, and mRNA for 5-HTR1A was not detected. CONCLUSIONS AND CLINICAL RELEVANCE Relative concentrations of mRNA coding for 5-HTR1B, 5-HT2B, and 5-HTR4 were significantly lower in the intestines of cows with CDD than in the intestines of healthy dairy cows, especially for 5-HT2B and 5-HTR4 in the ELSC. This supports the hypothesis that serotonergic mechanisms, primarily in the spiral colon, are implicated in the pathogenesis of CDD.
Collapse
Affiliation(s)
- Ladina Engel
- Clinic for Ruminants, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Berne, Bremgartenstrasse 109a, PO Box 8466, 3001 Berne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
BACKGROUND The altered motility of the inflamed intestine derives in part from changes to the contractility of the intestinal smooth muscle cell. While modifications to the muscarinic receptor system are identified, changes to 5-hydroxytryptamine (5-HT; serotonin) receptors that also mediate contraction are less well studied. METHODS In the trinitrobenzene sulphonic acid model of rat colitis, we used receptor antagonists to identify changes in receptor utilisation that accompany the selective reversal of the impaired contractile response to acetylcholine (ACh) and 5-HT during colitis (day 4 (D4)) and following resolution of inflammation (day 36 (D36)). RESULTS In isolated circular smooth muscle cells, challenged with ACh, the muscarinic 3 receptor (M3R) antagonists 4-DAMP and pF-HSD each showed a 50% decrease in antagonism on D4 while the M2R antagonist methoctramine more than doubled its potency, showing a decreased role of M3R and an increased role of M2R, respectively. These changes were fully reversed by D36. In contrast, the 5-HT2 receptor (5-HT2R) antagonist ketanserin was sharply decreased in effectiveness on D4, with a further decrease by D36, when the contribution of 5-HT(2A)R was only 22% of control. There were no changes in response to the 5-HT4R antagonist SDZ-205-557 at any time. Western blotting identified decreased expression of 5-HT(2A)R on D36 versus controls, further supporting the conclusion that the persistence of the impaired response to 5-HT was due to decreased expression of the excitatory 5-HT(2A)R. CONCLUSIONS Thus the lasting decrease in receptor expression and resulting impairment of the contractile response will compromise the capacity for an appropriate response to 5-HT, which may contribute to the intestinal dysfunction seen in post-enteritis syndromes.
Collapse
Affiliation(s)
- R W Wells
- Gastrointestinal Diseases Research Unit, Queen's University, Hotel Dieu Hospital, Kingston, Ontario K7L 5G2, Canada
| | | |
Collapse
|
8
|
Meylan M, Georgieva TM, Reist M, Blum JW, Martig J, Georgiev IP, Steiner A. Distribution of mRNA that codes for 5-hydroxytryptamine receptor subtypes in the gastrointestinal tract of dairy cows. Am J Vet Res 2004; 65:1151-8. [PMID: 15334851 DOI: 10.2460/ajvr.2004.65.1151] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To describe the distribution of mRNA that codes for 8 subtypes of 5-hydroxytryptamine receptors (5-HTRs) in the digestive tract of dairy cows. SAMPLE POPULATION Fresh full-thickness wall specimens from the abomasum (fundus, corpus, and antrum), ileum, cecum, proximal loop of ascending colon, and 4 locations of the spiral colon collected from 10 healthy cows at slaughter. PROCEDURE Concentrations of mRNA that code for 5-HTR subtypes (5-HTR1A. 5-HTR1B, 5-HTR1D, 5-HTR1F, 5-HTR2A, 5-HTR2B, 5-HTR2C, and 5-HTR4) in the bovine digestive tract were measured by use of a quantitative real-time reverse transcription-polymerase chain reaction assay. Results were reported in relation to mRNA expression of the housekeeping gene glyceraldehyde phosphate dehydrogenase (GAPDH). RESULTS Mean relative mRNA concentrations for 5-HTR were low (range, 0% to 1.32% of GAPDH), and mRNA that codes for 5-HTR1A was not detected. In the abomasum, mRNA expression was highest for 5-HTR1B and 5-HTR2B, followed by subtypes 1F 2A, 1D, and 4, whereas 5-HTR2C was not detected. In intestinal samples, concentrations of subtypes 1B, 2B, and 4 were highest, followed by 1D, 1F, 2A, and 2C. Relative concentrations of mRNA that code for 5-HTR2A were significantly higher in the abomasum than the intestines, but lower for 5-HTR2B, 5-HTR2C, and 5-HTR4. CONCLUSIONS AND CLINICAL RELEVANCE Relative concentrations of mRNA that code for 5-HTRs differ among locations in the gastrointestinal tract of cattle. Understanding differences in the distribution of 5-HTRs in healthy cattle and cattle with gastrointestinal tract disease may lead to improved therapeutic approaches for abomasal and cecal motility disorders.
Collapse
Affiliation(s)
- Mireille Meylan
- Clinic for Ruminants, Department of Clinical Veterinary Medicine, Vetsuisse Faculty of Berne, Bremgartenstrasse 109a, 3001 Berne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
9
|
Beattie DT, Smith JAM, Marquess D, Vickery RG, Armstrong SR, Pulido-Rios T, McCullough JL, Sandlund C, Richardson C, Mai N, Humphrey PPA. The 5-HT4 receptor agonist, tegaserod, is a potent 5-HT2B receptor antagonist in vitro and in vivo. Br J Pharmacol 2004; 143:549-60. [PMID: 15466450 PMCID: PMC1575425 DOI: 10.1038/sj.bjp.0705929] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
1 Tegaserod (Zelnorm) is a potent 5-hydroxytryptamine4 (5-HT4) receptor agonist with clinical efficacy in disorders associated with reduced gastrointestinal motility and transit. The present study investigated the interaction of tegaserod with 5-HT2 receptors, and compared its potency in this respect to its 5-HT4 receptor agonist activity. 2 Tegaserod had significant binding affinity for human recombinant 5-HT2A, 5-HT2B and 5-HT2C receptors (pKi=7.5, 8.4 and 7.0, respectively). The 5-HT2B receptor-binding affinity of tegaserod was identical to that at human recombinant 5-HT4(c) receptors (mean pKi=8.4) in human embryonic kidney-293 (HEK-293) cells stably transfected with the human 5-HT4(c) receptor. 3 Tegaserod (0.1-3 microm) inhibited 5-HT-mediated contraction of the rat isolated stomach fundus potently (pA2=8.3), consistent with 5-HT(2B) receptor antagonist activity. Tegaserod produced, with similar potency, an elevation of adenosine 3',5' cyclic monophosphate in HEK-293 cells stably transfected with the human 5-HT4(c) receptor (mean pEC50=8.6), as well as 5-HT4) receptor-mediated relaxation of the rat isolated oesophagus (mean pEC50=8.2) and contraction of the guinea-pig isolated colon (mean pEC50=8.3). 4 Following subcutaneous administration, tegaserod (0.3 or 1 mg kg(-1)) inhibited contractions of the stomach fundus in anaesthetized rats in response to intravenous dosing of alpha-methyl 5-HT (0.03 mg kg(-1)) and BW 723C86 (0.3 mg kg(-1)), selective 5-HT2B receptor agonists. At similar doses, tegaserod (1 and 3 mg kg(-1) subcutaneously) evoked a 5-HT4 receptor-mediated increase in colonic transit in conscious guinea-pigs. 5 The data from this study indicate that tegaserod antagonizes 5-HT2B receptors at concentrations similar to those that activate 5-HT4 receptors. It remains to be determined whether this 5-HT2B receptor antagonist activity of tegaserod contributes to its clinical profile.
