1
|
Stemper B, Löwen S, Fritsch A, Hoffmann A, Sarkar A. The bradykinin-1 receptor antagonist fulmetibant in patients with diabetic neuropathic pain: the randomized, crossover, placebo-controlled, double-blind, phase 2a BRADiNP study. Pain 2025:00006396-990000000-00892. [PMID: 40334047 DOI: 10.1097/j.pain.0000000000003642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/24/2025] [Indexed: 05/09/2025]
Abstract
ABSTRACT The BRADiNP study was a multicenter, randomized, double-blind, placebo-controlled, 2-treatment complete crossover study evaluating the efficacy and safety of the bradykinin 1 receptor antagonist fulmetibant in patients with diabetic neuropathic pain (DNP) (ClinicalTrials.gov NCT05219812). To be eligible for enrollment, patients had to be adults with type 1 or type 2 diabetes mellitus with painful distal symmetric sensorimotor neuropathy of >6 months' duration and neuropathic pain. After blinded washout of prior DNP treatment, patients were randomized 1:1 to start with either fulmetibant once daily or placebo in the first 4 weeks' treatment period and vice versa in the second period. The primary endpoint was the change from baseline in weekly mean 24-hour average pain intensity score at week 4. Seventy-nine participants were treated with fulmetibant (450 mg once daily), and 79 participants were treated with placebo; 75 participants completed treatment in both treatment periods. At week 4, the mean treatment difference was 0.07 (-0.170 to 0.314). Adverse events were mostly mild or moderate in severity and occurred in 51.3% of the treated participants (41.8% after treatment with fulmetibant and 32.9% after treatment with placebo). The results of this study show that preclinical efficacy seen with this bradykinin 1 receptor antagonist did not translate into a meaningful therapeutic approach for pain management in patients with DNP.
Collapse
Affiliation(s)
- Brigitte Stemper
- Research & Development, Pharmaceuticals, Bayer AG, Berlin, Germany
- Department of Neurology, University Erlangen-Nürnberg, Erlangen, Germany
| | | | - Achim Fritsch
- Research & Development, Pharmaceuticals, Bayer AG, Berlin, Germany
| | - Anja Hoffmann
- Research & Development, Pharmaceuticals, Bayer AG, Berlin, Germany
| | - Arnab Sarkar
- Research & Development, Pharmaceuticals, Bayer AG, Berlin, Germany
| |
Collapse
|
2
|
Batista C, Cruz JVR, Siqueira M, Pesquero JB, Stipursky J, Mendes FDA. Kinin B 1 Receptor Agonist Enhances Blood-Brain Barrier Permeability in Healthy and Glioblastoma Environments. Pharmaceuticals (Basel) 2025; 18:591. [PMID: 40284027 PMCID: PMC12030169 DOI: 10.3390/ph18040591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/27/2025] [Accepted: 04/06/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: The low permeability of the blood-brain barrier (BBB) represents a significant challenge to effective systemic chemotherapy for primary and metastatic brain cancers. Kinin receptors play a crucial role in modulating BBB permeability, and their agonist analogs have been explored in preclinical animal models to enhance drug delivery to the brain. In this study, we investigated whether des-Arg9-bradykinin (DBK), a physiological agonist of kinin B1 receptor (B1R), acts as a brain drug delivery adjuvant by promoting the transient opening of the BBB. Methods: Human brain microvascular endothelial cells (HBMECs) were treated with DBK in the culture medium and in conditioned media from glioblastoma cell lines, namely T98G (CMT98G) and U87MG (CMU87). Immunofluorescence, RT-qPCR, in-cell Western assay, and proximity ligation assay (PLA) were performed to analyze BBB components, kinin receptors and TLR4, a receptor associated with the kinin pathway and inflammation. The effect of DBK on enhancing paracellular molecule transport was evaluated using Evans blue dye (EB) quantification in a cell culture insert assay and in an in vivo model, where mice with and without brain tumors were treated with DBK. To assess the functional impact of the transient BBB opening induced by DBK, the chemotherapeutic drug doxorubicin (DOX) was administered. Results: Treatment with DBK facilitates the presence of EB in the brain parenchyma by transiently disrupting the BBB, as further evidenced by the increased paracellular passage of the dye in an in vitro assay. B1R activation by DBK induces transient BBB opening lasting less than 48 h, enhancing the bioavailability of the DOX within the brain parenchyma and glioma tumor mass. The interaction between B1R and TLR4 is disrupted by the secreted factors released by glioblastoma cells, as conditioned media from T98G and U87 reduce TLR4 staining in endothelial cells without affecting B1R expression. Conclusions: These results further support the potential of B1R activation as a strategy to enhance targeted drug delivery to the brain.
Collapse
Affiliation(s)
- Carolina Batista
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (C.B.); (J.V.R.C.); (M.S.); (J.S.)
| | - João Victor Roza Cruz
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (C.B.); (J.V.R.C.); (M.S.); (J.S.)
| | - Michele Siqueira
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (C.B.); (J.V.R.C.); (M.S.); (J.S.)
| | - João Bosco Pesquero
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04039-032, SP, Brazil;
| | - Joice Stipursky
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (C.B.); (J.V.R.C.); (M.S.); (J.S.)
| | - Fabio de Almeida Mendes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (C.B.); (J.V.R.C.); (M.S.); (J.S.)
| |
Collapse
|
3
|
Figueiredo NC, Piacsek M, Montalvany-Antonucci CC, Santos MDS, Amaral FA, Teixeira MM, Silva TA, Macari S, Pandruvada S, Andrade Jr I. Deletion of kinin receptor B2 enhances orthodontic tooth movement and alveolar bone remodeling. PLoS One 2025; 20:e0318436. [PMID: 40019931 PMCID: PMC11870366 DOI: 10.1371/journal.pone.0318436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/15/2025] [Indexed: 03/03/2025] Open
Abstract
The kallikrein-kinin system (KKS) is a complex enzymatic system involved in multiple biological processes, particularly inflammation. The system's peptides exert broad effects through two receptors, B1 (B1R) and B2 (B2R), expressed in various cell types, including osteoblasts. However, the impact of this system on bone remodeling induced by mechanical force needs to be better understood. This study aimed to elucidate the role of the B2 kinin receptor in bone phenotype and remodeling under mechanical stress. Orthodontic forces were applied to the upper first molars of B2R-/- mice and wild-type controls. Bone parameters, bone cellular counts, expression of inflammatory biomarkers, and osteoblast and osteoclast differentiation and activity were assessed using microtomography, histological analysis, real-time polymerase chain reaction (qPCR), and in vitro bone cell cultures, respectively. The results revealed that B2 receptor deficiency significantly altered maxillary bone architecture, reduced trabecular thickness, increased orthodontic tooth movement, and spontaneous alveolar bone loss (ABL). Histological analysis showed a higher number of osteoclasts in B2R-/- mice, with no significant change in osteoblast counts. Molecular analysis indicated elevated levels of RANK, RANKL, OPG, RANKL/OPG, IL-1β, and B1 receptor expression in B2R-/- mice, while in vitro studies confirmed enhanced osteoclast numbers and activity in B2R-/- cells. In conclusion, this study underscores the critical roles of kinin receptors in regulating alveolar bone remodeling, with B2R deletion leading to increased osteoclastic activity and bone loss. The compensatory upregulation of B1Rs in the absence of B2Rs suggests functional redundancy. However, the B2R-/- phenotype emphasizes the complex involvement of the KKS pathway in bone physiology, suggesting avenues for further research into bone pathophysiology and potential therapeutic approaches.
Collapse
Affiliation(s)
- Natália Couto Figueiredo
- Graduate Program in Dentistry, School of Dentistry, Pontifical Catholic University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Biomedical and Community Health Sciences, Division of Basic Science Research, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Mitchell Piacsek
- Department of Biomedical and Community Health Sciences, Division of Basic Science Research, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | | | - Mariana de Souza Santos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Flávio Almeida Amaral
- Department of Biochemistry and Immunology, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tarcília Aparecida Silva
- Department of Oral Surgery, Pathology, and Clinical Dentistry, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Soraia Macari
- Department of Restorative Dentistry, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Subramanya Pandruvada
- Department of Biomedical and Community Health Sciences, Division of Basic Science Research, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Ildeu Andrade Jr
- Department of Orthodontics and Dentofacial Orthopedics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
4
|
Yang J, Li Z, Deng X, Li M, Li B, Thuku RC, Chen Q, Sun X, Lu Q, Fang M. Kallikrein inhibitor derived from immunoglobulin heavy chain junction region possesses anti-thromboinflammation potential. Pharmacol Res 2024; 209:107460. [PMID: 39393436 DOI: 10.1016/j.phrs.2024.107460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Influenza vaccination is associated with a reduced incidence of cardiovascular events, cardiovascular death, and all-cause mortality. However, the functional role of the associated immunoglobulin remains unclear. This study identified a specific influenza-related immunoglobulin heavy chain junction region sequence (Ser-Leu-Gly-Ala-Ser-Asp, SD6) that inhibited plasma kallikrein (PKa) activity to resist thromboinflammatory responses and stroke injury. PKa is considered an attractive therapeutic target for alleviating the complications of thrombophilia-induced inflammation. In vitro, SD6 prolonged plasma recalcification and activated partial thromboplastin time, with no effects on bleeding risk-related prothrombin time, indicating selective inhibition of the intrinsic coagulation pathway. Correspondingly, at doses ranging from 0.25 to 4 mg/kg, SD6 attenuated arterial and cortical venous thrombosis in FeCl3-induced and photochemically induced mice, without impacting hemorrhage risk, and further mitigated cerebral inflammatory injury in a mouse model of transient middle cerebral artery occlusion ischemic stroke. These findings suggest that SD6 may serve as a potential therapeutic agent for the treatment of thromboinflammatory conditions.
Collapse
Affiliation(s)
- Juan Yang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China; Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan, 650201, P. R. China
| | - Ziyu Li
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan, 650201, P. R. China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyi Deng
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan, 650201, P. R. China
| | - Mengru Li
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan, 650201, P. R. China
| | - Bin Li
- Yan'an Hospital of Kunming Medical University, No. 245 Renmin East Road, Kunming, Yunnan 650051, China
| | - Rebecca Caroline Thuku
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan, 650201, P. R. China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Chen
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Xiang Sun
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Qiumin Lu
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan, 650201, P. R. China
| | - Mingqian Fang
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan, 650201, P. R. China.
| |
Collapse
|
5
|
He Q, Wei Y, Qian Y, Zhong M. Pathophysiological dynamics in the contact, coagulation, and complement systems during sepsis: Potential targets for nafamostat mesilate. JOURNAL OF INTENSIVE MEDICINE 2024; 4:453-467. [PMID: 39310056 PMCID: PMC11411436 DOI: 10.1016/j.jointm.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 09/25/2024]
Abstract
Sepsis is a life-threatening syndrome resulting from a dysregulated host response to infection. It is the primary cause of death in the intensive care unit, posing a substantial challenge to human health and medical resource allocation. The pathogenesis and pathophysiology of sepsis are complex. During its onset, pro-inflammatory and anti-inflammatory mechanisms engage in intricate interactions, possibly leading to hyperinflammation, immunosuppression, and long-term immune disease. Of all critical outcomes, hyperinflammation is the main cause of early death among patients with sepsis. Therefore, early suppression of hyperinflammation may improve the prognosis of these patients. Nafamostat mesilate is a serine protease inhibitor, which can inhibit the activation of the complement system, coagulation system, and contact system. In this review, we discuss the pathophysiological changes occurring in these systems during sepsis, and describe the possible targets of the serine protease inhibitor nafamostat mesilate in the treatment of this condition.
Collapse
Affiliation(s)
- Qiaolan He
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yilin Wei
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiqi Qian
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ming Zhong
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Wu D, Liao X, Gao J, Gao Y, Li Q, Gao W. Potential pharmaceuticals targeting neuroimmune interactions in treating acute lung injury. Clin Transl Med 2024; 14:e1808. [PMID: 39129233 PMCID: PMC11317502 DOI: 10.1002/ctm2.1808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND AND MAIN BODY Although interactions between the nervous and immune systems have been recognized decades ago, it has become increasingly appreciated that neuroimmune crosstalk is among the driving factors of multiple pulmonary inflammatory diseases including acute lung injury (ALI). Here, we review the current understanding of nerve innervations towards the lung and summarize how the neural regulation of immunity and inflammation participates in the onset and progression of several lung diseases, especially ALI. We then present advancements in the development of potential drugs for ALI targeting neuroimmune interactions, including cholinergic anti-inflammatory pathway, sympathetic-immune pathway, purinergic signalling, neuropeptides and renin-angiotensin system at different stages from preclinical investigation to clinical trials, including the traditional Chinese medicine. CONCLUSION This review highlights the importance of considering the therapeutic strategy of inflammatory diseases within a conceptual framework that integrates classical inflammatory cascade and neuroimmune circuits, so as to deepen the understanding of immune modulation and develop more sophisticated approaches to treat lung diseases represented by ALI. KEY POINTS The lungs present abundant nerve innervations. Neuroimmune interactions exert a modulatory effect in the onset and progression of lung inflammatory diseases, especially acute lung injury. The advancements of potential drugs for ALI targeting neuroimmune crosstalk at different stages from preclinical investigation to clinical trials are elaborated. Point out the direction for the development of neuroimmune pharmacology in the future.
