1
|
Ameer OZ. Hypertension in chronic kidney disease: What lies behind the scene. Front Pharmacol 2022; 13:949260. [PMID: 36304157 PMCID: PMC9592701 DOI: 10.3389/fphar.2022.949260] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/26/2022] [Indexed: 12/04/2022] Open
Abstract
Hypertension is a frequent condition encountered during kidney disease development and a leading cause in its progression. Hallmark factors contributing to hypertension constitute a complexity of events that progress chronic kidney disease (CKD) into end-stage renal disease (ESRD). Multiple crosstalk mechanisms are involved in sustaining the inevitable high blood pressure (BP) state in CKD, and these play an important role in the pathogenesis of increased cardiovascular (CV) events associated with CKD. The present review discusses relevant contributory mechanisms underpinning the promotion of hypertension and their consequent eventuation to renal damage and CV disease. In particular, salt and volume expansion, sympathetic nervous system (SNS) hyperactivity, upregulated renin–angiotensin–aldosterone system (RAAS), oxidative stress, vascular remodeling, endothelial dysfunction, and a range of mediators and signaling molecules which are thought to play a role in this concert of events are emphasized. As the control of high BP via therapeutic interventions can represent the key strategy to not only reduce BP but also the CV burden in kidney disease, evidence for major strategic pathways that can alleviate the progression of hypertensive kidney disease are highlighted. This review provides a particular focus on the impact of RAAS antagonists, renal nerve denervation, baroreflex stimulation, and other modalities affecting BP in the context of CKD, to provide interesting perspectives on the management of hypertensive nephropathy and associated CV comorbidities.
Collapse
Affiliation(s)
- Omar Z. Ameer
- Department of Pharmaceutical Sciences, College of Pharmacy, Alfaisal University, Riyadh, Saudi Arabia
- Department of Biomedical Sciences, Faculty of Medicine, Macquarie University, Sydney, NSW, Australia
- *Correspondence: Omar Z. Ameer,
| |
Collapse
|
2
|
Six I, Guillaume N, Jacob V, Mentaverri R, Kamel S, Boullier A, Slama M. The Endothelium and COVID-19: An Increasingly Clear Link Brief Title: Endotheliopathy in COVID-19. Int J Mol Sci 2022; 23:6196. [PMID: 35682871 PMCID: PMC9181280 DOI: 10.3390/ijms23116196] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 01/08/2023] Open
Abstract
The endothelium has a fundamental role in the cardiovascular complications of coronavirus disease 2019 (COVID-19). Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) particularly affects endothelial cells. The virus binds to the angiotensin-converting enzyme 2 (ACE-2) receptor (present on type 2 alveolar cells, bronchial epithelial cells, and endothelial cells), and induces a cytokine storm. The cytokines tumor necrosis factor alpha, interleukin-1 beta, and interleukin-6 have particular effects on endothelial cells-leading to endothelial dysfunction, endothelial cell death, changes in tight junctions, and vascular hyperpermeability. Under normal conditions, apoptotic endothelial cells are removed into the bloodstream. During COVID-19, however, endothelial cells are detached more rapidly, and do not regenerate as effectively as usual. The loss of the endothelium on the luminal surface abolishes all of the vascular responses mediated by the endothelium and nitric oxide production in particular, which results in greater contractility. Moreover, circulating endothelial cells infected with SARS-CoV-2 act as vectors for viral dissemination by forming clusters that migrate into the circulation and reach distant organs. The cell clusters and the endothelial dysfunction might contribute to the various thromboembolic pathologies observed in COVID-19 by inducing the formation of intravascular microthrombi, as well as by triggering disseminated intravascular coagulation. Here, we review the contributions of endotheliopathy and endothelial-cell-derived extracellular vesicles to the pathogenesis of COVID-19, and discuss therapeutic strategies that target the endothelium in patients with COVID-19.
Collapse
Affiliation(s)
- Isabelle Six
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (R.M.); (S.K.); (A.B.); (M.S.)
| | - Nicolas Guillaume
- EA Hematim 4666, Picardie Jules Verne University, 80025 Amiens, France; (N.G.); (V.J.)
- Amiens-Picardie University Medical Center, Human Biology Center, 80054 Amiens, France
| | - Valentine Jacob
- EA Hematim 4666, Picardie Jules Verne University, 80025 Amiens, France; (N.G.); (V.J.)
| | - Romuald Mentaverri
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (R.M.); (S.K.); (A.B.); (M.S.)
- Amiens-Picardie University Medical Center, Human Biology Center, 80054 Amiens, France
| | - Said Kamel
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (R.M.); (S.K.); (A.B.); (M.S.)
- Amiens-Picardie University Medical Center, Human Biology Center, 80054 Amiens, France
| | - Agnès Boullier
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (R.M.); (S.K.); (A.B.); (M.S.)
- Amiens-Picardie University Medical Center, Human Biology Center, 80054 Amiens, France
| | - Michel Slama
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (R.M.); (S.K.); (A.B.); (M.S.)
