1
|
Renda B, Leri F. The anxiogenic drug yohimbine is a reinforcer in male and female rats. Neuropsychopharmacology 2024; 50:432-443. [PMID: 39289489 PMCID: PMC11631961 DOI: 10.1038/s41386-024-01985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024]
Abstract
The indole alkaloid yohimbine is an anxiogenic drug that activates stress-responsive systems in the brain. However, because yohimbine also elicits approach behaviors, this study employed male and female Sprague-Dawley rats to explore its potential reinforcing effects. Thus, it was first determined if intravenous (IV) infusions of yohimbine (0.25 mg/kg/infusion) could maintain lever pressing, whether intake could be modulated by dose/infusion, and if lever pressing would persist in the absence of yohimbine or yohimbine-paired cues. Next, to assess yohimbine's effect on memory consolidation, 0.3, 1.25 or 3 mg/kg yohimbine was administered post-training using an object recognition memory task. Finally, place conditioning assessed whether doses of yohimbine that elevate blood serum corticosterone levels (1.25 or 3 mg/kg) could elicit a conditioned place preference. It was found that both sexes acquired yohimbine IV self-administration, that intake was modulated by dose/infusion, and that lever pressing persisted during extinction and in the absence of the yohimbine-paired cue. As well, post-training injections of 1.25 mg/kg yohimbine enhanced consolidation of object memory, and 1.25 and 3 mg/kg elevated corticosterone levels and elicited a place preference in both sexes. Finally, in behavioral tests of psychomotor functions, acute yohimbine increased lever pressing for a visual cue and elevated locomotor activity. These findings reveal a profile of yohimbine's behavioral effects that is consistent with that of psychostimulant reinforcing drugs.
Collapse
Affiliation(s)
- Briana Renda
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Francesco Leri
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada.
- Department of Psychology, University of Toronto, Scarborough, ON, Canada.
| |
Collapse
|
2
|
Xian T, Cao M, Chen K, Zhao W, Liu Y, Yao W, Guang H, Yang Y, Su M, Zhang R, Ma J, Ma L, Gao J. Identification of a novel protein Hq023 of the hard tick Haemaphysalis qinghaiensis and preliminary evaluation of its analgesic effect in mice model. Parasitol Int 2024; 103:102933. [PMID: 39048024 DOI: 10.1016/j.parint.2024.102933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Tick saliva contains a range of critical biological molecules which could inhibit host defenses and guarantee their food supply. Hq023, a novel cDNA sequence, was cloned from a cDNA library constructed from salivary glands of partially-engorged Haemaphysalis qinghaiensis. Hq023 has an open reading frame (ORF) of 408 bp coding a protein containing 135 amino acid residues with a molecular mass of 15 kDa. Database homology showed that Hq023 protein was structurally similar to a natural toxin U33-theraphotoxin-Cg1c from the Chinese tarantula Chilobrachys guangxiensis. A recombinant protein was expressed with the novel cDNA in a prokaryotic system and its analgesic effect was evaluated in mice model. Both tail immersion and hot-plate tests uncovered an antinociceptive activity, while in the acetic acid-induced writhing test this effect was not observed. These results indicated that the novel recombinant protein Hq023 (rHq023) probably possessed a central antinociceptive activity. Finding of the novel protein might pave a new avenue for the development of tick-derived analgesics.
Collapse
Affiliation(s)
- Tong Xian
- Laboratory of Molecular Medicine, Ordos Central Hospital, Inner Mongolia Autonomous Region, Ordos 017000, China; Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014000, China
| | - Meina Cao
- Laboratory of Molecular Medicine, Ordos Central Hospital, Inner Mongolia Autonomous Region, Ordos 017000, China
| | - Kaiting Chen
- Laboratory of Molecular Medicine, Ordos Central Hospital, Inner Mongolia Autonomous Region, Ordos 017000, China
| | - Wenbin Zhao
- Laboratory of Molecular Medicine, Ordos Central Hospital, Inner Mongolia Autonomous Region, Ordos 017000, China
| | - Yueqing Liu
- Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014000, China
| | - Wenjing Yao
- Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014000, China
| | - Hui Guang
- Laboratory of Molecular Medicine, Ordos Central Hospital, Inner Mongolia Autonomous Region, Ordos 017000, China
| | - Yinran Yang
- Laboratory of Molecular Medicine, Ordos Central Hospital, Inner Mongolia Autonomous Region, Ordos 017000, China
| | - Muya Su
- Laboratory of Molecular Medicine, Ordos Central Hospital, Inner Mongolia Autonomous Region, Ordos 017000, China
| | - Ruijuan Zhang
- Department of Pharmacy, Ordos Central Hospital, Inner Mongolia Autonomous Region, Ordos 017000, China
| | - Jing Ma
- Laboratory of Molecular Medicine, Ordos Central Hospital, Inner Mongolia Autonomous Region, Ordos 017000, China; Third Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450003, China
| | - Linyuan Ma
- Laboratory of Molecular Medicine, Ordos Central Hospital, Inner Mongolia Autonomous Region, Ordos 017000, China; Ordos Clinical Medical College, Inner Mongolia Medical University, Ordos 017000, China
| | - Jinliang Gao
- Laboratory of Molecular Medicine, Ordos Central Hospital, Inner Mongolia Autonomous Region, Ordos 017000, China; Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014000, China; Ordos Clinical Medical College, Inner Mongolia Medical University, Ordos 017000, China.
| |
Collapse
|
3
|
Tavares I, Costa-Pereira JT, Martins I. Monoaminergic and Opioidergic Modulation of Brainstem Circuits: New Insights Into the Clinical Challenges of Pain Treatment? FRONTIERS IN PAIN RESEARCH 2021; 2:696515. [PMID: 35295506 PMCID: PMC8915776 DOI: 10.3389/fpain.2021.696515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/08/2021] [Indexed: 12/22/2022] Open
Abstract
The treatment of neuropathic pain remains a clinical challenge. Analgesic drugs and antidepressants are frequently ineffective, and opioids may induce side effects, including hyperalgesia. Recent results on brainstem pain modulatory circuits may explain those clinical challenges. The dual action of noradrenergic (NA) modulation was demonstrated in animal models of neuropathic pain. Besides the well-established antinociception due to spinal effects, the NA system may induce pronociception by directly acting on brainstem pain modulatory circuits, namely, at the locus coeruleus (LC) and medullary dorsal reticular nucleus (DRt). The serotoninergic system also has a dual action depending on the targeted spinal receptor, with an exacerbated activity of the excitatory 5-hydroxytryptamine 3 (5-HT3) receptors in neuropathic pain models. Opioids are involved in the modulation of descending modulatory circuits. During neuropathic pain, the opioidergic modulation of brainstem pain control areas is altered, with the release of enhanced local opioids along with reduced expression and desensitization of μ-opioid receptors (MOR). In the DRt, the installation of neuropathic pain increases the levels of enkephalins (ENKs) and induces desensitization of MOR, which may enhance descending facilitation (DF) from the DRt and impact the efficacy of exogenous opioids. On the whole, the data discussed in this review indicate the high plasticity of brainstem pain control circuits involving monoaminergic and opioidergic control. The data from studies of these neurochemical systems in neuropathic models indicate the importance of designing drugs that target multiple neurochemical systems, namely, maximizing the antinociceptive effects of antidepressants that inhibit the reuptake of serotonin and noradrenaline and preventing desensitization and tolerance of MOR at the brainstem.
Collapse
Affiliation(s)
- Isaura Tavares
- Unit of Experimental Biology, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
- Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal
- Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal
- *Correspondence: Isaura Tavares
| | - José Tiago Costa-Pereira
- Unit of Experimental Biology, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
- Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal
- Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Science, University of Porto, Porto, Portugal
| | - Isabel Martins
- Unit of Experimental Biology, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
- Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal
- Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal
| |
Collapse
|
4
|
Pharmacology of Herbal Sexual Enhancers: A Review of Psychiatric and Neurological Adverse Effects. Pharmaceuticals (Basel) 2020; 13:ph13100309. [PMID: 33066617 PMCID: PMC7602496 DOI: 10.3390/ph13100309] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
Sexual enhancers increase sexual potency, sexual pleasure, or libido. Substances increasing libido alter the concentrations of specific neurotransmitters or sex hormones in the central nervous system. Interestingly, the same pathways are involved in the mechanisms underlying many psychiatric and neurological disorders, and adverse reactions associated with the use of aphrodisiacs are strongly expected. However, sexual enhancers of plant origin have gained popularity over recent years, as natural substances are often regarded as a safer alternative to modern medications and are easily acquired without prescription. We reviewed the psychiatric and neurological adverse effects associated with the consumption of herbal aphrodisiacs Areca catechu L., Argemone Mexicana L., Citrus aurantium L., Eurycoma longifolia Jack., Lepidium meyenii Walp., Mitragyna speciosa Korth., Panax ginseng C. A. Mey, Panax quinquefolius L., Pausinystalia johimbe (K. Schum.) Pierre ex Beille, Piper methysticum G. Forst., Ptychopetalum olacoides Benth., Sceletium tortuosum (L.) N. E. Brown, Turnera diffusa Willd. ex. Schult., Voacanga africana Stapf ex Scott-Elliot, and Withania somnifera (L.) Dunal. A literature search was conducted on the PubMed, Scopus, and Web of Science databases with the aim of identifying all the relevant articles published on the issue up to June 2020. Most of the selected sexual enhancers appeared to be safe at therapeutic doses, although mild to severe adverse effects may occur in cases of overdosing or self-medication with unstandardized products. Drug interactions are more concerning, considering that herbal aphrodisiacs are likely used together with other plant extracts and/or pharmaceuticals. However, few data are available on the side effects of several plants included in this review, and more clinical studies with controlled administrations should be conducted to address this issue.
