1
|
Tayyeb JZ, Guru A, Kandaswamy K, Jain D, Manivannan C, Mat KB, Shah MA, Arockiaraj J. Synergistic effect of zinc oxide-cinnamic acid nanoparticles for wound healing management: in vitro and zebrafish model studies. BMC Biotechnol 2024; 24:78. [PMID: 39390421 PMCID: PMC11468080 DOI: 10.1186/s12896-024-00906-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
Wound infections resulting from pathogen infiltration pose a significant challenge in healthcare settings and everyday life. When the skin barrier is compromised due to injuries, surgeries, or chronic conditions, pathogens such as bacteria, fungi, and viruses can enter the body, leading to infections. These infections can range from mild to severe, causing discomfort, delayed healing, and, in some cases, life-threatening complications. Zinc oxide (ZnO) nanoparticles (NPs) have been widely recognized for their antimicrobial and wound healing properties, while cinnamic acid is known for its antioxidant and anti-inflammatory activities. Based on these properties, the combination of ZnO NPs with cinnamic acid (CA) was hypothesized to have enhanced efficacy in addressing wound infections and promoting healing. This study aimed to synthesize and evaluate the potential of ZnO-CN NPs as a multifunctional agent for wound treatment. ZnO-CN NPs were synthesized and characterized using key techniques to confirm their structure and composition. The antioxidant and anti-inflammatory potential of ZnO-CN NPs was evaluated through standard in vitro assays, demonstrating strong free radical scavenging and inhibition of protein denaturation. The antimicrobial activity of the nanoparticles was tested against common wound pathogens, revealing effective inhibition at a minimal concentration. A zebrafish wound healing model was employed to assess both the safety and therapeutic efficacy of the nanoparticles, showing no toxicity at tested concentrations and facilitating faster wound closure. Additionally, pro-inflammatory cytokine gene expression was analyzed to understand the role of ZnO-CN NPs in wound healing mechanisms. In conclusion, ZnO-CN NPs demonstrate potent antioxidant, anti-inflammatory, and antimicrobial properties, making them promising candidates for wound treatment. Given their multifunctional properties and non-toxicity at tested concentrations, ZnO-CN NPs hold significant potential as a therapeutic agent for clinical wound management, warranting further investigation in human models.
Collapse
Affiliation(s)
- Jehad Zuhair Tayyeb
- Division of Clinical Biochemistry, Department of Basic Medical Sciences, College of Medicine, University of Jeddah, Jeddah, 23890, Saudi Arabia
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Karthikeyan Kandaswamy
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Divya Jain
- Department of Microbiology, School of Applied & Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248007, India
| | - Chandrakumar Manivannan
- Division of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Tiruchirapalli, India
| | - Khairiyah Binti Mat
- Department of Agricultural Sciences, Faculty of Agro‑Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli, 17600, Malaysia.
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro‑Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli, 17600, Malaysia.
| | - Mohd Asif Shah
- Department of Economics, Kardan University, Parwane Du, Kabul, 1001, Afghanistan.
- Division of Research and Development, Lovely Professional University, Phagwara, 144001, Punjab, India.
- Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
| |
Collapse
|
2
|
Monaco CF, Davis JS. Mechanisms of angioregression of the corpus luteum. Front Physiol 2023; 14:1254943. [PMID: 37841308 PMCID: PMC10568036 DOI: 10.3389/fphys.2023.1254943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
The corpus luteum is a transient ovarian endocrine gland that produces the progesterone necessary for the establishment and maintenance of pregnancy. The formation and function of this gland involves angiogenesis, establishing the tissue with a robust blood flow and vast microvasculature required to support production of progesterone. Every steroidogenic cell within the corpus luteum is in direct contact with a capillary, and disruption of angiogenesis impairs luteal development and function. At the end of a reproductive cycle, the corpus luteum ceases progesterone production and undergoes rapid structural regression into a nonfunctional corpus albicans in a process initiated and exacerbated by the luteolysin prostaglandin F2α (PGF2α). Structural regression is accompanied by complete regression of the luteal microvasculature in which endothelial cells die and are sloughed off into capillaries and lymphatic vessels. During luteal regression, changes in nitric oxide transiently increase blood flow, followed by a reduction in blood flow and progesterone secretion. Early luteal regression is marked by an increased production of cytokines and chemokines and influx of immune cells. Microvascular endothelial cells are sensitive to released factors during luteolysis, including thrombospondin, endothelin, and cytokines like tumor necrosis factor alpha (TNF) and transforming growth factor β 1 (TGFB1). Although PGF2α is known to be a vasoconstrictor, endothelial cells do not express receptors for PGF2α, therefore it is believed that the angioregression occurring during luteolysis is mediated by factors downstream of PGF2α signaling. Yet, the exact mechanisms responsible for angioregression in the corpus luteum remain unknown. This review describes the current knowledge on angioregression of the corpus luteum and the roles of vasoactive factors released during luteolysis on luteal vasculature and endothelial cells of the microvasculature.
Collapse
Affiliation(s)
- Corrine F. Monaco
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, United States
| | - John S. Davis
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, United States
- US Department of Veterans Affairs Nebraska-Western Iowa Healthcare System, Omaha, NE, United States
| |
Collapse
|
3
|
Cheng Z, Little MW, Ferris C, Takeda H, Ingvartsen KL, Crowe MA, Wathes DC. Influence of the concentrate inclusion level in a grass silage-based diet on hepatic transcriptomic profiles in Holstein-Friesian dairy cows in early lactation. J Dairy Sci 2023; 106:S0022-0302(23)00376-4. [PMID: 37474362 DOI: 10.3168/jds.2022-22860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/15/2023] [Indexed: 07/22/2023]
Abstract
Excessive negative energy balance in early lactation is linked to an increased disease risk but may be mitigated by appropriate nutrition. The liver plays central roles in both metabolism and immunity. Hepatic transcriptomic profiles were compared between 3 dietary groups in each of 40 multiparous and 18 primiparous Holstein-Friesian cows offered isonitrogenous grass silage-based diets with different proportions of concentrates: (1) low concentrate (LC, 30% concentrate + 70% grass silage); (2) medium concentrate (MC, 50% concentrate + 50% grass silage), or (3) high concentrate (HC, 70% concentrate + 30% grass silage). Liver biopsies were taken from all cows at around 14 d in milk for RNA sequencing, and blood metabolites were measured. The sequencing data were analyzed separately for primiparous and multiparous cows using CLC Genomics Workbench V21 (Qiagen Digital Insights), focusing on comparisons between HC and LC groups. More differentially expressed genes (DEG) were seen between the primiparous cows receiving HC versus LC diets than for multiparous cows (597 vs. 497), with only 73 in common, indicating differential dietary responses. Multiparous cows receiving the HC diet had significantly higher circulating glucose and insulin-like growth factor-1 and lower urea than those receiving the LC diet. In response to HC, only the multiparous cows produced more milk. In these animals, bioinformatic analysis indicated expression changes in genes regulating fatty acid metabolism and biosynthesis (e.g., ACACA, ELOVL6, FADS2), increased cholesterol biosynthesis (e.g., CYP7A1, FDPS, HMGCR), downregulation in hepatic AA synthesis (e.g., GPT, GCLC, PSPH, SHMT2), and decreased expression of acute phase proteins (e.g., HP, LBP, SAA2). The primiparous cows on the HC diet also downregulated genes controlling AA metabolism and synthesis (e.g., CTH, GCLC, GOT1, ODC1, SHMT2) but showed higher expression of genes indicative of inflammation (e.g., CCDC80, IL1B, S100A8) and fibrosis (e.g., LOX, LUM, PLOD2). This potentially adverse response to a HC diet in physically immature animals warrants further investigation.