Collapse
Affiliation(s)
- Di Wu
- Department of Pulmonary and Critical Care MedicineShanghai East HospitalSchool of MedicineTongji UniversityShanghaiP. R. China
| | - Ximing Liao
- Department of Pulmonary and Critical Care MedicineShanghai East HospitalSchool of MedicineTongji UniversityShanghaiP. R. China
| | - Jing Gao
- Department of Pulmonary and Critical Care MedicineShanghai East HospitalSchool of MedicineTongji UniversityShanghaiP. R. China
| | - Yixuan Gao
- Department of GynaecologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanP. R. China
| | - Qiang Li
- Department of Pulmonary and Critical Care MedicineShanghai East HospitalSchool of MedicineTongji UniversityShanghaiP. R. China
| | - Wei Gao
- Department of Pulmonary and Critical Care MedicineShanghai East HospitalSchool of MedicineTongji UniversityShanghaiP. R. China
| |
Collapse
|
7
|
Ferreira JDCP, Soley BS, Pawloski PL, Moreira CG, Pesquero JB, Bader M, Calixto JB, Cabrini DA, Otuki MF. Role of kinin receptors in skin pigmentation. Eur J Pharmacol 2024; 973:176537. [PMID: 38604546 DOI: 10.1016/j.ejphar.2024.176537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024]
Abstract
Previous studies have shown that all kinin system is constitutively expressed in the normal and inflamed skin, with a potential role in both physiological and pathological processes. However, the understanding regarding the involvement of the kinin system in skin pigmentation and pigmentation disorders remains incomplete. In this context, the present study was designed to determine the role of kinins in the Monobenzone (MBZ)-induced vitiligo-like model. Our findings showed that MBZ induces higher local skin depigmentation in kinin receptors knockout mice (KOB1R, KOB2R and KOB1B2R) than in wild type (WT). Remarkably, lower levels of melanin content and reduced ROS generation were detected in KOB1R and KOB2R mice treated with MBZ. In addition, both KOB1R and KOB2R show increased dermal cell infiltrate in vitiligo-like skin, when compared to WT-MBZ. Additionally, lack of B1R was associated with greater skin accumulation of IL-4, IL-6, and IL-17 by MBZ, while KOB1B2R presented lower levels of TNF and IL-1. Of note, the absence of both kinin B1 and B2 receptors demonstrates a protective effect by preventing the increase in polymorphonuclear and mononuclear cell infiltrations, as well as inflammatory cytokine levels induced by MBZ. In addition, in vitro assays confirm that B1R and B2R agonists increase intracellular melanin synthesis, while bradykinin significantly enhanced extracellular melanin levels and proliferation of B16F10 cells. Our findings highlight that the lack of kinin receptors caused more severe depigmentation in the skin, as well as genetic deletion of both B1/B2 receptors seems to be linked with changes in levels of constitutive melanin levels, suggesting the involvement of kinin system in crucial skin pigmentation pathways.
Collapse
Affiliation(s)
| | - Bruna Silva Soley
- Department of Pharmacology, Universidade Federal do Paraná, Curitiba, PR, Brazil.
| | | | | | - João Bosco Pesquero
- Department of Biophysics, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany; Institute for Biology, University of Lübeck, Germany; Charité University Medicine, Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany
| | - João Batista Calixto
- Center of Innovation and Preclinical Studies (CIENP), Florianópolis, SC, Brazil.
| | | | - Michel Fleith Otuki
- Department of Pharmacology, Universidade Federal do Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
8
|
Franco TM, Tavares MR, Novaes LS, Munhoz CD, Peixoto-Santos JE, Araujo RC, Donato J, Bader M, Wasinski F. Effects of Bradykinin B2 Receptor Ablation from Tyrosine Hydroxylase Cells on Behavioral and Motor Aspects in Male and Female Mice. Int J Mol Sci 2024; 25:1490. [PMID: 38338764 PMCID: PMC10855040 DOI: 10.3390/ijms25031490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
The kallikrein-kinin system is a versatile regulatory network implicated in various biological processes encompassing inflammation, nociception, blood pressure control, and central nervous system functions. Its physiological impact is mediated through G-protein-coupled transmembrane receptors, specifically the B1 and B2 receptors. Dopamine, a key catecholamine neurotransmitter widely distributed in the CNS, plays a crucial role in diverse physiological functions including motricity, reward, anxiety, fear, feeding, sleep, and arousal. Notably, the potential physical interaction between bradykinin and dopaminergic receptors has been previously documented. In this study, we aimed to explore whether B2R modulation in catecholaminergic neurons influences the dopaminergic pathway, impacting behavioral, metabolic, and motor aspects in both male and female mice. B2R ablation in tyrosine hydroxylase cells reduced the body weight and lean mass without affecting body adiposity, substrate oxidation, locomotor activity, glucose tolerance, or insulin sensitivity in mice. Moreover, a B2R deficiency in TH cells did not alter anxiety levels, exercise performance, or motor coordination in female and male mice. The concentrations of monoamines and their metabolites in the substantia nigra and cortex region were not affected in knockout mice. In essence, B2R deletion in TH cells selectively influenced the body weight and composition, leaving the behavioral and motor aspects largely unaffected.
Collapse
Affiliation(s)
- Thaina Maquedo Franco
- Department of Neurology and Neurosurgery, Federal University of Sao Paulo, Sao Paulo 04039-032, Brazil; (T.M.F.); (M.R.T.); (J.E.P.-S.)
| | - Mariana R. Tavares
- Department of Neurology and Neurosurgery, Federal University of Sao Paulo, Sao Paulo 04039-032, Brazil; (T.M.F.); (M.R.T.); (J.E.P.-S.)
| | - Leonardo S. Novaes
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, Sao Paulo 05508-000, Brazil; (L.S.N.); (C.D.M.)
| | - Carolina D. Munhoz
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, Sao Paulo 05508-000, Brazil; (L.S.N.); (C.D.M.)
| | - Jose Eduardo Peixoto-Santos
- Department of Neurology and Neurosurgery, Federal University of Sao Paulo, Sao Paulo 04039-032, Brazil; (T.M.F.); (M.R.T.); (J.E.P.-S.)
| | - Ronaldo C. Araujo
- Department of Biophysics, Federal University of Sao Paulo, Sao Paulo 04039-032, Brazil;
| | - Jose Donato
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, Sao Paulo 05508-000, Brazil;
| | - Michael Bader
- Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, 10117 Berlin, Germany
- Institute for Biology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Frederick Wasinski
- Department of Neurology and Neurosurgery, Federal University of Sao Paulo, Sao Paulo 04039-032, Brazil; (T.M.F.); (M.R.T.); (J.E.P.-S.)
| |
Collapse
|
9
|
Alves SAS, Teixeira DE, Peruchetti DB, Silva LS, Brandão LFP, Caruso-Neves C, Pinheiro AAS. Bradykinin produced during Plasmodium falciparum erythrocytic cycle drives monocyte adhesion to human brain microvascular endothelial cells. Brain Res 2024; 1822:148669. [PMID: 37951562 DOI: 10.1016/j.brainres.2023.148669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Cerebral malaria (CM) pathogenesis is described as a multistep mechanism. In this context, monocytes have been implicated in CM pathogenesis by increasing the sequestration of infected red blood cells to the brain microvasculature. In disease, endothelial activation is followed by reduced monocyte rolling and increased adhesion. Nowadays, an important challenge is to identify potential pro-inflammatory stimuli that can modulate monocytes behavior. Our group have demonstrated that bradykinin (BK), a pro-inflammatory peptide involved in CM, is generated during the erythrocytic cycle of P. falciparum and is detected in culture supernatant (conditioned medium). Herein we investigated the role of BK in the adhesion of monocytes to endothelial cells of blood brain barrier (BBB). To address this issue human monocytic cell line (THP-1) and human brain microvascular endothelial cells (hBMECs) were used. It was observed that 20% conditioned medium from P. falciparum infected erythrocytes (Pf-iRBC sup) increased the adhesion of THP-1 cells to hBMECs. This effect was mediated by BK through the activation of B2 and B1 receptors and involves the increase in ICAM-1 expression in THP-1 cells. Additionally, it was observed that angiotensin-converting enzyme (ACE) inhibitor, captopril, enhanced the effect of both BK and Pf-iRBC sup on THP-1 adhesion. Together these data show that BK, generated during the erythrocytic cycle of P. falciparum, could play an important role in adhesion of monocytes in endothelial cells lining the BBB.
Collapse
Affiliation(s)
- Sarah A S Alves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Douglas E Teixeira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diogo B Peruchetti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leandro S Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Felipe P Brandão
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Celso Caruso-Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, INCT-Regenera, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCTIC, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health - NanoSAUDE/FAPERJ, Rio de Janeiro, Brazil
| | - Ana Acacia S Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health - NanoSAUDE/FAPERJ, Rio de Janeiro, Brazil.
| |
Collapse
|
10
|
Calderón-García AÁ, Valencia-Nieto L, Valencia-Sandonis C, López-de la Rosa A, Blanco-Vazquez M, Fernández I, García-Vázquez C, Arroyo-Del Arroyo C, González-García MJ, Enríquez-de-Salamanca A. Gene expression changes in conjunctival cells associated with contact lens wear and discomfort. Ocul Surf 2024; 31:31-42. [PMID: 38128761 DOI: 10.1016/j.jtos.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/27/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE This study aimed to analyze the differences in the expression of pain-related genes in conjunctival epithelial cells among symptomatic contact lens (CL) wearers (SCLWs), asymptomatic CL wearers (ACLWs), and non-CL wearers (non-CLWs). METHODS For this study, 60 participants (20 non-CLWs, 40 CLWs) were enrolled. The CLW group comprised 20 ACLWs and 20 SCLWs according to the Contact Lens Dry Eye Questionnaire short form©. Conjunctival cells were collected using impression cytology, and RNA was isolated and used to determine the expression levels of 85 human genes involved in neuropathic and inflammatory pain. The effects of CL wear and discomfort were evaluated using mixed-effects ANOVA with partially nested fixed-effects model. Gene set enrichment analysis was performed to assign biological meaning to sets of differentially expressed genes. RESULTS Six genes (CD200, EDN1, GRIN1, PTGS1, P2RX7, and TNF) were significantly upregulated in CLWs compared to non-CLWs. Eleven genes (ADORA1, BDKRB1, CACNA1B, DBH, GRIN1, GRM1, HTR1A, PDYN, PTGS1, P2RX3, and TNF) were downregulated in SCLWs compared to ACLWs. These genes were mainly related to pain, synaptic transmission and signaling, ion transport, calcium transport and concentration, and cell-cell signaling. CONCLUSIONS CL wear modified the expression of pain- and inflammation-related genes in conjunctival epithelial cells. These changes may be in part, along with other mechanisms, responsible for CL discomfort in SCLWs.
Collapse
Affiliation(s)
- Andrés Ángel Calderón-García
- Institute of Applied Ophthalmobiology (IOBA), Universidad de Valladolid, Valladolid, Spain; Department of Theoretical Physics, Atomic and Optics, Universidad de Valladolid, Valladolid, Spain
| | - Laura Valencia-Nieto
- Institute of Applied Ophthalmobiology (IOBA), Universidad de Valladolid, Valladolid, Spain; Department of Theoretical Physics, Atomic and Optics, Universidad de Valladolid, Valladolid, Spain
| | - Cristina Valencia-Sandonis
- Institute of Applied Ophthalmobiology (IOBA), Universidad de Valladolid, Valladolid, Spain; Department of Theoretical Physics, Atomic and Optics, Universidad de Valladolid, Valladolid, Spain
| | - Alberto López-de la Rosa
- Institute of Applied Ophthalmobiology (IOBA), Universidad de Valladolid, Valladolid, Spain; Department of Theoretical Physics, Atomic and Optics, Universidad de Valladolid, Valladolid, Spain
| | - Marta Blanco-Vazquez
- Institute of Applied Ophthalmobiology (IOBA), Universidad de Valladolid, Valladolid, Spain
| | - Itziar Fernández
- Institute of Applied Ophthalmobiology (IOBA), Universidad de Valladolid, Valladolid, Spain; Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Valladolid, Spain; Department of Statistics and Operations Research, Universidad de Valladolid, Valladolid, Spain
| | - Carmen García-Vázquez
- Institute of Applied Ophthalmobiology (IOBA), Universidad de Valladolid, Valladolid, Spain
| | - Cristina Arroyo-Del Arroyo
- Institute of Applied Ophthalmobiology (IOBA), Universidad de Valladolid, Valladolid, Spain; Department of Theoretical Physics, Atomic and Optics, Universidad de Valladolid, Valladolid, Spain
| | - María J González-García
- Institute of Applied Ophthalmobiology (IOBA), Universidad de Valladolid, Valladolid, Spain; Department of Theoretical Physics, Atomic and Optics, Universidad de Valladolid, Valladolid, Spain; Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Valladolid, Spain.
| | - Amalia Enríquez-de-Salamanca
- Institute of Applied Ophthalmobiology (IOBA), Universidad de Valladolid, Valladolid, Spain; Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Valladolid, Spain
| |
Collapse
|
11
|
Zaninelli TH, Martelossi-Cebinelli G, Saraiva-Santos T, Borghi SM, Fattori V, Casagrande R, Verri WA. New drug targets for the treatment of gout arthritis: what's new? Expert Opin Ther Targets 2023; 27:679-703. [PMID: 37651647 DOI: 10.1080/14728222.2023.2247559] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/14/2023] [Accepted: 08/09/2023] [Indexed: 09/02/2023]
Abstract
INTRODUCTION Gout arthritis (GA) is an intermittent inflammatory disease affecting approximately 10% of the worldwide population. Symptomatic phases (acute flares) are timely spaced by asymptomatic periods. During an acute attack, redness, joint swelling, limited movement, and excruciating pain are common symptoms. However, the current available therapies are not fully effective in reducing symptoms and offer numerous side effects. Therefore, unveiling new drug targets and effector molecules are required in developing novel GA therapeutics. AREAS COVERED This review discusses the pathophysiological mechanisms of GA and explores potential pharmacological targets to ameliorate disease outcome. In addition, we listed promising pre-clinical studies demonstrating effector molecules with therapeutical potential. Among those, we emphasized the importance of natural products, including traditional Chinese medicine formulas and their multitarget mechanisms of action. EXPERT OPINION In our search, we observed that there is a massive gap between pre-clinical and clinical knowledge. Only a minority (4.4%) of clinical trials aimed to intervene by applying natural products or current hot targets described herein. In this sense, we envisage four possibilities for GA therapeutics, which include the repurposing of existing therapies, ALX/FPR2 agonism for improvement in disease outcome, the use of multitarget drugs (e.g. natural products), and targeting the neuroinflammatory component of GA.