Collapse
|
5
|
Padgaonkar AV, Suryavanshi SV, Londhe VY, Kulkarni YA. Acute toxicity study and anti-nociceptive activity of Bauhinia acuminata Linn. leaf extracts in experimental animal models. Biomed Pharmacother 2017; 97:60-66. [PMID: 29080459 DOI: 10.1016/j.biopha.2017.10.087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/14/2017] [Accepted: 10/18/2017] [Indexed: 01/29/2023] Open
Abstract
Bauhinia acuminata commonly known as dwarf white orchid tree is traditionally used to treat acute and chronic pain, skin ailments, cancer, diabetes, throat infections and asthma. As there were no scientific reports on use of Bauhinia acuminata for anti-nociceptive activity, the present study was designed to evaluate possible effects of aqueous and alcoholic extracts in experimentally induced pain in animals. Acute toxicity was carried out as per OECD guideline 423. The anti-nociceptive activity was evaluated in Swiss albino mice by hot plate, acetic acid induced writhing and tail immersion tests at three different dose levels (250, 500 and 1000mg/kg) of aqueous and alcoholic extracts. Formalin induced nociception test was performed in Sprague Dawley rats at three dose levels. Both aqueous and alcoholic extracts were found safe at dose of 5000mg/kg. In hot plate test, both extracts showed significant (p<0.001) anti-nociceptive activity. In acetic acid writhing test, both aqueous and alcoholic extracts significantly reduced number of writhes (p<0.001). In Tail immersion test, both the extracts showed significant increase in tail withdrawal response (p<0.001). Treatment with aqueous and alcoholic extracts significantly reduced nociception in formalin induced nociception model (p<0.001). From the results it can be concluded that aqueous and alcoholic extracts possesses potent anti-nociceptive activity.
Collapse
Affiliation(s)
- Ashika V Padgaonkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Sachin V Suryavanshi
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Vaishali Y Londhe
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India.
| |
Collapse
|
6
|
Mousavi Z, Sadat Hosaini A, Asgarpanah J, Najafizadeh P. Antinociceptive Effect of the Endemic Species Nepeta depauperata Benth. Jundishapur J Nat Pharm Prod 2016. [DOI: 10.17795/jjnpp-25623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
7
|
Pellissier LP, Pujol CN, Becker JAJ, Le Merrer J. Delta Opioid Receptors: Learning and Motivation. Handb Exp Pharmacol 2016; 247:227-260. [PMID: 28035528 DOI: 10.1007/164_2016_89] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Delta opioid receptor (DOR) displays a unique, highly conserved, structure and an original pattern of distribution in the central nervous system, pointing to a distinct and specific functional role among opioid peptide receptors. Over the last 15 years, in vivo pharmacology and genetic models have allowed significant advances in the understanding of this role. In this review, we will focus on the involvement of DOR in modulating different types of hippocampal- and striatal-dependent learning processes as well as motor function, motivation, and reward. Remarkably, DOR seems to play a key role in balancing hippocampal and striatal functions, with major implications for the control of cognitive performance and motor function under healthy and pathological conditions.
Collapse
Affiliation(s)
- L P Pellissier
- Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, INSERM, Université François Rabelais, IFCE, 37380, Nouzilly, France
| | - C N Pujol
- Département de Neurosciences, Institut de Génomique fonctionnelle, INSERM U-661, CNRS UMR-5203, 34094, Montpellier, France
| | - J A J Becker
- Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, INSERM, Université François Rabelais, IFCE, 37380, Nouzilly, France
| | - J Le Merrer
- Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, INSERM, Université François Rabelais, IFCE, 37380, Nouzilly, France.
| |
Collapse
|
8
|
Moniruzzaman M, Ferdous A, Wahid Bokul F. Evaluation of antinociceptive activity of ethanol extract of bark of Polyalthia longifolia. JOURNAL OF ETHNOPHARMACOLOGY 2015; 172:364-367. [PMID: 26165827 DOI: 10.1016/j.jep.2015.06.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/13/2015] [Accepted: 06/23/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polyalthia longifolia var. pendula is a very popular herb in Bangladesh due to its traditional uses in treatment of rheumatism, bone fracture and gastric ulcer. The present study was conducted to investigate the antinociceptive activity of ethanol extract of P. longifolia (EEPL) bark. MATERIALS AND METHODS Hot plate and tail immersion tests, acetic acid-induced writhing test, glutamate and formalin-induced paw licking tests in mice were employed in this study. In all the experiments EEPL was administered orally at the doses of 50, 100 and 200mg/kg body weight. To investigate the possible participation of opioid system in EEPL-mediated effects, naloxone was used to antagonize the action. RESULTS EEPL showed a significant antinociceptive activity against both heat and chemical-induced nociception. The effects were dose-dependent and significant at the doses of 100 and 200mg/kg of EEPL. Besides, pretreatment with naloxone caused significant inhibition of the antinociceptive activity induced by EEPL, revealing the possible involvement of the opioid receptors. CONCLUSION These results indicate the antinociceptive activity of the bark of P. longifolia and support the ethnomedical use of this plant in treatment of different painful conditions.
Collapse
Affiliation(s)
- Md Moniruzzaman
- College of Pharmacy, Dongguk University, Goyang 410-820, Republic of Korea; Department of Pharmacy, Stamford University Bangladesh, 51 Siddeswari Road, Dhaka 1217, Bangladesh.
| | - Afia Ferdous
- Department of Pharmacy, Stamford University Bangladesh, 51 Siddeswari Road, Dhaka 1217, Bangladesh
| | - Fatama Wahid Bokul
- Department of Pharmacy, Stamford University Bangladesh, 51 Siddeswari Road, Dhaka 1217, Bangladesh
| |
Collapse
|
9
|
Dual allosteric modulation of opioid antinociceptive potency by α2A-adrenoceptors. Neuropharmacology 2015; 99:285-300. [PMID: 26254859 DOI: 10.1016/j.neuropharm.2015.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 07/09/2015] [Accepted: 08/04/2015] [Indexed: 12/31/2022]
Abstract
Opioid and α2-adrenoceptor (AR) agonists are analgesic when administered in the spinal cord and show a clinically beneficial synergistic interaction when co-administered. However, α2-AR antagonists can also inhibit opioid antinociception, suggesting a complex interaction between the two systems. The α2A-AR subtype is necessary for spinal adrenergic analgesia and synergy with opioids for most agonist combinations. Therefore, we investigated whether spinal opioid antinociception and opioid-adrenergic synergy were under allosteric control of the α2A-AR. Drugs were administered intrathecally in wild type (WT) and α2A-knock-out (KO) mice and antinociception was measured using the hot water tail immersion or substance P behavioral assays. The α2A-AR agonist clonidine was less effective in α2A-KO mice in both assays. The absence of the α2A-AR resulted in 10-70-fold increases in the antinociceptive potency of the opioid agonists morphine and DeltII. In contrast, neither morphine nor DeltII synergized with clonidine in α2A-KO mice, indicating that the α2AAR has both positive and negative modulatory effects on opioid antinociception. Depletion of descending adrenergic terminals with 6-OHDA resulted in a significant decrease in morphine efficacy in WT but not in α2A-KO mice, suggesting that endogenous norepinephrine acts through the α2A-AR to facilitate morphine antinociception. Based on these findings, we propose a model whereby ligand-occupied versus ligand-free α2A-AR produce distinct patterns of modulation of opioid receptor activation. In this model, agonist-occupied α2A-ARs potentiate opioid analgesia, while non-occupied α2A-ARs inhibit opioid analgesia. Exploiting such interactions between the two receptors could lead to the development of better pharmacological treatments for pain management.