Collapse
Affiliation(s)
- Z Cheng
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, Hertfordshire AL9 7TA, United Kingdom
| | - M W Little
- Agri-Food and Biosciences Institute, Belfast BT9 5PX, United Kingdom
| | - C Ferris
- Agri-Food and Biosciences Institute, Belfast BT9 5PX, United Kingdom
| | - H Takeda
- Unit of Animal Genomics, GIGA Institute, University of Liège, B-4000 Liège, Belgium
| | - K L Ingvartsen
- Department of Animal and Veterinary Science, Aarhus University, DK-8830 Tjele, Denmark
| | - M A Crowe
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | - D C Wathes
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, Hertfordshire AL9 7TA, United Kingdom
| |
Collapse
|
4
|
Reddel CJ, Pennings GJ, Chen VM, Gnanenthiran S, Kritharides L. Colchicine as a Modulator of Platelet Function: A Systematic Review. Semin Thromb Hemost 2022; 48:552-567. [PMID: 35882248 DOI: 10.1055/s-0042-1749660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The microtubule inhibitor and anti-inflammatory agent colchicine is used to treat a range of conditions involving inflammasome activation in monocytes and neutrophils, and is now known to prevent coronary and cerebrovascular events. In vitro studies dating back more than 50 years showed a direct effect of colchicine on platelets, but as little contemporary attention has been paid to this area, we have critically reviewed the effects of colchicine on diverse aspects of platelet biology in vitro and in vivo. In this systematic review we searched Embase, Medline, and PubMed for articles testing platelets after incubation with colchicine and/or reporting a clinical effect of colchicine treatment on platelet function, including only papers available in English and excluding reviews and conference abstracts. We identified 98 relevant articles and grouped their findings based on the type of study and platelet function test. In vitro, colchicine inhibits traditional platelet functions, including aggregation, clotting, degranulation, and platelet-derived extracellular vesicle formation, although many of these effects were reported at apparently supraphysiological concentrations. Physiological concentrations of colchicine inhibit collagen- and calcium ionophore-induced platelet aggregation and internal signaling. There have been limited studies of in vivo effects on platelets. The colchicine-platelet interaction has the potential to contribute to colchicine-mediated reduction in cardiovascular events, but there is a pressing need for high quality clinical research in this area.
Collapse
Affiliation(s)
- Caroline J Reddel
- ANZAC Research Institute, University of Sydney, Concord Repatriation General Hospital, Sydney, Australia
| | - Gabrielle J Pennings
- ANZAC Research Institute, University of Sydney, Concord Repatriation General Hospital, Sydney, Australia
| | - Vivien M Chen
- ANZAC Research Institute, University of Sydney, Concord Repatriation General Hospital, Sydney, Australia.,Department of Haematology, Concord Repatriation General Hospital, Sydney, Australia
| | - Sonali Gnanenthiran
- ANZAC Research Institute, University of Sydney, Concord Repatriation General Hospital, Sydney, Australia.,Department of Cardiology, Concord Repatriation General Hospital, Sydney, Australia
| | - Leonard Kritharides
- ANZAC Research Institute, University of Sydney, Concord Repatriation General Hospital, Sydney, Australia.,Department of Cardiology, Concord Repatriation General Hospital, Sydney, Australia
| |
Collapse
|
5
|
Riddle RB, Jennbacken K, Hansson KM, Harper MT. Endothelial inflammation and neutrophil transmigration are modulated by extracellular matrix composition in an inflammation-on-a-chip model. Sci Rep 2022; 12:6855. [PMID: 35477984 PMCID: PMC9046410 DOI: 10.1038/s41598-022-10849-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/11/2022] [Indexed: 12/20/2022] Open
Abstract
Inflammatory diseases are often characterised by excessive neutrophil infiltration from the blood stream to the site of inflammation, which damages healthy tissue and prevents resolution of inflammation. Development of anti-inflammatory drugs is hindered by lack of in vitro and in vivo models which accurately represent the disease microenvironment. In this study, we used the OrganoPlate to develop a humanized 3D in vitro inflammation-on-a-chip model to recapitulate neutrophil transmigration across the endothelium and subsequent migration through the extracellular matrix (ECM). Human umbilical vein endothelial cells formed confluent vessels against collagen I and geltrex mix, a mix of basement membrane extract and collagen I. TNF-α-stimulation of vessels upregulated inflammatory cytokine expression and promoted neutrophil transmigration. Intriguingly, major differences were found depending on the composition of the ECM. Neutrophils transmigrated in higher number and further in geltrex mix than collagen I, and did not require an N-formyl-methionyl-leucyl-phenylalanine (fMLP) gradient for transmigration. Inhibition of neutrophil proteases inhibited neutrophil transmigration on geltrex mix, but not collagen I. These findings highlight the important role of the ECM in determining cell phenotype and response to inhibitors. Future work could adapt the ECM composition for individual diseases, producing accurate models for drug development.
Collapse
Affiliation(s)
- Rebecca B Riddle
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Karin Jennbacken
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Kenny M Hansson
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Matthew T Harper
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
6
|
Pinheiro-de-Sousa I, Fonseca-Alaniz MH, Teixeira SK, Rodrigues MV, Krieger JE. Uncovering emergent phenotypes in endothelial cells by clustering of surrogates of cardiovascular risk factors. Sci Rep 2022; 12:1372. [PMID: 35079076 PMCID: PMC8789842 DOI: 10.1038/s41598-022-05404-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Endothelial dysfunction (ED) is a hallmark of atherosclerosis and is influenced by well-defined risk factors, including hypoxia, dyslipidemia, inflammation, and oscillatory flow. However, the individual and combined contributions to the molecular underpinnings of ED remain elusive. We used global gene expression in human coronary artery endothelial cells to identify gene pathways and cellular processes in response to chemical hypoxia, oxidized lipids, IL-1β induced inflammation, oscillatory flow, and these combined stimuli. We found that clustering of the surrogate risk factors differed from the sum of the individual insults that gave rise to emergent phenotypes such as cell proliferation. We validated these observations in samples of human coronary artery atherosclerotic plaques analyzed using single-cell RNA sequencing. Our findings suggest a hierarchical interaction between surrogates of CV risk factors and the advent of emergent phenotypes in response to combined stimulation in endothelial cells that may influence ED.
Collapse
Affiliation(s)
- Iguaracy Pinheiro-de-Sousa
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Miriam H Fonseca-Alaniz
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Samantha K Teixeira
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Mariliza V Rodrigues
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Jose E Krieger
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil.
| |
Collapse
|
7
|
Pennings GJ, Reddel CJ, Traini M, Lam M, Kockx M, Chen VM, Kritharides L. Rapid Release of Interleukin-1β from Human Platelets Is Independent of NLRP3 and Caspase. Thromb Haemost 2021; 122:517-528. [PMID: 34171934 DOI: 10.1055/s-0041-1731288] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Platelets are critical in mediating both rapid responses to injury and the development and progression of coronary disease. Several studies have shown that, after prolonged exposure to agonists, they produce and release inflammatory mediators including interleukin-1β (IL-1β), via the classical pathway (NLRP3 inflammasome and caspase-1 cleavage to release active IL-1β) as described for leukocytes. This study aimed to determine whether there is rapid release of IL-1β in response to soluble platelet agonists and whether such rapid release is NLRP3- and caspase-1-dependent. METHODS AND RESULTS Using flow cytometry to detect platelet activation (and release of α and dense granule contents) and the combination of Western blotting, enzyme-linked-immunosorbent assay, and immunogold labeling transmission electron and immunofluorescence microscopy, we identified that resting human platelets contain mature IL-1β. Platelets release IL-1β within minutes in response to adenosine diphosphate (ADP), collagen, and thrombin receptor agonists, but not in response to conventional NLRP3 inflammasome agonists-lipopolysaccharide and adenosine triphosphate. The rapid release of IL-1β in response to ADP and thrombin receptor agonists was independent of caspases (including caspase-1) and NLRP3. Immature and mature IL-1β were identified as low-abundance proteins on transmission electron microscopy of human platelets, and were localized to the platelet cytosol, open canalicular system, and the periphery of α granules. CONCLUSION Unlike monocytes and neutrophils, human platelets are capable of rapid agonist- and time-dependent release of IL-1β by a mechanism which is independent of caspase-1 and NLRP3.