- Amiens-Picardie University Medical Center, Medical Intensive Care Unit, 80054 Amiens, France
| |
Collapse
|
3
|
Six I, Flissi N, Lenglet G, Louvet L, Kamel S, Gallet M, Massy ZA, Liabeuf S. Uremic Toxins and Vascular Dysfunction. Toxins (Basel) 2020; 12:toxins12060404. [PMID: 32570781 PMCID: PMC7354618 DOI: 10.3390/toxins12060404] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023] Open
Abstract
Vascular dysfunction is an essential element found in many cardiovascular pathologies and in pathologies that have a cardiovascular impact such as chronic kidney disease (CKD). Alteration of vasomotricity is due to an imbalance between the production of relaxing and contracting factors. In addition to becoming a determining factor in pathophysiological alterations, vascular dysfunction constitutes the first step in the development of atherosclerosis plaques or vascular calcifications. In patients with CKD, alteration of vasomotricity tends to emerge as being a new, less conventional, risk factor. CKD is characterized by the accumulation of uremic toxins (UTs) such as phosphate, para-cresyl sulfate, indoxyl sulfate, and FGF23 and, consequently, the deleterious role of UTs on vascular dysfunction has been explored. This accumulation of UTs is associated with systemic alterations including inflammation, oxidative stress, and the decrease of nitric oxide production. The present review proposes to summarize our current knowledge of the mechanisms by which UTs induce vascular dysfunction.
Collapse
Affiliation(s)
- Isabelle Six
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (N.F.); (G.L.); (L.L.); (S.K.); (M.G.); (S.L.)
- Correspondence: ; Tel./Fax: +03-22-82-54-25
| | - Nadia Flissi
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (N.F.); (G.L.); (L.L.); (S.K.); (M.G.); (S.L.)
| | - Gaëlle Lenglet
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (N.F.); (G.L.); (L.L.); (S.K.); (M.G.); (S.L.)
| | - Loïc Louvet
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (N.F.); (G.L.); (L.L.); (S.K.); (M.G.); (S.L.)
| | - Said Kamel
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (N.F.); (G.L.); (L.L.); (S.K.); (M.G.); (S.L.)
- Amiens-Picardie University Hospital, Human Biology Center, 80054 Amiens, France
| | - Marlène Gallet
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (N.F.); (G.L.); (L.L.); (S.K.); (M.G.); (S.L.)
| | - Ziad A. Massy
- Service de Néphrologie et Dialyse, Assistance Publique—Hôpitaux de Paris (APHP), Hôpital Universitaire Ambroise Paré, 92100 Boulogne Billancourt, France;
- INSERM U1018, Equipe 5, CESP (Centre de Recherche en Épidémiologie et Santé des Populations), Université Paris Saclay et Université Versailles Saint Quentin en Yvelines, 94800 Villejuif, France
| | - Sophie Liabeuf
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (N.F.); (G.L.); (L.L.); (S.K.); (M.G.); (S.L.)
- Pharmacology Department, Amiens University Hospital, 80025 Amiens, France
| |
Collapse
|
4
|
Zhou K, Parker JD. The role of vascular endothelium in nitroglycerin-mediated vasodilation. Br J Clin Pharmacol 2018; 85:377-384. [PMID: 30378151 DOI: 10.1111/bcp.13804] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/23/2018] [Accepted: 10/16/2018] [Indexed: 12/16/2022] Open
Abstract
AIMS Nitroglycerin (or glyceryl trinitrate, GTN) has been long considered an endothelium-independent vasodilator because GTN vasodilation is intact in the absence of the endothelium and in the presence of endothelial dysfunction. However, in animal and in vitro models, GTN has been shown to stimulate the release of certain endothelium-derived vasodilators such as nitric oxide (NO) and prostacyclin (PGI2 ). In addition, chronic GTN therapy leads to endothelial dysfunction. In this series of experiments, we explored how GTN might interact with the vascular endothelium in normal humans, without cardiovascular disease or risk factors associated with abnormalities in vascular function. METHODS We examined the effect of inhibition of NO, PGI2 , and epoxyeicosatrienoic acids (EETs, a class of endothelium-derived hyperpolarizing factor) on GTN-mediated vasodilation. We measured arterial blood flow responses to brachial artery infusions of GTN in the absence and presence of L-NMMA (n = 13), ketorolac (n = 14) and fluconazole (n = 16), which are inhibitors of endothelium-derived NO, PGI2 and EETs, respectively, in healthy volunteers. RESULTS Our results demonstrate that inhibition of endothelium-dependent vasodilator mechanisms does not alter forearm resistance vessel responses to GTN. CONCLUSION We conclude that GTN-mediated dilation of forearm resistance vessels is largely independent of vascular endothelium.