Collapse
|
10
|
Kulkarni YA, Agarwal S, Garud MS. Effect of Jyotishmati (Celastrus paniculatus) seeds in animal models of pain and inflammation. J Ayurveda Integr Med 2015; 6:82-8. [PMID: 26166997 PMCID: PMC4484053 DOI: 10.4103/0975-9476.146540] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/12/2014] [Accepted: 05/24/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Jyotishmati, scientifically known as Celastrus paniculatus Wild (Celastraceae) is one of the most important medicinal plants in Ayurveda. The plant has shown significant pharmacological activities like anti-arthritic, wound healing, hypolipidemic, and antioxidant. OBJECTIVE To study possible effects of alcoholic extract of Celastrus paniculatus seeds (AlcE) in experimentally induced pain and inflammation in mice. MATERIALS AND METHODS The antinociceptive activity was evaluated in Swiss albino mice by tail immersion, hot plate, and acetic-acid-induced writhing tests at doses of 250, 500, and 1,000 mg/kg. Anti-inflammatory activity was evaluated in model of carrageenan-induced acute plantar inflammation in Wistar rats. RESULTS In tail immersion test, AlcE showed significant (P < 0.05) increase in tail withdrawal response at dose of 250 mg/kg with maximum possible effect of 15.71%. The maximum possible effect of 23.32% and 30.16% (P < 0.001) was seen at dose of 500 and 1000 mg/kg at 3 hours after administration of extract, respectively. In hot plate test, increase in paw licking time was reported at dose of 500 and 1000 mg/kg. AlcE (1,000 mg/kg) showed maximum response (6.23 ± 0.46) when compared with control (3.20 ± 0.18) at 90 min. In acetic acid induced writhings, AlcE at dose of 250, 500, and 1,000 mg/kg body weight showed 32.35%, 49.01%, and 58.82% inhibition in writhings, respectively. AlcE treated animals (500 and 1,000 mg/kg) showed significant decrease in paw edema at 3 hours and 4 hours, when compared with control animals. CONCLUSION Jyotishmati seed extract possesses significant antinociceptive and anti-inflammatory activity.
Collapse
Affiliation(s)
- Yogesh A Kulkarni
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Mumbai, Maharashtra, India
| | - Sneha Agarwal
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Mumbai, Maharashtra, India
| | - Mayuresh S Garud
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Mumbai, Maharashtra, India
| |
Collapse
|
11
|
Chen YW, Fiscella KA, Bacharach SZ, Tanda G, Shaham Y, Calu DJ. Effect of yohimbine on reinstatement of operant responding in rats is dependent on cue contingency but not food reward history. Addict Biol 2015; 20:690-700. [PMID: 25065697 DOI: 10.1111/adb.12164] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Yohimbine is an alpha-2 adrenoceptor antagonist that has been used in numerous studies as a pharmacological stressor in rodents, monkeys and humans. Recently, yohimbine has become the most common stress manipulation in studies on reinstatement of drug and food seeking. However, the wide range of conditions under which yohimbine promotes reward seeking is significantly greater than that of stressors like intermittent footshock. Here, we addressed two fundamental questions regarding yohimbine's effect on reinstatement of reward seeking: (1) whether the drug's effect on operant responding is dependent on previous reward history or cue contingency, and (2) whether yohimbine is aversive or rewarding under conditions typically used in reinstatement studies. We also used in vivo microdialysis to determine yohimbine's effect on dopamine levels in nucleus accumbens (NAc) and medial prefrontal cortex (mPFC). We found that the magnitude of yohimbine-induced (0.5, 1.0, 2.0 mg/kg) operant responding during the reinstatement tests was critically dependent on the contingency between lever pressing and discrete tone-light cue delivery but not the previous history with food reward during training. We also found that yohimbine (2 mg/kg) did not cause conditioned place aversion. Finally, we found that yohimbine modestly increased dopamine levels in mPFC but not NAc. Results suggest that yohimbine's effects on operant responding in reinstatement studies are likely independent of the history of contingent self-administration of food or drug rewards and may not be related to the commonly assumed stress-like effects of yohimbine.
Collapse
Affiliation(s)
- Yu-Wei Chen
- Behavioral Neuroscience Research Branch; NIDA, NIH, DHHS; Baltimore MD USA
| | | | | | - Gianluigi Tanda
- Medication Development Program; Intramural Research Program; NIDA, NIH, DHHS; Baltimore MD USA
| | - Yavin Shaham
- Behavioral Neuroscience Research Branch; NIDA, NIH, DHHS; Baltimore MD USA
| | - Donna J. Calu
- Behavioral Neuroscience Research Branch; NIDA, NIH, DHHS; Baltimore MD USA
| |
Collapse
|
12
|
Torkaman-Boutorabi A, Sheidadoust H, Hashemi-Hezaveh SM, Zarrindast MR. Influence of morphine on medial prefrontal cortex alpha2 adrenergic system in passive avoidance learning in rats. Pharmacol Biochem Behav 2015; 133:92-8. [DOI: 10.1016/j.pbb.2015.03.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 03/08/2015] [Accepted: 03/11/2015] [Indexed: 12/17/2022]
|
13
|
Zeiler GE. A review of clinical approaches to antagonism of alpha2-adrenoreceptor agonists in the horse. EQUINE VET EDUC 2014. [DOI: 10.1111/eve.12249] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- G. E. Zeiler
- Department of Companion Animal Clinical Studies; Faculty of Veterinary Science; University of Pretoria; Onderstepoort South Africa
| |
Collapse
|
14
|
Peripheral Nerve Injury Reduces Analgesic Effectsof Systemic Morphine via Spinal 5-Hydroxytryptamine 3 Receptors. Anesthesiology 2014; 121:362-71. [DOI: 10.1097/aln.0000000000000324] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Abstract
Background:
Morphine produces powerful analgesic effects against acute pain, but it is not effective against neuropathic pain, and the mechanisms underlying this reduced efficacy remain unclear. Here, the authors compared the efficacy of systemic morphine between normal rats and rats with peripheral nerve injury, with a specific focus on descending serotonergic mechanisms.
Methods:
After L5 spinal nerve ligation injury, male Sprague–Dawley rats were subjected to behavioral testing, in vivo microdialysis of the spinal dorsal horn to determine serotonin (5-hydroxytryptamine [5-HT]) and noradrenaline release, and immunohistochemistry (n = 6 in each group).
Results:
Intraperitoneal administration of morphine (1, 3, or 10 mg/kg) produced analgesic effects in normal and spinal nerve ligation rats, but the effects were greater in normal rats (P < 0.001). Morphine increased 5-HT release (450 to 500% of the baseline), but not noradrenaline release, in the spinal dorsal horn via activation of serotonergic neurons in the rostral ventromedial medulla. Intrathecal pretreatment with ondansetron (3 μg), a 5-HT3 receptor antagonist, or 5,7-dihydroxytryptamine creatinine sulfate (100 μg), a selective neurotoxin for serotonergic terminals, attenuated the analgesic effect of morphine (10 mg/kg) in normal rats but increased the analgesic effect of morphine in spinal nerve ligation rats (both P < 0.05).
Conclusions:
Systemic administration of morphine increases 5-HT levels in the spinal cord, and the increase in 5-HT contributes to morphine-induced analgesia in the normal state but attenuates that in neuropathic pain through spinal 5-HT3 receptors. The plasticity of the descending serotonergic system may contribute to the reduced efficacy of systemic morphine in neuropathic pain.
Collapse
|
15
|
Schmidt KT, Weinshenker D. Adrenaline rush: the role of adrenergic receptors in stimulant-induced behaviors. Mol Pharmacol 2014; 85:640-50. [PMID: 24499709 PMCID: PMC3965894 DOI: 10.1124/mol.113.090118] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 02/05/2014] [Indexed: 11/22/2022] Open
Abstract
Psychostimulants, such as cocaine and amphetamines, act primarily through the monoamine neurotransmitters dopamine (DA), norepinephrine, and serotonin. Although stimulant addiction research has largely focused on DA, medication development efforts targeting the dopaminergic system have thus far been unsuccessful, leading to alternative strategies aimed at abating stimulant abuse. Noradrenergic compounds have shown promise in altering the behavioral effects of stimulants in rodents, nonhuman primates, and humans. In this review, we discuss the contribution of each adrenergic receptor (AR) subtype (α1, α2, and β) to five stimulant-induced behaviors relevant to addiction: locomotor activity, conditioned place preference, anxiety, discrimination, and self-administration. AR manipulation has diverse effects on these behaviors; each subtype profoundly influences outcomes in some paradigms but is inconsequential in others. The functional neuroanatomy and intracellular signaling mechanisms underlying the impact of AR activation/blockade on these behaviors remain largely unknown, presenting a new frontier for research on psychostimulant-AR interactions.