Collapse
Affiliation(s)
- D T Beattie
- Theravance, Inc., 901 Gateway Boulevard, South San Francisco, CA 94080, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Janssen P, Prins NH, Peeters PJ, Zuideveld KP, Lefebvre RA. 5-HT7 receptor efficacy distribution throughout the canine stomach. Br J Pharmacol 2004; 143:331-42. [PMID: 15339857 PMCID: PMC1575344 DOI: 10.1038/sj.bjp.0705922] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
This study aimed to determine, quantify and explain regional differences in the relaxant response to the selective 5-HT(1) and 5-HT(7) receptor agonist 5-carboxamidotryptamine (5-CT) throughout the canine stomach. Longitudinal muscle strips from eight gastric corpus regions and six antrum regions were mounted for isotonic measurement. The 5-CT-induced relaxation was examined on a prostaglandin F(2alpha)-induced submaximal response, expressed as percentage of this response and fitted to the operational model of agonism (OMOA). 5-HT(7) receptor messenger RNA (mRNA) expression was compared by means of quantitative PCR. 5-CT inhibited PGF(2alpha)-induced tonic contraction (corpus) and increase of phasic contraction amplitude (antrum). The consistent antagonism produced by the selective 5-HT(7) receptor antagonist SB-269970 (10 nm, pA(2) estimates 8.2-8.9) confirmed that in every region, the inhibition by 5-CT was 5-HT(7) receptor mediated. However, variation in the maximum effect (61-108%) and pEC(50) (6.4-8.6) was observed throughout the different regions. The OMOA explained these differences as differences in the efficacy parameter tau (ratio of receptor density and coupling efficiency; log tau estimates ranging from 0.1 to 2.1). The log tau gradient decreases going from the lesser to the greater curvature. A proportional difference (68%) in the relative expression of 5-HT(7) receptor mRNA between the lesser and the greater curvature indicates that differences in receptor density contribute to the observed functional differences. This study illustrates that 5-HT(7) receptors are present throughout the ventral wall of the canine stomach, but the efficacy (expressed as log tau) is clearly greater close to the lesser curvature. Differences in 5-HT(7) receptor expression at least partially explain the functional differences.
Collapse
Affiliation(s)
- Pieter Janssen
- Heymans Institute of Pharmacology, Ghent University, Ghent, Belgium.
| | | | | | | | | |
Collapse
|
11
|
Reist M, Pfaffl MW, Morel C, Meylan M, Hirsbrunner G, Blum JW, Steiner A. Quantitative mRNA analysis of eight bovine 5-HT receptor subtypes in brain, abomasum, and intestine by real-time RT-PCR. J Recept Signal Transduct Res 2004; 23:271-87. [PMID: 14753293 DOI: 10.1081/rrs-120026971] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Serotoninergic pathways are involved in economically important bovine gastrointestinal (GI) motility disorders such as displaced abomasum and cecal dilatation/dislocation. The existing research tools to investigate the role of serotoninergic pathways in such disorders in ruminants comprise functional pharmacological methods, e.g., in vitro contractility studies in tissue baths, and electromyographical recordings in vivo. However, no tools for quantification of bovine serotonin receptor [5-hydroxytryptamine receptor (5-HTR)] expression were available so far. This study aimed to develop real-time RT-PCR assays for quantitative mRNA analysis of bovine 5-HTR subtypes. Because the bovine 5-HTR coding sequences (CDSs) were completely unknown, multiple species (human, mouse, and rat) alignment of complete CDS was used for primer design in highly homologous regions. LightCycler real-time RT-PCR assays (partial CDS) for the following bovine 5-HTR subtypes were developed and validated: 5-HTR1A, 5-HTR1B, 5-HTR1D, 5-HTR1F, 5-HTR2A, 5-HTR2B, 5-HTR2C, and 5-HTR4. Intra- and inter-assay coefficients of variation (CV) for the eight established assays were small, ranging from 0.49% to 2.46%. As a first physiological application, 5-HTR mRNA expression levels were measured in brain, abomasum, and intestine of 10 healthy, lactating dairy cows. The 5-HTR expression was quantified by normalization to the housekeeping gene glyceraldehyde-phosphate-dehydrogenase (GAPDH). The 5-HTR subtype expression levels ranged from 0.001% (5-HTR2C in intestine) to 1% 5-HTR/GAPDH (5-HTR1B and 5-HTR4 in intestine). There were high variations of 5-HTR subtype mRNA expression within tissues across receptor subtypes and within receptor subtypes across tissues. In conclusion, accurate real-time RT-PCR assays for quantitative analysis of bovine 5-HTR subtype gene expression were developed and validated.
Collapse
Affiliation(s)
- Martin Reist
- Department of Clinical Veterinary Medicine, Clinic for Ruminants, Faculty of Veterinary Medicine, University of Berne, Berne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
12
|
Spring C, Mevissen M, Reist M, Zulauf M, Steiner A. Modification of spontaneous contractility of smooth muscle preparations from the bovine abomasal antrum by serotonin receptor agonists. J Vet Pharmacol Ther 2003; 26:377-85. [PMID: 14633191 DOI: 10.1046/j.1365-2885.2003.00500.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effects of serotonin (5-hydroxytryptamine, 5-HT), a 5-HT2-receptor agonist, alpha-methyl-5-hydroxytryptamine (alpha-M-5-HT) and RS-67506, a 5-HT4 receptor partial agonist, on spontaneous contractility of bovine abomasal smooth muscle preparations were investigated in vitro. Preparations from the abomasal antrum of freshly slaughtered healthy dairy cows were cut parallel to the longitudinal fibres, suspended in isolated organ baths, and concentration-response curves were performed by cumulative application of the 5-HT receptor agonists. Blockade of 5-HT2-induced response was tested with atropine and hexamethonium. Serotonin evoked a significant increase in the area under curve (AUC), whilst the 5-HT2 receptor agonist alpha-M-5-HT significantly increased the AUC and resting tone (RT). RS-67506 induced a significant increase in AUC and RT and a significant decrease in the maximum force. The effect of alpha-M-5-HT was mediated by a muscarinic cholinergic pathway, as the effect of alpha-M-5-HT was inhibited in the presence of atropine but not hexamethonium. It is concluded that 5-HT2 and 5-HT4 receptors are present in the bovine abomasal antrum. Muscarinic receptors are involved in the increase in RT seen after 5-HT2 receptor stimulation.