Collapse
Affiliation(s)
- Kangbin Zhou
- Department Pharmacology and Toxicology, the University of Toronto
| | - John D Parker
- Department Pharmacology and Toxicology, the University of Toronto.,Division of Cardiology, Department of Medicine, Sinai Health System and the Peter Munk Cardiac Centre, University Health Network, Toronto.,The Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto
| |
Collapse
|
5
|
Disruption of Physiological Balance Between Nitric Oxide and Endothelium-Dependent Hyperpolarization Impairs Cardiovascular Homeostasis in Mice. Arterioscler Thromb Vasc Biol 2016; 36:97-107. [DOI: 10.1161/atvbaha.115.306499] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/26/2015] [Indexed: 01/09/2023]
|
6
|
Albarwani S, Al-Siyabi S, Al-Husseini I, Al-Ismail A, Al-Lawati I, Al-Bahrani I, Tanira MO. Lisinopril alters contribution of nitric oxide and K(Ca) channels to vasodilatation in small mesenteric arteries of spontaneously hypertensive rats. Physiol Res 2014; 64:39-49. [PMID: 25194131 DOI: 10.33549/physiolres.932780] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
To investigate lisinopril effect on the contribution of nitric oxide (NO) and K(Ca) channels to acetylcholine (ACh)-induced relaxation in isolated mesenteric arteries of spontaneously hypertensive rats (SHRs). Third branch mesenteric arteries isolated from lisinopril treated SHR rats (20 mg/kg/day for ten weeks, SHR-T) or untreated (SHR-UT) or normotensive WKY rats were mounted on tension myograph and ACh concentration-response curves were obtained. Westernblotting of eNOS and K(Ca) channels was performed. ACh-induced relaxations were similar in all groups while L-NMMA and indomethacin caused significant rightward shift only in SHR-T group. Apamin and TRAM-34 (SK(Ca) and IK(Ca) channels blockers, respectively) significantly attenuated ACh-induced maximal relaxation by similar magnitude in vessels from all three groups. In the presence of L-NMMA, indomethacin, apamin and TRAM-34 further attenuated ACh-induced relaxation only in SHR-T. Furthermore, lisinopril treatment increased expression of eNOS, SK(Ca) and BK(Ca) proteins. Lisinopril treatment increased expression of eNOS, SK(Ca), BK(Ca) channel proteins and increased the contribution of NO to ACh-mediated relaxation. This increased role of NO was apparent only when EDHF component was blocked by inhibiting SK(Ca) and IK(Ca) channels. Such may suggest that in mesenteric arteries, non-EDHF component functions act as a reserve system to provide compensatory vasodilatation if (and when) hyperpolarization that is mediated by SK(Ca) and IK(Ca) channels is reduced.
Collapse
Affiliation(s)
- S Albarwani
- Sultan Qaboos University, College of Medicine and Health Sciences, Muscat, Oman.
| | | | | | | | | | | | | |
Collapse
|
7
|
Rong Y, Al-Harbi A, Kriegel B, Parkin G. Structural Characterization of 2-Imidazolones: Comparison with their Heavier Chalcogen Counterparts. Inorg Chem 2013; 52:7172-82. [DOI: 10.1021/ic400788g] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yi Rong
- Department of Chemistry, Columbia University, New York, New York 10027, United
States
| | - Ahmed Al-Harbi
- Department of Chemistry, Columbia University, New York, New York 10027, United
States
| | - Benjamin Kriegel
- Department of Chemistry, Columbia University, New York, New York 10027, United
States
| | - Gerard Parkin
- Department of Chemistry, Columbia University, New York, New York 10027, United
States
| |
Collapse
|
8
|
Itoh T, Maekawa T, Shibayama Y. Characteristics of ACh-induced hyperpolarization and relaxation in rabbit jugular vein. Br J Pharmacol 2013; 167:682-96. [PMID: 22595036 DOI: 10.1111/j.1476-5381.2012.02038.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE The roles played by endothelium-derived NO and prostacyclin and by endothelial cell hyperpolarization in ACh-induced relaxation have been well characterized in arteries. However, the mechanisms underlying ACh-induced relaxation in veins remain to be fully clarified. EXPERIMENTAL APPROACH ACh-induced smooth muscle cell (SMC) hyperpolarization and relaxation were measured in endothelium-intact and -denuded preparations of rabbit jugular vein. KEY RESULTS In endothelium-intact preparations, ACh (≤ 10⁻⁸ M) marginally increased the intracellular concentration of Ca²⁺ ([Ca²⁺](i)) in endothelial cells but did not alter the SMC membrane potential. However, ACh (10⁻¹⁰ -10⁻⁸ M) induced a concentration-dependent relaxation during the contraction induced by PGF(2α) and this relaxation was blocked by the NO synthase inhibitor N(ω) -nitro-l-arginine. ACh (10⁻⁸ -10⁻⁶ M) concentration-dependently increased endothelial [Ca²⁺](i) and induced SMC hyperpolarization and relaxation. These SMC responses were blocked in the combined presence of apamin [blocker of small-conductance Ca²⁺-activated K⁺ (SK(Ca) , K(Ca) 2.3) channel], TRAM 34 [blocker of intermediate-conductance Ca²⁺ -activated K⁺ (IK(Ca) , K(Ca) 3.1) channel] and margatoxin [blocker of subfamily of voltage-gated K⁺ (K(V) ) channel, K(V) 1]. CONCLUSIONS AND IMPLICATIONS In rabbit jugular vein, NO plays a primary role in endothelium-dependent relaxation at very low concentrations of ACh (10⁻¹⁰ -10⁻⁸ M). At higher concentrations, ACh (10⁻⁸ -3 × 10⁻⁶ M) induces SMC hyperpolarization through activation of endothelial IK(Ca) , K(V) 1 and (possibly) SK(Ca) channels and produces relaxation. These results imply that ACh regulates rabbit jugular vein tonus through activation of two endothelium-dependent regulatory mechanisms.