Collapse
Affiliation(s)
- Gabrielle J Pennings
- Vascular Biology Group, ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Concord, New South Wales, Australia
| | - Caroline J Reddel
- Vascular Biology Group, ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Concord, New South Wales, Australia
| | - Mathew Traini
- Vascular Biology Group, ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Concord, New South Wales, Australia
| | - Magdalena Lam
- Vascular Biology Group, ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Concord, New South Wales, Australia
| | - Maaike Kockx
- Vascular Biology Group, ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Concord, New South Wales, Australia
| | - Vivien M Chen
- Vascular Biology Group, ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Concord, New South Wales, Australia.,Department of Haematology, Concord Repatriation General Hospital, Sydney Local Health District, New South Wales, Australia
| | - Leonard Kritharides
- Vascular Biology Group, ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Concord, New South Wales, Australia.,Department of Cardiology, Concord Repatriation General Hospital, Sydney Local Health District, New South Wales, Australia
| |
Collapse
|
8
|
Neutrophil extracellular traps and inflammasomes cooperatively promote venous thrombosis in mice. Blood Adv 2021; 5:2319-2324. [PMID: 33938940 DOI: 10.1182/bloodadvances.2020003377] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/16/2021] [Indexed: 12/20/2022] Open
Abstract
Deep vein thrombosis (DVT) is linked to local inflammation. A role for both neutrophil extracellular traps (NETs) and the assembly of inflammasomes (leading to caspase-1-dependent interleukin-1β activation) in the development of DVT was recently suggested. However, no link between these 2 processes in the setting of thrombosis has been investigated. Here, we demonstrate that stimulation of neutrophils induced simultaneous formation of NETs and active caspase-1. Caspase-1 was largely associated with NETs, suggesting that secreted active caspase-1 requires NETs as an adhesive surface. NETs and their components, histones, promoted robust caspase-1 activation in platelets with the strongest effect exerted by histones 3/4. Murine DVT thrombi contained active caspase-1, which peaked at 6 hours when compared with 48-hour thrombi. Platelets constituted more than one-half of cells containing active caspase-1 in dissociated thrombi. Using intravital microscopy, we identified colocalized NETs and caspase-1 as well as platelet recruitment at the site of thrombosis. Pharmacological inhibition of caspase-1 strongly reduced DVT in mice, and thrombi that still formed contained no citrullinated histone 3, a marker of NETs. Taken together, these data demonstrate a cross-talk between NETs and inflammasomes both in vitro and in the DVT setting. This may be an important mechanism supporting thrombosis in veins.
Collapse
|
9
|
Khanal S, Webster M, Niu N, Zielonka J, Nunez M, Chupp G, Slade MD, Cohn L, Sauler M, Gomez JL, Tarran R, Sharma L, Dela Cruz CS, Egan M, Laguna T, Britto CJ. SPLUNC1: a novel marker of cystic fibrosis exacerbations. Eur Respir J 2021; 58:13993003.00507-2020. [PMID: 33958427 DOI: 10.1183/13993003.00507-2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/29/2021] [Indexed: 11/05/2022]
Abstract
Acute pulmonary Exacerbations (AE) are episodes of clinical worsening in cystic fibrosis (CF), often precipitated by infection. Timely detection is critical to minimise morbidity and lung function declines associated with acute inflammation during AE. Based on our previous observations that airway protein Short Palate Lung Nasal epithelium Clone 1 (SPLUNC1) is regulated by inflammatory signals, we investigated the use of SPLUNC1 fluctuations to diagnose and predict AE in CF.We enrolled CF participants from two independent cohorts to measure AE markers of inflammation in sputum and recorded clinical outcomes for a 1-year follow-up period.SPLUNC1 levels were high in healthy controls (n=9, 10.7 μg mL-1), and significantly decreased in CF participants without AE (n=30, 5.7 μg mL-1, p=0.016). SPLUNC1 levels were 71.9% lower during AE (n=14, 1.6 μg mL-1, p=0.0034) regardless of age, sex, CF-causing mutation, or microbiology findings. Cytokines Il-1β and TNFα were also increased in AE, whereas lung function did not consistently decrease. Stable CF participants with lower SPLUNC1 levels were much more likely to have an AE at 60 days (HR: 11.49, Standard Error: 0.83, p=0.0033). Low-SPLUNC1 stable participants remained at higher AE risk even one year after sputum collection (HR: 3.21, Standard Error: 0.47, p=0.0125). SPLUNC1 was downregulated by inflammatory cytokines and proteases increased in sputum during AE.In acute CF care, low SPLUNC1 levels could support a decision to increase airway clearance or to initiate pharmacological interventions. In asymptomatic, stable patients, low SPLUNC1 levels could inform changes in clinical management to improve long-term disease control and clinical outcomes in CF.
Collapse
Affiliation(s)
- Sara Khanal
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Megan Webster
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Naiqian Niu
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jana Zielonka
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Myra Nunez
- Division of Pediatric Respiratory Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Geoffrey Chupp
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Martin D Slade
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lauren Cohn
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Maor Sauler
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jose L Gomez
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Robert Tarran
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lokesh Sharma
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Charles S Dela Cruz
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Marie Egan
- Division of Pediatric Pulmonology, Allergy, Immunology, and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Theresa Laguna
- Division of Pediatric Respiratory Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Clemente J Britto
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
10
|
Luo H, Li QQ, Wu N, Shen YG, Liao WT, Yang Y, Dong E, Zhang GM, Liu BR, Yue XZ, Tang XQ, Yang HS. Chronological in vivo imaging reveals endothelial inflammation prior to neutrophils accumulation and lipid deposition in HCD-fed zebrafish. Atherosclerosis 2019; 290:125-135. [DOI: 10.1016/j.atherosclerosis.2019.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 12/20/2022]
|
11
|
Reyat JS, Chimen M, Noy PJ, Szyroka J, Rainger GE, Tomlinson MG. ADAM10-Interacting Tetraspanins Tspan5 and Tspan17 Regulate VE-Cadherin Expression and Promote T Lymphocyte Transmigration. THE JOURNAL OF IMMUNOLOGY 2017; 199:666-676. [PMID: 28600292 PMCID: PMC5502317 DOI: 10.4049/jimmunol.1600713] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 05/10/2017] [Indexed: 12/25/2022]
Abstract
The recruitment of blood leukocytes across the endothelium to sites of tissue infection is central to inflammation, but also promotes chronic inflammatory diseases. A disintegrin and metalloproteinase 10 (ADAM10) is a ubiquitous transmembrane molecular scissor that is implicated in leukocyte transmigration by proteolytically cleaving its endothelial substrates. These include VE-cadherin, a homotypic adhesion molecule that regulates endothelial barrier function, and transmembrane chemokines CX3CL1 and CXCL16, which have receptors on leukocytes. However, a definitive role for endothelial ADAM10 in transmigration of freshly isolated primary leukocytes under flow has not been demonstrated, and the relative importance of distinct ADAM10 substrates is unknown. Emerging evidence suggests that ADAM10 can be regarded as six different molecular scissors with different substrate specificities, depending on which of six TspanC8 tetraspanins it is associated with, but TspanC8s remain unstudied in leukocyte transmigration. In the current study, ADAM10 knockdown on primary HUVECs was found to impair transmigration of freshly isolated human peripheral blood T lymphocytes, but not neutrophils or B lymphocytes, in an in vitro flow assay. This impairment was due to delayed transmigration rather than a complete block, and was overcome in the presence of neutrophils. Transmigration of purified lymphocytes was dependent on ADAM10 regulation of VE-cadherin, but not CX3CL1 and CXCL16. Tspan5 and Tspan17, the two most closely related TspanC8s by sequence, were the only TspanC8s that regulated VE-cadherin expression and were required for lymphocyte transmigration. Therefore endothelial Tspan5- and Tspan17-ADAM10 complexes may regulate inflammation by maintaining normal VE-cadherin expression and promoting T lymphocyte transmigration.
Collapse
Affiliation(s)
- Jasmeet S Reyat
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and.,Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Myriam Chimen
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Peter J Noy
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and
| | - Justyna Szyroka
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and
| | - G Ed Rainger
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Michael G Tomlinson
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and
| |
Collapse
|
12
|
Timmerman I, Daniel AE, Kroon J, van Buul JD. Leukocytes Crossing the Endothelium: A Matter of Communication. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 322:281-329. [PMID: 26940521 DOI: 10.1016/bs.ircmb.2015.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Leukocytes cross the endothelial vessel wall in a process called transendothelial migration (TEM). The purpose of leukocyte TEM is to clear the causing agents of inflammation in underlying tissues, for example, bacteria and viruses. During TEM, endothelial cells initiate signals that attract and guide leukocytes to sites of tissue damage. Leukocytes react by attaching to these sites and signal their readiness to move back to endothelial cells. Endothelial cells in turn respond by facilitating the passage of leukocytes while retaining overall integrity. In this review, we present recent findings in the field and we have endeavored to synthesize a coherent picture of the intricate interplay between endothelial cells and leukocytes during TEM.