Collapse
Affiliation(s)
- Tiago H Zaninelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Geovana Martelossi-Cebinelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Telma Saraiva-Santos
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Sergio M Borghi
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
- Center for Research in Health Sciences, University of Northern Londrina, Londrina, Brazil
| | - Victor Fattori
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital-Harvard Medical School, Karp Research Building, Boston, MA, USA
| | - Rubia Casagrande
- Laboratory of Antioxidants and Inflammation, Department of Pharmaceutical Sciences, Centre of Health Sciences, Londrina State University, Londrina, Brazil
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| |
Collapse
|
12
|
Brusco I, Silva CR, Ferreira J, Oliveira SM. Kinins' Contribution to Postoperative Pain in an Experimental Animal Model and Its Implications. Brain Sci 2023; 13:941. [PMID: 37371419 DOI: 10.3390/brainsci13060941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Postoperative pain causes discomfort and disability, besides high medical costs. The search for better treatments for this pain is essential to improve recovery and reduce morbidity and risk of chronic postoperative pain. Kinins and their receptors contribute to different painful conditions and are among the main painful inflammatory mediators. We investigated the kinin's role in a postoperative pain model in mice and reviewed data associating kinins with this painful condition. The postoperative pain model was induced by an incision in the mice's paw's skin and fascia with the underlying muscle's elevation. Kinin levels were evaluated by enzyme immunoassays in sham or operated animals. Kinin's role in surgical procedure-associated mechanical allodynia was investigated using systemic or local administration of antagonists of the kinin B1 receptor (DALBk or SSR240612) or B2 receptor (Icatibant or FR173657) and a kallikrein inhibitor (aprotinin). Kinin levels increased in mice's serum and plantar tissue after the surgical procedure. All kinin B1 or B2 receptor antagonists and aprotinin reduced incision-induced mechanical allodynia. Although controversial, kinins contribute mainly to the initial phase of postoperative pain. The kallikrein-kinin system can be targeted to relieve this pain, but more investigations are necessary, especially associations with other pharmacologic targets.
Collapse
Affiliation(s)
- Indiara Brusco
- Graduate Program in Biological Sciences: Biochemical Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Camobi, Santa Maria 97105-900, RS, Brazil
- Graduate Program in Environmental Sciences, Universidade Comunitária da Região de Chapecó, Chapecó 89809-000, SC, Brazil
| | - Cássia Regina Silva
- Graduate Program in Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38401-136, MG, Brazil
| | - Juliano Ferreira
- Graduated Program in Pharmacology, Pharmacology Department, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil
| | - Sara Marchesan Oliveira
- Graduate Program in Biological Sciences: Biochemical Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Camobi, Santa Maria 97105-900, RS, Brazil
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Camobi, Santa Maria 97105-900, RS, Brazil
| |
Collapse
|
13
|
Oliveira AC, Vicentino ARR, Andrade D, Pereira IR, Saboia-Vahia L, Moreira ODC, Carvalho-Pinto CE, Mota JBD, Maciel L, Vilar-Pereira G, Pesquero JB, Lannes-Vieira J, Sirois P, Campos de Carvalho AC, Scharfstein J. Genetic Ablation and Pharmacological Blockade of Bradykinin B1 Receptor Unveiled a Detrimental Role for the Kinin System in Chagas Disease Cardiomyopathy. J Clin Med 2023; 12:jcm12082888. [PMID: 37109224 PMCID: PMC10144326 DOI: 10.3390/jcm12082888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/24/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Chagas disease, the parasitic infection caused by Trypanosoma cruzi, afflicts about 6 million people in Latin America. Here, we investigated the hypothesis that T. cruzi may fuel heart parasitism by activating B1R, a G protein-coupled (brady) kinin receptor whose expression is upregulated in inflamed tissues. Studies in WT and B1R-/- mice showed that T. cruzi DNA levels (15 days post infection-dpi) were sharply reduced in the transgenic heart. FACS analysis revealed that frequencies of proinflammatory neutrophils and monocytes were diminished in B1R-/- hearts whereas CK-MB activity (60 dpi) was exclusively detected in B1R+/+ sera. Since chronic myocarditis and heart fibrosis (90 dpi) were markedly attenuated in the transgenic mice, we sought to determine whether a pharmacological blockade of the des-Arg9-bradykinin (DABK)/B1R pathway might alleviate chagasic cardiomyopathy. Using C57BL/6 mice acutely infected by a myotropic T. cruzi strain (Colombian), we found that daily treatment (15-60 dpi) with R-954 (B1R antagonist) reduced heart parasitism and blunted cardiac injury. Extending R-954 treatment to the chronic phase (120-160 dpi), we verified that B1R targeting (i) decreased mortality indexes, (ii) mitigated chronic myocarditis, and (iii) ameliorated heart conduction disturbances. Collectively, our study suggests that a pharmacological blockade of the proinflammatory KKS/DABK/B1R pathway is cardioprotective in acute and chronic Chagas disease.
Collapse
Affiliation(s)
- Ana Carolina Oliveira
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Amanda Roberta Revoredo Vicentino
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Daniele Andrade
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Isabela Resende Pereira
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Leonardo Saboia-Vahia
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Otacílio da Cruz Moreira
- Plataforma de PCR em Tempo Real RPT09A, Laboratório de Virologia Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Carla Eponina Carvalho-Pinto
- Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói 24020-141, Brazil
| | - Julia Barbalho da Mota
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Leonardo Maciel
- Programa de Medicina Regenerativa, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Núcleo Multidisciplinar de Pesquisa em Biologia, Universidade Federal do Rio de Janeiro, Duque de Caxias Campus, Rio de Janeiro 21941-902, Brazil
| | - Glaucia Vilar-Pereira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - João B Pesquero
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 05508-090, Brazil
| | - Joseli Lannes-Vieira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Pierre Sirois
- Department of Microbiology and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Antônio Carlos Campos de Carvalho
- Programa de Medicina Regenerativa, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Centro Nacional de Biologia Estrutural e Bio-Imagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro 21941-902, Brazil
| | - Julio Scharfstein
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
14
|
Fialho MFP, Brum ES, Becker G, Brusco I, Oliveira SM. Kinin B2 and B1 Receptors Activation Sensitize the TRPA1 Channel Contributing to Anastrozole-Induced Pain Symptoms. Pharmaceutics 2023; 15:pharmaceutics15041136. [PMID: 37111622 PMCID: PMC10143169 DOI: 10.3390/pharmaceutics15041136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Aromatase inhibitors (AIs) cause symptoms of musculoskeletal pain, and some mechanisms have been proposed to explain them. However, signaling pathways downstream from kinin B2 (B2R) and B1 (B1R) receptor activation and their possible sensitizing of the Transient Receptor Potential Ankyrin 1 (TRPA1) remain unknown. The interaction between the kinin receptor and the TRPA1 channel in male C57BL/6 mice treated with anastrozole (an AI) was evaluated. PLC/PKC and PKA inhibitors were used to evaluate the signaling pathways downstream from B2R and B1R activation and their effect on TRPA1 sensitization. Anastrozole caused mechanical allodynia and muscle strength loss in mice. B2R (Bradykinin), B1R (DABk), or TRPA1 (AITC) agonists induced overt nociceptive behavior and enhanced and prolonged the painful parameters in anastrozole-treated mice. All painful symptoms were reduced by B2R (Icatibant), B1R (DALBk), or TRPA1 (A967079) antagonists. We observed the interaction between B2R, B1R, and the TRPA1 channel in anastrozole-induced musculoskeletal pain, which was dependent on the activation of the PLC/PKC and PKA signaling pathways. TRPA1 seems to be sensitized by mechanisms dependent on the activation of PLC/PKC, and PKA due to kinin receptors stimulation in anastrozole-treated animals. Thus, regulating this signaling pathway could contribute to alleviating AIs-related pain symptoms, patients’ adherence to therapy, and disease control.
Collapse
Affiliation(s)
- Maria Fernanda Pessano Fialho
- Graduate Program in Biological Sciences, Biochemical Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Camobi, Santa Maria 97105-900, RS, Brazil
| | - Evelyne Silva Brum
- Graduate Program in Biological Sciences, Biochemical Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Camobi, Santa Maria 97105-900, RS, Brazil
| | - Gabriela Becker
- Graduate Program in Biological Sciences, Biochemical Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Camobi, Santa Maria 97105-900, RS, Brazil
| | - Indiara Brusco
- Graduate Program in Biological Sciences, Biochemical Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Camobi, Santa Maria 97105-900, RS, Brazil
| | - Sara Marchesan Oliveira
- Graduate Program in Biological Sciences, Biochemical Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Camobi, Santa Maria 97105-900, RS, Brazil
- Department of Biochemical and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Camobi, Santa Maria 97105-900, RS, Brazil
| |
Collapse
|
15
|
Brusco I, Becker G, Palma TV, Pillat MM, Scussel R, Steiner BT, Sampaio TB, Ardisson-Araújo DMP, de Andrade CM, Oliveira MS, Machado-De-Avila RA, Oliveira SM. Kinin B 1 and B 2 receptors mediate cancer pain associated with both the tumor and oncology therapy using aromatase inhibitors. Sci Rep 2023; 13:4418. [PMID: 36932156 PMCID: PMC10023805 DOI: 10.1038/s41598-023-31535-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Pain caused by the tumor or aromatase inhibitors (AIs) is a disabling symptom in breast cancer survivors. Their mechanisms are unclear, but pro-algesic and inflammatory mediators seem to be involved. Kinins are endogenous algogenic mediators associated with various painful conditions via B1 and B2 receptor activation, including chemotherapy-induced pain and breast cancer proliferation. We investigate the involvement of the kinin B1 and B2 receptors in metastatic breast tumor (4T1 breast cancer cells)-caused pain and in aromatase inhibitors (anastrozole or letrozole) therapy-associated pain. A protocol associating the tumor and antineoplastic therapy was also performed. Kinin receptors' role was investigated via pharmacological antagonism, receptors protein expression, and kinin levels. Mechanical and cold allodynia and muscle strength were evaluated. AIs and breast tumor increased kinin receptors expression, and tumor also increased kinin levels. AIs caused mechanical allodynia and reduced the muscle strength of mice. Kinin B1 (DALBk) and B2 (Icatibant) receptor antagonists attenuated these effects and reduced breast tumor-induced mechanical and cold allodynia. AIs or paclitaxel enhanced breast tumor-induced mechanical hypersensitivity, while DALBk and Icatibant prevented this increase. Antagonists did not interfere with paclitaxel's cytotoxic action in vitro. Thus, kinin B1 or B2 receptors can be a potential target for treating the pain caused by metastatic breast tumor and their antineoplastic therapy.
Collapse
Affiliation(s)
- Indiara Brusco
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Av. Roraima 1000, Camobi, Santa Maria, RS, 97105-900, Brazil.
| | - Gabriela Becker
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Av. Roraima 1000, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Tais Vidal Palma
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Av. Roraima 1000, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Micheli Mainardi Pillat
- Department of Microbiology and Parasitology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Rahisa Scussel
- Graduate Program in Health Sciences, University of Extreme South Catarinense, Criciuma, SC, Brazil
| | - Bethina Trevisol Steiner
- Graduate Program in Health Sciences, University of Extreme South Catarinense, Criciuma, SC, Brazil
| | - Tuane Bazanella Sampaio
- Graduate Program in Pharmacology, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Daniel Mendes Pereira Ardisson-Araújo
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Av. Roraima 1000, Camobi, Santa Maria, RS, 97105-900, Brazil
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Cinthia Melazzo de Andrade
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Av. Roraima 1000, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Mauro Schneider Oliveira
- Graduate Program in Pharmacology, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | - Sara Marchesan Oliveira
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Av. Roraima 1000, Camobi, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
16
|
Kinin B1 and B2 Receptors Contribute to Cisplatin-Induced Painful Peripheral Neuropathy in Male Mice. Pharmaceutics 2023; 15:pharmaceutics15030852. [PMID: 36986713 PMCID: PMC10051506 DOI: 10.3390/pharmaceutics15030852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Cisplatin is the preferential chemotherapeutic drug for highly prevalent solid tumours. However, its clinical efficacy is frequently limited due to neurotoxic effects such as peripheral neuropathy. Chemotherapy-induced peripheral neuropathy is a dose-dependent adverse condition that negatively impacts quality of life, and it may determine dosage limitations or even cancer treatment cessation. Thus, it is urgently necessary to identify pathophysiological mechanisms underlying these painful symptoms. As kinins and their B1 and B2 receptors contribute to the development of chronic painful conditions, including those induced by chemotherapy, the contribution of these receptors to cisplatin-induced peripheral neuropathy was evaluated via pharmacological antagonism and genetic manipulation in male Swiss mice. Cisplatin causes painful symptoms and impaired working and spatial memory. Kinin B1 (DALBK) and B2 (Icatibant) receptor antagonists attenuated some painful parameters. Local administration of kinin B1 and B2 receptor agonists (in sub-nociceptive doses) intensified the cisplatin-induced mechanical nociception attenuated by DALBK and Icatibant, respectively. In addition, antisense oligonucleotides to kinin B1 and B2 receptors reduced cisplatin-induced mechanical allodynia. Thus, kinin B1 and B2 receptors appear to be potential targets for the treatment of cisplatin-induced painful symptoms and may improve patients’ adherence to treatment and their quality of life.
Collapse
|
17
|
Brusco I, Fialho MFP, Becker G, Brum ES, Favarin A, Marquezin LP, Serafini PT, Oliveira SM. Kinins and their B 1 and B 2 receptors as potential therapeutic targets for pain relief. Life Sci 2023; 314:121302. [PMID: 36535404 DOI: 10.1016/j.lfs.2022.121302] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Kinins are endogenous peptides that belong to the kallikrein-kinin system, which has been extensively studied for over a century. Their essential role in multiple physiological and pathological processes is demonstrated by activating two transmembrane G-protein-coupled receptors, the kinin B1 and B2 receptors. The attention is mainly given to the pathological role of kinins in pain transduction mechanisms. In the past years, a wide range of preclinical studies has amounted to the literature reinforcing the need for an updated review about the participation of kinins and their receptors in pain disorders. Here, we performed an extensive literature search since 2004, describing the historical progress and the current understanding of the kinin receptors' participation and its potential therapeutic in several acute and chronic painful conditions. These include inflammatory (mainly arthritis), neuropathic (caused by different aetiologies, such as cancer, multiple sclerosis, antineoplastic toxicity and diabetes) and nociplastic (mainly fibromyalgia) pain. Moreover, we highlighted the pharmacological actions and possible clinical applications of the kinin B1 and B2 receptor antagonists, kallikrein inhibitors or kallikrein-kinin system signalling pathways-target molecules in these different painful conditions. Notably, recent findings sought to elucidate mechanisms for guiding new and better drug design targeting kinin B1 and B2 receptors to treat a disease diversity. Since the kinin B2 receptor antagonist, Icatibant, is clinically used and well-tolerated by patients with hereditary angioedema gives us hope kinin receptors antagonists could be more robustly tested for a possible clinical application in the treatment of pathological pains, which present limited pharmacology management.