Collapse
Affiliation(s)
- Takeo Itoh
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Japan.
| | | | | |
Collapse
|
9
|
Bondarenko A, Panasiuk O, Stepanenko L, Goswami N, Sagach V. Reduced hyperpolarization of endothelial cells following high dietary Na+: effects of enalapril and tempol. Clin Exp Pharmacol Physiol 2012; 39:608-13. [PMID: 22540516 DOI: 10.1111/j.1440-1681.2012.05718.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
1. High dietary Na(+) is associated with impaired vascular endothelial function. However, the underlying mechanisms are not completely understood. In the present study, we investigated whether the endothelial hyperpolarization response to acetylcholine (ACh) exhibited any abnormalities in Wistar rats fed a high-salt diet (HSD) for 1 month and, if so, whether chronic treatment with the angiotensin-converting enzyme inhibitor enalapril or the anti-oxidant tempol could normalize the response. Membrane potential was recorded using the perforated patch-clamp technique on the endothelium of rat aorta. 2. Acetylcholine (2 μmol/L) produced a hyperpolarization sensitive to TRAM-34, a blocker of intermediate-conductance Ca(2+) -sensitive K(+) channels (IK(Ca)), but not to apamin, a blocker of small-conductance Ca(2+)-sensitive K(+) channels (SK(Ca)). NS309 (3 μmol/L), an activator of SK(Ca) and IK(Ca) channels, produced a hyperpolarization of similar magnitude as ACh. 3. In the HSD group, the ACh-evoked hyperpolarization was significantly attenuated compared with that in the control group, which was fed normal chow rather than an HSD. Similarly, the hyperpolarization produced by NS309 was weaker in tissues from HSD-fed rats. 4. Combination of HSD with chronic enalapril treatment (20 mg/kg per day for 1 month) normalized endothelial hyperpolarizing responses to ACh. Chronic tempol treatment (1 mmol/L in tap water for 1 month) prevented the reduced hyperpolarization to ACh. 5. The results of the present study indicate that excess in dietary Na(+) results in a failure of endothelial cells to generate normal IK(Ca) channel-mediated hyperpolarizing responses. Our observations implicate oxidative stress mediated by increased angiotensin II signalling as a mechanism underlying altered endothelial hyperpolarization during dietary salt loading.
Collapse
Affiliation(s)
- Alexander Bondarenko
- Circulatory Physiology Department, AA Bogomoletz Institute of Physiology, Kiev, Ukraine.
| | | | | | | | | |
Collapse
|
10
|
Rudyk O, Prysyazhna O, Burgoyne JR, Eaton P. Nitroglycerin fails to lower blood pressure in redox-dead Cys42Ser PKG1α knock-in mouse. Circulation 2012; 126:287-95. [PMID: 22685118 PMCID: PMC3617728 DOI: 10.1161/circulationaha.112.101287] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 06/01/2012] [Indexed: 01/08/2023]
Abstract
BACKGROUND Although nitroglycerin has remained in clinical use since 1879, the mechanism by which it relaxes blood vessels to lower blood pressure remains incompletely understood. Nitroglycerin undergoes metabolism that generates several reaction products, including oxidants, and this bioactivation process is essential for vasodilation. Protein kinase G (PKG) mediates classic nitric oxide-dependent vasorelaxation, but the 1α isoform is also independently activated by oxidation that involves interprotein disulfide formation within this homodimeric protein complex. We hypothesized that nitroglycerin-induced vasodilation is mediated by disulfide activation of PKG1α. METHODS AND RESULTS Treating smooth muscle cells or isolated blood vessels with nitroglycerin caused PKG1α disulfide dimerization. PKG1α disulfide formation was increased in wild-type mouse aortas by in vivo nitroglycerin treatment, but this oxidation was lost as tolerance developed. To establish whether kinase oxidation underlies nitroglycerin-induced vasodilation in vivo, we used a Cys42Ser PKG1α knock-in mouse that cannot transduce oxidant signals because it does not contain the vital redox-sensing thiol. This redox-dead knock-in mouse was substantively deficient in hypotensive response to nitroglycerin compared with wild-type littermates as measured in vivo by radiotelemetry. Resistance blood vessels from knock-ins were markedly less sensitive to nitroglycerin-induced vasodilation (EC(50)=39.2 ± 10.7 μmol/L) than wild-types (EC(50)=12.1 ± 2.9 μmol/L). Furthermore, after ≈24 hours of treatment, wild-type controls stopped vasodilating to nitroglycerin, and the vascular sensitivity to nitroglycerin was decreased, whereas this tolerance phenomenon, which routinely hampers the management of hypertensive patients, was absent in knock-ins. CONCLUSIONS PKG1α disulfide formation is a significant mediator of nitroglycerin-induced vasodilation, and tolerance to nitroglycerin is associated with loss of kinase oxidation.