Collapse
MESH Headings
- Amphetamine/pharmacology
- Animals
- Anxiety/diagnosis
- Anxiety/psychology
- Avoidance Learning/drug effects
- Behavior, Addictive/etiology
- Behavior, Addictive/psychology
- Behavior, Animal/drug effects
- Central Nervous System Stimulants/pharmacology
- Cocaine/pharmacology
- Conditioning, Classical/drug effects
- Discrimination, Psychological/drug effects
- Motor Activity/drug effects
- Receptors, Adrenergic/physiology
- Receptors, Adrenergic, alpha-1/physiology
- Receptors, Adrenergic, alpha-2/physiology
- Receptors, Adrenergic, beta/physiology
- Self Administration
- Signal Transduction
Collapse
Affiliation(s)
- Karl T Schmidt
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | | |
Collapse
|
16
|
Andurkar SV, Reniguntala MSJ, Gulati A, DeRuiter J. Synthesis and antinociceptive properties of N-phenyl-N-(1-(2-(thiophen-2-yl)ethyl)azepane-4-yl)propionamide in the mouse tail-flick and hot-plate tests. Bioorg Med Chem Lett 2014; 24:644-8. [DOI: 10.1016/j.bmcl.2013.11.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 11/19/2013] [Accepted: 11/25/2013] [Indexed: 10/25/2022]
|
17
|
Zonisamide: Antihyperalgesic efficacy, the role of serotonergic receptors on efficacy in a rat model for painful diabetic neuropathy. Life Sci 2014; 95:9-13. [DOI: 10.1016/j.lfs.2013.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 12/02/2013] [Accepted: 12/06/2013] [Indexed: 11/24/2022]
|
18
|
Meske DS, Xie JY, Oyarzo J, Badghisi H, Ossipov MH, Porreca F. Opioid and noradrenergic contributions of tapentadol in experimental neuropathic pain. Neurosci Lett 2013; 562:91-6. [PMID: 23969300 DOI: 10.1016/j.neulet.2013.08.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/06/2013] [Accepted: 08/08/2013] [Indexed: 11/16/2022]
Abstract
Tapentadol is a dual action molecule with mu opioid agonist and norepinephrine (NE) reuptake blocking activity that has recently been introduced for the treatment of moderate to severe pain. The effects of intraperitoneal (i.p.) morphine (10mg/kg), tapentadol (10 or 30 mg/kg) or duloxetine (30 mg/kg), a norepinephrine/serotonin (NE/5HT) reuptake inhibitor, were evaluated in male, Sprague-Dawley rats with spinal nerve ligation (SNL) or sham surgery. Additionally, the effects of these drugs on spinal cerebrospinal fluid (CSF) NE levels were quantified. Response thresholds to von Frey filament stimulation decreased significantly from baseline in SNL, but not sham, operated rats. Duloxetine, tapentadol and morphine produced significant and time-related reversal of tactile hypersensitivity. Duloxetine significantly increased spinal CSF NE levels in both sham and SNL rats and no significant differences were observed in these groups. Tapentadol (10 mg/kg) produced a significant increase in spinal NE levels in SNL, but not in sham, rats. At the higher dose (30 mg/kg), tapentadol produced a significant increase in spinal CSF NE levels in both SNL and sham groups; however, spinal NE levels were elevated for an extended period in the SNL rats. This could be detected 30 min following tapentadol (30 mg/kg) in both sham and SNL groups. Surprisingly, while the dose of morphine studied reversed tactile hypersensitivity in nerve-injured rats, CSF NE levels were significantly reduced in both sham- and SNL rats. The data suggest that tapentadol elicits enhanced elevation in spinal NE levels in a model of experimental neuropathic pain offering a mechanistic correlate to observed clinical efficacy in this pain state.
Collapse
Affiliation(s)
- Diana S Meske
- Department of Pharmacology, University of Arizona Health Sciences Center, Tucson, AZ 85724, USA.
| | - Jennifer Y Xie
- Department of Pharmacology, University of Arizona Health Sciences Center, Tucson, AZ 85724, USA
| | - Janice Oyarzo
- Department of Pharmacology, University of Arizona Health Sciences Center, Tucson, AZ 85724, USA
| | - Hamid Badghisi
- Department of Pharmacology, University of Arizona Health Sciences Center, Tucson, AZ 85724, USA
| | - Michael H Ossipov
- Department of Pharmacology, University of Arizona Health Sciences Center, Tucson, AZ 85724, USA
| | - Frank Porreca
- Department of Pharmacology, University of Arizona Health Sciences Center, Tucson, AZ 85724, USA
| |
Collapse
|
19
|
Le Merrer J, Faget L, Matifas A, Kieffer BL. Cues predicting drug or food reward restore morphine-induced place conditioning in mice lacking delta opioid receptors. Psychopharmacology (Berl) 2012; 223:99-106. [PMID: 22526530 PMCID: PMC5632531 DOI: 10.1007/s00213-012-2693-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 03/12/2012] [Indexed: 11/30/2022]
Abstract
RATIONALE The exact role of delta opioid receptors in drug-induced conditioned place preference (CPP) remains debated. Under classical experimental conditions, morphine-induced CPP is decreased in mice lacking delta opioid receptors (Oprd1 (-/-)). Morphine self-administration, however, is maintained, suggesting that drug-context association rather than drug reward is deficient in these animals. OBJECTIVES This study further examined the role of delta opioid receptors in mediating drug-cue associations, which are necessary for the expression of morphine-induced CPP. METHODS We first identified experimental conditions under which Oprd1 (-/-) mice are able to express CPP to morphine (5, 10 or 20 mg/kg) in a drug-free state and observed that, in this paradigm, CPP was dependent on circadian time conditions. We then took advantage of this particularity to assess the ability of various cues (internal or discrete), predicting either drug or food reward, to restore CPP induced by morphine (10 mg/kg) in Oprd1 (-/-) mice in conditions under which they normally fail to express CPP. RESULTS We found that presentation of circadian, drug or auditory cues, predicting morphine or food reward, restored morphine CPP in Oprd1 (-/-) mice, which then performed as well as control mice. CONCLUSIONS This study reveals that, in contrast to spatial cues, internal or discrete morphine-predicting stimuli permit full expression of morphine CPP in Oprd1 (-/-) mice. Delta receptors, therefore, appear to play a crucial role in modulating spatial contextual cue-related responses. This activity may be critical when context gains control over behavior, as is the case for context-induced relapse in drug abuse.
Collapse
Affiliation(s)
- Julie Le Merrer
- Département de Médecine Translationnelle et Neurogénétique, Institut de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, 67 404 Illkirch Cedex, France
| | | | | | | |
Collapse
|
20
|
Effect of yohimbine stress on reacquisition of oxycodone seeking in rats. Psychopharmacology (Berl) 2012; 222:247-55. [PMID: 22249360 DOI: 10.1007/s00213-012-2640-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 01/01/2012] [Indexed: 10/14/2022]
Abstract
RATIONALE Stress, a powerful precipitant of drug seeking during abstinence, may also accelerate the return to pathological patterns of intake after initial instances of drug reuse. OBJECTIVE To explore the effect of stress on a learning process underlying relapse, this study assessed the effect of yohimbine on reacquisition of oxycodone seeking. METHODS One hundred thirty-two male Sprague-Dawley rats underwent place conditioning with oxycodone (2 mg/kg, SC; ×6 days), extinction (vehicle × 6 days), and reconditioning with 0, 0.25, 2, or 5 mg/kg oxycodone (2 days). Yohimbine (0, 2.5, or 5 mg/kg, IP) was administered 30 min prior to reconditioning. RESULTS Pretreatment with 2.5 mg/kg yohimbine increased, while 5 mg/kg yohimbine decreased, reacquisition of oxycodone-induced place preference. A follow-up study (n = 30) further indicated that the effect of yohimbine was specific to reacquisition. CONCLUSION The observation that yohimbine can enhance reacquisition of oxycodone seeking supports the hypothesis that stress can facilitate learning processes involved in the unfolding of relapse.
Collapse
|
21
|
Taherian AA, Vafaei AA, Ameri J. Opiate System Mediate the Antinociceptive Effects of Coriandrum sativum in Mice. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2012; 11:679-88. [PMID: 24250493 PMCID: PMC3832164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Our previous study showed that Coriandrum sativum (CS) has antinociceptive effects, but the mechanisms that mediate this effect are not clear. The present study was designed to test the role of opiate system in the antinociceptive effects of CS on acute and chronic pain in mice using Hot Plate (HP), Tail Flick (TF) and Formalin (FT) tests and also to compare its effect with dexamethasone (DEX) and stress (ST). Young adult male albino mice (25-30 g) in 33 groups (n = 8 in each group) were used in this study. CS (125 250, 500 and 1000 mg/Kg IP), DEX (0.5, 1 and 2 mg/Kg IP), vehicle (VEH) or swim stress were used 30 min before the pain evaluation tests. Acute and chronic pain was assessed by HP, TF and FT models. In addition, Naloxone (NAL, 2 mg/Kg, IP) was injected 15 min before the CS extract administration in order to assess the role of opiate system in the antinociception of CS. Results indicated that CS, DEX and ST have analgesic effects (p < 0.01) in comparison with the control group and higher dose of CS was more effective (p < 0.001). Besides, pretreatment of NAL modulates the antinociceptive effects of CS in all models (p < 0.001). The above findings showed that CS, DEX and ST have modulator effects on pain. These findings further indicate that the CS extract has more analgesic effects than DEX and ST and also provides the evidence for the existence of an interaction between antinociceptive effects of CS and opiate system.