Collapse
Affiliation(s)
- Indiara Brusco
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Maria Fernanda Pessano Fialho
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Gabriela Becker
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Evelyne Silva Brum
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Amanda Favarin
- Laboratory of Neurotoxicity and Psychopharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Lara Panazzolo Marquezin
- Laboratory of Neurotoxicity and Psychopharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Patrick Tuzi Serafini
- Laboratory of Neurotoxicity and Psychopharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
18
|
Brock S, Jackson DB, Soldatos TG, Hornischer K, Schäfer A, Diella F, Emmert MY, Hoerstrup SP. Whole patient knowledge modeling of COVID-19 symptomatology reveals common molecular mechanisms. FRONTIERS IN MOLECULAR MEDICINE 2023; 2:1035290. [PMID: 39086962 PMCID: PMC11285600 DOI: 10.3389/fmmed.2022.1035290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/12/2022] [Indexed: 08/02/2024]
Abstract
Infection with SARS-CoV-2 coronavirus causes systemic, multi-faceted COVID-19 disease. However, knowledge connecting its intricate clinical manifestations with molecular mechanisms remains fragmented. Deciphering the molecular basis of COVID-19 at the whole-patient level is paramount to the development of effective therapeutic approaches. With this goal in mind, we followed an iterative, expert-driven process to compile data published prior to and during the early stages of the pandemic into a comprehensive COVID-19 knowledge model. Recent updates to this model have also validated multiple earlier predictions, suggesting the importance of such knowledge frameworks in hypothesis generation and testing. Overall, our findings suggest that SARS-CoV-2 perturbs several specific mechanisms, unleashing a pathogenesis spectrum, ranging from "a perfect storm" triggered by acute hyper-inflammation, to accelerated aging in protracted "long COVID-19" syndromes. In this work, we shortly report on these findings that we share with the community via 1) a synopsis of key evidence associating COVID-19 symptoms and plausible mechanisms, with details presented within 2) the accompanying "COVID-19 Explorer" webserver, developed specifically for this purpose (found at https://covid19.molecularhealth.com). We anticipate that our model will continue to facilitate clinico-molecular insights across organ systems together with hypothesis generation for the testing of potential repurposing drug candidates, new pharmacological targets and clinically relevant biomarkers. Our work suggests that whole patient knowledge models of human disease can potentially expedite the development of new therapeutic strategies and support evidence-driven clinical hypothesis generation and decision making.
Collapse
Affiliation(s)
| | | | - Theodoros G. Soldatos
- Molecular Health GmbH, Heidelberg, Germany
- SRH Hochschule, University of Applied Science, Heidelberg, Germany
| | | | | | | | - Maximilian Y. Emmert
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Wyss Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Department of Cardiothoracic and Vascular Surgery, German Heart Institute Berlin, Berlin, Germany
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Simon P. Hoerstrup
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Wyss Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Jamison DA, Anand Narayanan S, Trovão NS, Guarnieri JW, Topper MJ, Moraes-Vieira PM, Zaksas V, Singh KK, Wurtele ES, Beheshti A. A comprehensive SARS-CoV-2 and COVID-19 review, Part 1: Intracellular overdrive for SARS-CoV-2 infection. Eur J Hum Genet 2022; 30:889-898. [PMID: 35577935 PMCID: PMC9108708 DOI: 10.1038/s41431-022-01108-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/20/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022] Open
Abstract
COVID-19, the disease caused by SARS-CoV-2, has claimed approximately 5 million lives and 257 million cases reported globally. This virus and disease have significantly affected people worldwide, whether directly and/or indirectly, with a virulent pathogen that continues to evolve as we race to learn how to prevent, control, or cure COVID-19. The focus of this review is on the SARS-CoV-2 virus' mechanism of infection and its proclivity at adapting and restructuring the intracellular environment to support viral replication. We highlight current knowledge and how scientific communities with expertize in viral, cellular, and clinical biology have contributed to increase our understanding of SARS-CoV-2, and how these findings may help explain the widely varied clinical observations of COVID-19 patients.
Collapse
Affiliation(s)
| | - S Anand Narayanan
- COVID-19 International Research Team, Medford, MA, USA.
- Department of Nutrition & Integrative Physiology, Florida State University, Tallahassee, FL, USA.
| | - Nídia S Trovão
- COVID-19 International Research Team, Medford, MA, USA
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Joseph W Guarnieri
- COVID-19 International Research Team, Medford, MA, USA
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michael J Topper
- COVID-19 International Research Team, Medford, MA, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Pedro M Moraes-Vieira
- COVID-19 International Research Team, Medford, MA, USA
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
- Obesity and Comorbidities research Center (OCRC), University of Campinas, Campinas, SP, Brazil
- Experimental Medicine Research Cluster, University of Campinas, Campinas, Brazil
| | - Viktorija Zaksas
- COVID-19 International Research Team, Medford, MA, USA
- Center for Translational Data Science, University of Chicago, Chicago, IL, USA
| | - Keshav K Singh
- COVID-19 International Research Team, Medford, MA, USA
- Department of Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eve Syrkin Wurtele
- COVID-19 International Research Team, Medford, MA, USA
- Center for Metabolic Biology, Bioinformatics and Computational Biology, and Genetics Development, and Cell Biology, Iowa State University, Ames, IA, USA
| | - Afshin Beheshti
- COVID-19 International Research Team, Medford, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA.
| |
Collapse
|
20
|
Zhang Z, Shen C, Fang M, Han Y, Long C, Liu W, Yang M, Liu M, Zhang D, Cao Q, Chen X, Fang Y, Lu Q, Hou Z, Li Y, Liu Z, Lei X, Ni H, Lai R. Novel contact-kinin inhibitor sylvestin targets thromboinflammation and ameliorates ischemic stroke. Cell Mol Life Sci 2022; 79:240. [PMID: 35416530 PMCID: PMC11071929 DOI: 10.1007/s00018-022-04257-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 11/26/2022]
Abstract
Ischemic stroke is a leading cause of death and disability worldwide. Increasing evidence indicates that ischemic stroke is a thromboinflammatory disease in which the contact-kinin pathway has a central role by activating pro-coagulant and pro-inflammatory processes. The blocking of distinct members of the contact-kinin pathway is a promising strategy to control ischemic stroke. Here, a plasma kallikrein and active FXII (FXIIa) inhibitor (sylvestin, contained 43 amino acids, with a molecular weight of 4790.4 Da) was first identified from forest leeches (Haemadipsa sylvestris). Testing revealed that sylvestin prolonged activated partial thromboplastin time without affecting prothrombin time. Thromboelastography and clot retraction assays further showed that it extended clotting time in whole blood and inhibited clot retraction in platelet-rich plasma. In addition, sylvestin prevented thrombosis in vivo in FeCl3-induced arterial and carrageenan-induced tail thrombosis models. The potential role of sylvestin in ischemic stroke was evaluated by transient and permanent middle cerebral artery occlusion models. Sylvestin administration profoundly protected mice from ischemic stroke by counteracting intracerebral thrombosis and inflammation. Importantly, sylvestin showed no signs of bleeding tendency. The present study identifies sylvestin is a promising contact-kinin pathway inhibitor that can proffer profound protection from ischemic stroke without increased risk of bleeding.
Collapse
Affiliation(s)
- Zhiye Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650107, China
| | - Chuanbin Shen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Senior Scientist of Canadian Blood Services Centre for Innovation, Platform Director for Hematology, Cancer and Immunological Diseases, St. Michael's Hospital, Room 421, LKSKI - Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, 209 Victoria Street, Toronto, ON, M5B 1W8, Canada
| | - Mingqian Fang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650107, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Yajun Han
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650107, China
| | - Chengbo Long
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650107, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Weihui Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650107, China
| | - Min Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650107, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Ming Liu
- Department of Molecular and Cell Biology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Dengdeng Zhang
- Department of Pharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Qiqi Cao
- Department of Zoology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xue Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650107, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Yaqun Fang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650107, China
| | - Qiumin Lu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650107, China
| | - Zongliu Hou
- Central Laboratory of Yan'an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, China
| | - Yaxiong Li
- Department of Cardiovascular Surgery, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, China
| | - Zhenze Liu
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Senior Scientist of Canadian Blood Services Centre for Innovation, Platform Director for Hematology, Cancer and Immunological Diseases, St. Michael's Hospital, Room 421, LKSKI - Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, 209 Victoria Street, Toronto, ON, M5B 1W8, Canada
| | - Xi Lei
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Senior Scientist of Canadian Blood Services Centre for Innovation, Platform Director for Hematology, Cancer and Immunological Diseases, St. Michael's Hospital, Room 421, LKSKI - Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, 209 Victoria Street, Toronto, ON, M5B 1W8, Canada
| | - Heyu Ni
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A1, Canada.
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Senior Scientist of Canadian Blood Services Centre for Innovation, Platform Director for Hematology, Cancer and Immunological Diseases, St. Michael's Hospital, Room 421, LKSKI - Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, 209 Victoria Street, Toronto, ON, M5B 1W8, Canada.
- Canadian Blood Services Centre for Innovation, Toronto, ON, M5G 2M1, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A1, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, M5S 1A1, Canada.
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650107, China.
- Sino-African Joint Research Center, Chinese Academy of Science, Wuhan, 430074, Hubei, China.
- Institutes for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, 201203, China.
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| |
Collapse
|
21
|
Rampa DR, Murugesan P, Chao H, Feng H, Dai W, Lee D, Pekcec A, Doods H, Wu D. Reversal of pulmonary arterial hypertension and neointimal formation by kinin B1 receptor blockade. Respir Res 2021; 22:281. [PMID: 34717626 PMCID: PMC8557528 DOI: 10.1186/s12931-021-01875-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/19/2021] [Indexed: 11/15/2022] Open
Abstract
Background This study examined whether BI113823, a novel selective kinin B1 receptor antagonist can reverse established pulmonary arterial hypertension (PAH), prevent right heart failure and death, which is critical for clinical translation. Methods Left pneumonectomized male Wistar rats were injected with monocrotaline to induce PAH. Three weeks later, when PAH was well established, the rats received daily treatment of BI113823 or vehicle for 3 weeks. Results Treatment with BI113823 from day 21 to day 42 after monocrotaline injection reversed established PAH as shown by normalized values of mean pulmonary arterial pressure (mPAP). BI113823 therapy reversed pulmonary vascular remodeling, pulmonary arterial neointimal formation, and heart and lung fibrosis, reduced right ventricular pressure, right heart hypertrophy, improved cardiac output, and prevented right heart failure and death. Treatment with BI113823 reduced TNF-α and IL-1β, and macrophages recruitment in bronchoalveolar lavage, reduced CD-68 positive macrophages and expression of proliferating cell nuclear antigen (PCNA) in the perivascular areas, and reduced expression of iNOS, B1 receptors, matrix metalloproteinase (MMP)-2 and MMP-9 proteins, and the phosphorylation of ERK1/2 and AKT in lung. Treatment with BI113823 reduced mRNA expression of ANP, BNP, βMHC, CGTF, collange-I and IV in right heart, compared to vehicle treated controls. In human monocytes cultures, BI113823 reduced LPS-induced TNF-α production, MMP-2 and MMP-9 expression, and reduced TNF-α-induced monocyte migration. Conclusions We conclude that BI113823 reverses preexisting severe experimental pulmonary hypertension via inhibition of macrophage infiltration, cytokine production, as well as down regulation of matrix metalloproteinase proteins.
Collapse
Affiliation(s)
- Dileep Reddy Rampa
- Department of Bio-Nanotechnology and Bio-Convergence Engineering, Chonbuk National University, Jeonju, South Korea
| | - Priya Murugesan
- Department of Bio-Nanotechnology and Bio-Convergence Engineering, Chonbuk National University, Jeonju, South Korea
| | - Honglu Chao
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huiying Feng
- Department of Bio-Nanotechnology and Bio-Convergence Engineering, Chonbuk National University, Jeonju, South Korea.,Department of Research, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Wenxin Dai
- Department of Bio-Nanotechnology and Bio-Convergence Engineering, Chonbuk National University, Jeonju, South Korea
| | - Dongwon Lee
- Department of Bio-Nanotechnology and Bio-Convergence Engineering, Chonbuk National University, Jeonju, South Korea
| | - Anton Pekcec
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Henri Doods
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Dongmei Wu
- Department of Bio-Nanotechnology and Bio-Convergence Engineering, Chonbuk National University, Jeonju, South Korea. .,Department of Research, Mount Sinai Medical Center, Miami Beach, FL, USA.
| |
Collapse
|
22
|
de Oliveira NA, Cardoso SC, Barbosa DA, da Fonseca CD. Acute kidney injury caused by venomous animals: inflammatory mechanisms. J Venom Anim Toxins Incl Trop Dis 2021; 27:20200189. [PMID: 34512738 PMCID: PMC8394371 DOI: 10.1590/1678-9199-jvatitd-2020-0189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/15/2021] [Indexed: 01/06/2023] Open
Abstract
Either bites or stings of venomous animals comprise relevant public health problems in tropical countries. Acute kidney injury (AKI) induced by animal toxins is related to worse prognostic and outcomes. Being one the most important pathways to induce AKI following envenoming due to animal toxins, inflammation is an essential biological response that eliminates pathogenic bacteria and repairs tissue after injury. However, direct nephrotoxicity (i.e. apoptotic and necrotic mechanisms of toxins), pigmenturia (i.e. rhabdomyolysis and hemolysis), anaphylactic reactions, and coagulopathies could contribute to the renal injury. All these mechanisms are closely integrated, but inflammation is a distinct process. Hence, it is important to improve our understanding on inflammation mechanisms of these syndromes to provide a promising outlook to reduce morbidity and mortality. This literature review highlights the main scientific evidence of acute kidney injury induced by bites or stings from venomous animals and their inflammatory mechanisms. It included observational, cross-sectional, case-control and cohort human studies available up to December 2019. Descriptors were used according to Medical Subject Headings (MeSH), namely: “Acute kidney injury” or “Venom” and “Inflammation” on Medline/Pubmed and Google Scholar; “Kidney disease” or “Acute kidney injury” on Lilacs and SciELO. The present review evidenced that, among the described forms of renal inflammation, it can occur either directly or indirectly on renal cells by means of intravascular, systemic and endothelial hemolysis, activation of inflammatory pathway, as well as direct action of venom cytotoxic components on kidney structures.