Collapse
Affiliation(s)
- Olena Rudyk
- Cardiovascular Division, King's College London, The British Heart Foundation Centre of Excellence, The Rayne Institute, St. Thomas' Hospital, United Kingdom
| | | | | | | |
Collapse
|
11
|
Dull RO, Cluff M, Kingston J, Hill D, Chen H, Hoehne S, Malleske DT, Kaur R. Lung heparan sulfates modulate K(fc) during increased vascular pressure: evidence for glycocalyx-mediated mechanotransduction. Am J Physiol Lung Cell Mol Physiol 2011; 302:L816-28. [PMID: 22160307 DOI: 10.1152/ajplung.00080.2011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lung endothelial cells respond to changes in vascular pressure through mechanotransduction pathways that alter barrier function via non-Starling mechanism(s). Components of the endothelial glycocalyx have been shown to participate in mechanotransduction in vitro and in systemic vessels, but the glycocalyx's role in mechanosensing and pulmonary barrier function has not been characterized. Mechanotransduction pathways may represent novel targets for therapeutic intervention during states of elevated pulmonary pressure such as acute heart failure, fluid overload, and mechanical ventilation. Our objective was to assess the effects of increasing vascular pressure on whole lung filtration coefficient (K(fc)) and characterize the role of endothelial heparan sulfates in mediating mechanotransduction and associated increases in K(fc). Isolated perfused rat lung preparation was used to measure K(fc) in response to changes in vascular pressure in combination with superimposed changes in airway pressure. The roles of heparan sulfates, nitric oxide, and reactive oxygen species were investigated. Increases in capillary pressure altered K(fc) in a nonlinear relationship, suggesting non-Starling mechanism(s). nitro-l-arginine methyl ester and heparanase III attenuated the effects of increased capillary pressure on K(fc), demonstrating active mechanotransduction leading to barrier dysfunction. The nitric oxide (NO) donor S-nitrosoglutathione exacerbated pressure-mediated increase in K(fc). Ventilation strategies altered lung NO concentration and the K(fc) response to increases in vascular pressure. This is the first study to demonstrate a role for the glycocalyx in whole lung mechanotransduction and has important implications in understanding the regulation of vascular permeability in the context of vascular pressure, fluid status, and ventilation strategies.
Collapse
Affiliation(s)
- Randal O Dull
- Department of Anesthesiology, Lung Vascular Biology Laboratory, University of Utah School of Medicine, Salt Lake City, UT 84132-2304, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Chadha PS, Liu L, Rikard-Bell M, Senadheera S, Howitt L, Bertrand RL, Grayson TH, Murphy TV, Sandow SL. Endothelium-dependent vasodilation in human mesenteric artery is primarily mediated by myoendothelial gap junctions intermediate conductance calcium-activated K+ channel and nitric oxide. J Pharmacol Exp Ther 2011; 336:701-8. [PMID: 21172909 DOI: 10.1124/jpet.110.165795] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Myoendothelial microdomain signaling via localized calcium-activated potassium channel (K(Ca)) and gap junction connexins (Cx) is critical for endothelium-dependent vasodilation in rat mesenteric artery. The present study determines the relative contribution of NO and gap junction-K(Ca) mediated microdomain signaling to endothelium-dependent vasodilation in human mesenteric artery. The hypothesis tested was that such activity is due to NO and localized K(Ca) and Cx activity. In mesenteric arteries from intestinal surgery patients, endothelium-dependent vasodilation was characterized using pressure myography with pharmacological intervention. Vessel morphology was examined using immunohistochemical and ultrastructural techniques. In vessel segments at 80 mm Hg, the intermediate (I)K(Ca) blocker 1-[(2-chlorophenyl)diphenyl-methyl]-1H-pyrazole (TRAM-34; 1 μM) inhibited bradykinin (0.1 nM-3 μM)-induced vasodilation, whereas the small (S) K(Ca) blocker apamin (50 and 100 nM) had no effect. Direct IK(Ca) activation with 1-ethyl-2-benzimidazolinone (1-EBIO; 10-300 μM) induced vasodilation, whereas cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-pyrimidin-4-yl]-amine (1-30 μM), the SK(Ca) activator, failed to dilate arteries, whereas dilation induced by 1-EBIO (10-100 μM) was blocked by TRAM-34. Bradykinin-mediated vasodilation was attenuated by putative gap junction block with carbenoxolone (100 μM), with remaining dilation blocked by N-nitro l-arginine methyl ester (100 μM) and [1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one] (10 μM), NO synthase and soluble guanylate cyclase blockers, respectively. In human mesenteric artery, myoendothelial gap junction and IK(Ca) activity are consistent with Cx37 and IK(Ca) microdomain expression and distribution. Data suggest that endothelium-dependent vasodilation is primarily mediated by NO, IK(Ca), and gap junction Cx37 in this vessel. Myoendothelial microdomain signaling sites are present in human mesenteric artery and are likely to contribute to endothelium-dependent vasodilation via a mechanism that is conserved between species.