Collapse
Affiliation(s)
- Abbas Ali Taherian
- Laboratory of Pain, Research Center and Department of Physiology, Semnan University of Medical Sciences, Semnan, Iran. ,Research Center of Medicinal Plant, Semnan University of Medical Sciences, Semnan, Iran.
| | - Abbas Ali Vafaei
- Laboratory of Pain, Research Center and Department of Physiology, Semnan University of Medical Sciences, Semnan, Iran. ,Research Center of Medicinal Plant, Semnan University of Medical Sciences, Semnan, Iran.,Corresponding author: E-mail:
| | - Javad Ameri
- Laboratory of Pain, Research Center and Department of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
22
|
Polanco MJ, López-Giménez JF, González-Martín C, Alguacil LF. Yohimbine does not affect opioid receptor activation but prevents adenylate cyclase regulation by morphine in NG108-15 cells. Life Sci 2011; 89:327-30. [PMID: 21763325 DOI: 10.1016/j.lfs.2011.06.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 06/15/2011] [Accepted: 06/21/2011] [Indexed: 12/21/2022]
Abstract
AIMS Yohimbine has been shown to modulate the pharmacological actions of opioid drugs in a way that could be of potential therapeutic interest. This work tries to study if this interaction involves the impairment of opioid receptor activation at the cellular level by studying the effects of morphine and yohimbine on NG108-15 neuroblastoma x glioma hybrid cells. MAIN METHODS [(35)S]GTPγS binding assays were performed to study δ-opioid and α(2B)-adrenoceptor activation by opioid and adrenoceptor agonists in the presence and absence of yohimbine. The effect of morphine was also studied after 6 h pre-incubations with morphine, yohimbine and combinations of these drugs taking into account previous results showing an interaction between both drugs in these conditions. Forskolin-induced cAMP accumulation was also studied by immunoassay in cells incubated with morphine for 6 h in the presence and absence of naloxone and yohimbine. KEY FINDINGS Yohimbine behaved as a competitive antagonist/inverse agonist on α(2B)-adrenoceptors but did not modify G-protein activation by morphine, either in acute conditions or after 6 h of incubation. However, morphine-induced inhibition of cAMP accumulation was prevented both by naloxone and yohimbine when these drugs were present in the incubation medium. SIGNIFICANCE Yohimbine seems to desensitise adenylate cyclase to the inhibitory effect of opioid-activated G proteins. This cellular effect could underlie the antagonistic actions of yohimbine on many pharmacological effects of the opioid both in vitro and in vivo.
Collapse
Affiliation(s)
- María José Polanco
- Laboratory of Pharmacology and Toxicology, Universidad San Pablo CEU, Madrid, Spain
| | | | | | | |
Collapse
|
23
|
Le Merrer J, Plaza-Zabala A, Del Boca C, Matifas A, Maldonado R, Kieffer BL. Deletion of the δ opioid receptor gene impairs place conditioning but preserves morphine reinforcement. Biol Psychiatry 2011; 69:700-3. [PMID: 21168121 DOI: 10.1016/j.biopsych.2010.10.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 10/04/2010] [Accepted: 10/22/2010] [Indexed: 11/25/2022]
Abstract
BACKGROUND Converging experimental data indicate that δ opioid receptors contribute to mediate drug reinforcement processes. Whether their contribution reflects a role in the modulation of drug reward or an implication in conditioned learning, however, has not been explored. In the present study, we investigated the impact of δ receptor gene knockout on reinforced conditioned learning under several experimental paradigms. METHODS We assessed the ability of δ receptor knockout mice to form drug-context associations with either morphine (appetitive)- or lithium (aversive)-induced Pavlovian place conditioning. We also examined the efficiency of morphine to serve as a positive reinforcer in these mice and their motivation to gain drug injections, with operant intravenous self-administration under fixed and progressive ratio schedules and at two different doses. RESULTS Mutant mice showed impaired place conditioning in both appetitive and aversive conditions, indicating disrupted context-drug association. In contrast, mutant animals displayed intact acquisition of morphine self-administration and reached breaking-points comparable to control subjects. Thus, reinforcing effects of morphine and motivation to obtain the drug were maintained. CONCLUSION Collectively, the data suggest that δ receptor activity is not involved in morphine reinforcement but facilitates place conditioning. This study reveals a novel aspect of δ opioid receptor function in addiction-related behaviors.
Collapse
Affiliation(s)
- Julie Le Merrer
- Département de Neurobiologie et Génétique, Institut de Biologie Moléculaire et Cellulaire, Illkirch, France
| | | | | | | | | | | |
Collapse
|
24
|
Arslan R, Bektas N. Antinociceptive effect of methanol extract of Capparis ovata in mice. PHARMACEUTICAL BIOLOGY 2010; 48:1185-1190. [PMID: 20819022 DOI: 10.3109/13880201003629323] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
CONTEXT Capparis ovata Desf. (Capparaceae) grows widely in Turkey. Flower buds and fruits of the plant are used in folk medicine for their analgesic, antirheumatismal, and diuretic effects. OBJECTIVE This study evaluated the possible antinociceptive effect of the methanol extract of C. ovata (CME) in mice. MATERIALS The antinociceptive effect of methanol extract, prepared with the C. ovata flower buds, was studied at the doses of 50, 100, and 200 mg/kg (i.p.) using tail-immersion, hot-plate, and writhing tests in mice. Morphine sulfate (5 mg/kg; i.p.) and dipyrone (100 mg/kg; i.p.) were used as reference analgesic agents. Naloxone (5 mg/kg; i.p.) was also tested. RESULTS It was observed that the C. ovata extract had a significant antinociceptive effect in these tests. In the hot-plate and tail-immersion test results, the doses of 50, 100, and 200 mg/kg increased the percentage of the maximum possible effect (MPE%) value for nociception significantly according to the control value (P < 0.001). All doses of the extract decreased the number of acetic acid-induced abdominal constrictions in mice when compared with control group (P < 0.001). These effects were inhibited by pretreatment with naloxone. DISCUSSION AND CONCLUSION Based on the results obtained, it can be concluded that CME is a potentially antinociceptive agent which acts as both at the peripheral and central levels.
Collapse
Affiliation(s)
- Rana Arslan
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey
| | | |
Collapse
|
25
|
Arslan R, Bektas N, Ozturk Y. Antinociceptive activity of methanol extract of fruits of Capparis ovata in mice. JOURNAL OF ETHNOPHARMACOLOGY 2010; 131:28-32. [PMID: 20595018 DOI: 10.1016/j.jep.2010.05.060] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 05/26/2010] [Accepted: 05/28/2010] [Indexed: 05/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Capparis ovata Desf. and Capparis spinosa L. have wide natural distribution in Turkey and they are consumed in pickled form. Flower buds, root bark, and fruits of the plant are used in folk medicine due to their analgesic, wound healing, cell regeneration, tonic, and diuretic effects. AIM OF THE STUDY In this study, we attempted to identify the possible antinociceptive action of methanol extract prepared from fruits of Capparis ovata. MATERIALS AND METHODS Using tail immersion, hot plate and writhing tests, the antinociceptive effect of the methanol extract of Capparis ovata (MEC) fruits was assessed after intraperitoneal administration into mice. Morphine sulfate (5mg/kg; i.p.) and diclofenac (10mg/kg; i.p.) were used as reference analgesic agents. Naloxone (5mg/kg; i.p.) was also tested. RESULTS MEC was studied at the doses of 50, 100, and 200mg/kg (i.p.) and exhibited significant antinociceptive activities in all tests used. The above-mentioned doses of the extract reduced the writhing responses by 32.21, 55.70, and 68.36%, respectively. MPE% were increased by 7.27, 12.07, 14.60% in the tail immersion, and 7.88, 11.71, 16.73% in the hot plate test at the tested doses, respectively. Naloxone antagonized antinociceptive effect at the doses of 100 and 200mg/kg whereas partially antagonized the effect of MEC at the dose of 50mg/kg. CONCLUSIONS Based on the results obtained, it can be concluded that MEC has antinociceptive effects both at the peripheral and central levels.
Collapse
Affiliation(s)
- Rana Arslan
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Tepebasi TR-26470, Eskisehir, Turkey.
| | | | | |
Collapse
|
26
|
Polanco MJ, Alguacil LF, Albella B, Segovia JC, González-Martín C. Yohimbine prevents the effect of morphine on the redox status of neuroblastoma×glioma NG108-15 cells. Toxicol Lett 2009; 189:115-20. [DOI: 10.1016/j.toxlet.2009.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 04/28/2009] [Accepted: 05/19/2009] [Indexed: 11/28/2022]
|
27
|
Do Carmo GP, Folk JE, Rice KC, Chartoff E, Carlezon WA, Negus SS. The selective non-peptidic delta opioid agonist SNC80 does not facilitate intracranial self-stimulation in rats. Eur J Pharmacol 2008; 604:58-65. [PMID: 19133255 DOI: 10.1016/j.ejphar.2008.12.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 12/09/2008] [Accepted: 12/10/2008] [Indexed: 11/30/2022]
Abstract
Delta opioid receptor agonists are under development for a variety of clinical applications, and some findings in rats raise the possibility that agents with this mechanism have abuse liability. The present study assessed the effects of the non-peptidic delta opioid agonist SNC80 in an assay of intracranial self-stimulation (ICSS) in rats. ICSS was examined at multiple stimulation frequencies to permit generation of frequency-response rate curves and evaluation of curve shifts produced by experimental manipulations. Drug-induced leftward shifts in ICSS frequency-rate curves are often interpreted as evidence of abuse liability. However, SNC80 (1.0-10 mg/kg s.c.; 10-56 mg/kg i.p.) failed to alter ICSS frequency-rate curves at doses up to those that produced convulsions in the present study or other effects (e.g. antidepressant effects) in previous studies. For comparison, the monoamine releaser d-amphetamine (0.1-1.0 mg/kg, i.p.) and the kappa agonist U69,593 (0.1-0.56 mg/kg, i.p.) produced dose-dependent leftward and rightward shifts, respectively, in ICSS frequency-rate curves, confirming the sensitivity of the procedure to drug effects. ICSS frequency-rate curves were also shifted by two non-pharmacological manipulations (reductions in stimulus intensity and increases in response requirement). Thus, SNC80 failed to facilitate or attenuate ICSS-maintained responding under conditions in which other pharmacological and non-pharmacological manipulations were effective. These results suggest that non-peptidic delta opioid receptor agonists have negligible abuse-related effects in rats.
