1
|
Chen B, Wang T, Gao J, Chen Y, Chang H, Shu Y, Zhang Y, Li J, Weng W. Acupuncture relieves postoperative pain of mixed hemorrhoids through the P2X7/ERK axis in dorsal root ganglion. Physiol Behav 2025; 291:114806. [PMID: 39814121 DOI: 10.1016/j.physbeh.2025.114806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/15/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025]
Abstract
Haemorrhoids are a common anorectal disease primarily treated through surgery, often leading to complications such as pain. The efficacy of acupuncture in relieving postoperative pain in mixed haemorrhoids has not been well-documented. This study included 90 patients undergoing haemorrhoid surgery and their Visual Analogue Score (VAS), inflammatory factor levels, Hamilton Depression Rating Scale (HAMD), and analgesic drug use were accessed. A rat incisional pain model was also constructed to monitor behavioral responses, with assessments including Sucrose Preference Test (SPT) and Open Field Test (OFT). The levels of ATP and proinflammatory cytokines in the dorsal root ganglion (DRG) were measured using luciferase assay and ELISA. We also examined P2×7 and ERK1/2 levels in DRG tissues of anal incisional pain rat model. In a Chronic Constriction Injury (CCI) rat model treated with BzATP, a potent agonist for P2×7 receptors, followed by acupuncture for 15 days, postoperative pain and behavioral responses were observed and assessed, alongside mechanistic studies of ATP and inflammatory factors in DRG tissues. Patients receiving acupuncture had significantly lower VAS scores, reduced levels of inflammatory factors, improved depression scores, and decreased analgesic drug use. In the animal model, acupuncture increased pain thresholds, improved behavioral responses, reduced ATP content and inflammatory factors, and modulated the P2×7/ERK axis. In the CCI model, BzATP increased P2×7 and ERK1/2 levels, pain sensitivity, and anxiety, which were mitigated by acupuncture. Our data suggest that acupuncture significantly alleviates postoperative pain following haemorrhoid surgery and modulates the pain response through the P2×7/ERK axis.
Collapse
Affiliation(s)
- Bin Chen
- Department of Anorectal Surgery, Nantong First People's Hospital, Nantong, Jiangsu, 226001, China
| | - Tian Wang
- Department of Anesthesiology, Nantong First People's Hospital, Nantong, Jiangsu, 226001, China
| | - Jie Gao
- Department of Acupuncture, Nantong First People's Hospital, Nantong, Jiangsu, 226001, China
| | - Yan Chen
- Department of Anorectal Surgery, Nantong First People's Hospital, Nantong, Jiangsu, 226001, China
| | - Haijing Chang
- Department of Anorectal Surgery, Nantong First People's Hospital, Nantong, Jiangsu, 226001, China
| | - Yi Shu
- Department of Anorectal Surgery, Nantong First People's Hospital, Nantong, Jiangsu, 226001, China
| | - Yaling Zhang
- Department of Acupuncture, Nantong First People's Hospital, Nantong, Jiangsu, 226001, China
| | - Jiahuan Li
- Department of Acupuncture, Nantong First People's Hospital, Nantong, Jiangsu, 226001, China
| | - Weiqun Weng
- Department of Nursing, Nantong First People's Hospital, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
2
|
Savio LEB, Leite-Aguiar R, Alves VS, Coutinho-Silva R, Wyse ATS. Purinergic signaling in the modulation of redox biology. Redox Biol 2021; 47:102137. [PMID: 34563872 PMCID: PMC8479832 DOI: 10.1016/j.redox.2021.102137] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 01/07/2023] Open
Abstract
Purinergic signaling is a cell communication pathway mediated by extracellular nucleotides and nucleosides. Tri- and diphosphonucleotides are released in physiological and pathological circumstances activating purinergic type 2 receptors (P2 receptors): P2X ion channels and P2Y G protein-coupled receptors. The activation of these receptors triggers the production of reactive oxygen and nitrogen species and alters antioxidant defenses, modulating the redox biology of cells. The activation of P2 receptors is controlled by ecto-enzymes named ectonucleotidases, E-NTPDase1/CD39 and ecto-5'-nucleotidase/CD73) being the most relevant. The first enzyme hydrolyzes adenosine triphosphate (ATP) and adenosine diphosphate (ADP) into adenosine monophosphate (AMP), and the second catalyzes the hydrolysis of AMP to adenosine. The activity of these enzymes is diminished by oxidative stress. Adenosine actives P1 G-coupled receptors that, in general, promote the maintenance of redox hemostasis by decreasing reactive oxygen species (ROS) production and increase antioxidant enzymes. Intracellular purine metabolism can also contribute to ROS generation via xanthine oxidase activity, which converts hypoxanthine into xanthine, and finally, uric acid. In this review, we describe the mechanisms of redox biology modulated by purinergic signaling and how this signaling may be affected by disturbances in the redox homeostasis of cells.
Collapse
Affiliation(s)
- Luiz Eduardo Baggio Savio
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Raíssa Leite-Aguiar
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vinícius Santos Alves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson Coutinho-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Angela T S Wyse
- Laboratório de Neuroproteção e Doenças Metabólicas, Departamento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
3
|
Tramentozzi E, Finotti P. Effects of purine-scaffold inhibitors on HUVECs: Involvement of the purinergic pathway and interference with ATP. Implications for preventing the adverse effects of extracellular Grp94. Biochem Biophys Rep 2019; 19:100661. [PMID: 31317075 PMCID: PMC6611975 DOI: 10.1016/j.bbrep.2019.100661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 06/13/2019] [Accepted: 06/22/2019] [Indexed: 12/30/2022] Open
Abstract
Background Extracellular Glucose-regulated protein94 (Grp94) is linked to pathological conditions disrupting the obligatory intracellular location of this Heat Shock Protein (HSP). In plasma, Grp94 is linked to IgG in complexes that drive adverse effects on vascular cells and are biomarker of gastro-intestinal cancer. By blocking ATP site in different HSPs, purine-scaffold inhibitors are used as promising anti-cancer compounds, but their effects on vasculature are not known. Methods We tested the capacity of two purine-scaffold inhibitors, PU-H71 and PU-WS13, to prevent the binding of Grp94 to IgG and to antagonize the effects of Grp94 and native Grp94-IgG complexes on HUVECs in different experimental conditions. Results PU-H71 and PU-WS13 blocked Grp94 and the formation of Grp94-IgG complexes in absence of cells. Instead, in presence of HUVECs rather than Grp94 PU-inhibitors targeted cells causing stimulation of Akt and VEGF pathways and displaying angiogenic-like effects similar to, although less intense than that provoked by Grp94 and Grp94-IgG complexes. Unlike Grp94 and Grp94-IgG complexes, PU-inhibitors also activated the purinergic pathway and increased the expression of the ATP receptor P2X7. Effects of PU-inhibitors on HUVECs were reversed by ATP and in presence of ATP PU-inhibitors were again able to block Grp94. Conclusions PU-inhibitors can display direct effects on endothelial cells by targeting the ATP receptor P2X7. In absence of ATP, PU-inhibitors preferentially bind to cells rather than Grp94. ATP antagonizes the PU-inhibitor binding to cells thus restoring the capacity to block Grp94 and Grp94-IgG complex formation. Results have implications for enhancing the therapeutic efficacy of PU-inhibitors against circulating pathogenic Grp94. Extracellular Grp94 forms pathogenic complexes with IgG. PU-inhibitors block the Grp94-IgG complex formation in absence of cells. PU-inhibitors target cells and activate the purinergic pathway. Effects of PU-inhibitors on cells are reversed by ATP. ATP restores the capacity of PU-inhibitors to block the Grp94-IgG complex formation.
Collapse
Affiliation(s)
- Elisa Tramentozzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo E.Meneghetti, 2, 35131, Padua, Italy
| | - Paola Finotti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo E.Meneghetti, 2, 35131, Padua, Italy
| |
Collapse
|
4
|
ATP/P2X7 receptor signaling as a potential anti-inflammatory target of natural polyphenols. PLoS One 2018; 13:e0204229. [PMID: 30248132 PMCID: PMC6152980 DOI: 10.1371/journal.pone.0204229] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 09/05/2018] [Indexed: 12/13/2022] Open
Abstract
Innate immune cells, such as macrophages, respond to pathogen-associated molecular patterns, such as a lipopolysaccharide (LPS), to secrete various inflammatory mediators. Recent studies have suggested that damage-associated molecular patterns (DAMPs), released extracellularly from damaged or immune cells, also play a role in the activation of inflammatory responses. In this study, to prevent excess inflammation, we focused on DAMPs-mediated signaling that promotes LPS-stimulated inflammatory responses, especially adenosine 5’-triphosphate (ATP)-triggered signaling through the ionotropic purinergic receptor 7 (P2X7R), as a potential new anti-inflammatory target of natural polyphenols. We focused on the phenomenon that ATP accelerates the production of inflammatory mediators, such as nitric oxide, in LPS-stimulated J774.1 mouse macrophages. Using an siRNA-mediated knockdown and specific antagonist, it was found that the ATP-induced enhanced inflammatory responses were mediated through P2X7R. We then screened 42 polyphenols for inhibiting the ATP/P2X7R-induced calcium influx, and found that several polyphenols exhibited significant inhibitory effects. Especially, a flavonoid baicalein significantly inhibited ATP-induced inflammation, including interleukin-1β secretion, through inhibition of the ATP/P2X7R signaling. These findings suggest that ATP/P2X7R signaling plays an important role in excess inflammatory responses and could be a potential anti-inflammatory target of natural polyphenolic compounds.