Collapse
Affiliation(s)
- Preet S Chadha
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Haddock RE, Grayson TH, Morris MJ, Howitt L, Chadha PS, Sandow SL. Diet-induced obesity impairs endothelium-derived hyperpolarization via altered potassium channel signaling mechanisms. PLoS One 2011; 6:e16423. [PMID: 21283658 PMCID: PMC3025034 DOI: 10.1371/journal.pone.0016423] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 12/15/2010] [Indexed: 11/20/2022] Open
Abstract
Background The vascular endothelium plays a critical role in the control of blood flow. Altered endothelium-mediated vasodilator and vasoconstrictor mechanisms underlie key aspects of cardiovascular disease, including those in obesity. Whilst the mechanism of nitric oxide (NO)-mediated vasodilation has been extensively studied in obesity, little is known about the impact of obesity on vasodilation to the endothelium-derived hyperpolarization (EDH) mechanism; which predominates in smaller resistance vessels and is characterized in this study. Methodology/Principal Findings Membrane potential, vessel diameter and luminal pressure were recorded in 4th order mesenteric arteries with pressure-induced myogenic tone, in control and diet-induced obese rats. Obesity, reflecting that of human dietary etiology, was induced with a cafeteria-style diet (∼30 kJ, fat) over 16–20 weeks. Age and sexed matched controls received standard chow (∼12 kJ, fat). Channel protein distribution, expression and vessel morphology were determined using immunohistochemistry, Western blotting and ultrastructural techniques. In control and obese rat vessels, acetylcholine-mediated EDH was abolished by small and intermediate conductance calcium-activated potassium channel (SKCa/IKCa) inhibition; with such activity being impaired in obesity. SKCa-IKCa activation with cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-pyrimidin-4-yl]-amine (CyPPA) and 1-ethyl-2-benzimidazolinone (1-EBIO), respectively, hyperpolarized and relaxed vessels from control and obese rats. IKCa-mediated EDH contribution was increased in obesity, and associated with altered IKCa distribution and elevated expression. In contrast, the SKCa-dependent-EDH component was reduced in obesity. Inward-rectifying potassium channel (Kir) and Na+/K+-ATPase inhibition by barium/ouabain, respectively, attenuated and abolished EDH in arteries from control and obese rats, respectively; reflecting differential Kir expression and distribution. Although changes in medial properties occurred, obesity had no effect on myoendothelial gap junction density. Conclusion/Significance In obese rats, vasodilation to EDH is impaired due to changes in the underlying potassium channel signaling mechanisms. Whilst myoendothelial gap junction density is unchanged in arteries of obese compared to control, increased IKCa and Na+/K+-ATPase, and decreased Kir underlie changes in the EDH mechanism.
Collapse
Affiliation(s)
- Rebecca E. Haddock
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Department of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
- * E-mail: (REH); (SLS)
| | - T. Hilton Grayson
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Margaret J. Morris
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Lauren Howitt
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Preet S. Chadha
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Shaun L. Sandow
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- * E-mail: (REH); (SLS)
| |
Collapse
|
14
|
Chadha PS, Haddock RE, Howitt L, Morris MJ, Murphy TV, Grayson TH, Sandow SL. Obesity up-regulates intermediate conductance calcium-activated potassium channels and myoendothelial gap junctions to maintain endothelial vasodilator function. J Pharmacol Exp Ther 2010; 335:284-93. [PMID: 20671071 DOI: 10.1124/jpet.110.167593] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
The mechanisms involved in altered endothelial function in obesity-related cardiovascular disease are poorly understood. This study investigates the effect of chronic obesity on endothelium-dependent vasodilation and the relative contribution of nitric oxide (NO), calcium-activated potassium channels (K(Ca)), and myoendothelial gap junctions (MEGJs) in the rat saphenous artery. Obesity was induced by feeding rats a cafeteria-style diet (∼30 kJ as fat) for 16 to 20 weeks, with this model reflecting human dietary obesity etiology. Age- and sex-matched controls received standard chow (∼12 kJ as fat). Endothelium-dependent vasodilation was characterized in saphenous arteries by using pressure myography with pharmacological intervention, Western blotting, immunohistochemistry, and ultrastructural techniques. In saphenous artery from control, acetylcholine (ACh)-mediated endothelium-dependent vasodilation was blocked by NO synthase and soluble guanylate cyclase inhibition, whereas in obese rats, the ACh response was less sensitive to such inhibition. Conversely, the intermediate conductance K(Ca) (IK(Ca)) blocker 1-[(2-chlorophenyl)diphenyl-methyl]-1H pyrazole attenuates ACh-mediated dilation in obese, but not control, vessels. In a similar manner, putative gap junction block with carbenoxolone increased the pEC(50) for ACh in arteries from obese, but not control, rats. IK1 protein and MEGJ expression was up-regulated in the arteries of obese rats, an observation absent in control. Addition of the small conductance K(Ca) blocker apamin had no effect on ACh-mediated dilation in either control or obese rat vessels, consistent with unaltered SK3 expression. Up-regulation of distinct IK(Ca)- and gap junction-mediated pathways at myoendothelial microdomain sites, key mechanisms for endothelial-derived hyperpolarization-type activity, maintains endothelium-dependent vasodilation in diet-induced obese rat saphenous artery. Plasticity of myoendothelial coupling mechanisms represents a significant potential target for therapeutic intervention.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Disease Models, Animal
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiology
- Endothelium, Vascular/ultrastructure
- Gap Junctions/metabolism
- Gap Junctions/physiology
- Gap Junctions/ultrastructure
- Immunohistochemistry
- Intermediate-Conductance Calcium-Activated Potassium Channels/agonists
- Intermediate-Conductance Calcium-Activated Potassium Channels/biosynthesis
- Male
- Microscopy, Electron
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Muscle, Smooth, Vascular/ultrastructure
- Myography
- Obesity/metabolism
- Obesity/physiopathology
- Rats
- Rats, Sprague-Dawley
- Up-Regulation
- Vasoconstrictor Agents/pharmacology
- Vasodilation/drug effects
- Vasodilation/physiology
Collapse
Affiliation(s)
- Preet S Chadha
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Despite the apparent consensus on the existence of endothelial dysfunction in conduit and resistance arteries of spontaneously hypertensive rats (SHR), a commonly employed experimental model of hypertension, there are a number of reports showing that endothelium-dependent vasodilatory responses are similar, or even increased, in SHR compared with their normotensive counterparts. The present paper aims to discuss the rationale for these apparent discrepancies, including the effect of age, type of artery and methodological aspects. Data from the literature indicate that the age of the animal is a contributing factor and that endothelial dysfunction is likely to be a consequence of hypertension. In addition, the use of antioxidant additives, such as ascorbic acid or ethylene diaminetetraacetic acid, and differences in the level of initial arterial stretch, might also be of importance because they may modify the oxidative status of the artery and the levels of vasoactive factors released by the endothelium.