Collapse
Affiliation(s)
- Ilse Timmerman
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Anna E Daniel
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Jeffrey Kroon
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Jaap D van Buul
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Cheeniyil A, Evani SJ, Dallo SF, Ramasubramanian AK. Shear stress upregulates IL-1β secretion by Chlamydia pneumoniae- infected monocytes. Biotechnol Bioeng 2015; 112:838-42. [PMID: 25336058 DOI: 10.1002/bit.25486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 09/19/2014] [Accepted: 10/13/2014] [Indexed: 12/13/2022]
Abstract
Infectious agents are increasingly implicated in the development and progression of chronic inflammatory diseases. Several lines of evidence suggest that the common intracellular respiratory pathogen, Chlamydia pneumoniae contributes to the well-established risk factors of atherosclerosis but the exact mechanism is not well understood. It is believed that C. pneumoniae-infected monocytes travel from the lung to the atherosclerotic foci, during which the cells experience mechanical stimuli due to blood flow. In this work, we characterized the effect of physiological levels of shear stress on C. pneumoniae-infected human monocytes in an in vitro flow model. We found that a shear stress of 5 dyn/cm(2) enhanced the expression of pro-inflammatory cytokine IL-1β only in infected, but not in uninfected, monocytes. We also found that this enhancement is due to the upregulation of IL-1β gene expression due to shear stress. Our results demonstrate that mechanotransduction is an important, heretofore unaddressed, determinant of inflammatory response to an infection.
Collapse
Affiliation(s)
- Aswathi Cheeniyil
- Department of Biomedical Engineering, and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, 78249.
| | | | | | | |
Collapse
|
14
|
Luu NT, McGettrick HM, Buckley CD, Newsome PN, Rainger GE, Frampton J, Nash GB. Crosstalk between mesenchymal stem cells and endothelial cells leads to downregulation of cytokine-induced leukocyte recruitment. Stem Cells 2015; 31:2690-702. [PMID: 23939932 DOI: 10.1002/stem.1511] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 07/22/2013] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSC) have immunomodulatory properties, but their effects on endothelial cells (EC) and recruitment of leukocytes are unknown. We cocultured human bone marrow-derived MSC with EC and found that MSC could downregulate adhesion of flowing neutrophils or lymphocytes and their subsequent transendothelial migration. This applied for EC treated with tumor necrosis factor-α (TNF), interleukin-1β (IL-1), or TNF and interferon-γ combined. Supernatant from cocultures also inhibited endothelial responses. This supernatant had much higher levels of IL-6 than supernatant from cultures of the individual cells, which also lacked inhibitory functions. Addition of neutralizing antibody against IL-6 removed the bioactivity of the supernatant and also the immunomodulatory effects of coculture. Studies using siRNA showed that IL-6 came mainly from the MSC in coculture, and reduction in production in MSC alone was sufficient to impair the protective effects of coculture. Interestingly, siRNA knockdown of IL-6-receptor expression in MSC as well as EC inhibited anti-inflammatory effects. This was explained when we detected soluble IL-6R receptor in supernatants and showed that receptor removal reduced the potency of supernatant. Neutralization of transforming growth factor-β indicated that activation of this factor in coculture contributed to IL-6 production. Thus, crosstalk between MSC and EC caused upregulation of production of IL-6 by MSC which in turn downregulated the response of EC to inflammatory cytokines, an effect potentiated by MSC release of soluble IL-6R. These studies establish a novel mechanism by which MSC might have protective effects against inflammatory pathology and cardiovascular disease.
Collapse
Affiliation(s)
- N Thin Luu
- Centre for Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
15
|
Patel R, Filer A, Barone F, Buckley CD. Stroma: fertile soil for inflammation. Best Pract Res Clin Rheumatol 2014; 28:565-76. [PMID: 25481550 DOI: 10.1016/j.berh.2014.10.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Biological therapies for the management of immune mediated inflammatory diseases such as rheumatoid arthritis have proven to be extremely successful in recent years. Despite these successes, even the most effective of therapies do not lead to cure. Why chronic inflammation persists indefinitely within the rheumatoid synovium despite an absence of continuous stimulation, and why some patients with early synovitis progress to persistent disease whilst others do not, has remained unexplained. In contrast to the paradigm that stromal cells are biochemically active but immunologically passive, there is now growing evidence that stromal components from the rheumatoid synovium play a crucial part in the immunopathology of rheumatoid arthritis. Stromal cells play a central role in the transformation of an acute, resolving to a chronic inflammatory process, and to the persistence of synovial inflammation and joint destruction through a variety of immune mechanisms. Therapeutic manipulation of the stroma is a largely unexplored, yet potentially vital area of research. Targeting pathogenic stromal cells has the potential to provide a cure for chronic inflammatory disorders such as rheumatoid arthritis.
Collapse
Affiliation(s)
- Rikesh Patel
- Rheumatology Research Group, Center for Translational Inflammation Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Andrew Filer
- Rheumatology Research Group, Center for Translational Inflammation Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Francesca Barone
- Rheumatology Research Group, Center for Translational Inflammation Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Christopher D Buckley
- Rheumatology Research Group, Center for Translational Inflammation Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
16
|
Li X, Deroide N, Mallat Z. The role of the inflammasome in cardiovascular diseases. J Mol Med (Berl) 2014; 92:307-19. [PMID: 24638861 DOI: 10.1007/s00109-014-1144-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/26/2014] [Accepted: 03/04/2014] [Indexed: 12/17/2022]
Abstract
Inflammasome is a very important signaling platform sensing a variety of triggers of the innate immune system. Inflammasome promotes the production of important pro-inflammatory cytokines such as IL-1β and IL-18. Tight control of inflammasome activity is, therefore, essential and occurs at multiple levels. The activation of inflammasome pathways is linked to the pathogenesis of various prevalent disorders including cardiovascular disease such as atherosclerosis, ischemic injury, cardiomyopathy, and Kawasaki disease. The study of the inflammasome in the cardiovascular system has led to the identification of important triggers and endogenous modulators, and to the exploration of new treatment strategies based on the inhibition of inflammasome activation or its end products, i.e., IL-1β and IL-18. In summary, the discovery of the inflammasome has greatly advanced our understanding of how the innate immune system interferes with cardiovascular disease development and progression, and targeting inflammasome provides new avenues for the treatment and management of cardiovascular diseases.
Collapse
Affiliation(s)
- Xuan Li
- Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 2QQ, UK
| | | | | |
Collapse
|
17
|
Harrison M, Smith E, Ross E, Krams R, Segers D, Buckley CD, Nash GB, Rainger GE. The Role of Platelet-Endothelial Cell Adhesion Molecule-1 in Atheroma Formation Varies Depending on the Site-Specific Hemodynamic Environment. Arterioscler Thromb Vasc Biol 2013; 33:694-701. [DOI: 10.1161/atvbaha.112.300379] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Objective—
Polymorphisms in the platelet-endothelial cell adhesion molecule (PECAM-1)-1 gene are linked to increased risk of coronary artery disease. Because PECAM-1 has been demonstrated to form a mechanosensory complex that can modulate inflammatory responses in murine arterial endothelial cells, we hypothesized that PECAM-1 contributes to atherogenesis in a shear-dependent and site-specific manner.
Approach and Results—
ApoE
–/–
mice that were wild-type, heterozygous, or deficient in PECAM-1 were placed on a high-fat diet. Detailed analysis of the aorta at sites with differing hemodynamics revealed that PECAM-1–deficient mice had reduced disease in areas of disturbed flow, whereas plaque burden was increased in areas of steady, laminar flow. In concordance with these observations, bone marrow chimera experiments revealed that hematopoietic PECAM-1 resulted in accelerated atheroma formation in areas of laminar and disturbed flow, however endothelial PECAM-1 moderated disease progression in areas of high sheer stress. Moreover, using shear stress–modifying carotid cuffs, PECAM-1 was shown to promote macrophage recruitment into lesions developing in areas of low shear stress.
Conclusions—
PECAM-1 on bone marrow cells is proatherogenic irrespective of the hemodynamic environment, however endothelial cell PECAM-1 is antiatherogenic in high shear environments. Thus, targeting this pathway therapeutically would require a cell-type and context-specific strategy.