Collapse
Affiliation(s)
- Gail Pereira Do Carmo
- Alcohol and Drug Abuse Research Center, McLean Hospital-Harvard Medical School, Belmont, MA 02478, United States
| | | | | | | | | | | |
Collapse
|
28
|
Herradón G, Morales L, Gramage E, Alguacil LF. Comparative study of alpha2-adrenoceptors in Fischer 344 and Lewis rats. Evidence for clonidine-induced place aversion. Life Sci 2008; 82:1186-90. [PMID: 18479715 DOI: 10.1016/j.lfs.2008.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 02/29/2008] [Accepted: 04/04/2008] [Indexed: 10/22/2022]
Abstract
Fischer 344 (F344) and Lewis rat strains have been shown to exhibit different vulnerability to development or maintenance of opioid seeking behaviours probably due to differences in the endogenous opioid system. Since opioid and alpha(2)-adrenergic mechanisms closely interact in nociception and substance abuse, strain differences may be expected to affect alpha(2)-adrenoceptor-mediated events. The sensitivity of these two strains to alpha(2)-adrenoceptor-mediated antinociception has been reported to be markedly different. In this work we have further studied the function of alpha(2)-adrenoceptors in F344 and Lewis rats by means of several in vivo and in vitro procedures. Comparative studies of [(3)H]RX821002 and [(35)S]GTPgammaS binding revealed that alpha(2)-adrenoceptors could be slightly more responsive to agonist stimulation in the brain cortex of F344 rats, which is in agreement with previous antinociception studies. However, these differences were modest, not observed in the spinal cord and did not translate into functional differences concerning the effects of clonidine on vas deferens contractility and body temperature. Conditioning experiments showed that a moderate dose of clonidine, which is relevant in antinociceptive and opioid antiwithdrawal studies, induces a robust place aversion which is also equivalent in F344 and Lewis rats. This finding underlies the consistency of the effect and its independency of genetic differences between both rat strains. It seems therefore that the pharmacological properties of alpha(2)-adrenoceptors are similar in F344 and Lewis rats, and thus the previously reported differences in clonidine-induced antinociception could be attributed to other factors such as dissimilar endogenous function of specific noradrenergic pathways.
Collapse
Affiliation(s)
- Gonzalo Herradón
- Lab. Pharmacology and Toxicology, University San Pablo CEU, Urb. Montepríncipe, 28668 Boadilla del Monte, Madrid, Spain.
| | | | | | | |
Collapse
|
29
|
Tzschentke TM. Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol 2007; 12:227-462. [PMID: 17678505 DOI: 10.1111/j.1369-1600.2007.00070.x] [Citation(s) in RCA: 1021] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Conditioned place preference (CPP) continues to be one of the most popular models to study the motivational effects of drugs and non-drug treatments in experimental animals. This is obvious from a steady year-to-year increase in the number of publications reporting the use this model. Since the compilation of the preceding review in 1998, more than 1000 new studies using place conditioning have been published, and the aim of the present review is to provide an overview of these recent publications. There are a number of trends and developments that are obvious in the literature of the last decade. First, as more and more knockout and transgenic animals become available, place conditioning is increasingly used to assess the motivational effects of drugs or non-drug rewards in genetically modified animals. Second, there is a still small but growing literature on the use of place conditioning to study the motivational aspects of pain, a field of pre-clinical research that has so far received little attention, because of the lack of appropriate animal models. Third, place conditioning continues to be widely used to study tolerance and sensitization to the rewarding effects of drugs induced by pre-treatment regimens. Fourth, extinction/reinstatement procedures in place conditioning are becoming increasingly popular. This interesting approach is thought to model certain aspects of relapse to addictive behavior and has previously almost exclusively been studied in drug self-administration paradigms. It has now also become established in the place conditioning literature and provides an additional and technically easy approach to this important phenomenon. The enormous number of studies to be covered in this review prevented in-depth discussion of many methodological, pharmacological or neurobiological aspects; to a large extent, the presentation of data had to be limited to a short and condensed summary of the most relevant findings.
Collapse
Affiliation(s)
- Thomas M Tzschentke
- Grünenthal GmbH, Preclinical Research and Development, Department of Pharmacology, Aachen, Germany.
| |
Collapse
|
30
|
Morales L, Perez-Garcia C, Herradon G, Alguacil LF. Place conditioning in a two- or three-conditioning compartment apparatus: a comparative study with morphine and U-50,488. Addict Biol 2007; 12:482-4. [PMID: 17559548 DOI: 10.1111/j.1369-1600.2007.00071.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have comparatively studied the effects of two opioids in the rat place conditioning paradigm in identical experimental conditions (including double drug/saline conditioning daily sessions for 3 days), with the only exception of using either a two- or three-conditioning compartment apparatus. Morphine-induced place preference appeared to be similar with two- and three-conditioning compartments, but U-50,488-induced place aversion was consistently more prominent when a two-conditioning compartment apparatus was used. It is suggested that, when the results of conditioning are being tested, the presence of neutral environments decreases the sensitivity of the procedure to quantify place aversions.
Collapse
Affiliation(s)
- Lidia Morales
- Department of Pharmacology, Technology and Pharmaceutical Development, University San Pablo CEU, Spain
| | | | | | | |
Collapse
|
31
|
Salas E, Alonso E, Sevillano J, Herradon G, Bocos C, Morales L, Ramos MP, Alguacil LF. Morphine differentially regulates hsp90beta expression in the nucleus accumbens of Lewis and Fischer 344 rats. Brain Res Bull 2007; 73:325-9. [PMID: 17562399 DOI: 10.1016/j.brainresbull.2007.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 04/18/2007] [Accepted: 04/25/2007] [Indexed: 11/28/2022]
Abstract
We have comparatively studied hsp90beta gene and protein expression in the nucleus accumbens of Lewis and Fischer 344 (F344) rats, two inbred strains that exhibit prominent behavioural differences in drug-seeking behaviours. Phenotypical studies confirmed that Lewis rats developed a higher preference for morphine-paired environments after conditioning. RT-PCR assays did not reveal strain-related differences in hsp90beta gene expression in basal conditions; however, acute morphine treatment provoked an increase of hsp90beta mRNA 2h after injection only in the case of Lewis rats. We also found a significant upregulation of the Hsp90beta protein in both strains 8h after morphine injection, this increase being significantly higher in Lewis rats. Taking into account the suggested roles for Hsp90 in the brain, the data suggest that Lewis and F344 strain differences concerning opioid-seeking behaviours could be related to differential sensitivity to opioid-induced neuronal plasticity within the brain reward system, an effect that could be mediated (at least partially) by stress proteins.
Collapse
Affiliation(s)
- Elisabet Salas
- Departamento de Farmacología, Tecnología y Desarrollo Farmacéutico, Univ. San Pablo CEU, Spain
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Gyertyán I, Kiss B, Gál K, Laszlovszky I, Horváth A, Gémesi LI, Sághy K, Pásztor G, Zájer M, Kapás M, Csongor EA, Domány G, Tihanyi K, Szombathelyi Z. Effects of RGH-237 [N-{4-[4-(3-aminocarbonyl-phenyl)-piperazin-1-yl]-butyl}-4-bromo-benzamide], an orally active, selective dopamine D(3) receptor partial agonist in animal models of cocaine abuse. J Pharmacol Exp Ther 2007; 320:1268-78. [PMID: 17170312 DOI: 10.1124/jpet.106.107920] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dopamine D(3) receptor partial agonism has been suggested as a potential therapeutic intervention in cocaine addiction. RGH-237 [N-{4-[4-(3-aminocarbonyl-phenyl)-piperazin-1-yl]-butyl}-4-bromo-benzamide] was identified as a novel selective dopamine D(3) receptor partial agonist and used for testing this hypothesis in animal models. The compound showed nanomolar affinity to human (K(i) = 6.7 nM) and rat (K(i) = 1.6 nM) D(3) receptors with an intrinsic activity of approximately 50%. It possessed several hundredfold selectivity over the D(2) receptor. The molecule bound with moderate (100-250 nM) affinity to 5-hydroxytryptamine 1A (5-HT(1A)) and nonselectively labeled opiate receptors. RGH-237 proved to be practically inactive on more than 40 other targets, including monoaminergic, cholinergic, GABAergic, and glutamatergic receptors. In rats orally administered RGH-237 was well and rapidly absorbed yielding 41% oral bioavailability. At its pharmacologically active dose (10 mg/kg p.o.), the brain concentration of RGH-237 reached 110 ng/g. Its blood and brain levels were sustained for 3 h. RGH-237 at the oral dose of 10 mg/kg moderately but significantly inhibited the acquisition of cocaine-induced place preference, although by itself, it had no place-conditioning effect. The compound did not affect fixed ratio 1 cocaine self-administration. In a reinstatement paradigm of cocaine self-administration, the compound potently and dose-dependently blocked the cue-induced cocaine-seeking behavior of rats at 10 and 30 mg/kg oral doses. RGH-237 did not affect seeking activity for natural rewards, such as sucrose and water. It did not exert notable effect on spontaneous motor activity of rats. Our results demonstrate that selective D(3) partial agonists may be an effective therapeutic means in the treatment of cocaine abuse.