Collapse
|
5
|
Pimenta-dos-Reis G, Torres EJL, Quintana PG, Vidal LO, dos Santos BAF, Lin CS, Heise N, Persechini PM, Schachter J. POM-1 inhibits P2 receptors and exhibits anti-inflammatory effects in macrophages. Purinergic Signal 2017; 13:611-627. [PMID: 29022161 PMCID: PMC5714851 DOI: 10.1007/s11302-017-9588-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 10/02/2017] [Indexed: 10/18/2022] Open
Abstract
Extracellular nucleotides can modulate the immunological response by activating purinergic receptors (P2Rs) on the cell surface of macrophages, dendritic, and other immune cells. In particular, the activation of P2X7R can induce release of cytokines and cell death as well as the uptake of large molecules through the cell membrane by a mechanism still poorly understood. Polyoxotungstate-1 (POM-1) has been proposed as a potent inhibitor of ecto-nucleotidases, enzymes that hydrolyze extracellular nucleotides, regulating the activity of P2Rs. However, the potential impact of POM-1 on P2Rs has not been evaluated. Here, we used fluorescent dye uptake, cytoplasmic free Ca2+ concentration measurement, patch-clamp recordings, scanning electron microscopy, and quantification of inflammatory mediators to investigate the effects of POM-1 on P2Rs of murine macrophages. We observed that POM-1 blocks the P2YR-dependent cytoplasmic Ca2+ increase and has partial effects on the cytoplasmic Ca2+, increasing dependence on P2XRs. POM-1 can inhibit the events related with ATP-dependent inflammasome activation, anionic dye uptake, and also the opening of large conductance channels, which are associated with P2X7R-dependent pannexin-1 activation. On the other hand, this compound has no effects on cationic fluorescent dye uptake, apoptosis, and bleb formation, also dependent on P2X7R. Moreover, POM-1 can be considered an anti-inflammatory compound, because it prevents TNF-α and nitric oxide release from LPS-treated macrophages.
Collapse
Affiliation(s)
- Gabriela Pimenta-dos-Reis
- Instituto de Biofísica Carlos Chagas Filho da Universidade Federal de Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eduardo José Lopes Torres
- Laboratório de Helmintologia Romero Lascasas Porto, Departamento de Microbiologia, Imunologia e Parasitologia. Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paula Gabriela Quintana
- Instituto de Biofísica Carlos Chagas Filho da Universidade Federal de Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lincon Onorio Vidal
- Instituto de Biofísica Carlos Chagas Filho da Universidade Federal de Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Chuan-Sheng Lin
- Microbiota Research Center, Chang Gung University, Taoyuan, Taiwan
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Norton Heise
- Instituto de Biofísica Carlos Chagas Filho da Universidade Federal de Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Muanis Persechini
- Instituto de Biofísica Carlos Chagas Filho da Universidade Federal de Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julieta Schachter
- Microbiota Research Center, Chang Gung University, Taoyuan, Taiwan
- Polo Xerem, Universidade Federal de Rio de Janeiro, Estrada de Xerém No. 27, Xerém, Duque de Caxias, Rio de Janeiro, 25245-390 Brazil
| |
Collapse
|
6
|
Blom K, Senkowski W, Jarvius M, Berglund M, Rubin J, Lenhammar L, Parrow V, Andersson C, Loskog A, Fryknäs M, Nygren P, Larsson R. The anticancer effect of mebendazole may be due to M1 monocyte/macrophage activation via ERK1/2 and TLR8-dependent inflammasome activation. Immunopharmacol Immunotoxicol 2017; 39:199-210. [PMID: 28472897 DOI: 10.1080/08923973.2017.1320671] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Mebendazole (MBZ), a drug commonly used for helminitic infections, has recently gained substantial attention as a repositioning candidate for cancer treatment. However, the mechanism of action behind its anticancer activity remains unclear. To address this problem, we took advantage of the curated MBZ-induced gene expression signatures in the LINCS Connectivity Map (CMap) database. The analysis revealed strong negative correlation with MEK/ERK1/2 inhibitors. Moreover, several of the most upregulated genes in response to MBZ exposure were related to monocyte/macrophage activation. The MBZ-induced gene expression signature in the promyeloblastic HL-60 cell line was strongly enriched in genes involved in monocyte/macrophage pro-inflammatory (M1) activation. This was subsequently validated using MBZ-treated THP-1 monocytoid cells that demonstrated gene expression, surface markers and cytokine release characteristic of the M1 phenotype. At high concentrations MBZ substantially induced the release of IL-1β and this was further potentiated by lipopolysaccharide (LPS). At low MBZ concentrations, cotreatment with LPS was required for MBZ-stimulated IL-1β secretion to occur. Furthermore, we show that the activation of protein kinase C, ERK1/2 and NF-kappaB were required for MBZ-induced IL-1β release. MBZ-induced IL-1β release was found to be dependent on NLRP3 inflammasome activation and to involve TLR8 stimulation. Finally, MBZ induced tumor-suppressive effects in a coculture model with differentiated THP-1 macrophages and HT29 colon cancer cells. In summary, we report that MBZ induced a pro-inflammatory (M1) phenotype of monocytoid cells, which may, at least partly, explain MBZ's anticancer activity observed in animal tumor models and in the clinic.
Collapse
Affiliation(s)
- Kristin Blom
- a Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine , Uppsala University , Uppsala , Sweden
| | - Wojciech Senkowski
- a Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine , Uppsala University , Uppsala , Sweden
| | - Malin Jarvius
- a Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine , Uppsala University , Uppsala , Sweden
| | - Malin Berglund
- a Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine , Uppsala University , Uppsala , Sweden
| | - Jenny Rubin
- a Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine , Uppsala University , Uppsala , Sweden
| | - Lena Lenhammar
- a Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine , Uppsala University , Uppsala , Sweden
| | - Vendela Parrow
- a Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine , Uppsala University , Uppsala , Sweden
| | - Claes Andersson
- a Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine , Uppsala University , Uppsala , Sweden
| | - Angelica Loskog
- b Department of Immunology, Genetics and Pathology, Science for Life Laboratory , Uppsala University , Uppsala , Sweden
| | - Mårten Fryknäs
- a Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine , Uppsala University , Uppsala , Sweden
| | - Peter Nygren
- b Department of Immunology, Genetics and Pathology, Science for Life Laboratory , Uppsala University , Uppsala , Sweden
| | - Rolf Larsson
- a Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine , Uppsala University , Uppsala , Sweden
| |
Collapse
|
7
|
Martins JD, Silva A, Ferreira I, Gonçalo M, Custódio JBA, Lopes MC, Domingues MRM, Neves BM, Cruz MT. Adenosine diphosphate involvement in THP-1 maturation triggered by the contact allergen 1-fluoro-2,4-dinitrobenzene. Toxicol Res (Camb) 2016; 5:1512-1521. [PMID: 30090452 PMCID: PMC6060794 DOI: 10.1039/c6tx00240d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/03/2016] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells' (DC) activation is considered a key event in the adverse outcome pathway for skin sensitization elicited by covalent binding of chemicals to proteins. The mechanisms underlying DC activation by contact sensitizers are not completely understood. However, several "danger signals" are pointed as relevant effectors. Among these extra-cellular early danger signals, purines may be crucial for the development of xenoinflammation and several reports indicate their involvement in contact allergic reactions. In the present work we used the DC-surrogate monocytic cell line THP-1, cultured alone or co-cultured with the human keratinocyte cell line HaCaT, to explore the contribution of extracellular adenine nucleotides to THP-1 maturation triggered by the extreme contact sensitizer, 1-fluoro-2,4-dinitrobenzene (DNFB). We found that THP-1 maturation induced by DNFB is impaired after purinergic signaling inhibition, and that the transcription of the purinergic metabotropic receptors P2Y2 and P2Y11 is modulated by the sensitizer. We also detected that THP-1 cells only partially hydrolyse extracellular adenosine triphosphate, leading to accumulation of the mono-phosphate derivative, AMP. We detected different and non-overlapping activation patterns of mitogen activated protein kinases by DNFB and extracellular nucleotides. Overall, our results indicate that THP-1 maturation induced by DNFB is strongly modulated by extracellular adenine nucleotides through metabotropic purinergic receptors. This knowledge unveils a molecular toxicity pathway evoked by sensitizers and involved in THP-1 maturation, a DC-surrogate cell line thoroughly used in in vitro tests for the identification of skin allergens.