Collapse
Affiliation(s)
- Naila Albertina de Oliveira
- Department of Nursing, Institute of Health Sciences, Paulista University (Unip), Jundiaí, SP, Brazil.,Graduate Program in Nursing, School of Nursing, Federal University of São Paulo (Unifesp), São Paulo, SP, Brazil
| | | | - Dulce Aparecida Barbosa
- Department of Clinical and Surgical Nursing, School of Nursing, Federal University of São Paulo (Unifesp), São Paulo, SP, Brazil
| | - Cassiane Dezoti da Fonseca
- Department of Clinical and Surgical Nursing, School of Nursing, Federal University of São Paulo (Unifesp), São Paulo, SP, Brazil
| |
Collapse
|
23
|
Cooper SL, Boyle E, Jefferson SR, Heslop CRA, Mohan P, Mohanraj GGJ, Sidow HA, Tan RCP, Hill SJ, Woolard J. Role of the Renin-Angiotensin-Aldosterone and Kinin-Kallikrein Systems in the Cardiovascular Complications of COVID-19 and Long COVID. Int J Mol Sci 2021; 22:8255. [PMID: 34361021 PMCID: PMC8347967 DOI: 10.3390/ijms22158255] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 01/08/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the virus responsible for the COVID-19 pandemic. Patients may present as asymptomatic or demonstrate mild to severe and life-threatening symptoms. Although COVID-19 has a respiratory focus, there are major cardiovascular complications (CVCs) associated with infection. The reported CVCs include myocarditis, heart failure, arrhythmias, thromboembolism and blood pressure abnormalities. These occur, in part, because of dysregulation of the Renin-Angiotensin-Aldosterone System (RAAS) and Kinin-Kallikrein System (KKS). A major route by which SARS-CoV-2 gains cellular entry is via the docking of the viral spike (S) protein to the membrane-bound angiotensin converting enzyme 2 (ACE2). The roles of ACE2 within the cardiovascular and immune systems are vital to ensure homeostasis. The key routes for the development of CVCs and the recently described long COVID have been hypothesised as the direct consequences of the viral S protein/ACE2 axis, downregulation of ACE2 and the resulting damage inflicted by the immune response. Here, we review the impact of COVID-19 on the cardiovascular system, the mechanisms by which dysregulation of the RAAS and KKS can occur following virus infection and the future implications for pharmacological therapies.
Collapse
Affiliation(s)
- Samantha L. Cooper
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK;
- Centre of Membrane Proteins and Receptors (COMPARE), School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Eleanor Boyle
- School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK; (E.B.); (S.R.J.); (C.R.A.H.); (P.M.); (G.G.J.M.); (H.A.S.); (R.C.P.T.)
| | - Sophie R. Jefferson
- School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK; (E.B.); (S.R.J.); (C.R.A.H.); (P.M.); (G.G.J.M.); (H.A.S.); (R.C.P.T.)
| | - Calum R. A. Heslop
- School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK; (E.B.); (S.R.J.); (C.R.A.H.); (P.M.); (G.G.J.M.); (H.A.S.); (R.C.P.T.)
| | - Pirathini Mohan
- School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK; (E.B.); (S.R.J.); (C.R.A.H.); (P.M.); (G.G.J.M.); (H.A.S.); (R.C.P.T.)
| | - Gearry G. J. Mohanraj
- School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK; (E.B.); (S.R.J.); (C.R.A.H.); (P.M.); (G.G.J.M.); (H.A.S.); (R.C.P.T.)
| | - Hamza A. Sidow
- School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK; (E.B.); (S.R.J.); (C.R.A.H.); (P.M.); (G.G.J.M.); (H.A.S.); (R.C.P.T.)
| | - Rory C. P. Tan
- School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK; (E.B.); (S.R.J.); (C.R.A.H.); (P.M.); (G.G.J.M.); (H.A.S.); (R.C.P.T.)
| | - Stephen J. Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK;
- Centre of Membrane Proteins and Receptors (COMPARE), School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Jeanette Woolard
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK;
- Centre of Membrane Proteins and Receptors (COMPARE), School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
24
|
de Souza Maciel I, Azevedo VM, Oliboni P, Campos MM. Blockade of the kinin B 1 receptor counteracts the depressive-like behaviour and mechanical allodynia in ovariectomised mice. Behav Brain Res 2021; 412:113439. [PMID: 34197868 DOI: 10.1016/j.bbr.2021.113439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/31/2021] [Accepted: 06/25/2021] [Indexed: 12/27/2022]
Abstract
Menopause is related to a decline in ovarian oestrogen production, affecting the perception of the somatosensory stimuli, changing the immune-inflammatory systems, and triggering depressive symptoms. It has been demonstrated that the inhibition of the kinin B1 and B2 receptors (B1R and B2R) prevented the depressive-like behaviour and the mechanical allodynia that was induced by immune-inflammatory mediators in mice. However, there is no evidence regarding the role of the kinin receptors in the depressive-like and nociceptive behaviour in female mice that were subjected to bilateral ovariectomy (OVX). This study has shown that the OVX mice developed time-related mechanical allodynia, together with an increased immobility time as indicative of depression. Both of these changes were reduced by the genetic deletion of B1R, or by the pharmacological blockade of the selective kinin B1R antagonist R-715 (acute, i.p.). The genetic deletion or the pharmacological inhibition of B2R (HOE 140, i.p.) did not prevent the OVX-elicited behavioural changes. The data has suggested a particular modulation of kinin B1R in the nociceptive and depressive-like behaviour in the OVX mice. The selective inhibition of the B1R receptor may be a new pharmacological target for treating pain and depression symptoms in women during the perimenopause/menopause period.
Collapse
Affiliation(s)
- Izaque de Souza Maciel
- Programa de Pós-graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Escola de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| | - Vanessa Machado Azevedo
- Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patricia Oliboni
- Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Martha Campos
- Programa de Pós-graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
25
|
Wang Y, Zhang B, Huang Y, Yao W, Tao F, Chen Y. Novel Bradykinin Receptor Inhibitors Inhibit Proliferation and Promote the Apoptosis of Hepatocellular Carcinoma Cells by Inhibiting the ERK Pathway. Molecules 2021; 26:molecules26133915. [PMID: 34206871 PMCID: PMC8272207 DOI: 10.3390/molecules26133915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 01/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. Studies have shown that bradykinin (BK) is highly expressed in liver cancer. We designed the novel BK receptor inhibitors J051-71 and J051-105, which reduced the viability of liver cancer cells and inhibited the formation of cancer cell colonies. J051-71 and J051-105 reduced cell proliferation and induced apoptosis in HepG2 and BEL-7402 cells, which may be due to the inhibition of the extracellular regulated protein kinase (ERK) signaling pathway. In addition, these BK receptor inhibitors reversed the cell proliferation induced by BK in HepG2 and BEL-7402 cells by downregulating B1 receptor expression. Inhibiting B1 receptor expression decreased the protein levels of p-ERK and reduced the malignant progression of HCC, providing a potential target for HCC therapy.
Collapse
Affiliation(s)
- Yiou Wang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.W.); (B.Z.); (Y.H.)
| | - Bingxue Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.W.); (B.Z.); (Y.H.)
| | - Yibing Huang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.W.); (B.Z.); (Y.H.)
| | - Wenjun Yao
- Jiangsu ProteLight Pharmaceutical & Biotechnology Co., Ltd., Jiangyin 214437, China; (W.Y.); (F.T.)
| | - Fei Tao
- Jiangsu ProteLight Pharmaceutical & Biotechnology Co., Ltd., Jiangyin 214437, China; (W.Y.); (F.T.)
| | - Yuxin Chen
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.W.); (B.Z.); (Y.H.)
- Jiangsu ProteLight Pharmaceutical & Biotechnology Co., Ltd., Jiangyin 214437, China; (W.Y.); (F.T.)
- Correspondence: ; Tel.: +86-431-8515-5200
| |
Collapse
|
26
|
Saggiomo SL, Firth C, Wilson DT, Seymour J, Miles JJ, Wong Y. The Geographic Distribution, Venom Components, Pathology and Treatments of Stonefish ( Synanceia spp.) Venom. Mar Drugs 2021; 19:md19060302. [PMID: 34073964 PMCID: PMC8225006 DOI: 10.3390/md19060302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/05/2022] Open
Abstract
Stonefish are regarded as one of the most venomous fish in the world. Research on stonefish venom has chiefly focused on the in vitro and in vivo neurological, cardiovascular, cytotoxic and nociceptive effects of the venom. The last literature review on stonefish venom was published over a decade ago, and much has changed in the field since. In this review, we have generated a global map of the current distribution of all stonefish (Synanceia) species, presented a table of clinical case reports and provided up-to-date information about the development of polyspecific stonefish antivenom. We have also presented an overview of recent advancements in the biomolecular composition of stonefish venom, including the analysis of transcriptomic and proteomic data from Synanceia horrida venom gland. Moreover, this review highlights the need for further research on the composition and properties of stonefish venom, which may reveal novel molecules for drug discovery, development or other novel physiological uses.
Collapse
Affiliation(s)
- Silvia L. Saggiomo
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns 4878, Australia; (C.F.); (D.T.W.); (J.S.); (J.J.M.); (Y.W.)
- Centre for Molecular Therapeutics, James Cook University, Cairns 4878, Australia
- Correspondence:
| | - Cadhla Firth
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns 4878, Australia; (C.F.); (D.T.W.); (J.S.); (J.J.M.); (Y.W.)
- Centre for Molecular Therapeutics, James Cook University, Cairns 4878, Australia
| | - David T. Wilson
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns 4878, Australia; (C.F.); (D.T.W.); (J.S.); (J.J.M.); (Y.W.)
- Centre for Molecular Therapeutics, James Cook University, Cairns 4878, Australia
| | - Jamie Seymour
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns 4878, Australia; (C.F.); (D.T.W.); (J.S.); (J.J.M.); (Y.W.)
- Centre for Molecular Therapeutics, James Cook University, Cairns 4878, Australia
| | - John J. Miles
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns 4878, Australia; (C.F.); (D.T.W.); (J.S.); (J.J.M.); (Y.W.)
- Centre for Molecular Therapeutics, James Cook University, Cairns 4878, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns 4878, Australia
| | - Yide Wong
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns 4878, Australia; (C.F.); (D.T.W.); (J.S.); (J.J.M.); (Y.W.)
- Centre for Molecular Therapeutics, James Cook University, Cairns 4878, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns 4878, Australia
| |
Collapse
|
27
|
Jentsch Matias de Oliveira JR, Amorim MA, André E. The role of TRPA1 and TRPV4 channels in bronchoconstriction and plasma extravasation in airways of rats treated with captopril. Pulm Pharmacol Ther 2021; 65:102004. [PMID: 33610768 DOI: 10.1016/j.pupt.2021.102004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/05/2021] [Accepted: 02/13/2021] [Indexed: 12/16/2022]
Abstract
Angiotensin-converting enzyme inhibitors (ACEis) may cause adverse airway events, such as cough and angioedema, due to a reduction in bradykinin breakdown and consequent activation of bradykinin type 2 receptor (B2 receptor). Recent studies have shown that bradykinin can also sensitize pro-inflammatory receptors such as the transient receptor potential ankyrin 1 (TRPA1) and vanilloid 4 (TRPV4), which are implicated in several inflammatory airway diseases. Based on these considerations, the aim of this study was to understand the role of TRPA1 and TRPV4 channels in the bronchoconstrictive response and plasma extravasation in the trachea of rats pretreated with captopril. Using methods to detect alterations in airway resistance and plasma extravasation, we found that intravenous (i.v.) administration of bradykinin (0.03-0.3 μmol/kg, B2 receptor agonist), allyl isothiocyanate (100-1000 μmol/kg, TRPA1 agonist) or GSK1016790A (0.01-0.1 μmol/kg, TRPV4 agonist), but not des-arg9-bradykinin (DABK; 100-300 μmol/kg, B1 receptor agonist), induced bronchoconstriction in anaesthetized rats. In doses that did not cause significant bronchoconstriction, bradykinin (0.03 μmol/kg) or allyl isothiocyanate (100 μmol/kg), but not GSK1016790A (0.01 μmol/kg) or DABK (300 μmol/kg) induced an increased bronchoconstrictive response in rats pretreated with captopril (2.5 mg/kg, i.v.). On the other hand, in rats pretreated with captopril (5 mg/kg, i.v.), an increased bronchoconstrictive response to GSK1016790A (0.01 μmol/kg) was observed. The bronchoconstrictive response induced by bradykinin in captopril-pretreated rats was inhibited by intratracheal treatment (i.t.) with HC030031 (300 μg/50 μl; 36 ± 9%) or HC067047 (300 μg/50 μl; 35.1 ± 16%), for TRPA1 and TRPV4 antagonists, respectively. However, the co-administration of both antagonists did not increase this inhibition. The bronchoconstriction induced by allyl isothiocyanate in captopril-pretreated rats (2.5 mg/kg) was inhibited (58.3 ± 8%) by the B2 receptor antagonist HOE140 (10 nmol/50 μl, i.t.). Similarly, the bronchoconstriction induced by GSK1016790A in captopril-pretreated rats (5 mg/kg) was also inhibited (84.2 ± 4%) by HOE140 (10 nmol/50 μl, i.t.). Furthermore, the plasma extravasation induced by captopril on the trachea of rats was inhibited by pretreatment with HC030031 (47.2 ± 8%) or HC067047 (38.9 ± 8%). Collectively, these findings support the hypothesis that TRPA1 and TRPV4, via a B2 receptor activation-dependent pathway, are involved in the plasma extravasation and bronchoconstriction induced by captopril, making them possible pharmacological targets to prevent or remediate ACEi-induced adverse respiratory reactions.
