1
|
Camarda L, Mattioli LB, Corazza I, Marzetti C, Budriesi R. Targeting the Gut-Brain Axis with Plant-Derived Essential Oils: Phytocannabinoids and Beyond. Nutrients 2025; 17:1578. [PMID: 40362887 DOI: 10.3390/nu17091578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/28/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025] Open
Abstract
Background: The gut-brain axis (GBA) is a complex bidirectional communication system that links the gastrointestinal tract and the central nervous system. Essential oils (EOs) have emerged as promising natural compounds capable of modulating this axis. Methods: A comprehensive analysis of the recent literature was conducted, focusing on studies investigating the effects of EOs on the GBA. Particular attention was given to the endocannabinoid system, the role of cannabis-derived EOs, and other plant-based EOs with potential neuroprotective and gut microbiota-modulating effects. Results: Among the EOs analyzed, cannabis essential oil (CEO) gained attention for its interaction with cannabinoid receptors (CBR1 and CBR2), modulating gut motility, immune responses, and neurotransmission. While acute administration of the CEO reduces inflammation and gut permeability, chronic use has been associated with alterations in gut microbiota composition, potentially impairing cognitive function. Other EOs, such as those from rosemary, lavender, eucalyptus, and oregano, demonstrated effects on neurotransmitter modulation, gut microbiota balance, and neuroinflammation, supporting their potential therapeutic applications in GBA-related disorders. Conclusions: EOs demonstrate promising potential in modulating the GBA through mechanisms including neurotransmitter regulation, gut microbiota modulation, and anti-inflammatory activity. At the same time, phytocannabinoids offer therapeutic value; their long-term use warrants caution due to potential impacts on microbiota. Future research should aim to identify EO-based interventions that can synergistically restore GBA homeostasis and mitigate neurodegenerative and gastrointestinal disorders.
Collapse
Affiliation(s)
- Luca Camarda
- Department of Pharmacy and Biotechnology (FaBiT), Food Chemistry and Nutraceutical Lab, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Laura Beatrice Mattioli
- Department of Pharmacy and Biotechnology (FaBiT), Food Chemistry and Nutraceutical Lab, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy
| | - Ivan Corazza
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy
| | | | - Roberta Budriesi
- Department of Pharmacy and Biotechnology (FaBiT), Food Chemistry and Nutraceutical Lab, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
2
|
Aloisio Caruso E, De Nunzio V, Tutino V, Notarnicola M. The Endocannabinoid System: Implications in Gastrointestinal Physiology and Pathology. Int J Mol Sci 2025; 26:1306. [PMID: 39941074 PMCID: PMC11818434 DOI: 10.3390/ijms26031306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/31/2025] [Accepted: 02/02/2025] [Indexed: 02/16/2025] Open
Abstract
The endocannabinoid system (ECS), composed of receptors, endocannabinoids, and enzymes that regulate biosynthesis and degradation, plays a fundamental role in the physiology and pathology of the gastrointestinal tract, particularly in the small and large intestine and liver. Specifically, cannabinoid receptor type 1 (CB1R) and cannabinoid receptor type 2 (CB2R), located principally in the nervous system and immune cells, orchestrate processes such as intestinal motility, intestinal and hepatic inflammation, and energy metabolism, respectively. The main endocannabinoids, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), influence appetite, body weight regulation, and inflammatory states and thus have implications in obesity, non-alcoholic fatty liver disease (NAFLD) and irritable bowel syndrome (IBS). Recent studies have highlighted the therapeutic potential of targeting the ECS to modulate gastrointestinal and metabolic diseases. In particular, peripheral CB1R antagonists and CB2R agonists have shown efficacy in treating intestinal inflammation, reducing hepatic steatosis, and controlling IBS symptoms. Moreover, the ECS is emerging as a potential target for the treatment of colorectal cancer, acting on cell proliferation and apoptosis. This review highlights the opportunity to exploit the endocannabinoid system in the search for innovative therapeutic strategies, emphasizing the importance of a targeted approach to optimize treatment efficacy and minimize side effects.