Collapse
Affiliation(s)
- C Spring
- Department of Clinical Veterinary Medicine, Clinic for Ruminants Institute of Veterinary Pharmacology, University of Bern, Bern, Switzerland
| | | | | | | | | |
Collapse
|
13
|
Furukawa K, Nagao K, Ishii N, Uchiyama T. Responses to serotonin (5HT) in isolated corpus cavernosum penis of rabbit. Int J Impot Res 2003; 15:267-71. [PMID: 12934054 DOI: 10.1038/sj.ijir.3901004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2002] [Revised: 01/25/2003] [Accepted: 02/03/2003] [Indexed: 11/09/2022]
Abstract
This study was aimed at determining serotonin (5-hydroxytryptamine: 5HT) receptor subtypes participating in 5HT-induced response in the isolated corpus cavernosum penis (CCP) of rabbits. 5HT contracted the CCP in a concentration-dependent manner. Both WAY100635 (5HT(1A) antagonist) and LY53857 (5HT(2) antagonist) concentration-dependently suppressed the 5HT-induced contraction. The suppression of the 5HT-induced contraction by ketanserin (5HT(2A) antagonist) was weaker than that by LY53857. LY278584 (5HT(3) antagonist) did not affect the 5HT-induced contraction. SDZ205557 (5HT(4) antagonist) showed a tendency to potentiate the 5HT-induced contraction. The above results suggest that 5HT(1A) and 5HT(2) receptor subtypes partially participate in the contractile response to 5HT in rabbit CCP, and the potentiation by SDZ205557 of the 5HT-induced contraction implies the existence of dual contractile and relaxing responses to 5HT via 5HT(1) and 5HT(2), and 5HT(4) receptors, respectively. The relaxing response to 5HT(4) receptor stimulation may be masked by 5HT-induced contraction.
Collapse
Affiliation(s)
- K Furukawa
- Department of Pharmacology, Faculty of Medicine, Toho University, Omori-Nishi, Ota-ku, Tokyo, Japan.
| | | | | | | |
Collapse
|
14
|
Depoortere I, Thijs T, Thielemans L, Peeters TL. Mechanisms involved in the loss of excitatory post-stimulus responses by inflammation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2003; 367:245-52. [PMID: 12644896 DOI: 10.1007/s00210-003-0696-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2002] [Accepted: 01/07/2003] [Indexed: 10/25/2022]
Abstract
AIM Electrical stimulation of colonic muscles elicits a response during the stimulation period, and a transient excitation after the stimulus. Post-stimulus or "rebound" excitation has been linked to pathways involving inhibitory neurotransmitters, prostaglandins and substance P but the mechanism is incompletely understood. Because rabbit colitis is characterized by a loss of inhibitory neurotransmission we hypothesized it might affect the rebound response. Therefore we characterized rebound responses in non-inflamed and inflamed tissue by comparing the effect of antagonists/blockers of putative (nitric oxide [NO], ATP, substance P, prostaglandins) and new (serotonin) neurotransmitters. METHODS Strips from rabbits with colitis induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS) were subjected to electrical field stimulation. Because rebound responses are more prominent under nonadrenergic noncholinergic (NANC) conditions, the effect of specific antagonists (N(omega)-nitro-L-arginine methyl ester (L-NAME), indomethacin, SR140333, methiothepin) on the rebound response was compared under normal and NANC conditions. RESULTS NANC-conditions increased rebound responses in non-inflamed strips, but this effect was reduced or abolished in inflamed strips. Rebound responses were reduced by pretreatment with the NO-synthase inhibitor, L-NAME, under NANC conditions in non-inflamed strips but not affected in inflamed tissue. In contrast, the P(2) purine receptor antagonist, suramin, did not affect rebound responses in inflamed and non-inflamed strips. The effect of the cyclo-oxygenase inhibitor (COX), indomethacin, on rebound responses was reversed from excitatory to inhibitory by inflammation. Under NANC conditions rebound contractions were also reduced by the neurokinin-1 (NK(1)) antagonist, SR140333, both in normal and inflamed strips. The most pronounced reduction in rebound responses in inflamed and non-inflamed strips under normal conditions was observed with the 5-hydroxytryptamin (1,2) (5-HT(1,2)) antagonist, methiothepin. CONCLUSION Rebound responses are mainly non-cholinergic and involve NO, substance P, serotonin and inhibitory prostaglandins. In inflamed tissue the nitrergic pathway is absent, excitatory prostaglandins prevail and the cholinergic and tachykinergic components are relatively more important. However there remains an important serotonergic contribution. Our data suggest that inflammation damages different neural pathways to a different extent and is most selective for nitrergic pathways.
Collapse
Affiliation(s)
- Inge Depoortere
- Department of Pathophysiology, Center for Gastroenterological Research, University of Leuven, Gasthuisberg O and N, 3000 Leuven, Belgium.
| | | | | | | |
Collapse
|
15
|
Janssen P, Prins NH, Meulemans AL, Lefebvre RA. Smooth muscle 5-HT2A receptors mediating contraction of porcine isolated proximal stomach strips. Br J Pharmacol 2002; 137:1217-24. [PMID: 12466231 PMCID: PMC1573616 DOI: 10.1038/sj.bjp.0704992] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. The aim of this study was to characterize the 5-HT receptors involved in the 5-HT-induced contraction of longitudinal muscle (LM) strips of porcine proximal stomach. This was done in a classical organ bath set-up for isotonic measurement. 2. The concentration-contraction curve to 5-HT was not modified by 5-HT(3) and 5-HT(4) receptor antagonism. Methysergide, ketanserin and mesulergine antagonized the curve to 5-HT. Concomitantly, increasing concentrations of ketanserin and mesulergine progressively revealed a biphasic nature of the 5-HT curve. Ketanserin antagonized the low-affinity receptor while it did not modify the high-affinity receptor. 3. Tetrodotoxin did not influence the concentration-contraction curve to 5-HT neither in the absence nor presence of ketanserin, indicating that nerves are not involved. 4. Ketanserin competitively antagonized the monophasic concentration-response curve to alpha-Methyl-5-HT, yielding a Schild slope that was not significantly different from unity. After constraining the Schild slope to unity, a pK(B) estimate of 8.23+/-0.90 was obtained. This affinity estimate of ketanserin closely approximates previously reported affinities at 5-HT(2A) receptors. 5. In the presence of ketanserin (0.1 microM; exposing the high-affinity receptor), a wide range of 5-HT receptor antagonists covering all 5-HT receptors known, was tested. Only methysergide and ritanserin inhibited the response to 5-HT, thus expressing affinity for the high-affinity receptor. This did not reveal the identity of the receptor involved. 6 It can be concluded that 5-HT induces pig proximal stomach (LM) contraction via 5-HT(2A) receptors located on smooth muscle. A ketanserin-insensitive phase of contractions could not be characterized between the actually known classes of 5-HT receptors with the pharmacological tools that were used.