Collapse
Affiliation(s)
- Matthew Harrison
- From the College of Medical and Dental Science, The Medical School, University of Birmingham, UK (M.H., E.S., E.R., C.D.B., G.B.N., G.E.R.); Bioengineering, Imperial College, Campus South Kensington, London (R.K.); and Cardiology, Erasmus MC, Rotterdam, UK (D.S.)
| | - Emily Smith
- From the College of Medical and Dental Science, The Medical School, University of Birmingham, UK (M.H., E.S., E.R., C.D.B., G.B.N., G.E.R.); Bioengineering, Imperial College, Campus South Kensington, London (R.K.); and Cardiology, Erasmus MC, Rotterdam, UK (D.S.)
| | - Ewan Ross
- From the College of Medical and Dental Science, The Medical School, University of Birmingham, UK (M.H., E.S., E.R., C.D.B., G.B.N., G.E.R.); Bioengineering, Imperial College, Campus South Kensington, London (R.K.); and Cardiology, Erasmus MC, Rotterdam, UK (D.S.)
| | - Robert Krams
- From the College of Medical and Dental Science, The Medical School, University of Birmingham, UK (M.H., E.S., E.R., C.D.B., G.B.N., G.E.R.); Bioengineering, Imperial College, Campus South Kensington, London (R.K.); and Cardiology, Erasmus MC, Rotterdam, UK (D.S.)
| | - Dolf Segers
- From the College of Medical and Dental Science, The Medical School, University of Birmingham, UK (M.H., E.S., E.R., C.D.B., G.B.N., G.E.R.); Bioengineering, Imperial College, Campus South Kensington, London (R.K.); and Cardiology, Erasmus MC, Rotterdam, UK (D.S.)
| | - Christopher D. Buckley
- From the College of Medical and Dental Science, The Medical School, University of Birmingham, UK (M.H., E.S., E.R., C.D.B., G.B.N., G.E.R.); Bioengineering, Imperial College, Campus South Kensington, London (R.K.); and Cardiology, Erasmus MC, Rotterdam, UK (D.S.)
| | - Gerard B. Nash
- From the College of Medical and Dental Science, The Medical School, University of Birmingham, UK (M.H., E.S., E.R., C.D.B., G.B.N., G.E.R.); Bioengineering, Imperial College, Campus South Kensington, London (R.K.); and Cardiology, Erasmus MC, Rotterdam, UK (D.S.)
| | - G. Ed Rainger
- From the College of Medical and Dental Science, The Medical School, University of Birmingham, UK (M.H., E.S., E.R., C.D.B., G.B.N., G.E.R.); Bioengineering, Imperial College, Campus South Kensington, London (R.K.); and Cardiology, Erasmus MC, Rotterdam, UK (D.S.)
| |
Collapse
|
18
|
Huang RB, Gonzalez AL, Eniola-Adefeso O. Laminar shear stress elicit distinct endothelial cell E-selectin expression pattern via TNFα and IL-1β activation. Biotechnol Bioeng 2013; 110:999-1003. [PMID: 23055258 DOI: 10.1002/bit.24746] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 09/25/2012] [Accepted: 09/28/2012] [Indexed: 12/30/2022]
Abstract
The ability to discriminate cell adhesion molecule expression between healthy and inflamed endothelium is critical for therapeutic intervention in many diseases. This study explores the effect of laminar flow on TNFα-induced E-selectin surface expression levels in human umbilical vein endothelial cells (HUVECs) relative to IL-1β-induced expression via flow chamber assays. HUVECs grown in static culture were either directly (naïve) activated with cytokine in the presence of laminar shear or pre-exposed to 12 h of laminar shear (shear-conditioned) prior to simultaneous shear and cytokine activation. Naïve cells activated with cytokine in static served as control. Depending on the cell shear history, fluid shear is found to differently affect TNFα-induced relative to IL-1β-induced HUVEC expression of E-selectin. Specifically, E-selectin surface expression by naïve HUVECs is enhanced in the 8-12 h activation time range with simultaneous exposure to shear and TNFα (shear-TNFα) relative to TNFα static control whereas enhanced E-selectin expression is observed in the 4-24 h range for shear-IL-1β treatment relative to IL-1β static control. While exposure of HUVECs to shear preconditioning mutes shear-TNFα-induced E-selectin expression, it enhances or down-regulates shear-IL-1β-induced expression dependent on the activation period. Under dual-cytokine-shear conditions, IL-1β signaling dominates. Overall, a better understanding of E-selectin expression pattern by human ECs relative to the combined interaction of cytokines, shear profile and history can help elucidate many disease pathologies.
Collapse
Affiliation(s)
- Ryan B Huang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
19
|
Luu NT, Glen KE, Egginton S, Rainger GE, Nash GB. Integrin-substrate interactions underlying shear-induced inhibition of the inflammatory response of endothelial cells. Thromb Haemost 2012; 109:298-308. [PMID: 23238518 DOI: 10.1160/th12-06-0400] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 11/08/2012] [Indexed: 11/05/2022]
Abstract
Conditioning of endothelial cells by shear stress suppresses their response to inflammatory cytokines. We questioned whether signalling through different integrin-matrix interactions, previously associated with the pathogenic effects of disturbed flow, supported the anti-inflammatory action of steady shear. Primary human endothelial cells were cultured on different substrates and exposed to shear stress (2.0Pa) for varying periods before stimulation with tumour necrosis factor-α (TNF). Shear-conditioning inhibited cytokine-induced recruitment of flowing neutrophils. However, the effect was similar for culture on collagen, laminin or fibronectin, even when seeding was reduced to 2 hours, and shear to 3 hours before TNF treatment (to minimise deposition of endothelial matrix). Nevertheless, in short- or longer-term cultures, reduction in expression of β(1)-integrin (but not β(3)-integrin) using siRNA essentially ablated the effect of shear-conditioning on neutrophil recruitment. Studies of focal adhesion kinase (FAK) phosphorylation, siRNA against FAK and a FAK-inhibitor (PF573228) indicated that FAK activity was an essential component downstream of β(1)-integrin. In addition, MAP-kinase p38 was phosphorylated downstream of FAK and also required for functional modification. Mechanotransduction through β(1)-integrins, FAK and p38 is required for anti-inflammatory effects of steady shear stress. Separation of the pathways which underlie pathological versus protective responses of different patterns of flow is required to enable therapeutic modification or mimicry, respectively.
Collapse
Affiliation(s)
- N Thin Luu
- Prof. Gerard Nash, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Tel.: +44 121 414 3670, Fax: +44 121 414 6919, E-mail:
| | | | | | | | | |
Collapse
|
20
|
Glen K, Luu NT, Ross E, Buckley CD, Rainger GE, Egginton S, Nash GB. Modulation of functional responses of endothelial cells linked to angiogenesis and inflammation by shear stress: Differential effects of the mechanotransducer CD31. J Cell Physiol 2012; 227:2710-21. [DOI: 10.1002/jcp.23015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
McGettrick HM, Butler LM, Buckley CD, Ed Rainger G, Nash GB. Tissue stroma as a regulator of leukocyte recruitment in inflammation. J Leukoc Biol 2012; 91:385-400. [DOI: 10.1189/jlb.0911458] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
22
|
Shepherd RD, Kos SM, Rinker KD. Flow-dependent Smad2 phosphorylation and TGIF nuclear localization in human aortic endothelial cells. Am J Physiol Heart Circ Physiol 2011; 301:H98-H107. [PMID: 21490324 DOI: 10.1152/ajpheart.00668.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Endothelial cells respond to fluid flow stimulation through transient and sustained signal pathway activation. Smad2 is a signaling molecule and transcription factor in the Smad signaling pathway, traditionally associated with TGF-β. Although phosphorylation of Smad2 in the receptor-dependent COOH-terminal region is the most appreciated way Smad2 is activated to affect gene expression, phosphorylation may also occur in the MH1-MH2 linker region (L-psmad2). Here, we show that in human aortic endothelial cells (HAEC), Smad2 was both preferentially phosphorylated in the linker region and localized to the nucleus in a flow-dependent manner. The Smad corepressor transforming growth interacting factor (TGIF) was also found to have flow-dependent nuclear localization. Tissue studies confirmed this L-psmad2 generation trend in rat aorta, indicating likely importance in arterial tissue. HAEC-based inhibitor studies demonstrated that L-psmad2 levels were not related to MAPK phosphorylation, but instead followed the pattern of pAkt(473), both with and without the phosphatidylinositol 3-kinase inhibitor PI-103. Akt and Smad species were also shown to directly interact under flow relative to static controls. To further evaluate impacts of PI-103 treatment, expression profiles for two TGF-β and shear stress-dependent genes were determined and showed that mRNAs were lower from untreated 10 dyn/cm(2) than 2 dyn/cm(2) average shear stress cultures. However, upon exposure to PI-103, this trend was reversed, with a stronger response observed at 10 dyn/cm(2). Taken together, the results of this work suggest that fluid flow exposure may influence endothelial gene expression by a novel mechanism involving Akt, L-psmad2, and TGIF.