Collapse
Affiliation(s)
- J D Martins
- Faculty of Pharmacy University of Coimbra , 3000-548 Coimbra , Portugal . ; ; ; Tel: +351 239 480 209
- CNC - Center for Neuroscience and Cell Biology , University of Coimbra , 3004-517 Coimbra , Portugal
| | - A Silva
- CNC - Center for Neuroscience and Cell Biology , University of Coimbra , 3004-517 Coimbra , Portugal
| | - I Ferreira
- CNC - Center for Neuroscience and Cell Biology , University of Coimbra , 3004-517 Coimbra , Portugal
| | - M Gonçalo
- Department of Dermatology , University Hospital and Faculty of Medicine , University of Coimbra , 3000-075 Coimbra , Portugal
| | - J B A Custódio
- Faculty of Pharmacy University of Coimbra , 3000-548 Coimbra , Portugal . ; ; ; Tel: +351 239 480 209
- CNC - Center for Neuroscience and Cell Biology , University of Coimbra , 3004-517 Coimbra , Portugal
| | - M C Lopes
- Faculty of Pharmacy University of Coimbra , 3000-548 Coimbra , Portugal . ; ; ; Tel: +351 239 480 209
- CNC - Center for Neuroscience and Cell Biology , University of Coimbra , 3004-517 Coimbra , Portugal
| | - M R M Domingues
- Department of Chemistry , Mass Spectrometry Center , QOPNA , University of Aveiro , Campus Universitário de Santiago , 3810-193 Aveiro , Portugal
| | - B M Neves
- Faculty of Pharmacy University of Coimbra , 3000-548 Coimbra , Portugal . ; ; ; Tel: +351 239 480 209
- CNC - Center for Neuroscience and Cell Biology , University of Coimbra , 3004-517 Coimbra , Portugal
- Department of Chemistry , Mass Spectrometry Center , QOPNA , University of Aveiro , Campus Universitário de Santiago , 3810-193 Aveiro , Portugal
| | - M T Cruz
- Faculty of Pharmacy University of Coimbra , 3000-548 Coimbra , Portugal . ; ; ; Tel: +351 239 480 209
- CNC - Center for Neuroscience and Cell Biology , University of Coimbra , 3004-517 Coimbra , Portugal
| |
Collapse
|
8
|
DeSouza-Vieira T, Guimarães-Costa A, Rochael NC, Lira MN, Nascimento MT, Lima-Gomez PDS, Mariante RM, Persechini PM, Saraiva EM. Neutrophil extracellular traps release induced by Leishmania: role of PI3Kγ, ERK, PI3Kσ, PKC, and [Ca2+]. J Leukoc Biol 2016; 100:801-810. [PMID: 27154356 DOI: 10.1189/jlb.4a0615-261rr] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 04/12/2016] [Indexed: 12/19/2022] Open
Abstract
Upon in vitro stimulation, neutrophils undergo a cell death named netosis. This process is characterized by extracellular release of chromatin scaffold associated with granular and cytoplasmic proteins, which together, ensnare and kill microbes. We have previously described that interaction of Leishmania amazonensis with human neutrophils leads to the release of neutrophil extracellular traps, which trap and kill the parasite. However, the signaling leading to Leishmania induced netosis is still unknown. Thus, we sought to evaluate signaling events that drive L. amazonensis induced neutrophil extracellular trap release from human neutrophils. Here, we found that PI3K, independently of protein kinase B, has a role in parasite-induced netosis. We also described that the main isoforms involved are PI3Kγ and PI3Kδ, which work in reactive oxygen species-dependent and -independent ways, respectively. We demonstrated that activation of ERK downstream of PI3Kγ is important to trigger reactive oxygen species-dependent, parasite-induced netosis. Pharmacological inhibition of protein kinase C also significantly decreased parasite-induced neutrophil extracellular trap release. Intracellular calcium, regulated by PI3Kδ, represents an alternative reactive oxygen species-independent pathway of netosis stimulated by L. amazonensis Finally, intracellular calcium mobilization and reactive oxygen species generation are the major regulators of parasite-induced netosis. Our results contribute to a better understanding of the signaling behind netosis induced by interactions between Leishmania and neutrophils.
Collapse
Affiliation(s)
- Thiago DeSouza-Vieira
- Laboratório de Imunobiologia das Leishmanioses, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Brazil
| | - Anderson Guimarães-Costa
- Laboratório de Imunobiologia das Leishmanioses, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Brazil
| | - Natalia C Rochael
- Laboratório de Imunobiologia das Leishmanioses, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Brazil
| | - Maria N Lira
- Laboratório de Imunobiofísica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Michelle T Nascimento
- Laboratório de Imunobiologia das Leishmanioses, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Brazil
| | - Phillipe de Souza Lima-Gomez
- Laboratório de Imunobiologia das Leishmanioses, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Brazil
| | - Rafael M Mariante
- Laboratório de Neurogênese, Departamento de Neurobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil; and Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Brazil
| | - Pedro M Persechini
- Laboratório de Imunobiofísica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Elvira M Saraiva
- Laboratório de Imunobiologia das Leishmanioses, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Brazil;
| |
Collapse
|
9
|
Muzzachi S, Blasi A, Ciani E, Favia M, Cardone RA, Marzulli D, Reshkin SJ, Merizzi G, Casavola V, Soleti A, Guerra L. MED1101: A new dialdehydic compound regulating P2×7 receptor cell surface expression in U937 cells. Biol Cell 2013; 105:399-413. [DOI: 10.1111/boc.201200088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 05/24/2013] [Indexed: 12/17/2022]
Affiliation(s)
- Stefania Muzzachi
- Department of Biosciences; Biotechnologies and Biopharmaceutics; University of Bari; Bari; 70126; Italy
| | | | - Elena Ciani
- Department of Biosciences; Biotechnologies and Biopharmaceutics; University of Bari; Bari; 70126; Italy
| | - Maria Favia
- Department of Biosciences; Biotechnologies and Biopharmaceutics; University of Bari; Bari; 70126; Italy
| | - Rosa A. Cardone
- Department of Biosciences; Biotechnologies and Biopharmaceutics; University of Bari; Bari; 70126; Italy
| | - Domenico Marzulli
- Institute of Biomembranes and Bioenergetics; CNR; Bari; 70126; Italy
| | - Stephan J. Reshkin
- Department of Biosciences; Biotechnologies and Biopharmaceutics; University of Bari; Bari; 70126; Italy
| | | | - Valeria Casavola
- Department of Biosciences; Biotechnologies and Biopharmaceutics; University of Bari; Bari; 70126; Italy
| | | | - Lorenzo Guerra
- Department of Biosciences; Biotechnologies and Biopharmaceutics; University of Bari; Bari; 70126; Italy
| |
Collapse
|
10
|
CAY10593 inhibits the human P2X7 receptor independently of phospholipase D1 stimulation. Purinergic Signal 2013; 9:609-19. [PMID: 23793974 DOI: 10.1007/s11302-013-9371-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 06/09/2013] [Indexed: 10/26/2022] Open
Abstract
The P2X7 receptor is a trimeric ATP-gated cation channel important in health and disease. We have observed that the specific phospholipase D (PLD)1 antagonist, CAY10593 impairs P2X7-induced shedding of the 'low affinity' IgE receptor, CD23. The current study investigated the mode of action of this compound on P2X7 activation. Measurements of ATP-induced ethidium(+) uptake revealed that CAY10593 impaired P2X7-induced pore formation in human RPMI 8226 B cells, P2X7-transfected HEK-293 cells and peripheral blood mononuclear cells. Concentration response curves demonstrated that CAY10593 impaired P2X7-induced pore formation in RPMI 8226 cells more potently than the PLD2 antagonist CAY10594 and the non-specific PLD antagonist halopemide. Electrophysiology measurements demonstrated that CAY10593 also inhibited P2X7-induced inward currents. Notably, RT-PCR demonstrated that PLD1 was absent in RPMI 8226 cells, while choline-Cl medium or 1-butanol, which block PLD stimulation and signalling respectively did not impair P2X7 activation in these cells. This data indicates that CAY10593 impairs human P2X7 independently of PLD1 stimulation and highlights the importance of ensuring that compounds used in signalling studies downstream of P2X7 activation do not affect the receptor itself.
Collapse
|
11
|
Oxidative stress induced by P2X7 receptor stimulation in murine macrophages is mediated by c-Src/Pyk2 and ERK1/2. Biochim Biophys Acta Gen Subj 2013; 1830:4650-9. [PMID: 23711511 DOI: 10.1016/j.bbagen.2013.05.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/11/2013] [Accepted: 05/15/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND Activation of ATP-gated P2X7 receptors (P2X7R) in macrophages leads to production of reactive oxygen species (ROS) by a mechanism that is partially characterized. Here we used J774 cells to identify the signaling cascade that couples ROS production to receptor stimulation. METHODS J774 cells and mP2X7-transfected HEK293 cells were stimulated with Bz-ATP in the presence and absence of extracellular calcium. Protein inhibitors were used to evaluate the physiological role of various kinases in ROS production. In addition, phospho-antibodies against ERK1/2 and Pyk2 were used to determine activation of these two kinases. RESULTS ROS generation in either J774 or HEK293 cells (expressing P2X7, NOX2, Rac1, p47phox and p67phox) was strictly dependent on calcium entry via P2X7R. Stimulation of P2X7R activated Pyk2 but not calmodulin. Inhibitors of MEK1/2 and c-Src abolished ERK1/2 activation and ROS production but inhibitors of PI3K and p38 MAPK had no effect on ROS generation. PKC inhibitors abolished ERK1/2 activation but barely reduced the amount of ROS produced by Bz-ATP. In agreement, the amount of ROS produced by PMA was about half of that produced by Bz-ATP. CONCLUSIONS Purinergic stimulation resulted in calcium entry via P2X7R and subsequent activation of the PKC/c-Src/Pyk2/ERK1/2 pathway to produce ROS. This signaling mechanism did not require PI3K, p38 MAPK or calmodulin. GENERAL SIGNIFICANCE ROS is generated in order to kill invading pathogens, thus elucidating the mechanism of ROS production in macrophages and other immune cells allow us to understand how our body copes with microbial infections.