Collapse
Affiliation(s)
- P Janssen
- Heymans Institute of Pharmacology, Ghent University, Ghent, Belgium
- Johnson and Johnson Pharmaceutical Research and Development, Beerse, Belgium
- Author for correspondence:
| | - N H Prins
- Johnson and Johnson Pharmaceutical Research and Development, Beerse, Belgium
| | - A L Meulemans
- Johnson and Johnson Pharmaceutical Research and Development, Beerse, Belgium
| | - R A Lefebvre
- Heymans Institute of Pharmacology, Ghent University, Ghent, Belgium
| |
Collapse
|
16
|
Fiorica-Howells E, Hen R, Gingrich J, Li Z, Gershon MD. 5-HT(2A) receptors: location and functional analysis in intestines of wild-type and 5-HT(2A) knockout mice. Am J Physiol Gastrointest Liver Physiol 2002; 282:G877-93. [PMID: 11960784 DOI: 10.1152/ajpgi.00435.2001] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The distribution and function of the 5-hydroxytryptamine (5-HT(2A)) receptor were investigated in the intestines of wild-type (5-HT(2A) +/+) and knockout (5-HT(2A) -/-) mice. In 5-HT(2A) +/+ mice, rats, and guinea pigs, 5-HT(2A) receptor immunoreactivity was found on circular and longitudinal smooth muscle cells, neurons, enterocytes, and Paneth cells. Muscular 5-HT(2A) receptors were concentrated in caveolae; neuronal 5-HT(2A) receptors were found intracellularly and on the plasma membranes of nerve cell bodies and axons. Neuronal 5-HT(2A) immunoreactivity was detected as early as E14 in ganglia, intravillus nerves, and the deep muscle plexus. The 5-HT(2A) -/- colon did not express 5-HT(2A) receptors and did not contract in response to exogenous 5-HT. 5-HT(2A) -/- enterocytes were smaller, Paneth cells fewer, and muscle layers thinner (and showed degeneration) compared with those of 5-HT(2A) +/+ littermates. The 5-HT(2A) receptor may thus be required for the maintenance and/or development of enteric neuroeffectors and other enteric functions, although gastrointestinal and colonic transit times in 5-HT(2A) -/- and +/+ mice did not differ significantly.
Collapse
MESH Headings
- Animals
- Enterocytes/chemistry
- Enterocytes/pathology
- Enterocytes/ultrastructure
- Female
- Fetus/cytology
- Gastric Emptying/physiology
- Gastrointestinal Motility/physiology
- Immunohistochemistry
- Intestines/chemistry
- Intestines/innervation
- Intestines/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Immunoelectron
- Muscle, Smooth/chemistry
- Muscle, Smooth/innervation
- Muscle, Smooth/pathology
- Myenteric Plexus/chemistry
- Myenteric Plexus/ultrastructure
- Paneth Cells/chemistry
- Paneth Cells/pathology
- Rats
- Rats, Sprague-Dawley
- Receptor, Serotonin, 5-HT2A
- Receptors, Serotonin/analysis
- Receptors, Serotonin/genetics
- Receptors, Serotonin/metabolism
Collapse
Affiliation(s)
- Elena Fiorica-Howells
- Department of Anatomy and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA.
| | | | | | | | | |
Collapse
|
17
|
Janssen P, Prins NH, Meulemans AL, Lefebvre RA. Pharmacological characterization of the 5-HT receptors mediating contraction and relaxation of canine isolated proximal stomach smooth muscle. Br J Pharmacol 2002; 136:321-9. [PMID: 12010782 PMCID: PMC1573351 DOI: 10.1038/sj.bjp.0704716] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. We aimed to characterize 5-HT receptors mediating contraction and relaxation to 5-HT in dog proximal stomach longitudinal muscle (LM) strips. 2. Of the tryptamine analogues tested, 5-HT was the most potent contractile agent at basal length, while 5-CT was the most potent relaxant of PGF(2alpha)-induced contraction. Neither the contractions to 5-HT, nor the relaxations to 5-CT were influenced by tetrodotoxin, illustrating that action potential propagation is not involved. 3. The 5-HT-induced contraction was antagonized by mesulergine (0.03 to 0.3 microM) and ketanserin (2 - 20 nM), but the antagonism was not of a simple competitive nature, indicating multiple receptor involvement. Ketanserin (3 to 30 nM) and mesulergine (30 nM) competitively antagonized the alpha-Me-5-HT-induced contraction (pK(B): 8.83+/-0.09 and pA(2): 8.25+/-0.06 respectively). These affinity values are in line with literature affinities of ketanserin and mesulergine at 5-HT(2A) receptors in various bioassays. 4. The 5-CT-induced inhibition of PGF(2alpha)-induced contraction was competitively antagonized by mesulergine (pK(B) estimate: 8.52+/-0.12) and by the selective 5-HT(7) receptor antagonist SB-269970 (pK(B) estimate: 9.36+/-0.14). Both pK(B) estimates are in line with literature affinities of these compounds for 5-HT(7) receptors. Mesulergine (30 nM) and SB-269970 (10 nM) shifted the relaxant curve to 5-HT parallel to the right in the presence of ketanserin (0.3 microM) (pA(2) estimates of 8.08+/-0.10 and 8.75+/-0.14 respectively), indicative of 5-HT(7) receptor involvement. 5. It is concluded that 5-HT induces dog proximal stomach (LM) contraction via smooth muscle 5-HT(2A) receptors and relaxation via smooth muscle 5-HT(7) receptors.
Collapse
Affiliation(s)
- P Janssen
- Heymans Institute of Pharmacology, Ghent University, Gent, Belgium.
| | | | | | | |
Collapse
|
18
|
Depoortere I, Thijs T, Peeters TL. Generalized loss of inhibitory innervation reverses serotonergic inhibition into excitation in a rabbit model of TNBS-colitis. Br J Pharmacol 2002; 135:2011-9. [PMID: 11959805 PMCID: PMC1573313 DOI: 10.1038/sj.bjp.0704648] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
1. Inflammation may affect subpopulations of neurons of the myenteric plexus. 2. In the present study the effect of trinitrobenzene sulphonic acid (TNBS) induced colitis on nitrergic, purinergic and adrenergic inhibitory neurotransmission was studied as well as the consequences of the related changes on the response of 5-HT agonists using these neurotransmitters to mediate their effect. 3. Strips from normal and colitis rabbits (135 mg kg(-1) TNBS) were subjected to electrical field stimulation (EFS, 0.3 ms, 6V, 0.5 - 32 Hz, 10 s train). The response was measured isometrically in the absence or presence of L-NAME, suramin, guanethidine, the 5-HT agonists (5-HT(1/5A/7): 5-carboxamidotryptamine (5-CT), 5-HT(2): alpha-methyl-5-HT, 5-HT(3): 2-methyl-5-HT, 5-HT(4): 5-methoxytryptamine (5-MeOT)) or a combination. 4. In normal strips L-NAME (1 - 32 Hz), suramin (0.5 - 2, 8 Hz) and guanethidine (4, 16, 32 Hz) increased the response to EFS. This effect was abolished in inflamed strips and was accompanied by a decrease in nNOS expression. 5. In normal strips all 5-HT agonists induced pronounced (5-CT, alpha-methyl-5-HT) or small (2-methyl-5-HT, 5-MeOT) inhibitory neural responses. In inflamed strips this was reversed to cholinergic excitatory responses. 6. The effect of inflammation on the 5-HT(4) response was mimicked by preincubation of normal strips with L-NAME or suramin. Accordingly, in inflamed strips L-NAME or suramin did not affect the excitatory effects of 5-MeOT. 7. TNBS-colitis abolishes nitrergic, purinergic and adrenergic neurotransmission. This reverses serotonergic inhibition into excitation.