Collapse
|
16
|
Kajikuri J, Watanabe Y, Ito Y, Ito R, Yamamoto T, Itoh T. Characteristic changes in coronary artery at the early hyperglycaemic stage in a rat type 2 diabetes model and the effects of pravastatin. Br J Pharmacol 2009; 158:621-32. [PMID: 19645710 DOI: 10.1111/j.1476-5381.2009.00348.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Diabetes is a risk factor for the development of coronary artery disease but it is not known whether the functions of endothelium-derived nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF) in coronary arteries are altered in the early stage of diabetes. Such alterations and the effects of pravastatin were examined in left anterior descending coronary arteries (LAD) from Otsuka Long-Evans Tokushima Fatty (OLETF) rats (type 2 diabetes model) at the early hyperglycaemic stage [vs. non-diabetic Long-Evans Tokushima Otsuka (LETO) rats]. EXPERIMENTAL APPROACH Isometric tension, membrane potential and superoxide production were measured, as were protein expression of NAD(P)H oxidase components and endothelial NO synthase (eNOS). KEY RESULTS Superoxide production and the protein expressions of both the nicotinamide adenine dinucleotide (phosphate) [NAD(P)H] oxidase components and eNOS were increased in OLETF rats. These changes were normalized by pravastatin administration. Not only acetylcholine (ACh)-induced endothelial NO production but also functions of endothelium-derived NO [from (i) the absolute tension induced by epithio-thromboxane A(2) (STA(2)) or high K(+); (ii) enhancement of the STA(2)-contraction by a nitric oxide synthase (NOS) inhibitor; and (iii) the ACh-induced endothelium-dependent relaxation of high K(+)-induced contraction] or EDHF [from (iv) ACh-induced endothelium-dependent smooth muscle cell hyperpolarization and relaxation in the presence of a NOS inhibitor] were similar between LETO and OLETF rats [whether or not the latter were pravastatin-treated or -untreated]. CONCLUSIONS AND IMPLICATIONS Under conditions of increased vascular superoxide production, endothelial function is retained in LAD in OLETF rats at the early hyperglycaemic stage, partly due to enhanced endothelial NOS protein expression. Inhibition of superoxide production may contribute to the beneficial vascular effects of pravastatin.
Collapse
Affiliation(s)
- J Kajikuri
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Effects of chronic in vivo administration of nitroglycerine on ACh-induced endothelium-dependent relaxation in rabbit cerebral arteries. Br J Pharmacol 2007; 153:132-9. [PMID: 17965730 DOI: 10.1038/sj.bjp.0707562] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE In the setting of nitrate tolerance, endothelium-dependent relaxation is reduced in several types of peripheral vessels. However, it is unknown whether chronic in vivo administration of nitroglycerine modulates such relaxation in cerebral arteries. EXPERIMENTAL APPROACH Isometric force and smooth muscle cell membrane potential were measured in endothelium-intact strips from rabbit middle cerebral artery (MCA) and posterior cerebral artery (PCA). KEY RESULTS ACh (0.1-10 microM) concentration-dependently induced endothelium-dependent relaxation during the contraction induced by histamine in both MCA and PCA. Chronic (10 days) in vivo administration of nitroglycerine reduced the ACh-induced relaxation in PCA but not in MCA, in the presence of the cyclooxygenase inhibitor diclofenac (3 microM). In the presence of the NO-synthase inhibitor N (omega)-nitro-L-arginine (L-NNA, 0.1 mM) plus diclofenac, in MCA from both nitroglycerine-untreated control and -treated rabbits, ACh (0.1-10 microM) induced a smooth muscle cell hyperpolarization and relaxation, and these were blocked by the small-conductance Ca(2+)-activated K(+)-channel inhibitor apamin (0.1 microM), but not by the large- and intermediate-conductance Ca(2+)-activated K(+)-channel inhibitor charybdotoxin (0.1 microM). In contrast, in PCA, ACh (<3 microM) induced neither hyperpolarization nor relaxation under these conditions, suggesting that the endothelium-derived relaxing factor is NO in PCA, whereas endothelium-derived hyperpolarizing factor (EDHF) plays a significant role in MCA. CONCLUSIONS AND IMPLICATIONS It is suggested that in rabbit cerebral arteries, the function of the endothelium-derived relaxing factor NO and that of EDHF may be modulated differently by chronic in vivo administration of nitroglycerine.