Collapse
Affiliation(s)
- István Gyertyán
- Department of Behavioral Pharmacology, Gedeon Richter Plc., P.O. Box 27, Budapest, Hungary.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Alonso E, Garrido E, Díez-Fernández C, Pérez-García C, Herradón G, Ezquerra L, Deuel TF, Alguacil LF. Yohimbine prevents morphine-induced changes of glial fibrillary acidic protein in brainstem and α2-adrenoceptor gene expression in hippocampus. Neurosci Lett 2007; 412:163-7. [PMID: 17123717 DOI: 10.1016/j.neulet.2006.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 11/01/2006] [Accepted: 11/01/2006] [Indexed: 11/20/2022]
Abstract
The alpha(2)-adrenoceptor antagonist yohimbine is known to oppose to several pharmacological effects of opioid drugs, but the consequences and the mechanisms involved remain to be clearly established. In the present study we have checked the effects of yohimbine on morphine-induced alterations of the expression of key proteins (glial fibrillary acidic protein, GFAP) and genes (alpha(2)-adrenoceptors) in rat brain areas known to be relevant in opioid dependence, addiction and individual vulnerability to drug abuse. Rats were treated with morphine in the presence or absence of yohimbine. The effects of the treatments on GFAP expression were studied by immunohistochemical staining in Locus Coeruleus (LC) and Nucleus of the Solitary Tract (NST), two important noradrenergic nuclei. In addition, drug effects on alpha(2)-adrenoceptor gene expression were determined by real time RT-PCR in the hippocampus, a brain area that receives noradrenergic input from the brainstem. Morphine administration increased GFAP expression both in LC and NST as it was previously reported in other brain areas. Yohimbine was found to efficiently prevent morphine-induced GFAP upregulation. Chronic (but not acute) morphine downregulated mRNA levels of alpha(2A)- and alpha(2C)-adrenoceptors in the hippocampus, while simultaneously increased the expression of the alpha(2B)-adrenoceptor gene. Again, yohimbine was able to prevent morphine-induced changes in the levels of expression of the three alpha(2)-adrenoceptor genes. These results correlate the well-established reduction of opioid dependence and addiction by yohimbine and suggest that this drug could interfere with the neural plasticity induced by chronic morphine in central noradrenergic pathways.
Collapse
Affiliation(s)
- Elba Alonso
- Lab. Pharmacology and Toxicology, Universidad San Pablo CEU, 28668 Boadilla del Monte, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Ezquerra L, Pérez-García C, Garrido E, Díez-Fernández C, Deuel TF, Alguacil LF, Herradón G. Morphine and yohimbine regulate midkine gene expression in the rat hippocampus. Eur J Pharmacol 2006; 557:147-50. [PMID: 17157293 DOI: 10.1016/j.ejphar.2006.11.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 11/07/2006] [Accepted: 11/08/2006] [Indexed: 10/23/2022]
Abstract
Pleiotrophin and midkine are two recently discovered growth factors that promote survival and differentiation of catecholaminergic neurons. Chronic opioid stimulation has been reported to induce marked alterations of the locus coeruleus-hippocampus noradrenergic pathway, an effect that is prevented when opioids are coadministered with the alpha2-adrenoceptor antagonist yohimbine. The present work tries to examine a possible link between yohimbine reversal of morphine effects and pleiotrophin/midkine activation in the rat hippocampus by studying the levels of expression of pleiotrophin and midkine in response to acute and chronic administration of morphine, yohimbine and combinations of both drugs. Pleiotrophin gene expression was not altered by any treatment; however midkine mRNA levels were increased after chronic treatment with morphine. Chronic administration of yohimbine alone also increased midkine expression levels, whereas yohimbine and morphine administered together exhibited summatory effects on the upregulation of midkine expression levels. The data suggest that midkine could play a role in the prevention of opioid-induced neuroadaptations in hippocampus by yohimbine.
Collapse
Affiliation(s)
- Laura Ezquerra
- Department of Molecular and Experimental Medicine and Cell Biology, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Tahsili-Fahadan P, Yahyavi-Firouz-Abadi N, Khoshnoodi MA, Motiei-Langroudi R, Tahaei SA, Ghahremani MH, Dehpour AR. Agmatine potentiates morphine-induced conditioned place preference in mice: modulation by alpha2-adrenoceptors. Neuropsychopharmacology 2006; 31:1722-32. [PMID: 16237388 DOI: 10.1038/sj.npp.1300929] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The effects of agmatine, an endogenous polyamine metabolite formed by decarboxylation of L-arginine, and its combination with morphine on conditioned place preference (CPP) has been investigated in male mice. Our data show that subcutaneous administration of morphine (1-7.5 mg/kg) significantly increases the time spent in the drug-paired compartment in a dose-dependent manner. Intraperitoneal administration of agmatine (1-40 mg/kg) alone does not induce either CPP or conditioned place aversion, while combination of agmatine and subeffective doses of morphine leads to potent rewarding effects. Lower doses of morphine (0.1, 0.05, and 0.01 mg/kg) are able to induce CPP in mice pretreated with agmatine 1, 5, and 10 mg/kg, respectively. Concomitant intraperitoneal administration of UK 14 304 (0.5 mg/kg), a highly selective alpha2-agonist, with per se noneffective dose of morphine (0.5 mg/kg) and also its combination with noneffective doses of agmatine (1 mg/kg) plus morphine (0.05 mg/kg) produces significant CPP. UK 14 304 (0.05, 0.5 mg/kg) alone, or in combination with agmatine (1, 5 mg/kg) have had no effect. We have further investigated the possible involvement of the alpha2-adrenoceptors in the potentiating effect of agmatine on morphine-induced place preference. Selective alpha2-antagonists, yohimbine (0.005 mg/kg) and RX821002 (0.1, 0.5 mg/kg), block the CPP induced by concomitant administration of agmatine (5 mg/kg) and morphine (0.05 mg/kg). Yohimbine (0.001-0.05 mg/kg) or RX821002 (0.05-0.5 mg/kg) alone or in combination with morphine (0.05 mg/kg) or agmatine (5 mg/kg) fail to show any significant place preference or aversion. Our results indicate that pretreatment of animals with agmatine enhances the rewarding properties of morphine via a mechanism which may involve alpha2-adrenergic receptors.
Collapse
Affiliation(s)
- Pouya Tahsili-Fahadan
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
36
|
Almela P, Cerezo M, Milanés MV, Laorden ML. Role of PKC in regulation of Fos and TH expression after naloxone induced morphine withdrawal in the heart. Naunyn Schmiedebergs Arch Pharmacol 2006; 372:374-82. [PMID: 16474935 DOI: 10.1007/s00210-006-0032-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Accepted: 12/19/2005] [Indexed: 11/29/2022]
Abstract
We previously demonstrated that morphine withdrawal induced hyperactivity of the heart by activation of noradrenergic pathways innervating the left and right ventricle, as evaluated by noradrenaline (NA) turnover and Fos expression. The present study was designed to investigate the role of protein kinase C (PKC) in this process, by estimating whether pharmacological inhibition of PKC would attenuate morphine withdrawal induced Fos expression and changes in tyrosine hydroxylase (TH) immunoreactivity levels and NA turnover in the left and right ventricle. Dependence on morphine was induced on day 8 by an injection of naloxone. Morphine withdrawal induced Fos expression and increased TH levels and NA turnover in the right and left ventricle. Infusion of calphostin C, a selective PKC inhibitor, did not modify the morphine withdrawal-induced increase in NA turnover and TH levels. However, this inhibitor produced a reduction in the morphine withdrawal-induced Fos expression. The results of the present study provide new information on the mechanisms that underlie morphine withdrawal-induced up-regulation of Fos expression in the heart and suggest that TH is not a target of PKC during morphine withdrawal at heart levels.