Collapse
Affiliation(s)
- Inge Depoortere
- Centre for Gastroenterological Research, Department of Pathophysiology, University of Leuven, B-3000 Leuven, Belgium.
| | | | | |
Collapse
|
19
|
Borman RA, Tilford NS, Harmer DW, Day N, Ellis ES, Sheldrick RLG, Carey J, Coleman RA, Baxter GS. 5-HT(2B) receptors play a key role in mediating the excitatory effects of 5-HT in human colon in vitro. Br J Pharmacol 2002; 135:1144-51. [PMID: 11877320 PMCID: PMC1573235 DOI: 10.1038/sj.bjp.0704571] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. 5-Hydroxytryptamine (5-HT) is known to produce a number of different effects in the gastrointestinal tract of various species, and has been proposed to play a key role in a number of intestinal disorders in man, including irritable bowel syndrome (IBS), although the receptors involved have yet to be established. The aim of the present study was to investigate the distribution and function of 5-HT(2B) receptors in human colon, and to establish their possible role in the aetiology of IBS. 2. The distribution of 5-HT(2B) receptor mRNA and protein were investigated by quantitative RT - PCR, Western analysis and immunocytochemistry. High levels of both mRNA and protein for 5-HT(2B) receptors were found throughout the human gastrointestinal tract, and in particular in colon, where 5-HT(2B) receptors were found predominantly in the longitudinal and circular smooth muscle layers within the muscularis externa, and in the myenteric nerve plexus lying between these two layers. 3. Electrical field stimulation of longitudinal muscle preparations of human colon mounted in organ baths resulted in neuronally-mediated contractile responses, that were significantly potentiated by application of 5-HT (up to 10(-7) M), with a pEC(50) of 8.2 +/- 0.1 (n=49 donors). The response to 5-HT was inhibited by a number of selective 5-HT(2B) receptor antagonists. 4. This study has shown for the first time that, in contrast to animal studies, the excitatory effects of 5-HT in human colon are mediated by 5-HT(2B) receptors. It is proposed that these receptors contribute to the putative 5-HT-induced colonic smooth muscle hypersensitivity associated with IBS.
Collapse
MESH Headings
- Colon/drug effects
- Colon/metabolism
- Colon/physiology
- Colonic Diseases, Functional/metabolism
- Colonic Diseases, Functional/physiopathology
- Electric Stimulation
- Gastrointestinal Motility/drug effects
- Gastrointestinal Motility/physiology
- Gene Expression/physiology
- Humans
- In Vitro Techniques
- Muscle Contraction/drug effects
- Muscle, Smooth/drug effects
- Muscle, Smooth/physiology
- RNA, Messenger/analysis
- Receptor, Serotonin, 5-HT2B
- Receptors, Serotonin/genetics
- Receptors, Serotonin/metabolism
- Receptors, Serotonin/physiology
- Serotonin/pharmacology
- Serotonin Antagonists/pharmacology
- Serotonin Receptor Agonists/pharmacology
Collapse
Affiliation(s)
- R A Borman
- Pharmagene Laboratories Ltd., Orchard Road, Royston, Hertfordshire, SG8 5HD, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Prins NH, Akkermans LM, Lefebvre RA, Schuurkes JA. Characterization of the receptors involved in the 5-HT-induced excitation of canine antral longitudinal muscle. Br J Pharmacol 2001; 134:1351-9. [PMID: 11704657 PMCID: PMC1573064 DOI: 10.1038/sj.bjp.0704376] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
1. We aimed to characterize the 5-HT receptors involved in the 5-HT-induced effect on electrically induced contractions of dog antrum longitudinal muscle in vitro. 2. In the presence of L-NOARG (0.1 mM), electrical field stimulation (EFS) induced atropine- and tetrodotoxin-sensitive contractions. Tetrodotoxin or atropine left any agonist tested ineffective. These EFS-induced contractions were on average enhanced by 5-HT (0.3 microM), however, pronounced variation in the response to 5-HT was observed. There were non-significant trends of the selective 5-HT3 receptor antagonist granisetron (1 microM), and methysergide (1 microM; preventing interactions of 5-HT with 5-HT1, 5-HT2, 5-ht5, 5-HT6 and 5-HT7 receptors) to increase the response to 5-HT. The selective 5-HT4 receptor antagonist GR 113808 (0.1 microM) displayed a non-significant trend to inhibit the 5-HT-induced increase. 3. Combination experiments with methysergide (1 microM), granisetron (1 microM) and GR 113808 (0.1 microM) revealed that the 5-HT (0.3 microM)-induced response consisted of (1) an excitatory component blocked by GR 113808, (2) excitatory and inhibitory components both blocked by methysergide. 4. The selective 5-HT4 receptor agonist prucalopride (0.3 microM) increased EFS-induced contractions, an effect prevented by GR 113808 (0.1 microM). 5. The increase of EFS-induced contractions by the preferential 5-HT2 receptor agonist alpha-Me-5-HT (0.3 microM) was antagonized by 5-HT2B receptor antagonists. 6. The 5-HT1/5-HT7 receptor agonist 5-carboxamidotryptamine (5-CT; 0.3 microM) inhibited EFS-induced contractions. This was prevented by methysergide (1 microM), the 5-HT7 receptor antagonist mesulergine (0.3 microM) and the selective 5-HT7 receptor antagonist SB-269970 (0.3 microM). 7. In the presence of GR 113808 (0.1 microM), alpha-Me-5-HT (1 microM) increased EFS-induced contractions. The 5-HT (0.3 microM)-induced inhibition of the stimulation by alpha-Me-5-HT was prevented by SB-269970 (0.3 microM). 8. In conclusion, dog antral longitudinal muscle is endowed with (1) excitatory neuronal 5-HT4 receptors and 5-HT2B receptors and (2) inhibitory smooth muscle 5-HT7 receptors.