Collapse
Affiliation(s)
- Robert D Shepherd
- Univ. of Calgary, 2500 Univ. Dr. N.W., Centre for Bioengineering Research and Education, CCIT 208, Calgary AB, Canada T2N 1N4
| | | | | |
Collapse
|
23
|
Burton VJ, Butler LM, McGettrick HM, Stone PC, Jeffery HC, Savage CO, Rainger GE, Nash GB. Delay of migrating leukocytes by the basement membrane deposited by endothelial cells in long-term culture. Exp Cell Res 2010; 317:276-92. [PMID: 21056557 PMCID: PMC3025349 DOI: 10.1016/j.yexcr.2010.10.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 10/25/2010] [Accepted: 10/27/2010] [Indexed: 12/25/2022]
Abstract
We investigated the migration of human leukocytes through endothelial cells (EC), and particularly their underlying basement membrane (BM). EC were cultured for 20 days on 3 μm-pore filters or collagen gels to form a distinct BM, and then treated with tumour necrosis factor-α, interleukin-1β or interferon-γ. Neutrophil migration through the cytokine-treated EC and BM was delayed for 20-day compared to 4-day cultures. The BM alone obstructed chemotaxis of neutrophils, and if fresh EC were briefly cultured on stripped BM, there was again a hold-up in migration. In studies with lymphocytes and monocytes, we could detect little hold-up of migration for 20-day versus 4-day cultures, in either the filter- or gel-based models. Direct microscopic observations showed that BM also held-up neutrophil migration under conditions of flow. Treatment of upper and/or lower compartments of filters with antibodies against integrins, showed that neutrophil migration through the endothelial monolayer was dependent on β2-integrins, but not β1- or β3-integrins. Migration from the subendothelial compartment was supported by β1- and β2-integrins for all cultures, but blockade of β3-integrin only inhibited migration effectively for 20-day cultures. Flow cytometry indicated that there was no net increase in expression of β1- or β3-integrins during neutrophil migration, and that their specific subendothelial function was likely dependent on turnover of integrins during migration. These studies show that BM is a distinct barrier to migration of human neutrophils, and that β3-integrins are particularly important in crossing this barrier. The lesser effect of BM on lymphocytes and monocytes supports the concept that crossing the BM is a separate, leukocyte-specific, regulated step in migration.
Collapse
Affiliation(s)
- Victoria J Burton
- Centre for Cardiovascular Sciences and MRC Centre for Immune Regulation, College of Medical and Dental Sciences, The University of Birmingham, Birmingham B15 2TT, UK
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Cecchi E, Giglioli C, Valente S, Lazzeri C, Gensini GF, Abbate R, Mannini L. Role of hemodynamic shear stress in cardiovascular disease. Atherosclerosis 2010; 214:249-56. [PMID: 20970139 DOI: 10.1016/j.atherosclerosis.2010.09.008] [Citation(s) in RCA: 249] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 09/09/2010] [Accepted: 09/10/2010] [Indexed: 12/29/2022]
Abstract
Atherosclerosis is the main cause of morbidity and mortality in the Western world. Inflammation and blood flow alterations are new markers emerging as possible determinants for the development of atherosclerotic lesions. In particular, blood flow exerts a shear stress on vessel walls that alters cell physiology. Shear stress arises from the friction between two virtual layers of a fluid and is induced by the difference in motion and viscosity between these layers. Regions of the arterial tree with uniform geometry are exposed to a unidirectional and constant flow, which determines a physiologic shear stress, while arches and bifurcations are exposed to an oscillatory and disturbed flow, which determines a low shear stress. Atherosclerotic lesions develop mainly in areas of low shear stress, while those exposed to a physiologic shear stress are protected. The presence of areas of the arterial tree with different wall shear stress may explain, in part, the different localization of atherosclerotic lesions in both coronary and extracoronary arteries. The measurement of this parameter may help in identifying atherosclerotic plaques at higher risk as well as in evaluating the efficacy of different pharmacological interventions. Moreover, an altered shear stress is associated with the occurrence of both aortic and intracranial aneurysms, possibly leading to their growth and rupture. Finally, the evaluation of shear stress may be useful for predicting the risk of developing restenosis after coronary and peripheral angioplasty and for devising a coronary stent with a strut design less thrombogenic and more conducive to endothelization.
Collapse
Affiliation(s)
- Emanuele Cecchi
- Dipartimento del Cuore e dei Vasi, Azienda Ospedaliero-Universitaria Careggi, Firenze, Italy.
| | | | | | | | | | | | | |
Collapse
|
25
|
Flow interactions with cells and tissues: cardiovascular flows and fluid-structure interactions. Sixth International Bio-Fluid Mechanics Symposium and Workshop, March 28-30, 2008, Pasadena, California. Ann Biomed Eng 2010; 38:1178-87. [PMID: 20336826 DOI: 10.1007/s10439-010-9900-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Interactions between flow and biological cells and tissues are intrinsic to the circulatory, respiratory, digestive and genitourinary systems. In the circulatory system, an understanding of the complex interaction between the arterial wall (a living multi-component organ with anisotropic, nonlinear material properties) and blood (a shear-thinning fluid with 45% by volume consisting of red blood cells, platelets, and white blood cells) is vital to our understanding of the physiology of the human circulation and the etiology and development of arterial diseases, and to the design and development of prosthetic implants and tissue-engineered substitutes. Similarly, an understanding of the complex dynamics of flow past native human heart valves and the effect of that flow on the valvular tissue is necessary to elucidate the etiology of valvular diseases and in the design and development of valve replacements. In this paper we address the influence of biomechanical factors on the arterial circulation. The first part presents our current understanding of the impact of blood flow on the arterial wall at the cellular level and the relationship between flow-induced stresses and the etiology of atherosclerosis. The second part describes recent advances in the application of fluid-structure interaction analysis to arterial flows and the dynamics of heart valves.
Collapse
|
26
|
Neutrophil adhesion on endothelial cells in a novel asymmetric stenosis model: effect of wall shear stress gradients. Ann Biomed Eng 2010; 38:2791-804. [PMID: 20387119 DOI: 10.1007/s10439-010-0032-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 03/30/2010] [Indexed: 01/02/2023]
Abstract
Leukocytes play a pivotal role in the progression of atherosclerosis. A novel three-dimensional in vitro asymmetric stenosis model was used to better investigate the role of local hemodynamics in the adhesion of leukocytes to an established plaque. The adhesion of a human promyelocytic cell line (NB4) on a human abdominal aortic endothelial cell (EC) monolayer was quantified. NB4 cells were circulated over TNF-alpha stimulated and nonstimulated ECs for 1 or 6 h at 1.25 or 6.25 dynes/cm(2) and compared to static conditions. Cytokine stimulation increased significantly EC expression of intercellular adhesion molecule and vascular cell adhesion molecule. Under static conditions, neutrophils adhered overall more than under flow, with decreased adhesion with increasing shear. Adhesion was significantly higher in the recirculation region distal to the stenosis than in the inlet. Preshearing the ECs decreased the expression of cell adhesion molecules in inflamed endothelium and significantly decreased adhesion. However, the ratio of adhesion between the recirculation zone and the inlet increased, hence exhibiting an increased regional difference. This work suggests an important role for neutrophil-EC interactions in the atherosclerotic process, especially in wall shear stress gradient regions. This is important clinically, potentially helping to explain plaque stability.
Collapse
|
27
|
Hutamekalin P, Takeda K, Tani M, Tsuga Y, Ogawa N, Mizutani N, Yoshino S. Effect of the C3a-Receptor Antagonist SB 290157 on Anti-OVA Polyclonal Antibody–Induced Arthritis. J Pharmacol Sci 2010; 112:56-63. [DOI: 10.1254/jphs.09180fp] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
28
|
Duchene J, Cayla C, Vessillier S, Scotland R, Yamashiro K, Lecomte F, Syed I, Vo P, Marrelli A, Pitzalis C, Cipollone F, Schanstra J, Bascands JL, Hobbs AJ, Perretti M, Ahluwalia A. Laminar shear stress regulates endothelial kinin B1 receptor expression and function: potential implication in atherogenesis. Arterioscler Thromb Vasc Biol 2009; 29:1757-63. [PMID: 19661485 DOI: 10.1161/atvbaha.109.191775] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE The proinflammatory phenotype induced by low laminar shear stress (LSS) is implicated in atherogenesis. The kinin B1 receptor (B1R), known to be induced by inflammatory stimuli, exerts many proinflammatory effects including vasodilatation and leukocyte recruitment. We investigated whether low LSS is a stimulus for endothelial B1R expression and function. METHODS AND RESULTS Human and mouse atherosclerotic plaques expressed high level of B1R mRNA and protein. In addition, B1R expression was upregulated in the aortic arch (low LSS region) of ApoE(-/-) mice fed a high-fat diet compared to vascular regions of high LSS and animals fed normal chow. Of interest, a greater expression of B1R was noticed in endothelial cells from regions of low LSS in aortic arch of ApoE(-/-) mice. B1R was also upregulated in human umbilical vein endothelial cells (HUVECs) exposed to low LSS (0 to 2 dyn/cm(2)) compared to physiological LSS (6 to 10 dyn/cm(2)): an effect similarly evident in murine vascular tissue perfused ex vivo. Functionally, B1R activation increased prostaglandin and CXCL5 expression in cells exposed to low, but not physiological, LSS. IL-1beta and ox-LDL induced B1R expression and function in HUVECs, a response substantially enhanced under low LSS conditions and inhibited by blockade of NFkappaB activation. CONCLUSIONS Herein, we show that LSS is a major determinant of functional B1R expression in endothelium. Furthermore, whereas physiological high LSS is a powerful repressor of this inflammatory receptor, low LSS occurring [corrected] at sites of atheroma is associated with substantial upregulation, identifying this receptor as a potential therapeutic target.