Collapse
|
12
|
El Ouaaliti M, Seil M, Dehaye JP. Activation of calcium-insensitive phospholipase A(2) (iPLA(2)) by P2X(7) receptors in murine peritoneal macrophages. Prostaglandins Other Lipid Mediat 2012; 99:116-23. [PMID: 23041292 DOI: 10.1016/j.prostaglandins.2012.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 09/15/2012] [Accepted: 09/24/2012] [Indexed: 01/15/2023]
Abstract
Free fatty acid releases are triggered by PLA2 activation and are substrates for many enzymes such as cyclooxygenases. These reactions are responsible for the production of many prostaglandins implicated in the inflammation yet many purinergic receptors have been implicated in diseases characterised by chronic inflammation. The role of P2X receptors was evaluated in LPS-primed murine peritoneal macrophages which were labelled with either [(3)H]-oleic acid or [(3)H]-arachidonic acid. Ten μmolar thapsigargin and 1mM ATP stimulated the release of both unsaturated acids. ATP had no effect at 10 μM and ivermectin had no effect on the response to ATP. The response to ATP was inhibited by magnesium and was not observed with cells from P2X(7)(-/-) mice. The response to ATP was not affected by the removal of extracellular calcium and was inhibited by arachidonyltrifluoromethyl ketone and bromoenol lactone but not by pyrrophenone. The release of the [(3)H]-fatty acids by ATP and thapsigargin was diminished by PD-98058, an inhibitor of MEK-1. It was concluded that in LPS-primed macrophages, P2X(7) receptors, not P2X(4) receptors, activated an iPLA(2) and promoted the release of unsaturated fatty acids secondary to the activation of a kinase. This response might contribute to the inflammation provoked by extracellular ATP.
Collapse
Affiliation(s)
- M El Ouaaliti
- Department of Biological Chemistry, Université libre de Bruxelles, Bruxelles, Belgium.
| | | | | |
Collapse
|
13
|
The role of purinergic signaling on deformation induced injury and repair responses of alveolar epithelial cells. PLoS One 2011; 6:e27469. [PMID: 22087324 PMCID: PMC3210789 DOI: 10.1371/journal.pone.0027469] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 10/17/2011] [Indexed: 01/11/2023] Open
Abstract
Cell wounding is an important driver of the innate immune response of ventilator-injured lungs. We had previously shown that the majority of wounded alveolus resident cells repair and survive deformation induced insults. This is important insofar as wounded and repaired cells may contribute to injurious deformation responses commonly referred to as biotrauma. The central hypothesis of this communication states that extracellular adenosine-5′ triphosphate (ATP) promotes the repair of wounded alveolus resident cells by a P2Y2-Receptor dependent mechanism. Using primary type 1 alveolar epithelial rat cell models subjected to micropuncture injury and/or deforming stress we show that 1) stretch causes a dose dependent increase in cell injury and ATP media concentrations; 2) enzymatic depletion of extracellular ATP reduces the probability of stretch induced wound repair; 3) enriching extracellular ATP concentrations facilitates wound repair; 4) purinergic effects on cell repair are mediated by ATP and not by one of its metabolites; and 5) ATP mediated cell salvage depends at least in part on P2Y2-R activation. While rescuing cells from wounding induced death may seem appealing, it is possible that survivors of membrane wounding become governors of a sustained pro-inflammatory state and thereby perpetuate and worsen organ function in the early stages of lung injury syndromes. Means to uncouple P2Y2-R mediated cytoprotection from P2Y2-R mediated inflammation and to test the preclinical efficacy of such an undertaking deserve to be explored.
Collapse
|
14
|
Marques-da-Silva C, Chaves MM, Castro NG, Coutinho-Silva R, Guimaraes MZP. Colchicine inhibits cationic dye uptake induced by ATP in P2X2 and P2X7 receptor-expressing cells: implications for its therapeutic action. Br J Pharmacol 2011; 163:912-26. [PMID: 21306580 DOI: 10.1111/j.1476-5381.2011.01254.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE The two longest C-termini of the purinergic P2X receptors occur in the P2X2 and P2X7 receptors and are thought to interact with multiple cytoplasmic proteins, among which are members of the cytoskeleton, including microtubules. In this work we asked whether disrupting the microtubule cytoskeleton might affect the functions of these receptors. EXPERIMENTAL APPROACH Functions of heterologously expressed P2X2 and P2X7 receptors were evaluated with electrophysiology and dye uptake following ATP application. Permeabilization and secretion of pro-inflammatory agents were quantified from fresh or cultured peritoneal mouse macrophages, treated in vitro or in vivo with colchicine. KEY RESULTS Disrupting the microtubule network with colchicine did not affect currents generated by ATP in P2X2 and P2X7 receptor-expressing cells but inhibited uptake of the dye Yo-Pro-1 in Xenopus oocytes and HEK293 cells expressing these channels. Peritoneal mouse macrophages showed less ATP-induced permeabilization to ethidium bromide in the presence of colchicine, and less reactive oxygen species (ROS) formation, nitric oxide (NO) and interleukin (IL)-1β release. Colchicine treatment did not affect ATP-evoked currents in macrophages. Finally, in vivo assays with mice inoculated with lipopolysaccharide and ATP showed diminished ROS, IL-1β, interferon-γ and NO production after colchicine treatment. CONCLUSIONS AND IMPLICATIONS Colchicine has known anti-inflammatory actions and is used to treat several conditions involving innate immunity, including gout and familial Mediterranean fever. Here we propose a new mechanism of action - inhibition of pore formation induced by activation of P2X receptors - which could explain some of the anti-inflammatory effects of colchicine.
Collapse
Affiliation(s)
- C Marques-da-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | |
Collapse
|
15
|
Marques-da-Silva C, Chaves MM, Rodrigues JC, Corte-Real S, Coutinho-Silva R, Persechini PM. Differential modulation of ATP-induced P2X7-associated permeabilities to cations and anions of macrophages by infection with Leishmania amazonensis. PLoS One 2011; 6:e25356. [PMID: 21966508 PMCID: PMC3179508 DOI: 10.1371/journal.pone.0025356] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Accepted: 09/01/2011] [Indexed: 12/27/2022] Open
Abstract
Leishmania and other parasites display several mechanisms to subvert host immune cell function in order to achieve successful infection. The ATP receptor P2X7, an agonist-gated cation channel widely expressed in macrophages and other cells of the immune system, is also coupled to inflammasome activation, IL-1 beta secretion, production of reactive oxygen species, cell death and the induction of the permeabilization of the plasma membrane to molecules of up to 900 Da. P2X7 receptors can function as an effective microbicidal triggering receptor in macrophages infected with several microorganisms including Mycobacteria tuberculosis, Chlamydia and Leishmania. We have previously shown that its expression is up-regulated in macrophages infected with L. amazonensis and that infected cells also display an increase in P2X7-induced apoptosis and membrane permeabilization to some anionic fluorescent dyes. In an independent study we recently showed that the phenomenon of macrophage membrane permeabilization can involve at least two distinct pathways for cations and anions respectively. Here, we re-addressed the effects of ATP-induced P2X7-associated phenomena in macrophages infected with L. amazonensis and demonstrated that the P2X7-associated dye uptake mechanisms are differentially modulated. While the membrane permeabilization for anionic dyes is up-modulated, as previously described, the uptake of cationic dyes is strongly down-modulated. These results unveil new characteristics of two distinct permeabilization mechanisms associated with P2X7 receptors in macrophages and provide the first evidence indicating that these pathways can be differentially modulated in an immunologically relevant situation. The possible importance of these results to the L. amazonensis escape mechanism is discussed.
Collapse
Affiliation(s)
- Camila Marques-da-Silva
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Martins Chaves
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliany Cola Rodrigues
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Suzana Corte-Real
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson Coutinho-Silva
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| | - Pedro Muanis Persechini
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Meuser-Batista M, Corrêa JR, Carvalho VF, de Carvalho Britto CFDP, Moreira ODC, Batista MM, Soares MJ, Filho FAF, E Silva PMR, Lannes-Vieira J, Silva RC, Henriques-Pons A. Mast cell function and death in Trypanosoma cruzi infection. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1894-904. [PMID: 21819958 DOI: 10.1016/j.ajpath.2011.06.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 05/25/2011] [Accepted: 06/21/2011] [Indexed: 02/02/2023]
Abstract
Although the roles of mast cells (MCs) are essential in many inflammatory and fibrotic diseases, their role in Trypanosoma cruzi-induced cardiomyopathy is unexplored. In this study, we treated infected CBA mice with cromolyn, an MC stabilizer, and observed much greater parasitemia and interferon-γ levels, higher mortality, myocarditis, and cardiac damage. Although these data show that MCs are important in controlling acute infection, we observed MC apoptosis in the cardiac tissue and peritoneal cavity of untreated mice. In the heart, pericardial mucosal MC die, perhaps because of reduced amounts of local stem cell factor. Using RT-PCR in purified cardiac MCs, we observed that infection induced transcription of P2X(7) receptor and Fas, two molecules reportedly involved in cell death and inflammatory regulation. In gld/gld mice (FasL(-/-)), apoptosis of cardiac, but not peritoneal, MCs was decreased. Conversely, infection of P2X(7)(-/-) mice led to reduced peritoneal, but not cardiac, MC death. These data illustrate the immunomodulatory role played by MCs in T. cruzi infection and the complexity of molecular interactions that control inflammatory pathways in different tissues and compartments.