Collapse
Affiliation(s)
- N H Prins
- Department of Gastrointestinal Pharmacology, Janssen Research Foundation, Beerse, Belgium.
| | | | | | | |
Collapse
|
21
|
Briejer MR, Bosmans JP, Van Daele P, Jurzak M, Heylen L, Leysen JE, Prins NH, Schuurkes JA. The in vitro pharmacological profile of prucalopride, a novel enterokinetic compound. Eur J Pharmacol 2001; 423:71-83. [PMID: 11438309 DOI: 10.1016/s0014-2999(01)01087-1] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prucalopride is a novel enterokinetic compound and is the first representative of the benzofuran class. We set out to establish its pharmacological profile in various receptor binding and organ bath experiments. Receptor binding data have demonstrated prucalopride's high affinity to both investigated 5-HT(4) receptor isoforms, with mean pK(i) estimates of 8.60 and 8.10 for the human 5-HT(4a) and 5-HT(4b) receptor, respectively. From the 50 other binding assays investigated in this study only the human D(4) receptor (pK(i) 5.63), the mouse 5-HT(3) receptor (pK(i) 5.41) and the human sigma(1) (pK(i) 5.43) have shown measurable affinity, resulting in at least 290-fold selectivity for the 5-HT(4) receptor. Classical organ bath experiments were done using isolated tissues from the rat, guinea-pig and dog gastrointestinal tract, using various protocols. Prucalopride was a 5-HT(4) receptor agonist in the guinea-pig colon, as it induced contractions (pEC(50)=7.48+/-0.06; insensitive to a 5-HT(2A) or 5-HT(3) receptor antagonist, but inhibited by a 5-HT(4) receptor antagonist) as well as the facilitation of electrical stimulation-induced noncholinergic contractions (blocked by a 5-HT(4) receptor antagonist). Furthermore, it caused relaxation of a rat oesophagus preparation (pEC(50)=7.81+/-0.17), in a 5-HT(4) receptor antagonist sensitive manner. Prucalopride did not cause relevant inhibition of 5-HT(2A), 5-HT(2B), or 5-HT(3), motilin or cholecystokinin (CCK(1)) receptor-mediated contractions, nor nicotinic or muscarinic acetylcholine receptor-mediated contractions, up to 10 microM. It is concluded that prucalopride is a potent, selective and specific 5-HT(4) receptor agonist. As it is intended for treatment of intestinal motility disorders, it is important to note that prucalopride is devoid of anti-cholinergic, anticholinesterase or nonspecific inhibitory activity and does not antagonise 5-HT(2A), 5-HT(2B) and 5-HT(3) receptors or motilin or CCK(1) receptors.
Collapse
Affiliation(s)
- M R Briejer
- Department of Gastrointestinal Pharmacology, Janssen Research Foundation, Turnhoutseweg 30, 2340 Beerse, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Nieto JE, Snyder JR, Kollias-Baker C, Stanley S. In vitro effects of 5-hydroxytryptamine and cisapride on the circular smooth muscle of the jejunum of horses. Am J Vet Res 2000; 61:1561-5. [PMID: 11131599 DOI: 10.2460/ajvr.2000.61.1561] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine effects of cisapride and 5-hydroxytryptamine (5-HT) on the jejunum of horses. SAMPLE POPULATION Jejunal muscle strips from 8 horses. PROCEDURE Muscle strips were suspended in isolated muscle baths. Isometric stress responses to 5-HT and cisapride, with and without specific antagonists, were determined. RESULTS Muscle strips incubated with atropine and tetrodotoxin responded to 5-HT and cisapride with an increase in contractile force. The 5-HT caused a concentration-dependent increase in contractile amplitude, with a maximum response (Emax) of 1,151+/-214 g/cm2 and a molar concentration that induces contractile force equal to 50% of maximum response (EC50) of 0.028+/-0.002 microM. Prior incubation with the 5-HT2 antagonist ketanserin decreased the Emax (626 +/-147 g/cm2) and potency (EC50, 0.307+/-0.105 microM) of 5-HT Prior incubation with the 5-HT3 antagonist tropisetron decreased the efficacy (Emax, 894+/-184 g/cm2) to 5-HT Cisapride also caused a concentration-dependent increase in contractile amplitude, with an Emax of 331+/-82 g/cm2 and an EC50 of 0.302+/-0.122 microM. Prior incubation with ketanserin decreased the Emax (55+/-17 g/cm2) and potency (EC50, 0.520+/-0.274 microM) of cisapride. CONCLUSION AND CLINICAL RELEVANCE Stimulatory effects of 5-HT and cisapride on circular smooth muscle of equine jejunum are mediated primarily through a noncholinergic effect. The effects of 5-HT are mediated, at least partially, by 5-HT2 and 5-HT3 receptors, whereas the effects of cisapride are mediated primarily by 5-HT2 receptors. This may impact treatment of horses with postoperative ileus.
Collapse
Affiliation(s)
- J E Nieto
- Department of Veterinary Surgical and Radiological Sciences, University of California, Davis 95616, USA
| | | | | | | |
Collapse
|
24
|
McHale NG, Thornbury KD, Hollywood MA. 5-HT inhibits spontaneous contractility of isolated sheep mesenteric lymphatics via activation of 5-HT(4) receptors. Microvasc Res 2000; 60:261-8. [PMID: 11078642 DOI: 10.1006/mvre.2000.2275] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Spontaneous isometric contractions were measured in rings of sheep mesenteric lymphatic vessels in vitro. 5-Hydroxytryptamine (5-HT) produced a concentration-dependent decrease in spontaneous contraction frequency and force which was not antagonised by either the nonspecific 5-HT(1)/5-HT(2) receptor antagonist methysergide (1 microM) or the 5-HT(3) receptor antagonist ondansetron (1 microM). The 5-HT(4) receptor agonist BIMU-8 mimicked the inhibitory effect of 5-HT and its effects were abolished by the 5-HT(4) receptor antagonist DAU 6285 (1 microM). DAU-6285 also abolished the inhibitory effect of 5-HT and unmasked a weak excitatory response, which was mimicked by the 5-HT(2) receptor agonist alpha-methyl-5-hydroxytryptamine maleate. This excitatory response was, in turn, blocked by the 5-HT(2) receptor antagonist pirenperone (1 microM). The results of this study suggest that sheep mesenteric lymphatics possess both 5-HT(4) receptors and 5-HT(2) receptors. The inhibitory 5-HT(4) receptor appeared to be the predominant subtype since the excitatory response to 5-HT could only be observed in the presence of the 5-HT(4) receptor antagonist DAU 6285.