Collapse
Affiliation(s)
| | | | - Eunice André
- Department of Pharmacology, Federal University of Paraná, Curitiba, Brazil.
| |
Collapse
|
28
|
Peris-Moreno D, Cussonneau L, Combaret L, Polge C, Taillandier D. Ubiquitin Ligases at the Heart of Skeletal Muscle Atrophy Control. Molecules 2021; 26:molecules26020407. [PMID: 33466753 PMCID: PMC7829870 DOI: 10.3390/molecules26020407] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle loss is a detrimental side-effect of numerous chronic diseases that dramatically increases mortality and morbidity. The alteration of protein homeostasis is generally due to increased protein breakdown while, protein synthesis may also be down-regulated. The ubiquitin proteasome system (UPS) is a master regulator of skeletal muscle that impacts muscle contractile properties and metabolism through multiple levers like signaling pathways, contractile apparatus degradation, etc. Among the different actors of the UPS, the E3 ubiquitin ligases specifically target key proteins for either degradation or activity modulation, thus controlling both pro-anabolic or pro-catabolic factors. The atrogenes MuRF1/TRIM63 and MAFbx/Atrogin-1 encode for key E3 ligases that target contractile proteins and key actors of protein synthesis respectively. However, several other E3 ligases are involved upstream in the atrophy program, from signal transduction control to modulation of energy balance. Controlling E3 ligases activity is thus a tempting approach for preserving muscle mass. While indirect modulation of E3 ligases may prove beneficial in some situations of muscle atrophy, some drugs directly inhibiting their activity have started to appear. This review summarizes the main signaling pathways involved in muscle atrophy and the E3 ligases implicated, but also the molecules potentially usable for future therapies.
Collapse
|
29
|
Muratspahić E, Koehbach J, Gruber CW, Craik DJ. Harnessing cyclotides to design and develop novel peptide GPCR ligands. RSC Chem Biol 2020; 1:177-191. [PMID: 34458757 PMCID: PMC8341132 DOI: 10.1039/d0cb00062k] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
Cyclotides are plant-derived cyclic, disulfide-rich peptides with a unique cyclic cystine knot topology that confers them with remarkable structural stability and resistance to proteolytic degradation. Recently, cyclotides have emerged as promising scaffold molecules for designing peptide-based therapeutics. Here, we provide examples of how engineering cyclotides using molecular grafting may lead to the development of novel peptide ligands of G protein-coupled receptors (GPCRs), today's most exploited drug targets. Integrating bioactive epitopes into stable cyclotide scaffolds can lead to improved pharmacokinetics and oral activity as well as selectivity and high enzymatic stability. We also discuss and highlight the importance of engineered cyclotides as novel tools to study GPCR signaling.
Collapse
Affiliation(s)
- Edin Muratspahić
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna Austria
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane Queensland 4072 Australia
| | - Johannes Koehbach
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane Queensland 4072 Australia
| | - Christian W Gruber
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna Austria
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane Queensland 4072 Australia
| |
Collapse
|
30
|
Pharmacological Effects of a Novel Bradykinin-Related Peptide (RR-18) from the Skin Secretion of the Hejiang Frog ( Ordorrana hejiangensis) on Smooth Muscle. Biomedicines 2020; 8:biomedicines8070225. [PMID: 32709165 PMCID: PMC7400415 DOI: 10.3390/biomedicines8070225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 01/10/2023] Open
Abstract
Bradykinin (BK) and bradykinin-related peptides (BRPs), which were identified from a diversity of amphibian skin secretions, exerted contractile and relaxing effects on non-vascular and vascular smooth muscle, respectively. Here, we report a novel bradykinin-related peptide with a molecular mass of 1890.2 Da, RVAGPDKPARISGLSPLR, which was isolated and identified from Ordorrana hejiangensis skin secretions, followed by a C-terminal extension sequence VAPQIV. The biosynthetic precursor-encoding cDNA was cloned by the “shotgun” cloning method, and the novel RR-18 was identified and structurally confirmed by high-performance liquid chromatography (HPLC) and tandem mass spectrometry (MS/MS). Subsequently, the myotropic activity of the synthetic replicate of RR-18 was investigated on the rat bladder, uterus, tail artery and ileum smooth muscle. The peptide was named RR-18 in accordance (R = N-terminal arginine, R = C-terminal arginine, 18 = number of residues). In this study, the synthetic replicates of RR-18 showed no agonist/antagonism of BK-induced rat bladder and uterus smooth muscle contraction. However, it displayed an antagonism of bradykinin-induced rat ileum contraction and arterial smooth muscle relaxation. The EC50 values of BK for ileum and artery, were 214.7 nM and 18.3 nM, respectively. When the tissue was pretreated with the novel peptide, RR-18, at the maximally effective concentration of bradykinin (1 × 10−6 M), bradykinin-induced contraction of the ileum and relaxation of the arterial smooth muscle was reduced by 50–60% and 30–40%, respectively. In conclusion, RR-18 represents novel bradykinin antagonising peptide from amphibian skin secretions. It may provide new insight into possible treatment options for chronic pain and chronic inflammation.
Collapse
|
31
|
Dhanisha SS, Drishya S, Guruvayoorappan C. Fruit Extract of Pithecellobium dulce (FPD) ameliorates carrageenan-induced acute inflammatory responses via regulating pro-inflammatory mediators. J Food Biochem 2020; 44:e13329. [PMID: 32557685 DOI: 10.1111/jfbc.13329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 11/28/2022]
Abstract
Unravelling the precise mechanisms underlying the anti-inflammatory action of fruit extract of Pithecellobium dulce (FPD) is quite complex. Hence the prime approach of this particular study is to unveil intriguing insights to its possible anti-inflammatory mechanisms. Anti-inflammatory effects of FPD were determined against experimentally induced acute and chronic inflammation in mice paw edema models. Administration of FPD significantly reduced the acute and chronic inflammation via regulating pro-inflammatory mediators such as pro-inflammatory cytokines (TNF-α, IL-6, and IL-1ß), Cycloxygenase 2 (COX-2), and inducible nitric oxide synthase (iNOS) compared to control group. The overall results suggest that FPD mitigates inflammation by regulating the inflammatory mediators. PRACTICAL APPLICATIONS: Fruit of Pithecellobium dulce is comestible and has been widely distributed in Asian pacific region. Non-steroidal anti-inflammatory drugs (NSAIDS) are among the most conventional treatment strategy against pain and inflammation. Although, chronic use of NSAIDS are associated with severe side effects such as gastrointestinal irritation, hepatic injury, excessive bleeding, and cardiovascular disorders. Hence identification of more effective complementary and alternative therapeutic approach from natural resources with fewer side effects could improve the quality of life of those receiving NSAIDS. Administration of fruit extract of Pithecellobium dulce ameliorates carrageenan-induced acute inflammatory responses, as evidenced by paw edema measurement, expression of antioxidant enzymes such as glutathionine, super oxide dismutase, pro-inflammatory cytokine analysis (IL-1β, IL-6, and TNF-α), vascular permeability measurement, expression of COX-2 and iNOS. Further, confirmed the involvement of HO-1 pathway in anti-inflammatory action of FPD. The outcome of this present investigation could have a broad range of applications in alleviating inflammatory disorders.
Collapse
Affiliation(s)
- Suresh Sulekha Dhanisha
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Medical College Campus, Thiruvananthapuram, India
| | - Sudarsanan Drishya
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Medical College Campus, Thiruvananthapuram, India
| | - Chandrasekharan Guruvayoorappan
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Medical College Campus, Thiruvananthapuram, India
| |
Collapse
|
32
|
Caterpillar Venom: A Health Hazard of the 21st Century. Biomedicines 2020; 8:biomedicines8060143. [PMID: 32486237 PMCID: PMC7345192 DOI: 10.3390/biomedicines8060143] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 12/24/2022] Open
Abstract
Caterpillar envenomation is a global health threat in the 21st century. Every direct or indirect contact with the urticating hairs of a caterpillar results in clinical manifestations ranging from local dermatitis symptoms to potentially life-threatening systemic effects. This is mainly due to the action of bioactive components in the venom that interfere with targets in the human body. The problem is that doctors are limited to relieve symptoms, since an effective treatment is still lacking. Only for Lonomia species an effective antivenom does exist. The health and economical damage are an underestimated problem and will be even more of a concern in the future. For some caterpillar species, the venom composition has been the subject of investigation, while for many others it remains unknown. Moreover, the targets involved in the pathophysiology are poorly understood. This review aims to give an overview of the knowledge we have today on the venom composition of different caterpillar species along with their pharmacological targets. Epidemiology, mode of action, clinical time course and treatments are also addressed. Finally, we briefly discuss the future perspectives that may open the doors for future research in the world of caterpillar toxins to find an adequate treatment.
Collapse
|
33
|
Soley BDS, Silva LM, Mendes DAGB, Báfica A, Pesquero JB, Bader M, Witherden DA, Havran WL, Calixto JB, Otuki MF, Cabrini DA. B 1 and B 2 kinin receptor blockade improves psoriasis-like disease. Br J Pharmacol 2020; 177:3535-3551. [PMID: 32335893 DOI: 10.1111/bph.15077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 03/26/2020] [Accepted: 04/04/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE The entire kallikrein-kinin system is present in the skin, and it is thought to exert a relevant role in cutaneous diseases, including psoriasis. The present study was designed to evaluate the relevance of kinin receptors in the development and progression of a model of psoriasis in mice. EXPERIMENTAL APPROACH The effects of kinin B1 and B2 receptor knockout and of kinin receptor antagonists (SSR240612C or FR173657) were assessed in a model of psoriasis induced by imiquimod in C57BL/6 mice. Severity of psoriasis was assessed by histological and immunohistochemical assays of skin, along with objective scores based on the clinical psoriasis area and severity index. KEY RESULTS Both kinin receptors were up-regulated following 6 days of imiquimod treatment. Kinin B1 and B2 receptor deficiency and the use of selective antagonists show morphological and histological improvement of the psoriasis hallmarks. This protective effect was associated with a decrease in undifferentiated and proliferating keratinocytes, decreased cellularity (neutrophils, macrophages, and CD4+ T lymphocytes), reduced γδ T cells, and lower accumulation of IL-17. The lack of B2 receptors resulted in reduced CD8+ T cells in the psoriatic skin. Relevantly, blocking kinin receptors reflected the improvement of psoriasis disease in the well-being behaviour of the mice. CONCLUSIONS AND IMPLICATIONS Kinins exerted critical roles in imiquimod-induced psoriasis. Both B1 and B2 kinin receptors exacerbated the disease, influencing keratinocyte proliferation and immunopathology. Antagonists of one or even both kinin receptors might constitute a new strategy for the clinical treatment of psoriasis.
Collapse
Affiliation(s)
| | | | | | - André Báfica
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - João Bosco Pesquero
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.,Institute for Biology, University of Lübeck, Germany.,Charité University Medicine, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany
| | - Deborah A Witherden
- Immunology and Microbiology, Scripps Research Institute, La Jolla, California, USA
| | - Wendy L Havran
- Immunology and Microbiology, Scripps Research Institute, La Jolla, California, USA
| | - João B Calixto
- Center of Innovation and Preclinical Studies (CIENP), Florianópolis, Brazil
| | | | | |
Collapse
|
34
|
Sriramula S. Kinin B1 receptor: A target for neuroinflammation in hypertension. Pharmacol Res 2020; 155:104715. [DOI: 10.1016/j.phrs.2020.104715] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/11/2020] [Accepted: 02/16/2020] [Indexed: 11/25/2022]
|
35
|
Schutte DL, Mukhopadhyay N, Holwerda T, Sluka K, Rakel B, Govil M. Genetic Predictors of Knee Pain in Persons With Mild to Moderate Osteoarthritis. Res Gerontol Nurs 2020; 13:1-12. [PMID: 32286672 DOI: 10.3928/19404921-20200312-01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/28/2019] [Indexed: 11/20/2022]
Abstract
The purpose of this study was to examine genetic variability and knee pain in persons with osteoarthritis (OA). Seventy-five participants with medial compartment knee OA were recruited from a large Midwestern tertiary care center. Participants exhibited a mean age of 56.3 years; females comprised 61% of the sample. Measures of pain included subjective pain intensity at rest and with movement, cutaneous mechanical sensation and pain testing, heat pain threshold, and pressure pain threshold. Seventy-four participants were genotyped for 25 genetic variants across 15 candidate genes for central or peripheral pain pathways. Analysis suggests a role for four genes (EDNRA, COMT, BDRKB1, and IL1B) in several components of pain in persons with knee OA. The results from this study will help guide the development and evaluation of tailored strategies to decrease pain, improve function, and prevent the development of new chronic pain syndromes in older adults experiencing OA. [Research in Gerontological Nursing, xx(x), xx-xx.].
Collapse
|
36
|
Cernit V, Sénécal J, Othman R, Couture R. Reciprocal Regulatory Interaction between TRPV1 and Kinin B1 Receptor in a Rat Neuropathic Pain Model. Int J Mol Sci 2020; 21:ijms21030821. [PMID: 32012798 PMCID: PMC7037982 DOI: 10.3390/ijms21030821] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
Kinins are mediators of pain and inflammation and evidence suggests that the inducible kinin B1 receptor (B1R) is involved in neuropathic pain (NP). This study investigates whether B1R and TRPV1 are colocalized on nociceptors and/or astrocytes to enable regulatory interaction either directly or through the cytokine pathway (IL-1β, TNF-α) in NP. Sprague Dawley rats were subjected to unilateral partial sciatic nerve ligation (PSNL) and treated from 14 to 21 days post-PSNL with antagonists of B1R (SSR240612, 10 mg·kg-1, i.p.) or TRPV1 (SB366791, 1 mg·kg-1, i.p.). The impact of these treatments was assessed on nociceptive behavior and mRNA expression of B1R, TRPV1, TNF-α, and IL-1β. Localization on primary sensory fibers, astrocytes, and microglia was determined by immunofluorescence in the lumbar spinal cord and dorsal root ganglion (DRG). Both antagonists suppressed PSNL-induced thermal hyperalgesia, but only SB366791 blunted mechanical and cold allodynia. SSR240612 reversed PSNL-induced enhanced protein and mRNA expression of B1R and TRPV1 mRNA levels in spinal cord while SB366791 further increased B1R mRNA/protein expression. B1R and TRPV1 were found in non-peptide sensory fibers and astrocytes, and colocalized in the spinal dorsal horn and DRG, notably with IL-1β on astrocytes. IL-1β mRNA further increased under B1R or TRPV1 antagonism. Data suggest that B1R and TRPV1 contribute to thermal hyperalgesia and play a distinctive role in allodynia associated with NP. Close interaction and reciprocal regulatory mechanism are suggested between B1R and TRPV1 on astrocytes and nociceptors in NP.