Collapse
Affiliation(s)
- Marcelo Meuser-Batista
- Laboratório de Inovações em Terapias, Ensino, e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wagner MCE. The therapeutic potential of adenosine triphosphate as an immune modulator in the treatment of HIV/AIDS: a combination approach with HAART. Curr HIV Res 2011; 9:209-22. [PMID: 21675943 PMCID: PMC3343418 DOI: 10.2174/157016211796320289] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 04/27/2011] [Accepted: 06/08/2011] [Indexed: 12/11/2022]
Abstract
Extracellular adenosine triphosphate (eATP) is a potent molecule that has the capacity to modulate various aspects of cell functions including gene expression. This element of modulation is essential to the role of ATP as a therapeutic agent. The hypothesis presented is that ATP can have an important impact on the treatment of HIV infection. This is supported in part by published research, although a much greater role for ATP is suggested than prior authors ever thought possible. ATP has the ability to enhance the immune system and could thus improve the host's own defense mechanisms to eradicate the virus-infected cells and restore normal immune function. This could provide effective therapy when used in conjunction with highly active antiretroviral therapies (HAART) to eliminate the latently infected cells. The key lies in applying ATP through the methodology described. This article presents a strategy for using ATP therapeutically along with background evidence to substantiate the importance of using ATP in the treatment of HIV infection.
Collapse
|
18
|
Vázquez-Cuevas FG, Zárate-Díaz EP, Garay E, Arellano RO. Functional expression and intracellular signaling of UTP-sensitive P2Y receptors in theca-interstitial cells. Reprod Biol Endocrinol 2010; 8:88. [PMID: 20630102 PMCID: PMC2912313 DOI: 10.1186/1477-7827-8-88] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 07/14/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Purinergic receptors are expressed in the ovary of different species; their physiological roles remain to be elucidated. UTP-sensitive P2Y receptor activity may regulate cell proliferation. The aim of the present work was to study the functional expression of these receptors in theca/interstitial cells (TIC). METHODS TIC were isolated by centrifugation in a Percoll gradient. P2Y receptors and cellular markers in TIC were detected by RT-PCR and Western blot. Intracellular calcium mobilization induced by purinergic drugs was evaluated by fluorescence microscopy, phosphorylation of MAPK p44/p42 and of cAMP response element binding protein (CREB) was determined by Western blot and proliferation was quantified by [3H]-thymidine incorporation into DNA. RESULTS RT-PCR showed expression of p2y2r and p2y6r transcripts, expression of the corresponding proteins was confirmed. UTP and UDP, agonists for P2Y2 and P2Y6 receptors, induced an intracellular calcium increase with a maximum of more than 400% and 200% of basal level, respectively. The response elicited by UTP had an EC50 of 3.5 +/- 1.01 microM, while that for UDP was 3.24 +/- 0.82 microM. To explore components of the pathway activated by these receptors, we evaluated the phosphorylation induced by UTP or UDP of MAPK p44 and p42. It was found that UTP increased MAPK phosphorylation by up to 550% with an EC50 of 3.34 +/- 0.92 and 1.41 +/- 0.67 microM, for p44 and p42, respectively; these increases were blocked by suramin. UDP also induced p44/p42 phosphorylation, but at high concentrations. Phosphorylation of p44/p42 was dependent on PKC and intracellular calcium. To explore possible roles of this pathway in cell physiology, cell proliferation and hCG-induced CREB-phosphorylation assays were performed; results showed that agonists increased cell proliferation and prevented CREB-phosphorylation. CONCLUSION Here, it is shown that UTP-sensitive P2Y receptors are expressed in cultured TIC and that these receptors had the ability to activate mitogenic signaling pathways and to promote cell proliferation, as well as to prevent CREB-phosphorylation by hCG. Regulation of TIC proliferation and steroidogenesis is relevant in ovarian pathophysiology since theca hyperplasia is involved in polycystic ovarian syndrome. Purinergic receptors described might represent an important new set of molecular therapeutic targets.
Collapse
Affiliation(s)
- Francisco G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México. Boulevard Juriquilla 3001, Juriquilla Querétaro, CP 76230, México
| | - Erika P Zárate-Díaz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México. Boulevard Juriquilla 3001, Juriquilla Querétaro, CP 76230, México
| | - Edith Garay
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México. Boulevard Juriquilla 3001, Juriquilla Querétaro, CP 76230, México
| | - Rogelio O Arellano
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México. Boulevard Juriquilla 3001, Juriquilla Querétaro, CP 76230, México
| |
Collapse
|
19
|
Cesaro A, Brest P, Hofman V, Hébuterne X, Wildman S, Ferrua B, Marchetti S, Doglio A, Vouret-Craviari V, Galland F, Naquet P, Mograbi B, Unwin R, Hofman P. Amplification loop of the inflammatory process is induced by P2X7R activation in intestinal epithelial cells in response to neutrophil transepithelial migration. Am J Physiol Gastrointest Liver Physiol 2010; 299:G32-42. [PMID: 20185692 DOI: 10.1152/ajpgi.00282.2009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inflammatory bowel diseases (IBD) are characterized during their active phase by polymorphonuclear leukocyte (PMNL) transepithelial migration. The efflux of PMNL into the mucosa is associated with the production of proinflammatory cytokines and the release of ATP from damaged and necrotic cells. The expression and function of purinergic P2X(7) receptor (P2X(7)R) in intestinal epithelial cells (IEC) and its potential role in the "cross talk" between IEC and PMNL have not been explored. The aims of the present study were 1) to examine P2X(7)R expression in IEC (T84 cells) and in human intestinal biopsies; 2) to detect any changes in P2X(7)R expression in T84 cells during PMNL transepithelial migration, and during the active and quiescent phases of IBD; and 3) to test whether P2X(7)R stimulation in T84 monolayers can induce caspase-1 activation and IL-1beta release by IEC. We found that a functional ATP-sensitive P2X(7)R is constitutively expressed at the apical surface of IEC T84 cells. PMNL transmigration regulates dynamically P2X(7)R expression and alters its distribution from the apical to basolateral surface of IEC during the early phase of PMNL transepithelial migration in vitro. P2X(7)R expression was weak in intestinal biopsies obtained during the active phase of IBD. We show that activation of epithelial P2X(7)R is mandatory for PMNL-induced caspase-1 activation and IL-1beta release by IEC. Overall, these changes in P2X(7)R function may serve to tailor the intensity of the inflammatory response and to prevent IL-1beta overproduction and inflammatory disease.
Collapse
Affiliation(s)
- Annabelle Cesaro
- Institut National de la Santé et de la Recherche Médicale (INSERM) ERI-21/EA 4319, 06107 Nice, Cedex 01, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Faria RX, Cascabulho CM, Reis RAM, Alves LA. Large-conductance channel formation mediated by P2X7 receptor activation is regulated through distinct intracellular signaling pathways in peritoneal macrophages and 2BH4 cells. Naunyn Schmiedebergs Arch Pharmacol 2010; 382:73-87. [PMID: 20508916 DOI: 10.1007/s00210-010-0523-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 05/05/2010] [Indexed: 10/19/2022]
Abstract
The P2X(7) receptor (P2X7R) is a ligand-gated ATP receptor that acts as a low- and large-conductance channel (pore) and is known to be coupled to several downstream effectors. Recently, we demonstrated that the formation of a large-conductance channel associated with the P2X(7) receptor is induced by increasing the intracellular Ca(2+) concentration (Faria et al., Am J Physiol Cell Physiol 297:C28-C42, 2005). Here, we investigated the intracellular signaling pathways associated with P2X(7) large-conductance channel formation using the patch clamp technique in conjunction with fluorescent imaging and flow cytometry assays in 2BH4 cells and peritoneal macrophages. Different antagonists were applied to investigate the following pathways: Ca(2+)-calmodulin, phospholipase A, phospholipase D, phospholipase C, protein kinase C (PKC), mitogen-activated protein kinase (MAPK), MAPK/extracellular signal-regulated kinase, phosphoinositide 3-kinase (PI3K), and cytoskeletal proteins. Macroscopic ionic currents induced by 1 mM ATP were reduced by 85% in the presence of PKC antagonists. The addition of antagonists for MAPK, PI3K, and the cytoskeleton (actin, intermediary filament, and microtubule) blocked 92%, 83%, and 95% of the ionic currents induced by 1 mM ATP, respectively. Our results show that PKC, MAPK, PI3K, and cytoskeletal components are involved in P2X(7) receptor large-channel formation in 2BH4 cells and peritoneal macrophages.