Collapse
Affiliation(s)
- Johan Duchene
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Nakajima F, Nishimura M, Hashimoto S, Okazaki H, Tadokoro K. Role of anti-Nakaantibody, monocytes and platelets in the development of transfusion-related acute lung injury. Vox Sang 2008; 95:318-23. [DOI: 10.1111/j.1423-0410.2008.01095.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Tsou JK, Gower RM, Ting HJ, Schaff UY, Insana MF, Passerini AG, Simon SI. Spatial regulation of inflammation by human aortic endothelial cells in a linear gradient of shear stress. Microcirculation 2008; 15:311-23. [PMID: 18464160 DOI: 10.1080/10739680701724359] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Atherosclerosis is a focal disease that develops at sites of low and oscillatory shear stress in arteries. This study aimed to understand how endothelial cells sense a gradient of fluid shear stress and transduce signals that regulate membrane expression of cell adhesion molecules and monocyte recruitment. METHODS Human aortic endothelial cells were stimulated with TNF-alpha and simultaneously exposed to a linear gradient of shear stress that increased from 0 to 16 dyne/cm2. Cell adhesion molecule expression and activation of NFkappa B were quantified by immunofluorescence microscopy with resolution at the level of a single endothelial cell. Monocyte recruitment was imaged using custom microfluidic flow chambers. RESULTS VCAM-1 and E-selectin upregulation was greatest between 2-4 dyne/cm2 (6 and 4-fold, respectively) and above 8 dyne/cm2 expression was suppressed below that of untreated endothelial cells. In contrast, ICAM-1 expression and NFkappa B nuclear translocation increased with shear stress up to a maximum at 9 dyne/cm2. Monocyte recruitment was most efficient in regions where E-selectin and VCAM-1 expression was greatest. CONCLUSIONS We found that the endothelium can sense a change in shear stress on the order of 0.25 dyne/cm2 over a length of approximately 10 cells, regulating the level of protein transcription, cellular adhesion molecule expression, and leukocyte recruitment during inflammation.
Collapse
Affiliation(s)
- Jean K Tsou
- Department of Biomedical Engineering, University of California, Davis, California, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Matharu NM, McGettrick HM, Salmon M, Kissane S, Vohra RK, Rainger G, Nash GB. Inflammatory responses of endothelial cells experiencing reduction in flow after conditioning by shear stress. J Cell Physiol 2008; 216:732-41. [DOI: 10.1002/jcp.21457] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
32
|
Ridger V, Krams R, Carpi A, Evans PC. Hemodynamic parameters regulating vascular inflammation and atherosclerosis: a brief update. Biomed Pharmacother 2008; 62:536-40. [PMID: 18757166 DOI: 10.1016/j.biopha.2008.07.053] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 07/01/2008] [Indexed: 12/21/2022] Open
Abstract
Atherosclerosis is a chronic lipid-driven inflammatory disease of the arteries. Early lesions (fatty streaks) contain monocytes and T lymphocytes which are recruited from the circulation by adhesion to activated vascular endothelial cells (EC). This process is described as the leukocyte adhesion cascade. Atherogenesis occurs predominantly at branches and bends of the arterial tree that are exposed to relatively low or re-circulating blood flow. Here we briefly review the effects of blood flow and shear stress on the leukocyte adhesion cascade and endothelial cell function.
Collapse
|
33
|
Svensson M, Irjala H, Svanborg C, Godaly G. Effects of epithelial and neutrophil CXCR2 on innate immunity and resistance to kidney infection. Kidney Int 2008; 74:81-90. [DOI: 10.1038/ki.2008.105] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Helderman F, Segers D, de Crom R, Hierck BP, Poelmann RE, Evans PC, Krams R. Effect of shear stress on vascular inflammation and plaque development. Curr Opin Lipidol 2007; 18:527-33. [PMID: 17885423 DOI: 10.1097/mol.0b013e3282ef7716] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW This review describes evidence that shear stress acts through modulation of inflammation and by that process affects atherogenesis and plaque composition. RECENT FINDINGS In low shear stress regions antiatherogenic transcription factors are downregulated and pro-atherogenic transcription factors are upregulated. Consequently, inflammatory cells may home low shear stress regions more easily to the plaques because of increased expression of adhesion factors, a decreased rolling speed and an increased expression of chemokines, thereby changing the composition of the plaques into a more vulnerable phenotype. In contrast, in advanced plaque development vascular lumen decreases and shear stress increases, especially upstream of the plaques. The predominant upstream location of lipids induces a prevalent upstream location of inflammatory cells leading to localized plaque rupture. SUMMARY Shear stress has been shown to play a role in plaque induction, plaque progression and plaque rupture. The mechanism for plaque induction seems to differ from the role of shear stress for plaque rupture, whereby the former mechanism is induced by low shear stress and the latter by high shear stress.
Collapse
Affiliation(s)
- Frank Helderman
- Department of Physics, Free University of Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
35
|
Rao RM, Yang L, Garcia-Cardena G, Luscinskas FW. Endothelial-dependent mechanisms of leukocyte recruitment to the vascular wall. Circ Res 2007; 101:234-47. [PMID: 17673684 DOI: 10.1161/circresaha.107.151860b] [Citation(s) in RCA: 299] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inflammation is a fundamental process that protects organisms by removing or neutralizing injurious agents. A key event in the inflammatory response is the localized recruitment of various leukocyte subsets. Here we address the cellular and regulatory mechanisms of leukocyte recruitment to the vessel wall in cardiovascular disease and discuss our evolving understanding of the role of the vascular endothelium in this process. The vascular endothelium is the continuous single-cell lining of the cardiovascular system that forms a critical interface between the blood and its components on one side and the tissues and organs on the other. It is heterogeneous and has many synthetic and metabolic functions including secretion of platelet-derived growth factor, von Willebrand factor, prostacyclin, NO, endothelin-1, and chemokines and the expression of adhesion molecules. It also acts as a nonthrombogenic and selective permeable barrier. Endothelial cells also interact closely with the extracellular matrix and with adjacent cells including pericytes and smooth muscle cells within the vessel wall. A central question in vascular biology is the role of the endothelium in the initiation of inflammatory response, the extent of its "molecular conversations" with recruited leukocytes, and its influence on the extent and/or outcome of this response.
Collapse
Affiliation(s)
- Ravi M Rao
- Vascular Science, National Heart and Lung Institute, Imperial College School of Medicine, Hammersmith Hospital, London, UK
| | | | | | | |
Collapse
|
36
|
Partridge J, Carlsen H, Enesa K, Chaudhury H, Zakkar M, Luong L, Kinderlerer A, Johns M, Blomhoff R, Mason JC, Haskard DO, Evans PC. Laminar shear stress acts as a switch to regulate divergent functions of NF-kappaB in endothelial cells. FASEB J 2007; 21:3553-61. [PMID: 17557931 DOI: 10.1096/fj.06-8059com] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Regions of the arterial tree exposed to laminar flow, which exerts high shear stress, are protected from inflammation, endothelial cell (EC) death and atherosclerosis. TNFalpha activates NF-kappaB transcription factors, which potentially exert dual functions by inducing both proinflammatory and cytoprotective transcripts. We assessed whether laminar shear stress protects EC by modulating NF-kappaB function. Human umbilical vein EC (HUVEC) were cultured under shear stress (12 dynes/cm2 for 16 h) using a parallel-plate flow chamber or were maintained in static conditions. Comparative real-time PCR revealed that preshearing significantly alters transcriptional responses to TNFalpha by enhancing the expression of cytoprotective molecules (Bcl-2, MnSOD, GADD45beta, A1) and suppressing proinflammatory transcripts (E-selectin, VCAM-1, IL-8). We demonstrated using assays of nuclear localization, NF-kappaB subunit phosphorylation, DNA-binding, and transcriptional activity that NF-kappaB is activated by TNFalpha in presheared HUVEC. Furthermore, a specific inhibitor revealed that NF-kappaB is essential for the induction of cytoprotective transcripts in presheared EC. Finally, we observed that NF-kappaB can be activated in vascular endothelium exposed to laminar shear stress in NF-kappaB-luciferase reporter mice, thus validating our cell culture experiments. We conclude that shear stress primes EC for enhanced NF-kappaB-dependent cytoprotective responsiveness while attenuating proinflammatory activation. Thus modulation of NF-kappaB function may underlie the atheroprotective effects of laminar shear stress.