Collapse
Affiliation(s)
- N G McHale
- Smooth Muscle Group, Department of Physiology, Queen's University, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland
| | | | | |
Collapse
|
25
|
Asghar AU, Wheeldon A, Coleman RA, Bountra C, McQueen DS. Hoe 140 and pseudo-irreversible antagonism in the rat vas deferens in vitro. Eur J Pharmacol 2000; 398:131-8. [PMID: 10856457 DOI: 10.1016/s0014-2999(00)00281-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of bradykinin and the bradykinin B(2) receptor antagonists D-Arg-[Hyp(3),Thi(5,8),D-Phe(7)]-bradykinin (NPC 349) and D-Arg-[Hyp(3),Thi(5),D-Tic(7),Oic(8)]-bradykinin (Hoe 140) were examined in the electrically-stimulated rat vas deferens. Cumulative additions of bradykinin (1-3000 nM) produced two distinct responses: an enhancement in the magnitude of the basal electrically-induced twitch response (neurogenic response) and an increase in the baseline tension (musculotropic response). NPC 349 (10-100 microM) produced concentration-dependent surmountable rightward shifts of both the bradykinin neurogenic and musculotropic response curves. In contrast, while Hoe 140 (10-100 nM) caused an apparently surmountable antagonism of the bradykinin neurogenic response, it caused an apparent insurmountable antagonism of the bradykinin musculotropic response. Interestingly, co-incubation of Hoe 140 (30 nM) with NPC 349 (30 and 100 microM) resulted in a concentration-related upwards displacement of the Hoe 140-suppressed bradykinin musculotropic response curve. Thus, Hoe 140 can be described as a pseudo-irreversible antagonist against the bradykinin musculotropic response. No time-dependent changes were observed in the maximum bradykinin musculotropic response attainable when NPC 349 (100 microM) additions were made for the final 2 or 18 min of the Hoe 140 incubation (20 min). These findings indicate that slow reversibility of Hoe 140 from the bradykinin B(2) receptor is unlikely to be the mechanism responsible for the pseudo-irreversible antagonism of the bradykinin-induced musculotropic response. Instead, we propose an alternative explanation involving a third, unstable and inactive form of the bradykinin B(2) receptor.
Collapse
Affiliation(s)
- A U Asghar
- Laboratory of Sensory Pharmacology, Department of Neuroscience, University of Edinburgh Medical School, 1 George Square, EH8 9JZ, Edinburgh,
| | | | | | | | | |
Collapse
|
26
|
Knowles ID, Ramage AG. Evidence that activation of central 5-HT(2B) receptors causes renal sympathoexcitation in anaesthetized rats. Br J Pharmacol 2000; 129:177-83. [PMID: 10694218 PMCID: PMC1621132 DOI: 10.1038/sj.bjp.0703011] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The effects of injections i.c.v. of alpha-methyl-5-(2-thienylmethoxy)-1H-indole-3-ethanamine (BW723C86; 0.02 - 2 micromol kg(-1)), a 5-HT(2B) receptor agonist, on renal sympathetic and phrenic nerve activity, mean arterial blood pressure and heart rate were investigated in alpha-chloralose anaesthetized rats pretreated with a peripherally acting 5-HT(2) receptor antagonist. BW723C86 i.c.v. caused a dose-related increase in renal nerve activity reaching a maximum of 67+/-6%, which at the highest dose was associated with a small and maintained fall in mean arterial blood pressure of 7+/-3 mmHg. These changes were not associated with any significant changes in heart rate or phrenic nerve activity. BW723C86-evoked increases in renal nerve activity and hypotension were attenuated by pretreatment (i.c.v.) with SB204741 (300 nmol kg(-1); a 5-HT(2B) receptor antagonist) but not by the same dose (i.c.v.) of ketanserin (a 5-HT(2A) receptor antagonist) or RS102221 (a 5-HT(2C) receptor antagonist). None of these antagonists alone had any effect on the variables being measured. It is concluded that central 5-HT(2B) receptors may play a selective role in the control of sympathetic supply to the kidney, which could be important in the central mechanisms involved in blood volume regulation. British Journal of Pharmacology (2000) 129, 177 - 183
Collapse
Affiliation(s)
- I D Knowles
- Department of Pharmacology, University College London, Royal Free Campus, Rowland Hill Street, Hampstead, London, UK
| | | |
Collapse
|
27
|
Yamamoto I, Kuwahara A, Fujimura M, Kadowaki M, Fujimiya M. Involvement of 5-HT3 and 5-HT4 receptors in the motor activity of isolated vascularly perfused rat duodenum. Neurogastroenterol Motil 1999; 11:457-65. [PMID: 10583853 DOI: 10.1046/j.1365-2982.1999.00173.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The involvement of serotonin (5-HT) receptor subtypes in motor activity of the ex vivo vascularly perfused rat duodenum was investigated. Clusters of phasic contractions (CPCs), migrating in an oral to anal direction, were obtained without any stimulation. Drug effects were evaluated by changes in different components of the pressure waves, such as motor index (MI), frequency, amplitude and duration of the CPC. The effect of 5-HT depletion on motor activity was examined in animals treated with p-chlorophenylalanine (PCPA). The MI, frequency and duration of CPC were decreased by PCPA, but the amplitude was not affected, suggesting that endogenous 5-HT may play an important role in regulation of the motor activity of the rat intestine. The importance of the 5-HT receptor subtypes in the regulation of motor activity was examined. Neither the nonselective 5-HT1 and 5-HT2 receptor antagonist, methysergide, nor the 5-HT2 receptor antagonist, ketanserin, affected motor activity. However, the 5-HT3 receptor antagonists, granisetron and azasetron, decreased percentage MI, frequency, percentage amplitude and percentage duration of CPC. The 5-HT4 receptor antagonist, SB204070, exerted both excitatory and inhibitory actions, with a higher dose (10 nM) stimulating percentage MI, frequency, percentage amplitude and percentage duration, and a lower dose (0.1 nM or 1 nM) decreasing percentage MI and percentage duration of CPC. These results suggest that endogenous 5-HT regulates the motor activity of the rat duodenum through 5-HT3 and 5-HT4 receptors, with the former mediating the stimulatory influence and the latter mediating both stimulatory and inhibitory influences.
Collapse
MESH Headings
- Animals
- Duodenum/blood supply
- Duodenum/drug effects
- Duodenum/physiology
- Fenclonine/pharmacology
- In Vitro Techniques
- Male
- Manometry
- Muscle, Smooth/blood supply
- Muscle, Smooth/drug effects
- Muscle, Smooth/physiology
- Perfusion
- Peristalsis/drug effects
- Peristalsis/physiology
- Rats
- Rats, Wistar
- Receptors, Serotonin/drug effects
- Receptors, Serotonin/physiology
- Receptors, Serotonin, 5-HT3
- Receptors, Serotonin, 5-HT4
- Regional Blood Flow/drug effects
- Regional Blood Flow/physiology
- Serotonin Agents/pharmacology
- Serotonin Antagonists/pharmacology
Collapse
Affiliation(s)
- I Yamamoto
- Department of 2nd Surgery, Shiga University of Medical Science, Seta, Otsu, Shiga, 520-2192, Japan
| | | | | | | | | |
Collapse
|
28
|
Knowles ID, Ramage AG. Evidence for a role for central 5-HT2B as well as 5-HT2A receptors in cardiovascular regulation in anaesthetized rats. Br J Pharmacol 1999; 128:530-42. [PMID: 10516629 PMCID: PMC1571665 DOI: 10.1038/sj.bjp.0702822] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/1999] [Revised: 06/23/1999] [Accepted: 07/09/1999] [Indexed: 11/09/2022] Open
Abstract
1. The effects of injections i.c.v. of quipazine, (2 micromol kg-1) and 1-(2,5-di-methoxy-4-iodophenyl)-2-aminopropane (DOI; 2 micromol kg-1) on renal sympathetic and phrenic nerve activity, mean arterial blood pressure (MAP) and heart rate were investigated in alpha-chloralose anaesthetized rats pretreated with a peripherally acting 5-HT2 receptor antagonist. 2. Quipazine or DOI caused a rise in MAP which was associated with a tachycardia and renal sympathoinhibition in rats pretreated (i.c.v.) with the antagonist vehicle 10% PEG. These effects of quipazine were completely blocked by pretreatment with cinanserin (a 5-HT2 receptor antagonist) and attenuated by spiperone (a 5-HT2A receptor antagonist). However, pretreatment with SB200646A (a 5-HT2B/2C receptor antagonist) only blocked the sympathoinhibition, while pretreatment with SB204741 (a 5-HT2B receptor antagonist) reversed the sympathoinhibition to excitation as it also did for DOI. Quipazine also caused renal sympathoexcitation in the presence (i.v.) of a vasopressin V1 receptor antagonist. 3. Injection (i.v.) of the V1 receptor antagonist at the peak pressor response evoked by quipazine alone and in the presence of SB204741 caused an immediate fall in MAP. For quipazine alone the renal sympathoinhibition was slowly reversed to an excitation, while the renal sympathoexcitation observed in the presence of SB204741 was potentiated. In both, the quipazine-evoked tachycardia was unaffected. 4. The data indicate that cardiovascular responses caused by i.c.v. quipazine and DOI are primarily due to activation of central 5-HT2A receptors, which causes the release of vasopressin and a tachycardia. This released vasopressin appears to suppress a 5-HT2A receptor-evoked central increase in sympathetic outflow, which involves the activation of central 5-HT2B receptors indirectly by the released vasopressin.