Collapse
Affiliation(s)
- R X Faria
- Laboratory of Cellular Communication, Department of Immunology, Oswaldo Cruz Institute, FIOCRUZ (Oswaldo Cruz Foundation), Av. Brazil, 4365, Manguinhos, Rio de Janeiro 21045-900, Brazil.
| | | | | | | |
Collapse
|
21
|
|
22
|
Silva GB, Garvin JL. Akt1 mediates purinergic-dependent NOS3 activation in thick ascending limbs. Am J Physiol Renal Physiol 2009; 297:F646-52. [PMID: 19570880 DOI: 10.1152/ajprenal.00270.2009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Extracellular ATP regulates many physiological processes via release of nitric oxide (NO). ATP stimulates NO in thick ascending limbs (TALs), but the signaling cascade involved in the cells of this nephron segment, as well as many other types of cells, is poorly understood. We hypothesized that ATP enhances NO synthase (NOS) activity by stimulating PI3 kinase and Akt. We measured 1) NO in TALs using the NO-sensitive dye DAF-2 DA and 2) Akt activity by fluorescence resonance energy transfer and phosphorylation of Akt isoforms. ATP (100 microM) stimulated NO in wild-type mice [26 +/- 4 arbitrary units (AU)], but not in NOS3 -/- mice (2 +/- 2 AU; P < 0.04). In the presence of the NOS1- and NOS2-selective inhibitors 7-NI and 1400W, ATP stimulated NO by 30 +/- 2 and 33 +/- 3 AU, respectively (not significant vs. control). In the presence of the PI3 kinase inhibitor LY294002, ATP-increased NO was reduced by 85% (5 +/- 2 vs. 28 +/- 4 AU; P < 0.02). ATP alone increased Akt activity and this effect was significantly blocked by suramin, a P2 receptor antagonist. In the presence of an Akt-selective inhibitor, ATP-induced NO was blocked by 90 +/- 4%. ATP significantly stimulated Akt1 phosphorylation at Ser(473) by 91 +/- 13%, whereas Akt2 phosphorylation remained unchanged and Akt3 phosphorylation decreased. In vivo transduction of TALs with a dominant-negative Akt1 significantly decreased ATP-induced NO by 88 +/- 6%. We concluded that ATP increases NOS3-derived NO via Akt1 activation in the TAL.
Collapse
Affiliation(s)
- Guillermo B Silva
- Division of Hypertension and Vascular Research, Henry Ford Hospital, 2799 W. Grand Boulevard, Detroit, MI 48202, USA
| | | |
Collapse
|
23
|
Hong S, Schwarz N, Brass A, Seman M, Haag F, Koch-Nolte F, Schilling WP, Dubyak GR. Differential regulation of P2X7 receptor activation by extracellular nicotinamide adenine dinucleotide and ecto-ADP-ribosyltransferases in murine macrophages and T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:578-92. [PMID: 19542469 PMCID: PMC2768492 DOI: 10.4049/jimmunol.0900120] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Extracellular NAD induces the ATP-independent activation of the ionotropic P2X(7) purinergic receptor (P2X(7)R) in murine T lymphocytes via a novel covalent pathway involving ADP-ribosylation of arginine residues on the P2X(7)R ectodomain. This modification is catalyzed by ART2.2, a GPI-anchored ADP-ribosyltransferase (ART) that is constitutively expressed in murine T cells. We previously reported that ART2.1, a related ecto-ART, is up-regulated in inflammatory murine macrophages that constitutively express P2X(7)R. Thus, we tested the hypothesis that extracellular NAD acts via ART2.1 to regulate P2X(7)R function in murine macrophages. Coexpression of the cloned murine P2X(7)R with ART2.1 or ART2.2 in HEK293 cells verified that P2X(7)R is an equivalent substrate for ADP-ribosylation by either ART2.1 or ART2.2. However, in contrast with T cells, the stimulation of macrophages or HEK293 cells with NAD alone did not activate the P2X(7)R. Rather, NAD potentiated ATP-dependent P2X(7)R activation as indicated by a left shift in the ATP dose-response relationship. Thus, extracellular NAD regulates the P2X(7)R in both macrophages and T cells but via distinct mechanisms. Although ADP-ribosylation is sufficient to gate a P2X(7)R channel opening in T cells, this P2X(7)R modification in macrophages does not gate the channel but decreases the threshold for gating in response to ATP binding. These findings indicate that extracellular NAD and ATP can act synergistically to regulate P2X(7)R signaling in murine macrophages and also suggest that the cellular context in which P2X(7)R signaling occurs differs between myeloid and lymphoid leukocytes.
Collapse
MESH Headings
- ADP Ribose Transferases/biosynthesis
- ADP Ribose Transferases/genetics
- ADP Ribose Transferases/physiology
- Animals
- Cell Line
- Cells, Cultured
- Dose-Response Relationship, Immunologic
- Extracellular Space/enzymology
- Extracellular Space/immunology
- Extracellular Space/metabolism
- Humans
- Inflammation Mediators/physiology
- Macrophages/enzymology
- Macrophages/immunology
- Macrophages/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred NZB
- Mice, Knockout
- NAD/physiology
- Protein Structure, Tertiary
- Receptors, Purinergic P2/biosynthesis
- Receptors, Purinergic P2/deficiency
- Receptors, Purinergic P2/metabolism
- Receptors, Purinergic P2/physiology
- Receptors, Purinergic P2X7
- Signal Transduction/genetics
- Signal Transduction/immunology
- Substrate Specificity/genetics
- Substrate Specificity/immunology
- T-Lymphocytes/enzymology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Shiyuan Hong
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland OH, USA
| | - Nicole Schwarz
- Institute of Immunology, University Hospital, Hamburg, Germany
| | - Anette Brass
- Institute of Immunology, University Hospital, Hamburg, Germany
| | | | - Friedrich Haag
- Institute of Immunology, University Hospital, Hamburg, Germany
| | | | - William P. Schilling
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland OH, USA
| | - George R. Dubyak
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland OH, USA
| |
Collapse
|
24
|
Bianco F, Perrotta C, Novellino L, Francolini M, Riganti L, Menna E, Saglietti L, Schuchman EH, Furlan R, Clementi E, Matteoli M, Verderio C. Acid sphingomyelinase activity triggers microparticle release from glial cells. EMBO J 2009; 28:1043-54. [PMID: 19300439 PMCID: PMC2664656 DOI: 10.1038/emboj.2009.45] [Citation(s) in RCA: 480] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 01/29/2009] [Indexed: 12/16/2022] Open
Abstract
We have earlier shown that microglia, the immune cells of the CNS, release microparticles from cell plasma membrane after ATP stimulation. These vesicles contain and release IL-1β, a crucial cytokine in CNS inflammatory events. In this study, we show that microparticles are also released by astrocytes and we get insights into the mechanism of their shedding. We show that, on activation of the ATP receptor P2X7, microparticle shedding is associated with rapid activation of acid sphingomyelinase, which moves to plasma membrane outer leaflet. ATP-induced shedding and IL-1β release are markedly reduced by the inhibition of acid sphingomyelinase, and completely blocked in glial cultures from acid sphingomyelinase knockout mice. We also show that p38 MAPK cascade is relevant for the whole process, as specific kinase inhibitors strongly reduce acid sphingomyelinase activation, microparticle shedding and IL-1β release. Our results represent the first demonstration that activation of acid sphingomyelinase is necessary and sufficient for microparticle release from glial cells and define key molecular effectors of microparticle formation and IL-1β release, thus, opening new strategies for the treatment of neuroinflammatory diseases.
Collapse
Affiliation(s)
- Fabio Bianco
- CNR Institute of Neuroscience and Department of Medical Pharmacology, University of Milano, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Garcia-Marcos M, Dehaye JP, Marino A. Membrane compartments and purinergic signalling: the role of plasma membrane microdomains in the modulation of P2XR-mediated signalling. FEBS J 2008; 276:330-40. [DOI: 10.1111/j.1742-4658.2008.06794.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
26
|
Costa-Junior HM, Mendes AN, Davis GHNG, da Cruz CM, Ventura ALM, Serezani CH, Faccioli LH, Nomizo A, Freire-de-Lima CG, Bisaggio RDC, Persechini PM. ATP-induced apoptosis involves a Ca2+-independent phospholipase A2 and 5-lipoxygenase in macrophages. Prostaglandins Other Lipid Mediat 2008; 88:51-61. [PMID: 18984060 DOI: 10.1016/j.prostaglandins.2008.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2008] [Revised: 09/16/2008] [Accepted: 09/29/2008] [Indexed: 01/10/2023]
Abstract
Macrophages express P2X(7) and other nucleotide (P2) receptors, and display the phenomena of extracellular ATP (ATP(e))-induced P2X(7)-dependent membrane permeabilization and cell death by apoptosis and necrosis. P2X(7) receptors also cooperate with toll-like receptors (TLRs) to induce inflammasome activation and IL-1beta secretion. We investigated signaling pathways involved in the induction of cell death by ATP(e) in intraperitoneal murine macrophages. Apoptosis (hypodiploid nuclei) and necrosis (LDH release) were detected 6h after an induction period of 20 min in the presence of ATP. Apoptosis was blocked by caspase 3 and caspase 9 inhibitors and by cyclosporin A. The MAPK inhibitors PD-98059, SB-203580 and SB-202190 provoked no significant effect on apoptosis, but SB-203580 blocked LDH release. Neither apoptosis nor necrosis was inhibited when both intra- and extracellular Ca(2+) were chelated during the induction period. Mepacrine, a generic PLA(2) inhibitor and BEL, an inhibitor of Ca(2+)-independent PLA(2) (iPLA(2)) blocked apoptosis, while pBPB and AACOOPF(3), inhibitors of secretory and Ca(2+)-dependent PLA(2) respectively, had no significant effect. Cycloxygenase inhibitors had no effect on apoptosis, while the inhibitors of lipoxygenase (LOX) and leukotriene biosynthesis nordihydroguaiaretic acid (NDGA), zileuton, AA-861, and MK-886 significantly decreased apoptosis. Neither NDGA nor MK-886 blocked apoptosis of 5-LOX(-/-) macrophages. CP-105696 and MK-571, antagonists of leukotriene receptors, had no significant effect on apoptosis. None of the inhibitors of PLA(2) and LOX/leukotriene pathway had a significant inhibitory effect on LDH release. Our results indicate that a Ca(2+)-independent step involving an iPLA(2) and 5-LOX are involved in the triggering of apoptosis but not necrosis by P2X(7) in macrophages.