Collapse
|
37
|
Abstract
Increasing evidence suggests that renal inflammation contributes to the pathogenesis and progression of diabetic kidney disease (DKD) and that anti-inflammatory therapies might have renoprotective effects in DKD. Immune cells and resident renal cells that activate innate immunity have critical roles in triggering and sustaining inflammation in this setting. Evidence from clinical and experimental studies suggests that several innate immune pathways have potential roles in the pathogenesis and progression of DKD. Toll-like receptors detect endogenous danger-associated molecular patterns generated during diabetes and induce a sterile tubulointerstitial inflammatory response via the NF-κB signalling pathway. The NLRP3 inflammasome links sensing of metabolic stress in the diabetic kidney to activation of pro-inflammatory cascades via the induction of IL-1β and IL-18. The kallikrein-kinin system promotes inflammatory processes via the generation of bradykinins and the activation of bradykinin receptors, and activation of protease-activated receptors on kidney cells by coagulation enzymes contributes to renal inflammation and fibrosis in DKD. In addition, hyperglycaemia leads to protein glycation and activation of the complement cascade via recognition of glycated proteins by mannan-binding lectin and/or dysfunction of glycated complement regulatory proteins. Data from preclinical studies suggest that targeting these innate immune pathways could lead to novel therapies for DKD.
Collapse
|
38
|
Cox ER, Coombes JS, Keating SE, Burton NW, Coombes BK. Not a Painless Condition: Rheumatological and Musculoskeletal Symptoms in Type 2 Diabetes, and the Implications for Exercise Participation. Curr Diabetes Rev 2020; 16:211-219. [PMID: 31146662 DOI: 10.2174/1573399815666190531083504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/15/2019] [Accepted: 05/03/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVES People with type 2 diabetes (T2D) are more likely to develop a range of rheumatological and musculoskeletal symptoms (RMS), and experience both chronic and widespread pain, compared with the general population. However, these symptoms are not commonly acknowledged by researchers, which hampers our understanding of the impact on this population. Since exercise is a key lifestyle management strategy for T2D and participation levels are typically low, understanding the potential impact of RMS on exercise participation is critical. The aim of this review is to summarise the literature regarding the prevalence and pathophysiology of RMS in T2D, the evidence for the benefits and risks associated with exercise on RMS, and the currently available tools for the reporting of RMS in both research studies and community settings. METHODS A narrative review. RESULTS There are numerous exercise trials in T2D, but few have sufficiently reported pain-related adverse events and even fewer have investigated the effects of exercise on RMS and chronic pain. DISCUSSION Recommendations for future research are provided.
Collapse
Affiliation(s)
- Emily R Cox
- School of Human Movement and Nutrition Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Jeff S Coombes
- School of Human Movement and Nutrition Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Shelley E Keating
- School of Human Movement and Nutrition Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Nicola W Burton
- School of Applied Psychology, Griffith University, Mt. Gravatt, Queensland, Australia
| | - Brooke K Coombes
- School of Allied Health Sciences, Griffith University, Nathan, Queensland, Australia
| |
Collapse
|
39
|
Ayres LS, Berger M, Durli ICLDO, Kuhl CP, Terraciano PB, Garcez TNA, Dos Santos BG, Guimarães JA, Passos EP, Cirne-Lima EO. Kallikrein-kinin system and oxidative stress in cisplatin-induced ovarian toxicity. Reprod Toxicol 2019; 93:1-9. [PMID: 31874189 DOI: 10.1016/j.reprotox.2019.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/09/2019] [Accepted: 12/06/2019] [Indexed: 01/05/2023]
Abstract
Kallikrein-kinin system (KKS) is involved in vascular reactivity and inflammatory response to cytotoxic drugs. Since cisplatin is a widely used chemotherapy and its cytotoxic mechanism can trigger inflammation and oxidative damage, in this work we evaluated the role of KKS in an animal model of cisplatin-induced ovarian toxicity. Biomarkers of ovarian stem cells, activity of KKS, inflammation and oxidative damage were measured in ovarian tissue of C57BL/6 female mice treated with vehicle or cisplatin (2.5 mg/kg). Cisplatin group presented greater number of atretic follicles, and lower numbers of antral and total viable follicles. Ki67, DDX4 and OCT-4 markers were similar between groups. Cisplatin triggered plasma and ovarian tissue kallikrein generation; and increased expression of bradykinin receptors B1 and B2. Neutrophil and macrophage infiltration markers increased. Superoxide anion generation also increased, while reduced glutathione levels decreased. These results suggest that KKS is activated and contributes to ovarian injury during cisplatin treatment.
Collapse
Affiliation(s)
- Laura Silveira Ayres
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, Santa Cecília, 90035-903, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2400, 90035003, Porto Alegre, RS, Brazil.
| | - Markus Berger
- Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, Santa Cecília, 90035-903, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2400, 90035003, Porto Alegre, RS, Brazil.
| | - Isabel Cirne Lima de Oliveira Durli
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, Santa Cecília, 90035-903, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2400, 90035003, Porto Alegre, RS, Brazil.
| | - Cristiana Palma Kuhl
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, Santa Cecília, 90035-903, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2400, 90035003, Porto Alegre, RS, Brazil.
| | - Paula Barros Terraciano
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, Santa Cecília, 90035-903, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2400, 90035003, Porto Alegre, RS, Brazil.
| | - Tuane Nerissa Alves Garcez
- Unidade de Experimentação Animal, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, Santa Cecília, 90035-903, Porto Alegre, RS, Brazil.
| | - Bruna Gomes Dos Santos
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, Santa Cecília, 90035-903, Porto Alegre, RS, Brazil.
| | - Jorge Almeida Guimarães
- Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, Santa Cecília, 90035-903, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Campus do Vale - Building 43421, 91501-970, Porto Alegre, RS, Brazil.
| | - Eduardo Pandolfi Passos
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, Santa Cecília, 90035-903, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2400, 90035003, Porto Alegre, RS, Brazil.
| | - Elizabeth Obino Cirne-Lima
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, Santa Cecília, 90035-903, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2400, 90035003, Porto Alegre, RS, Brazil.
| |
Collapse
|
40
|
Minville V, Mouledous L, Jaafar A, Couture R, Brouchet A, Frances B, Tack I, Girolami JP. Tibial post fracture pain is reduced in kinin receptors deficient mice and blunted by kinin receptor antagonists. J Transl Med 2019; 17:346. [PMID: 31640792 PMCID: PMC6805420 DOI: 10.1186/s12967-019-2095-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 10/11/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Tibial fracture is associated with inflammatory reaction leading to severe pain syndrome. Bradykinin receptor activation is involved in inflammatory reactions, but has never been investigated in fracture pain. METHODS This study aims at defining the role of B1 and B2-kinin receptors (B1R and B2R) in a closed tibial fracture pain model by using knockout mice for B1R (B1KO) or B2R (B2KO) and wild-type (WT) mice treated with antagonists for B1R (SSR 240612 and R954) and B2R (HOE140) or vehicle. A cyclooxygenase (COX) inhibitor (ketoprofen) and an antagonist (SB366791) of Transient Receptor Potential Vaniloid1 (TRPV1) were also investigated since these pathways are associated with BK-induced pain in other models. The impact on mechanical and thermal hyperalgesia and locomotion was assessed by behavior tests. Gene expression of B1R and B2R and spinal cord expression of c-Fos were measured by RT-PCR and immunohistochemistry, respectively. RESULTS B1KO and B2KO mice demonstrated a reduction in post-fracture pain sensitivity compared to WT mice that was associated with decreased c-Fos expression in the ipsilateral spinal dorsal horn in B2KO. B1R and B2R mRNA and protein levels were markedly enhanced at the fracture site. B1R and B2R antagonists and inhibition of COX and TRPV1 pathways reduced pain in WT. However, the analgesic effect of the COX-1/COX-2 inhibitor disappeared in B1KO and B2KO. In contrast, the analgesic effect of the TRPV1 antagonist persisted after gene deletion of either receptor. CONCLUSIONS It is suggested that B1R and B2R activation contributes significantly to tibial fracture pain through COX. Hence, B1R and B2R antagonists appear potential therapeutic agents to manage post fracture pain.
Collapse
Affiliation(s)
- Vincent Minville
- Department of Anesthesiology and Intensive Care, Toulouse University Hospital, Toulouse, France. .,INSERM U 1048, I2MC, BP 84225, 31432, Toulouse Cedex, France. .,Department of Anesthesiology and Intensive Care, Rangueil University Hospital, Avenue, Jean Poulhès, Toulouse, France.
| | - Lionel Mouledous
- Centre de Recherches sur la Cognition Animale, CNRS UMR 5169, Université P Sabatier, bat 4R3, 118 route de Narbonne, 31062, Toulouse Cedex, France
| | - Acil Jaafar
- CHU de Toulouse, Service d'Explorations physiologiques rénales, 31059, Toulouse cedex, France
| | - Réjean Couture
- Department of Physiology, Medical School, University of Montreal, Montreal, QC, H3C 3J7, Canada
| | - Anne Brouchet
- Department of Pathology, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Bernard Frances
- Centre de Recherches sur la Cognition Animale, CNRS UMR 5169, Université P Sabatier, bat 4R3, 118 route de Narbonne, 31062, Toulouse Cedex, France
| | - Ivan Tack
- INSERM U 1048, I2MC, BP 84225, 31432, Toulouse Cedex, France.,CHU de Toulouse, Service d'Explorations physiologiques rénales, 31059, Toulouse cedex, France
| | | |
Collapse
|
41
|
Brusco I, Justino AB, Silva CR, Fischer S, Cunha TM, Scussel R, Machado-de-Ávila RA, Ferreira J, Oliveira SM. Kinins and their B1 and B2 receptors are involved in fibromyalgia-like pain symptoms in mice. Biochem Pharmacol 2019; 168:119-132. [DOI: 10.1016/j.bcp.2019.06.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022]
|
42
|
TGF-β1 induced up-regulation of B1 kinin receptor promotes antifibrotic activity in rat cardiac myofibroblasts. Mol Biol Rep 2019; 46:5197-5207. [PMID: 31309451 DOI: 10.1007/s11033-019-04977-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/11/2019] [Indexed: 01/14/2023]
Abstract
Cardiac myofibroblast (CMF) are non-muscle cardiac cells that play a crucial role in wound healing and in pathological remodeling. These cells are mainly derived of cardiac fibroblast (CF) differentiation mediated by TGF-β1. Evidence suggests that bradykinin (BK) regulates cardiac fibroblast function in the heart. Both B1 and B2 kinin receptors (B1R and B2R, respectively) mediate the biological effects of kinins. We recently showed that both receptors are expressed in CMF and its stimulation decreases collagen secretion. Whether TGF-β1 regulates B1R and B2R expression, and how these receptors control antifibrotic activity in CMF remains poorly understood. In this work, we sought to study, the regulation of B1R expression in cultured CMF mediated by TGF-β1, and the molecular mechanisms involved in B1R activation on CMF intracellular collagen type-I levels. Cardiac fibroblast-primary culture was obtained from neonatal rats. Hearts were digested and CFs were attached to dishes and separated from cardiomyoctes. CMF were obtained from CF differentiation with TGF-β1 5 ng/mL. CF and CMF were treated with B1R and B2R agonists and with TGF-β1 at different times and concentrations, in the presence or absence of chemical inhibitors, to evaluate signaling pathways involved in B1R expression, collagen type-I and prostacyclin levels. B1R and collagen type-I levels were evaluated by western blot. Prostacyclin levels were quantified by an ELISA kit. TGF-β1 increased B1R expression via TGFβ type I receptor kinase (ALK5) activation and its subsequent signaling pathways involving Smad2, p38, JNK and ERK1/2 activation. Moreover, in CMF, the activation of B1R and B2R by their respective agonists, reduced collagen synthesis. This effect was mediated by the canonical signaling pathway; phospholipase C (PLC), protein kinase C (PKC), phospholipase A2 (PLA2), COX-2 activation and PGI2 secretion and its autocrine effect. TGF-β1 through ALK5, Smad2, p38, JNK and ERK1/2 increases B1R expression; whereas in CMF, B1R and B2R activation share common signaling pathways for reducing collagen synthesis.
Collapse
|
43
|
The kinin B 1 and B 2 receptors and TNFR1/p55 axis on neuropathic pain in the mouse brachial plexus. Inflammopharmacology 2019; 27:573-586. [PMID: 30820720 DOI: 10.1007/s10787-019-00578-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 02/20/2019] [Indexed: 10/27/2022]
Abstract
Tumour necrosis factor (TNF) and kinins have been associated with neuropathic pain-like behaviour in numerous animal models. However, the way that they interact to cause neuron sensitisation remains unclear. This study assessed the interaction of kinin receptors and TNF receptor TNFR1/p55 in mechanical hypersensitivity induced by an intraneural (i.n.) injection of rm-TNF into the lower trunk of brachial plexus in mice. The i.n. injection of rm-TNF reduced the mechanical withdrawal threshold of the right forepaw from the 3rd to the 10th day after the injection, indicating that TNF1/p55 displays a critical role in the onset of TNF-elicited neuropathic pain. The connection between TNF1/p55 and kinin B1 and B2 receptors (B1R and B2R) was confirmed using both knockout mice and mRNAs quantification in the injected nerve, DRG and spinal cord. The treatment with the B2R antagonist HOE 140 or with B1R antagonist des-Arg9-Leu8-BK reduced both BK- and DABK-induced hypersensitivity. The experiments using kinin receptor antagonists and CPM inhibitor (thiorphan) suggest that BK does not only activate B2R as an orthosteric agonist, but also seems to be converted into DABK that consequently activates B1R. These results indicate a connection between TNF and the kinin system, suggesting a relevant role for B1R and B2R in the process of sensitisation of the central nervous systems by the cross talk between the receptor and CPM after i.n. injection of rm-TNF.