Collapse
Affiliation(s)
- Ian D Knowles
- Department of Pharmacology, University College London, Royal Free Campus, Rowland Hill Street, Hampstead, London NW3 2PF
| | - Andrew G Ramage
- Department of Pharmacology, University College London, Royal Free Campus, Rowland Hill Street, Hampstead, London NW3 2PF
| |
Collapse
|
29
|
Prins NH, Van Haselen JF, Lefebvre RA, Briejer MR, Akkermans LM, Schuurkes JA. Pharmacological characterization of 5-HT4 receptors mediating relaxation of canine isolated rectum circular smooth muscle. Br J Pharmacol 1999; 127:1431-7. [PMID: 10455293 PMCID: PMC1760667 DOI: 10.1038/sj.bjp.0702665] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
This study aimed to characterize for the first time in vitro 5-HT4 receptors in the canine gastrointestinal tract. For this purpose, we used circular muscle strips of the canine isolated rectum. In the presence of methysergide (60 microM), 5-HT induced relaxation of methacholine (1 microM)-precontracted muscle strips, yielding a monophasic sigmoidal concentration-relaxation curve (pEC50 7.2+/-0.07). Tetrodotoxin (0.3 microM) did not affect the curve to 5-HT, suggesting the inhibitory 5-HT receptor is located on the smooth muscle. Granisetron (0.3 microM) did also not affect the curve to 5-HT, which excludes the 5-HT3 receptor mediating the relaxation to 5-HT. The presence of methysergide rules out the involvement of 5-HT1, 5-HT2 or 5-HT7 receptors. 5-HT, the selective 5-HT4 receptor agonists R076186, prucalopride (R093877) and SDZ HTF-919 and the 5-HT4 receptor agonists cisapride and 5-MeOT relaxed the muscle strips with a rank order of potency R076186 = 5-HT > cisapride > prucalopride > or = SDZ HTF-919 > 5-MeOT. The selective 5-HT4 receptor antagonists GR 125487, RS 39604 and GR 113808 competitively antagonized the relaxations to 5-HT, yielding pK(B) estimates of 9.7, 7.9 and 9.1, respectively. The selective 5-HT4 receptor antagonist SB 204070 shifted the curve to 5-HT rightward and depressed the maximal response (apparent pA2 10.6). GR 113808 (10 nM) produced a parallel rightward shift of the curve to the selective 5-HT4 receptor agonists R076186 (pA2 8.8). It is concluded that 5-HT induces relaxation of the canine rectum circular muscle through stimulation of a single population of smooth muscle 5-HT4 receptors. For the first time, a nonhuman species was shown to exhibit relaxant 5-HT4 receptors in the large intestine.
Collapse
Affiliation(s)
- N H Prins
- Department of Gastrointestinal Pharmacology, Janssen Research Foundation, Beerse, Belgium
| | | | | | | | | | | |
Collapse
|
30
|
Bouras EP, Camilleri M, Burton DD, McKinzie S. Selective stimulation of colonic transit by the benzofuran 5HT4 agonist, prucalopride, in healthy humans. Gut 1999; 44:682-6. [PMID: 10205205 PMCID: PMC1727485 DOI: 10.1136/gut.44.5.682] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Prucalopride (R093877) is a selective and specific 5HT4 agonist, the first of a new chemical class of benzofurans, with gastrointestinal prokinetic activities in vitro. AIMS To evaluate the effects of prucalopride on gastrointestinal and colonic transit. METHODS A validated scintigraphic technique was used to measure gastrointestinal and colonic transit over 48 hours in 50 healthy volunteers. For seven days, each subject received a daily dose of 0. 5, 1, 2, or 4 mg prucalopride, or placebo in a double blind, randomised fashion. The transit test was performed over the last 48 hours. RESULTS There were significant accelerations of overall colonic transit at 4, 8, 24, and 48 hours (p<0.05) and proximal colonic emptying t1/2 (p<0.05). The 0.5, 2, and 4 mg doses of prucalopride were almost equally effective and accelerated colonic transit compared with placebo. Prucalopride did not significantly alter gastric emptying (p>0.5) or small bowel transit (overall p=0. 12). The medication appeared to be well tolerated during the seven day treatment of healthy subjects. CONCLUSION Prucalopride accelerates colonic transit, partly by stimulating proximal colonic emptying, but does not alter gastric or small bowel transit in healthy human subjects. Prucalopride deserves further study in patients with constipation.
Collapse
Affiliation(s)
- E P Bouras
- Gastroenterology Research Unit, Mayo Clinic and Mayo Foundation, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
31
|
Briejer MR, Schuurkes JA, Sarna SK. Idiopathic constipation: too few stools and too little knowledge. Trends Pharmacol Sci 1999; 20:1-3. [PMID: 10101952 DOI: 10.1016/s0165-6147(98)01278-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The precise abnormalities of colonic motility patterns in idiopathic constipation, and the alterations at the cellular, neural, myogenic and biochemical levels that underlie these patterns, are not yet understood. One promising approach in the treatment of constipation seems to be to design drugs that can stimulate GMCs to produce mass movements and consequently defaecation. This could possibly be achieved with the selective 5-HT4 receptor agonists prucalopride and SDZ HTF-919, which are currently in advanced clinical trials. Other mechanisms that provide a means to induce GMCs, such as NK1 receptor agonism, deserve further exploration.
Collapse
Affiliation(s)
- M R Briejer
- Department of Gastrointestinal Pharmacology, Janssen Research Foundation, Beerse, Belgium
| | | | | |
Collapse
|