Collapse
Affiliation(s)
- Helio Miranda Costa-Junior
- Laboratório de Imunobiofísica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Schachter J, Motta AP, de Souza Zamorano A, da Silva-Souza HA, Guimarães MZP, Persechini PM. ATP-induced P2X7-associated uptake of large molecules involves distinct mechanisms for cations and anions in macrophages. J Cell Sci 2008; 121:3261-70. [PMID: 18782864 DOI: 10.1242/jcs.029991] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Macrophages express the P2X(7) receptor and other nucleotide (P2) receptors, and display the phenomenon of extracellular ATP (ATP(e))-induced P2X(7)-dependent membrane permeabilization, which occurs through a poorly understood mechanism. We used patch-clamp recordings, cytoplasmic Ca(2+) measurements and fluorescent dye uptake assays to compare P2X(7)-associated transport phenomena of macrophages and HEK-293 cells transfected with P2X(7) receptors (HEK-P2X(7) cells). Both cell types showed inward currents, increase of free cytoplasmic Ca(2+) concentration and the uptake of cationic dyes upon exposure to ATP(e), as previously described. However, in contrast to the macrophages, HEK-P2X(7) cells did not take up anionic dyes and did not display the 440 pS channels (Z pores) under cell-attached patch-clamping conditions. In addition, the transport mechanism of anionic dyes displayed by macrophages was also able to support dye efflux and, once activated at 37 degrees C, it remained active at 4 degrees C, whereas uptake of cationic dyes was temperature-dependent and unidirectional. Our results indicate that the mechanism of ATP(e)-induced dye uptake, usually called a ;permeabilization phenomenon' and associated with a ;permeabilization pore' can be ascribed to at least two distinct mechanisms in macrophages: a diffusional pathway, possibly associated with the 440 pS Z pores, and a cation uptake mechanism that is not diffusional and should be ascribed to an, as yet, unidentified transport mechanism.
Collapse
Affiliation(s)
- Julieta Schachter
- Laboratório de Imunobiofísica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
28
|
Iglesias R, Locovei S, Roque A, Alberto AP, Dahl G, Spray DC, Scemes E. P2X7 receptor-Pannexin1 complex: pharmacology and signaling. Am J Physiol Cell Physiol 2008; 295:C752-60. [PMID: 18596211 PMCID: PMC2544446 DOI: 10.1152/ajpcell.00228.2008] [Citation(s) in RCA: 284] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Accepted: 06/25/2008] [Indexed: 11/22/2022]
Abstract
Pannexin 1 (Panx1), an ortholog to invertebrate innexin gap junctions, has recently been proposed to be the pore induced by P2X(7) receptor (P2X(7)R) activation. We explored the pharmacological action of compounds known to block gap junctions on Panx1 channels activated by the P2X(7)R and the mechanisms involved in the interaction between these two proteins. Whole cell recordings revealed distinct P2X(7)R and Panx1 currents in response to agonists. Activation of Panx1 currents following P2X(7)R stimulation or by membrane depolarization was blocked by Panx1 small-interfering RNA (siRNA) and with mefloquine > carbenoxolone > flufenamic acid. Incubation of cells with KN-62, a P2X(7)R antagonist, prevented current activation by 2'(3')-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate (BzATP). Membrane permeabilization to dye induced by BzATP was also prevented by Panx1 siRNA and by carbenoxolone and mefloquine. Membrane permeant (TAT-P2X(7)) peptides, provided evidence that the Src homology 3 death domain of the COOH-terminus of the P2X(7)R is involved in the initial steps of the signal transduction events leading to Panx1 activation and that a Src tyrosine kinase is likely involved in this process. Competition assays indicated that 20 microM TAT-P2X(7) peptide caused 50% reduction in Src binding to the P2X(7)R complex. Src tyrosine phosphorylation following BzATP stimulation was reduced by KN-62, TAT-P2X(7) peptide, and by the Src tyrosine inhibitor PP2 and these compounds prevented both large-conductance Panx1 currents and membrane permeabilization. These results together with the lack Panx1 tyrosine phosphorylation in response to P2X(7)R stimulation indicate the involvement of an additional molecule in the tyrosine kinase signal transduction pathway mediating Panx1 activation through the P2X(7)R.
Collapse
Affiliation(s)
- R. Iglesias
- The Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York; Department of Physiology and Biophysics, School of Medicine, University of Miami, Miami, Florida; and Department of Immunology, Instituto Oswaldo Cruz, Manguinhos, Rio de Janeiro, Brazil
| | | | - A. Roque
- The Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York; Department of Physiology and Biophysics, School of Medicine, University of Miami, Miami, Florida; and Department of Immunology, Instituto Oswaldo Cruz, Manguinhos, Rio de Janeiro, Brazil
| | - A. P. Alberto
- The Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York; Department of Physiology and Biophysics, School of Medicine, University of Miami, Miami, Florida; and Department of Immunology, Instituto Oswaldo Cruz, Manguinhos, Rio de Janeiro, Brazil
| | | | - D. C. Spray
- The Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York; Department of Physiology and Biophysics, School of Medicine, University of Miami, Miami, Florida; and Department of Immunology, Instituto Oswaldo Cruz, Manguinhos, Rio de Janeiro, Brazil
| | - E. Scemes
- The Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York; Department of Physiology and Biophysics, School of Medicine, University of Miami, Miami, Florida; and Department of Immunology, Instituto Oswaldo Cruz, Manguinhos, Rio de Janeiro, Brazil
| |
Collapse
|
29
|
Carroll WA, Donnelly-Roberts D, Jarvis MF. Selective P2X(7) receptor antagonists for chronic inflammation and pain. Purinergic Signal 2008; 5:63-73. [PMID: 18568426 PMCID: PMC2721772 DOI: 10.1007/s11302-008-9110-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 04/24/2008] [Indexed: 11/30/2022] Open
Abstract
ATP, acting on P2X7 receptors, stimulates changes in intracellular calcium concentrations, maturation, and release of interleukin-1β (IL-1β), and following prolonged agonist exposure, cell death. The functional effects of P2X7 receptor activation facilitate several proinflammatory processes associated with arthritis. Within the nervous system, these proinflammatory processes may also contribute to the development and maintenance of chronic pain. Emerging data from genetic knockout studies have indicated specific roles for P2X7 receptors in inflammatory and neuropathic pain states. The discovery of multiple distinct chemical series of potent and highly selective P2X7 receptor antagonists have enhanced our understanding of P2X7 receptor pharmacology and the diverse array of P2X7 receptor signaling mechanisms. These antagonists have provided mechanistic insight into the role(s) P2X7 receptors play under pathophysiological conditions. In this review, we integrate the recent discoveries of novel P2X7 receptor-selective antagonists with a brief update on P2X7 receptor pharmacology and its therapeutic potential.
Collapse
Affiliation(s)
- William A Carroll
- Abbott Laboratories, Neuroscience Research, Global Pharmaceutical Research and Development, R47W, AP10, 100 Abbott Park Road, Abbott Park, IL, 60064-6101, USA,
| | | | | |
Collapse
|
30
|
Beldi G, Enjyoji K, Wu Y, Miller L, Banz Y, Sun X, Robson SC. The role of purinergic signaling in the liver and in transplantation: effects of extracellular nucleotides on hepatic graft vascular injury, rejection and metabolism. FRONTIERS IN BIOSCIENCE : A JOURNAL AND VIRTUAL LIBRARY 2008; 13:2588-603. [PMID: 17981736 PMCID: PMC2892180 DOI: 10.2741/2868] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Extracellular nucleotides (e.g. ATP, UTP, ADP) are released by activated endothelium, leukocytes and platelets within the injured vasculature and bind specific cell-surface type-2 purinergic (P2) receptors. This process drives vascular inflammation and thrombosis within grafted organs. Importantly, there are also vascular ectonucleotidases i.e. ectoenzymes that hydrolyze extracellular nucleotides in the blood to generate nucleosides (viz. adenosine). Endothelial cell NTPDase1/CD39 has been shown to critically modulate levels of circulating nucleotides. This process tends to limit the activation of platelet and leukocyte expressed P2 receptors and also generates adenosine to reverse inflammatory events. This vascular protective CD39 activity is rapidly inhibited by oxidative reactions, such as is observed with liver ischemia reperfusion injury. In this review, we chiefly address the impact of these signaling cascades following liver transplantation. Interestingly, the hepatic vasculature, hepatocytes and all non-parenchymal cell types express several components co-ordinating the purinergic signaling response. With hepatic and vascular dysfunction, we note heightened P2- expression and alterations in ectonucleotidase expression and function that may predispose to progression of disease. In addition to documented impacts upon the vasculature during engraftment, extracellular nucleotides also have direct influences upon liver function and bile flow (both under physiological and pathological states). We have recently shown that alterations in purinergic signaling mediated by altered CD39 expression have major impacts upon hepatic metabolism, repair mechanisms, regeneration and associated immune responses. Future clinical applications in transplantation might involve new therapeutic modalities using soluble recombinant forms of CD39, altering expression of this ectonucleotidase by drugs and/or using small molecules to inhibit deleterious P2-mediated signaling while augmenting beneficial adenosine-mediated effects within the transplanted liver.