Collapse
|
44
|
Berger M, de Moraes JA, Beys-da-Silva WO, Santi L, Terraciano PB, Driemeier D, Cirne-Lima EO, Passos EP, Vieira MAR, Barja-Fidalgo TC, Guimarães JA. Renal and vascular effects of kallikrein inhibition in a model of Lonomia obliqua venom-induced acute kidney injury. PLoS Negl Trop Dis 2019; 13:e0007197. [PMID: 30763408 PMCID: PMC6392336 DOI: 10.1371/journal.pntd.0007197] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 02/27/2019] [Accepted: 10/30/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Lonomia obliqua venom is nephrotoxic and acute kidney injury (AKI) is the main cause of death among envenomed victims. Mechanism underlying L. obliqua-induced AKI involves renal hypoperfusion, inflammation, tubular necrosis and loss of glomerular filtration and tubular reabsorption capacities. In the present study, we aimed to investigate the contribution of kallikrein to the hemodynamic instability, inflammation and consequent renal and vascular impairment. METHODOLOGY/PRINCIPAL FINDINGS Addition of L. obliqua venom to purified prekallikrein and human plasma in vitro or to vascular smooth muscle cells (VSMC) in culture, was able to generate kallikrein in a dose-dependent manner. Injected in rats, the venom induced AKI and increased kallikrein levels in plasma and kidney. Kallikrein inhibition by aprotinin prevented glomerular injury and the decrease in glomerular filtration rate, restoring fluid and electrolyte homeostasis. The mechanism underlying these effects was associated to lowering renal inflammation, with decrease in pro-inflammatory cytokines and matrix metalloproteinase expression, reduced tubular degeneration, and protection against oxidative stress. Supporting the key role of kallikrein, we demonstrated that aprotinin inhibited effects directly associated with vascular injury, such as the generation of intracellular reactive oxygen species (ROS) and migration of VSMC induced by L. obliqua venom or by diluted plasma obtained from envenomed rats. In addition, kallikrein inhibition also ameliorated venom-induced blood incoagulability and decreased kidney tissue factor expression. CONCLUSIONS/SIGNIFICANCE These data indicated that kallikrein and consequently kinin release have a key role in kidney injury and vascular remodeling. Thus, blocking kallikrein may be a therapeutic alternative to control the progression of venom-induced AKI and vascular disturbances.
Collapse
Affiliation(s)
- Markus Berger
- Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- * E-mail:
| | - João Alfredo de Moraes
- Laboratório de Biologia REDOX, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Laboratory of Cellular and Molecular Pharmacology, IBRAG, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Walter Orlando Beys-da-Silva
- Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Lucélia Santi
- Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Paula Barros Terraciano
- Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
| | - David Driemeier
- Departamento de Patologia Clínica Veterinária, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Elizabeth Obino Cirne-Lima
- Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
| | - Eduardo Pandolfi Passos
- Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
| | - Maria Aparecida Ribeiro Vieira
- Laboratório de Fisiologia Renal, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Thereza Christina Barja-Fidalgo
- Laboratory of Cellular and Molecular Pharmacology, IBRAG, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Jorge Almeida Guimarães
- Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Biologia Celular de Molecular (PPGBCM), Centro de Biotecnologia (Cbiot-UFRGS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
45
|
Ota M, Takagaki K, Takaoka S, Tanemura H, Urushihata N. A new method to confirm the absence of human and animal serum in mesenchymal stem cell culture media. Int J Med Sci 2019; 16:1102-1106. [PMID: 31523172 PMCID: PMC6743277 DOI: 10.7150/ijms.32100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 03/01/2019] [Indexed: 01/19/2023] Open
Abstract
Mesenchymal stem cells are an ideal source for regenerative medicine. For clinical use, cell culture should be done at stable conditions, thus the use of serum should be avoided because of the batch-to-batch variations of serum. Although several kinds of serum-free media are available, a method to confirm whether they contain serum has not been established yet. During studies on effect of adipocyte mesenchymal stem cells (Ad-MSCs) on pain using a human pain gene array, we noticed that BDKRB1 gene was constantly upregulated when serum was used in the culture medium. In this study, we attempted to establish further the potential of this gene as a new marker indicative of the presence of serum in media. Using a real-time quantitative PCR gene array screening containing 84 functional genes, we verified BDKRB1 as a specific gene upregulated in the presence of serum. The expression of BDKRB1 in Ad-MSCs was induced not only by bovine serum but also by human serum. The BDKRB1 expression was induced even when Ad-MSCs was cultured with 0.1% serum in the medium. We concluded that BDKRB1 is a valuable marker to detect traces of both human and animal serum in Ad-MSCs cultures. Our study provides a new method to confirm the absence of serum in media and ensure a stable cell culture condition.
Collapse
Affiliation(s)
- Megumi Ota
- BioMimetics Sympathies Inc., Aomi, Koto-Ku, Tokyo, Japan
| | | | - Sho Takaoka
- BioMimetics Sympathies Inc., Aomi, Koto-Ku, Tokyo, Japan
| | | | | |
Collapse
|
46
|
Prestes AP, Machado WM, Oliveira JG, Olchanheski LR, Santos FA, Alves GF, Prudente AS, Otuki MF, Paludo KS, Sordi R, Fernandes D. Experimental periodontitis in rats potentiates inflammation at a distant site: Role of B 1 kinin receptor. Life Sci 2018; 194:40-48. [DOI: 10.1016/j.lfs.2017.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 12/02/2017] [Accepted: 12/06/2017] [Indexed: 01/05/2023]
|
47
|
Abd-Allah AAM, El-Deen NAMN, Mohamed WAM, Naguib FM. Mast cells and pro-inflammatory cytokines roles in assessment of grape seeds extract anti-inflammatory activity in rat model of carrageenan-induced paw edema. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2018; 21:97-107. [PMID: 29372043 PMCID: PMC5776444 DOI: 10.22038/ijbms.2017.25067.6219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/28/2017] [Indexed: 01/20/2023]
Abstract
OBJECTIVES Reactive oxygen species (ROS)-produced oxidative disorders were involved at the pathophysiology of many inflammatory processes via the generation of pro-inflammatory cytokines and antioxidant defense system suppression. Although herbal antioxidants as mono-therapy relief many inflammatory diseases including, autoimmunity rheumatoid arthritis, but as combination therapy with other proven anti-inflammatory drugs in order to decreasing their toxic impacts has not yet been studied clearly, especially against chemical substances that's induced local inflammation with characteristic edema. MATERIALS AND METHODS Grape seeds extract (GSE) at a concentration of 40 mg/kg B. wt alone or in combination with indomethacin (Indo.) at a dose of 5 mg/Kg B. wt orally given for 10 days prior (gps VI, VII, VIII) or as a single dose after edema induction (gps IX, X, XI) in rat's left hind paw by sub-planter single injection of 0.1 carrageenan: saline solution (1%) (gp. V) to assess the prophylactic and therapeutic anti-inflammatory activities of both through the estimation of selective inflammatory mediators and oxidative damage-related biomarkers as well as tissue mast cell scoring. Furthermore, both substances were given alone (gps II, III, IV) for their blood, liver and kidney safety evaluation comparing with negative control rats (gp. I) which kept without medication. RESULTS A marked reduction on the inflammatory mediators, edema volume and oxidative byproducts in edema bearing rats' prophylactic and treated with grape seeds extract and indomethacin was observed. Indomethacin found to induce some toxicological impacts which minimized when administered together with GSE. CONCLUSION GSE is a safe antioxidant agent with anti-inflammatory property.
Collapse
Affiliation(s)
| | | | | | - Fatma Mohamed Naguib
- MVSc of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
48
|
Levy RF, Serra AJ, Antonio EL, Dos Santos L, Bocalini DS, Pesquero JB, Bader M, Merino VF, de Oliveira HA, de Arruda Veiga EC, Silva JA, Tucci PJ. Cardiac morphofunctional characteristics of transgenic rats with overexpression of the bradykinin B1 receptor in the endothelium. Physiol Res 2017; 66:925-932. [PMID: 28937259 DOI: 10.33549/physiolres.933596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Our aim was to evaluate whether endothelial overexpressing of the bradykinin B1 receptor could be associated with altered left ventricular and myocardial performance. Echocardiography and hemodynamic were employed to assess left ventricular morphology and function in Sprague Dawley transgenic rats overexpressing the endothelial bradykinin B1 receptor (Tie2B1 rats). The myocardial inotropism was evaluated on papillary muscles contracting in vitro. In Tie2B1 animals, an enlarged left ventricular cavity and lower fractional shortening coupled with a lower rate of pressure change values indicated depressed left ventricular performance. Papillary muscle mechanics revealed that both Tie2B1 and wild-type rat groups had the same contractile capacities under basal conditions; however, in transgenic animals, there was accentuated inotropism due to post-pause potentiation. Following treatment with the Arg(9)-BK agonist, Tie2B1 papillary muscles displayed a reduction in myocardial inotropism. Endothelial B1 receptor overexpression has expanded the LV cavity and worsened its function. There was an exacerbated response of papillary muscle in vitro to a prolonged resting pause, and the use of a B1 receptor agonist impairs myocardial inotropism.
Collapse
Affiliation(s)
- R F Levy
- Universidade Federal da Paraíba, Joao Pessoa, Paraíba, Brazil, Universidade Federal de Sao Paulo, Sao Paulo, SP, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
INTRODUCTION Kinins are peptide mediators exerting their pro-inflammatory actions by the selective stimulation of two distinct G-protein coupled receptors, termed BKB1R and BKB2R. While BKB2R is constitutively expressed in a multitude of tissues, BKB1R is hardly expressed at baseline but highly inducible by inflammatory mediators. In particular, BKB1R was shown to be involved in the pathogenesis of numerous inflammatory diseases. Areas covered: This review intends to evaluate the therapeutic potential of substances interacting with the BKB1R. To this purpose we summarize the published literature on animal studies with antagonists and knockout mice for this receptor. Expert Opinion: In most cases the pharmacological inhibition of BKB1R or its genetic deletion was beneficial for the outcome of the disease in animal models. Therefore, several companies have developed BKB1R antagonists and tested them in phase I and II clinical trials. However, none of the developed BKB1R antagonists was further developed for clinical use. We discuss possible reasons for this failure of translation of preclinical findings on BKB1R antagonists into the clinic.
Collapse
Affiliation(s)
- Fatimunnisa Qadri
- a Max-Delbrück Center for Molecular Medicine (MDC) , Berlin , Germany
| | - Michael Bader
- a Max-Delbrück Center for Molecular Medicine (MDC) , Berlin , Germany.,b Berlin Institute of Health (BIH) , Berlin , Germany.,c Charité University Medicine Berlin , Germany.,d German Center for Cardiovascular Research (DZHK) site Berlin , Berlin , Germany.,e Institute for Biology , University of Lübeck , Lübeck , Germany
| |
Collapse
|
50
|
Doyen PJ, Vergouts M, Pochet A, Desmet N, van Neerven S, Brook G, Hermans E. Inflammation-associated regulation of RGS in astrocytes and putative implication in neuropathic pain. J Neuroinflammation 2017; 14:209. [PMID: 29078779 PMCID: PMC5658970 DOI: 10.1186/s12974-017-0971-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/26/2017] [Indexed: 02/07/2023] Open
Abstract
Background Regulators of G-protein signaling (RGS) are major physiological modulators of G-protein-coupled receptors (GPCR) signaling. Several GPCRs expressed in both neurons and astrocytes participate in the central control of pain processing, and the reduced efficacy of analgesics in neuropathic pain conditions may rely on alterations in RGS function. The expression and the regulation of RGS in astrocytes is poorly documented, and we herein hypothesized that neuroinflammation which is commonly observed in neuropathic pain could influence RGS expression in astrocytes. Methods In a validated model of neuropathic pain, the spared nerve injury (SNI), the regulation of RGS2, RGS3, RGS4, and RGS7 messenger RNA (mRNA) was examined up to 3 weeks after the lesion. Changes in the expression of the same RGS were also studied in cultured astrocytes exposed to defined activation protocols or to inflammatory cytokines. Results We evidenced a differential regulation of these RGS in the lumbar spinal cord of animals undergoing SNI. In particular, RGS3 appeared upregulated at early stages after the lesion whereas expression of RGS2 and RGS4 was decreased at later stages. Decrease in RGS7 expression was already observed after 3 days and outlasted until 21 days after the lesion. In cultured astrocytes, we observed that changes in the culture conditions distinctly influenced the constitutive expression of these RGS. Also, brief exposures (4 to 8 h) to either interleukin-1β, interleukin-6, or tumor necrosis factor α caused rapid changes in the mRNA levels of the RGS, which however did not strictly recapitulate the regulations observed in the spinal cord of lesioned animals. Longer exposure (48 h) to inflammatory cytokines barely influenced RGS expression, confirming the rapid but transient regulation of these cell signaling modulators. Conclusion Changes in the environment of astrocytes mimicking the inflammation observed in the model of neuropathic pain can affect RGS expression. Considering the role of astrocytes in the onset and progression of neuropathic pain, we propose that the inflammation-mediated modulation of RGS in astrocytes constitutes an adaptive mechanism in a context of neuroinflammation and may participate in the regulation of nociception.
Collapse
Affiliation(s)
- Pierre J Doyen
- Neuropharmacology, Institute of Neuroscience, Université Catholique de Louvain, Avenue Hippocrate B1.54.10, 1200, Brussels, Belgium
| | - Maxime Vergouts
- Neuropharmacology, Institute of Neuroscience, Université Catholique de Louvain, Avenue Hippocrate B1.54.10, 1200, Brussels, Belgium
| | - Amandine Pochet
- Neuropharmacology, Institute of Neuroscience, Université Catholique de Louvain, Avenue Hippocrate B1.54.10, 1200, Brussels, Belgium
| | - Nathalie Desmet
- Neuropharmacology, Institute of Neuroscience, Université Catholique de Louvain, Avenue Hippocrate B1.54.10, 1200, Brussels, Belgium
| | - Sabien van Neerven
- Neuropharmacology, Institute of Neuroscience, Université Catholique de Louvain, Avenue Hippocrate B1.54.10, 1200, Brussels, Belgium
| | - Gary Brook
- Institute for Neuropathology, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Emmanuel Hermans
- Neuropharmacology, Institute of Neuroscience, Université Catholique de Louvain, Avenue Hippocrate B1.54.10, 1200, Brussels, Belgium.
| |
Collapse
|