Collapse
Affiliation(s)
- Jason Partridge
- BHF Cardiovascular Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Rd., London W12 ONN, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Chotard-Ghodsnia R, Haddad O, Leyrat A, Drochon A, Verdier C, Duperray A. Morphological analysis of tumor cell/endothelial cell interactions under shear flow. J Biomech 2006; 40:335-44. [PMID: 16497312 PMCID: PMC1961634 DOI: 10.1016/j.jbiomech.2006.01.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Accepted: 01/05/2006] [Indexed: 01/15/2023]
Abstract
In the process of hematogenous cancer metastasis, tumor cells (TCs) must shed into the blood stream, survive in the blood circulation, migrate through the vascular endothelium (extravasation) and proliferate in the target organs. However, the precise mechanisms by which TCs penetrate the endothelial cell (EC) junctions remain one of the least understood aspects of TC extravasation. This question has generally been addressed under static conditions, despite the important role of flow induced mechanical stress on the circulating cell-endothelium interactions. Moreover, flow studies were generally focused on transient or firm adhesion steps of TC-EC interactions and did not consider TCs spreading or extravasation. In this paper, we used a parallel-plate flow chamber to investigate TC-EC interactions under flow conditions. An EC monolayer was cultured on the lower plate of the flow chamber to model the endothelial barrier. Circulating TCs were introduced into the flow channel under a well-defined flow field and TC cell shape changes on the EC monolayer were followed in vitro with live phase contrast and fluorescence microscopy. Two spreading patterns were observed: radial spreading which corresponds to TC extravasation, and axial spreading where TCs formed a mosaic TC-EC monolayer. By investigating the changes in area and minor/major aspect ratio, we have established a simple quantitative basis for comparing spreading modes under various shear stresses. Contrary to radial spreading, the extent of axial spreading was increased by shear stress.
Collapse
Affiliation(s)
- Roxana Chotard-Ghodsnia
- Laboratoire de Spectrométrie Physique, UMR 5588 (CNRS- Université Grenoble I) BP 87, 140 Rue de la Physique, Saint-Martin d'Hères 38402, France.
| | | | | | | | | | | |
Collapse
|
38
|
McGettrick HM, Lord JM, Wang KQ, Rainger GE, Buckley CD, Nash GB. Chemokine- and adhesion-dependent survival of neutrophils after transmigration through cytokine-stimulated endothelium. J Leukoc Biol 2006; 79:779-88. [PMID: 16461737 PMCID: PMC3119451 DOI: 10.1189/jlb.0605350] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We examined the fate of neutrophils following transmigration through an endothelial monolayer cultured on "Transwell" membrane filters. Treatment of human umbilical vein endothelial cells (HUVEC) with increasing doses of tumor necrosis factor-alpha increased the efficiency of transmigration and markedly reduced apoptosis among the transmigrated neutrophils in a dose-dependent manner. Apoptosis was also inhibited after transmigration of neutrophils through HUVEC stimulated with interleukin (IL)-1beta but not so effectively after chemotaxis through unstimulated HUVEC driven by IL-8 added below the filter. Inhibition of beta2-integrin binding after transmigration or coating the lower chamber with a nonadhesive polymer (polyhydroxyl-ethyl-methacrylate) abrogated neutrophil survival. Although integrin engagement during migration itself was not essential to inhibit apoptosis, activation of neutrophils through CXC chemokine receptors was necessary. Quite brief exposure to the HUVEC (30-120 min) was effective in reducing subsequent apoptosis, although if coincubation with the HUVEC were prolonged, neutrophil apoptosis was reduced further. Neutralization of granulocyte macrophage-colony stimulating factor inhibited this additional effect. Thus, a complex interplay between migration- and activation-dependent signals and adhesive interaction in tissue may combine to effectively prolong the survival of neutrophils recruited during inflammation.
Collapse
Affiliation(s)
- Helen M. McGettrick
- Centre for Cardiovascular Sciences, The Medical School, The University of Birmingham, United Kingdom
- MRC Centre for Immune Regulation, The Medical School, The University of Birmingham, United Kingdom
| | - Janet M. Lord
- MRC Centre for Immune Regulation, The Medical School, The University of Birmingham, United Kingdom
| | - Ke-Qing Wang
- MRC Centre for Immune Regulation, The Medical School, The University of Birmingham, United Kingdom
| | - G. Ed Rainger
- Centre for Cardiovascular Sciences, The Medical School, The University of Birmingham, United Kingdom
- MRC Centre for Immune Regulation, The Medical School, The University of Birmingham, United Kingdom
| | - Christopher D. Buckley
- Centre for Cardiovascular Sciences, The Medical School, The University of Birmingham, United Kingdom
- MRC Centre for Immune Regulation, The Medical School, The University of Birmingham, United Kingdom
| | - Gerard B. Nash
- Centre for Cardiovascular Sciences, The Medical School, The University of Birmingham, United Kingdom
- MRC Centre for Immune Regulation, The Medical School, The University of Birmingham, United Kingdom
- Correspondence: Department of Physiology, The Medical School, The University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
39
|
Costa SKP, Yshii LM, Poston RN, Muscará MN, Brain SD. Pivotal role of endogenous tachykinins and the NK1 receptor in mediating leukocyte accumulation, in the absence of oedema formation, in response to TNFα in the cutaneous microvasculature. J Neuroimmunol 2006; 171:99-109. [PMID: 16269189 DOI: 10.1016/j.jneuroim.2005.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Accepted: 09/09/2005] [Indexed: 11/29/2022]
Abstract
Tachykinins including substance P (SP) are well known to play a role in influencing oedema formation and leukocyte accumulation during tissue insult and inflammation. Cutaneous inflammatory models to characterize a TNFalpha-dependent mechanism where endogenous SP act via the NK1 receptor to promote leukocyte accumulation in the absence of oedema formation were used. We found that TNFalpha induced dose-dependent leukocyte accumulation at 4 h, which returned towards basal levels at 8 h in NK1+/+ mice. This response was absent in both the NK1+/+ mice treated with an NK1 receptor antagonist and NK1-/- mice. At the highest dose IL-6 induced a significant accumulation in NK1+/+ and NK1-/- mice but IL-12 was ineffective. SP induced skin oedema but none of the cytokines did. Either co-injection of SP with low dose of TNFalpha (0.3 pmol/site) or SP previously injected (30 min) to TNFalpha evoked a significant increase in MPO activity when compared with that induced by the cytokine alone. In contrast, SP injected i.d. 3.5 h after TNFalpha failed to produce additive response. Control, but not capsaicin-pretreated rats (to deplete sensory nerves), exhibited a marked increase in MPO activity in response to TNFalpha. Histological analysis showed that TNFalpha caused tissue infiltrate of leukocytes in NK1+/+ mice, whilst leukocytes accumulated at intravascular sites in NK1-/- mice, but did not appear to emigrate, suggesting a defect in trans-endothelial migration. Interestingly, monocytes in addition to neutrophils accumulated 4 h post TNFalpha injection. In conclusion, the NK1 receptor plays a functional role in mediating leukocyte accumulation independently of the historically important NK1 mediated oedema formation. It seems that TNFalpha directly activates sensory nerve in addition to its chemoattractant activity. The NK1 receptor agonist influences the accumulation of monocytes in addition to that of PMN by 4 h, thus revealing an important influence of the NK1 receptor on TNFalpha mediated events in mouse skin.
Collapse
Affiliation(s)
- Soraia K P Costa
- Centre for Cardiovascular Biology and Medicine, King's College, Guy's Campus London SE1, 1UL, UK.
| | | | | | | | | |
Collapse
|