Collapse
Affiliation(s)
- Guido Beldi
- 99 Brookline Avenue, Boston, MA 02215, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston. MA
| | - Keiichi Enjyoji
- 99 Brookline Avenue, Boston, MA 02215, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston. MA
| | - Yan Wu
- 99 Brookline Avenue, Boston, MA 02215, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston. MA
| | - Lindsay Miller
- 99 Brookline Avenue, Boston, MA 02215, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston. MA
| | - Yara Banz
- 99 Brookline Avenue, Boston, MA 02215, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston. MA
| | - Xiaofeng Sun
- 99 Brookline Avenue, Boston, MA 02215, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston. MA
| | - Simon C. Robson
- 99 Brookline Avenue, Boston, MA 02215, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston. MA
| |
Collapse
|
31
|
Qu Y, Franchi L, Nunez G, Dubyak GR. Nonclassical IL-1 beta secretion stimulated by P2X7 receptors is dependent on inflammasome activation and correlated with exosome release in murine macrophages. THE JOURNAL OF IMMUNOLOGY 2007; 179:1913-25. [PMID: 17641058 DOI: 10.4049/jimmunol.179.3.1913] [Citation(s) in RCA: 454] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Several mechanistically distinct models of nonclassical secretion, including exocytosis of secretory lysosomes, shedding of plasma membrane microvesicles, and direct efflux through plasma membrane transporters, have been proposed to explain the rapid export of caspase-1-processed IL-1 beta from monocytes/macrophages in response to activation of P2X7 receptors (P2X7R) by extracellular ATP. We compared the contribution of these mechanisms to P2X7R-stimulated IL-1 beta secretion in primary bone marrow-derived macrophages isolated from wild-type, P2X7R knockout, or apoptosis-associated speck-like protein containing a C-terminal CARD knockout mice. Our experiments revealed the following: 1) a novel correlation between IL-1 beta secretion and the release of the MHC-II membrane protein, which is a marker of plasma membranes, recycling endosomes, multivesicular bodies, and released exosomes; 2) a common and absolute requirement for inflammasome assembly and active caspase-1 in triggering the cotemporal export of IL-1 beta and MHC-II; and 3) mechanistic dissociation of IL-1 beta export from either secretory lysosome exocytosis or plasma membrane microvesicle shedding on the basis of different requirements for extracellular Ca(2+) and differential sensitivity to pharmacological agents that block activation of caspase-1 inflammasomes. Thus, neither secretory lysosome exocytosis nor microvesicle shedding models constitute the major pathways for nonclassical IL-1 beta secretion from ATP-stimulated murine macrophages. Our findings suggest an alternative model of IL-1 beta release that may involve the P2X7R-induced formation of multivesicular bodies that contain exosomes with entrapped IL-1 beta, caspase-1, and other inflammasome components.
Collapse
Affiliation(s)
- Yan Qu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44120, USA
| | | | | | | |
Collapse
|
32
|
Donnelly-Roberts DL, Jarvis MF. Discovery of P2X7 receptor-selective antagonists offers new insights into P2X7 receptor function and indicates a role in chronic pain states. Br J Pharmacol 2007; 151:571-9. [PMID: 17471177 PMCID: PMC2013998 DOI: 10.1038/sj.bjp.0707265] [Citation(s) in RCA: 226] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
ATP-sensitive P2X(7) receptors are localized on cells of immunological origin including peripheral macrophages and glial cells in the CNS. Activation of P2X(7) receptors leads to rapid changes in intracellular calcium concentrations, release of the proinflammatory cytokine interleukin-1beta and following prolonged agonist exposure, the formation of cytolytic pores in plasma membranes. Both the localization and functional consequences of P2X(7) receptor activation indicate a role in inflammatory processes. The phenotype of P2X(7) receptor gene-disrupted mice also indicates that P2X(7) receptor activation contributes to ongoing inflammation. More recently, P2X(7) receptor knockout data has also suggested a specific role in inflammatory and neuropathic pain states. The recent discovery of potent and highly selective antagonists for P2X(7) receptors has helped to further clarify P2X receptor pharmacology, expanded understanding of P2X(7) receptor signaling, and offers new evidence that P2X(7) receptors play a specific role in nociceptive signaling in chronic pain states. In this review, we incorporate the recent discoveries of novel P2X(7) receptor-selective antagonists with a brief update on P2X(7) receptor pharmacology and its therapeutic potential.
Collapse
Affiliation(s)
- D L Donnelly-Roberts
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories Abbott Park, IL, USA
| | - M F Jarvis
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories Abbott Park, IL, USA
- Author for correspondence:
| |
Collapse
|
33
|
Cruz CM, Rinna A, Forman HJ, Ventura ALM, Persechini PM, Ojcius DM. ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J Biol Chem 2007; 282:2871-9. [PMID: 17132626 PMCID: PMC2693903 DOI: 10.1074/jbc.m608083200] [Citation(s) in RCA: 619] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Secretion of the proinflammatory cytokines, interleukin (IL)-1beta and IL-18, usually requires two signals. The first, due to microbial products such as lipopolysaccharide, initiates transcription of the cytokine genes and accumulation of the precursor proteins. Cleavage and secretion of the cytokines is mediated by caspase-1, in association with an inflammasome containing Nalp3, which can be activated by binding of extracellular ATP to purinergic receptors. We show that treatment of macrophages with ATP results in production of reactive oxygen species (ROS), which stimulate the phosphatidylinositol 3-kinase (PI3K) pathway and subsequent Akt and ERK1/2 activation. ROS exerts its effect through glutathionylation of PTEN (phosphatase and tensin homologue deleted from chromosome 10), whose inactivation would shift the equilibrium in favor of PI3K. ATP-dependent ROS production and PI3K activation also stimulate transcription of genes required for an oxidative stress response. In parallel, ATP-mediated ROS-dependent PI3K is required for activation of caspase-1 and secretion of IL-1beta and IL-18. Thus, an increase in ROS levels in ATP-treated macrophages results in activation of a single pathway that promotes both adaptation to subsequent exposure to oxidants or inflammation, and processing and secretion of proinflammatory cytokines.
Collapse
Affiliation(s)
- Cristiane M. Cruz
- School of Natural Sciences, University of California, Merced, California 95344
- Laboratorio de Imunobiofisica, IBCCF, Federal University of Rio de Janeiro, 21949-900 Rio de Janeiro, Brazil
| | - Alessandra Rinna
- School of Natural Sciences, University of California, Merced, California 95344
| | - Henry Jay Forman
- School of Natural Sciences, University of California, Merced, California 95344
| | - Ana L. M. Ventura
- Laboratório de Neuroquímica, Instituto de Biologia, Universidade Federal Fluminense, Niterói 24030-210, Rio de Janeiro, Brazil
| | - Pedro M. Persechini
- Laboratório de Neuroquímica, Instituto de Biologia, Universidade Federal Fluminense, Niterói 24030-210, Rio de Janeiro, Brazil
| | - David M. Ojcius
- School of Natural Sciences, University of California, Merced, California 95344
| |
Collapse
|
34
|
Coutinho-Silva R, Monteiro da Cruz C, Persechini PM, Ojcius DM. The role of P2 receptors in controlling infections by intracellular pathogens. Purinergic Signal 2007; 3:83-90. [PMID: 18404421 PMCID: PMC2096763 DOI: 10.1007/s11302-006-9039-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Accepted: 01/13/2006] [Indexed: 01/10/2023] Open
Abstract
A growing number of studies have demonstrated the importance of ATP(e)-signalling via P2 receptors as an important component of the inflammatory response to infection. More recent studies have shown that ATP(e) can also have a direct effect on infection by intracellular pathogens, by modulating membrane trafficking in cells that contain vacuoles that harbour intracellular pathogens, such as mycobacteria and chlamydiae. A conserved mechanism appears to be involved in controlling infection by both of these pathogens, as a role for phospholipase D in inducing fusion between lysosomes and the vacuoles has been demonstrated. Other P2-dependent mechanisms are most likely operative in the cases of pathogens, such as Leishmania, which survive in an acidic phagolysosomal-like compartment. ATP(e) may function as a "danger signal" that alerts the immune system to the presence of intracellular pathogens that damage the host cell, while different intracellular pathogens have evolved enzymes or other mechanisms to inhibit ATP(e)-mediated signalling, which should, thus, be viewed as virulence factors for these pathogens.
Collapse
Affiliation(s)
- Robson Coutinho-Silva
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Bloco G do CCS, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, 21941-590, Brazil,
| | | | | | | |
Collapse
|