Collapse
|
18
|
Ceroni L, Ellis A, Wiehler WB, Jiang YF, Ding H, Triggle CR. Calcium-activated potassium channel and connexin expression in small mesenteric arteries from eNOS-deficient (eNOS-/-) and eNOS-expressing (eNOS+/+) mice. Eur J Pharmacol 2007; 560:193-200. [PMID: 17300779 DOI: 10.1016/j.ejphar.2007.01.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2006] [Revised: 12/14/2006] [Accepted: 01/08/2007] [Indexed: 11/20/2022]
Abstract
Endothelium-derived hyperpolarizing factor (EDHF), notably in the microcirculation, plays an important role in the regulation of vascular tone. The cellular events that mediate EDHF are critically dependent, in a vessel dependent manner, on small conductance calcium-activated potassium channels (SK) and intermediate conductance calcium-activated potassium channels (IK) as well as the presence of the gap junction connexins 37, 40, and 43. We hypothesized that the expression levels of SK, IK, as well as vascular connexins, notably 37, 40 and 43 but, potentially, connexin 45, would show correlation with the contribution of EDHF to acetylcholine-mediated vasodilatation as well as, in the absence of endothelial-derived NO, higher expression levels in eNOS(-/-) mice. Wire myograph studies were performed to confirm the contribution of EDHF to endothelium-dependent relaxation in 1st, 2nd and 3rd order small mesenteric arteries from C57BL/6J eNOS-expressing (eNOS(+/+)) and eNOS-deficient C57BL/6J (eNOS(-/-)) mice. Small mesenteric arteries, as well as the branch points between 1st and 2nd and 2nd and 3rd order vessels, were analysed for the expression of mRNA for SK1, SK2, SK3, IK and large conductance calcium-activated potassium channels (BK) and comparable studies were performed for connexins 37, 40, 43 and 45. Although the contribution of EDHF to endothelium-dependent relaxation was significantly greater in the 3rd order vessels from the eNOS(+/+) the real-time (RT) polymerase chain reaction (PCR) data showed no differences for the expression levels of mRNA for any of the channel subtypes or the connexins within the small mesenteric arteries from either the eNOS(+/+) or eNOS(-/-) mice, nor, based on RT PCR analysis, were there differences in expression of the potassium channels studied in the branch points versus 1st, 2nd or 3rd order vessels. These data suggest that neither the gene expression of calcium-activated potassium channels nor vascular connexins are modulated by NO; however, their functional contribution to endothelium-dependent relaxation may be modulated by other physiological parameters.
Collapse
Affiliation(s)
- Lisa Ceroni
- Smooth Muscle Research Group, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | | | | | | | | | | |
Collapse
|
19
|
von der Weid PY, Coleman HA. Reduced vascular reactivity after chronic nitroglycerine administration: EDHF mechanism is also downregulated. Br J Pharmacol 2006; 146:479-80. [PMID: 16056231 PMCID: PMC1751182 DOI: 10.1038/sj.bjp.0706364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Pierre-Yves von der Weid
- Mucosal Inflammation and Smooth Muscle Research Groups, Department of Physiology & Biophysics, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | | |
Collapse
|
20
|
Félétou M, Vanhoutte PM. Endothelial dysfunction: a multifaceted disorder (The Wiggers Award Lecture). Am J Physiol Heart Circ Physiol 2006; 291:H985-1002. [PMID: 16632549 DOI: 10.1152/ajpheart.00292.2006] [Citation(s) in RCA: 547] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endothelial cells synthesize and release various factors that regulate angiogenesis, inflammatory responses, hemostasis, as well as vascular tone and permeability. Endothelial dysfunction has been associated with a number of pathophysiological processes. Oxidative stress appears to be a common denominator underlying endothelial dysfunction in cardiovascular diseases. However, depending on the pathology, the vascular bed studied, the stimulant, and additional factors such as age, sex, salt intake, cholesterolemia, glycemia, and hyperhomocysteinemia, the mechanisms underlying the endothelial dysfunction can be markedly different. A reduced bioavailability of nitric oxide (NO), an alteration in the production of prostanoids, including prostacyclin, thromboxane A2, and/or isoprostanes, an impairment of endothelium-dependent hyperpolarization, as well as an increased release of endothelin-1, can individually or in association contribute to endothelial dysfunction. Therapeutic interventions do not necessarily restore a proper endothelial function and, when they do, may improve only part of these variables.
Collapse
Affiliation(s)
- Michel Félétou
- Department of Angiology, Institut de Recherches Servier, Suresnes, France
| | | |
Collapse
|