Collapse
Affiliation(s)
- Pilar Almela
- Equip of Cellular and Molecular Pharmacology, University School of Medicine, Murcia, Spain
| | | | | | | |
Collapse
|
37
|
Campos AR, Santos FA, Rao VS. Ketamine-Induced Potentiation of Morphine Analgesia in Rat Tail-Flick Test: Role of Opioid-, .ALPHA.2-Adrenoceptors and ATP-Sensitive Potassium Channels. Biol Pharm Bull 2006; 29:86-9. [PMID: 16394516 DOI: 10.1248/bpb.29.86] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ketamine is known to improve opioid efficacy, reduce postoperative opioid requirement and oppose opioid associated pain hypersensitivity and tolerance. However, the mechanisms underlying these beneficial effects are not clear. This study investigated the effects of ketamine at a non-analgesic dose (30 mg/kg, i.p.) on analgesia induced by morphine (2.5, 5.0, 7.5 mg/kg, s.c.), using rat tail-flick test as an animal model of acute pain. Further, the role of opioid-, alpha2-adrenoceptors and ATP-sensitive potassium channels was examined on the potentiating effect of ketamine. Male rats received morphine alone at 5.0 and 7.5 but not at 2.5 mg/kg showed a dose-related increase in tail-flick latencies. The combination of morphine and ketamine resulted in dose-related increase in morphine analgesia, both on the intensity as well as on duration. The ketamine-induced potentiation of morphine (7.5 mg/kg) analgesia was unaffected by glibenclamide (3 mg/kg, s.c.) and only partially blocked by yohimbine (2 mg/kg, i.p.), but more completely abolished by naloxone (2 mg/kg, i.p.). Both morphine (5.0 mg/kg) and ketamine (30 mg/kg) alone did not evoke catalepsy in rats but on combination produced a synergistic effect, which was however, abolished by naloxone pretreatment. In the open-field test, while morphine (5.0 mg/kg) caused a depressant effect, ketamine (30 mg/kg) enhanced the locomotor activity. Nevertheless, in combination potentiated the morphine's depressant effect on locomotion, which was also antagonized by naloxone. These results indicate that ketamine at a non-analgesic dose can potentiate morphine analgesia, induce catalepsy and cause locomotor depression, possibly involving an opioid mechanism. This potentiation, although favorable in acute pain management, may have some adverse clinical implications.
Collapse
Affiliation(s)
- Adriana Rolim Campos
- Departament of Physiology and Pharmacology, Federal University of Ceara (FM), Brazil
| | | | | |
Collapse
|
38
|
Garrido E, Pérez-García C, Alguacil LF, Díez-Fernández C. The α2-adrenoceptor antagonist yohimbine reduces glial fibrillary acidic protein upregulation induced by chronic morphine administration. Neurosci Lett 2005; 383:141-4. [PMID: 15936527 DOI: 10.1016/j.neulet.2005.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Revised: 02/25/2005] [Accepted: 04/01/2005] [Indexed: 10/25/2022]
Abstract
Previous literature data show prominent interactions between alpha(2)-adrenoceptor ligands and opioid drugs, however, the nature of such interactions is still largely unknown. In the present study, we aimed to examine the potential protective effect of yohimbine, a alpha(2)-adrenoceptor antagonist, against glial fibrillary acidic protein (GFAP) alterations elicited by chronic morphine treatment. Increased astrogliosis, as indicated by increased GFAP immunohistochemical staining, was observed in the ventral tegmental area, nucleus accumbens shell, and frontal cortex of chronic morphine-treated (10 mg kg(-1), i.p., every 12 h for 13 days) rats compared with those treated with saline. Pretreatment with yohimbine (2 mg kg(-1), i.p., 30 min before each morphine injection) provided protection against morphine-induced GFAP upregulation. The present study demonstrates that yohimbine pretreatment reduces long-term morphine exposure-induced alterations in the astroglial reaction, suggesting that alpha(2)-adrenergic mechanisms may play an important role in mediating morphine-induced pathological effects in the brain.
Collapse
Affiliation(s)
- Elisa Garrido
- Laboratory of Pharmacology and Toxicology, Facultad de Farmacia, Universidad San Pablo CEU, Boadilla del Monte, Madrid, Spain
| | | | | | | |
Collapse
|
39
|
Homayoun H, Khavandgar S, Zarrindast MR. Morphine state-dependent learning: interactions with alpha2-adrenoceptors and acute stress. Behav Pharmacol 2003; 14:41-8. [PMID: 12576880 DOI: 10.1097/00008877-200302000-00004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The interactions of -adrenoceptors and acute restraint stress with morphine state-dependent memory of passive avoidance were examined in mice. Memory acquired following pre-training morphine administration (5 mg/kg, i.p.) was dose- and time-dependently retrieved by pre-test morphine; this effect was reversible by yohimbine (1 mg/kg). Pre-test clonidine (0.005-0.1 mg/kg) was also effective in restoring morphine-induced memory. Pre-training clonidine (2 mg/kg) induced an amnestic effect that was restorable by pre-test clonidine or morphine; this effect was also blocked by yohimbine. Acute pre-training stress for 2 h induced an amnestic effect that was reversible by pre-test morphine (1 and 5 mg/kg) or clonidine (0.01 and 0.1 mg/kg). Finally, acute pre-test stress could restore the impairment of memory induced by pre-training morphine. The data are suggestive of a functional interaction between -opioid, -adrenergic receptors and stress in modulating state-dependent learning and memory.
Collapse
Affiliation(s)
- H Homayoun
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
40
|
Abstract
This paper is the twenty-fourth installment of the annual review of research concerning the opiate system. It summarizes papers published during 2001 that studied the behavioral effects of the opiate peptides and antagonists. The particular topics covered this year include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology(Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| | | |
Collapse
|
41
|
Laorden ML, Núñez C, Almela P, Milanés MV. Morphine withdrawal-induced c-fos expression in the hypothalamic paraventricular nucleus is dependent on the activation of catecholaminergic neurones. J Neurochem 2002; 83:132-40. [PMID: 12358736 DOI: 10.1046/j.1471-4159.2002.01123.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We previously demonstrated that morphine withdrawal induced hyperactivity of noradrenergic pathways innervating the hypothalamic paraventricular nucleus (PVN) in rats, in parallel with an increase in the neurosecretory activity of the hypothalamus-pituitary-adrenocortical (HPA) axis, as evaluated by corticosterone release. These neuroendocrine effects were dependent on stimulation of alpha-adrenoceptors. In the present study, Fos immunostaining was used as a reflection of neuronal activity and combined with immunostaining for tyrosine hydroxylase (TH) for immunohistochemical identification of active neurones during morphine withdrawal. Dependence on morphine was induced by 7-day chronic subcutaneous implantation of six morphine pellets (75 mg). Morphine withdrawal was precipitated by administration of naloxone (5 mg/kg subcutaneously) on day 8. Fos immunoreactivity in the PVN and also in the nucleus tractus solitarius (NTS)-A2 and ventrolateral medulla (VLM)-A1 cell groups, which project to the PVN, increased during morphine withdrawal. Following withdrawal, Fos immunoreactivity was present in most of the TH-positive neurones of the A2 and A1 neurones. In a second study, the effects of administration of adrenoceptor antagonists on withdrawal-induced Fos expression in the PVN were studied. Pre-treatment with alpha1- or alpha2-adrenoceptor antagonists, prazosin (1 mg/kg intraperitoneally) and yohimbine (1 mg/kg intraperitoneally), respectively, 20 min before naloxone administration to morphine-dependent rats markedly reduced Fos expression in the PVN. Similarly, pre-treatment with the beta antagonist, propranolol (3 mg/kg intraperitoneally), significantly prevented withdrawal-induced Fos expression. Collectively, these results suggest the hypothesis that noradrenergic neurones in the brainstem innervating the PVN are active during morphine withdrawal, and that activation of transcriptional responses mediated by Fos in the HPA axis following withdrawal are dependent upon hypothalamic alpha- and beta-adrenoceptors.
Collapse
Affiliation(s)
- M Luisa Laorden
- Equip of Cellular and Molecular Pharmacology, University School of Medicine, Campus de Espinardo, 30100 Murcia, Spain
| | | | | | | |
Collapse
|
42
|
Abstract
Upon receipt in the dorsal horn (DH) of the spinal cord, nociceptive (pain-signalling) information from the viscera, skin and other organs is subject to extensive processing by a diversity of mechanisms, certain of which enhance, and certain of which inhibit, its transfer to higher centres. In this regard, a network of descending pathways projecting from cerebral structures to the DH plays a complex and crucial role. Specific centrifugal pathways either suppress (descending inhibition) or potentiate (descending facilitation) passage of nociceptive messages to the brain. Engagement of descending inhibition by the opioid analgesic, morphine, fulfils an important role in its pain-relieving properties, while induction of analgesia by the adrenergic agonist, clonidine, reflects actions at alpha(2)-adrenoceptors (alpha(2)-ARs) in the DH normally recruited by descending pathways. However, opioids and adrenergic agents exploit but a tiny fraction of the vast panoply of mechanisms now known to be involved in the induction and/or expression of descending controls. For example, no drug interfering with descending facilitation is currently available for clinical use. The present review focuses on: (1) the organisation of descending pathways and their pathophysiological significance; (2) the role of individual transmitters and specific receptor types in the modulation and expression of mechanisms of descending inhibition and facilitation and (3) the advantages and limitations of established and innovative analgesic strategies which act by manipulation of descending controls. Knowledge of descending pathways has increased exponentially in recent years, so this is an opportune moment to survey their operation and therapeutic relevance to the improved management of pain.
Collapse
Affiliation(s)
- Mark J Millan
- Department of Psychopharmacology, Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy/Seine, Paris, France.
| |
Collapse
|