Collapse
Affiliation(s)
- Emanuela Aloisio Caruso
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Bari, Italy; (E.A.C.); (V.D.N.)
| | - Valentina De Nunzio
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Bari, Italy; (E.A.C.); (V.D.N.)
| | - Valeria Tutino
- Laboratory of Clinical Pathology, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Bari, Italy;
| | - Maria Notarnicola
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Bari, Italy; (E.A.C.); (V.D.N.)
| |
Collapse
|
3
|
Gallego-Barceló P, Benítez-Álvarez D, Bagues A, Silván-Ros B, Montalbán-Rodríguez A, López-Gómez L, Vera G, del Castillo MD, Uranga JA, Abalo R. Ex Vivo Study of Colon Health, Contractility and Innervation in Male and Female Rats after Regular Exposure to Instant Cascara Beverage. Foods 2024; 13:2474. [PMID: 39200401 PMCID: PMC11353626 DOI: 10.3390/foods13162474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Instant Cascara (IC) is a sustainable beverage made from dried coffee cherry pulp, a by-product of coffee processing. It is rich in nutrients and bioactive compounds and has a high concentration of antioxidants. This study explored the impact of regular IC consumption on colonic motor function and innervation. Over a period of 4 weeks, male and female healthy rats were given drinking water containing 10 mg/mL of IC. Thereafter, colon samples were obtained to evaluate the longitudinal (LM) and circular (CM) smooth muscle contractile response to acetylcholine (ACh) and electrical field stimulation (EFS) in an organ bath, before and after atropine administration (10-6 M). Histological and immunohistochemical analyses assessed colon damage, muscle thickness, and immunoreactivity to substance P (SP) and neuronal nitric oxide synthase (nNOS). ACh and EFS induced similar responses across groups, but the CM response to EFS was greater in females compared with males, despite their lower body weight. Atropine completely blocked the response to ACh but only partially antagonized the neural response to EFS, particularly that of CM in females treated with IC, which had a greater liquid intake than those exposed to water. However, in the myenteric ganglia, no statistically significant differences were observed in SP or nNOS. Our results suggest that regular IC exposure may enhance specific neural pathway functions, particularly in females, possibly due to their increased IC consumption.
Collapse
Affiliation(s)
- Paula Gallego-Barceló
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (P.G.-B.); (D.B.-Á.); (B.S.-R.); (A.M.-R.); (L.L.-G.); (G.V.); (J.A.U.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos, 28922 Alcorcón, Spain; (M.D.d.C.)
| | - David Benítez-Álvarez
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (P.G.-B.); (D.B.-Á.); (B.S.-R.); (A.M.-R.); (L.L.-G.); (G.V.); (J.A.U.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos, 28922 Alcorcón, Spain; (M.D.d.C.)
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Street 34, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Street 21, 50931 Cologne, Germany
| | - Ana Bagues
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (P.G.-B.); (D.B.-Á.); (B.S.-R.); (A.M.-R.); (L.L.-G.); (G.V.); (J.A.U.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos, 28922 Alcorcón, Spain; (M.D.d.C.)
- High Performance Research Group in Experimental Pharmacology (PHARMAKOM-URJC), University Rey Juan Carlos, 28922 Alcorcón, Spain
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), 28006 Madrid, Spain
| | - Blanca Silván-Ros
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (P.G.-B.); (D.B.-Á.); (B.S.-R.); (A.M.-R.); (L.L.-G.); (G.V.); (J.A.U.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos, 28922 Alcorcón, Spain; (M.D.d.C.)
- Department of Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| | - Alba Montalbán-Rodríguez
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (P.G.-B.); (D.B.-Á.); (B.S.-R.); (A.M.-R.); (L.L.-G.); (G.V.); (J.A.U.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos, 28922 Alcorcón, Spain; (M.D.d.C.)
| | - Laura López-Gómez
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (P.G.-B.); (D.B.-Á.); (B.S.-R.); (A.M.-R.); (L.L.-G.); (G.V.); (J.A.U.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos, 28922 Alcorcón, Spain; (M.D.d.C.)
| | - Gema Vera
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (P.G.-B.); (D.B.-Á.); (B.S.-R.); (A.M.-R.); (L.L.-G.); (G.V.); (J.A.U.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos, 28922 Alcorcón, Spain; (M.D.d.C.)
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), 28006 Madrid, Spain
| | - María Dolores del Castillo
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos, 28922 Alcorcón, Spain; (M.D.d.C.)
- Food Bioscience Group, Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL) (CSIC-UAM), Nicolás Cabrera Street, 9, 28049 Madrid, Spain
| | - José A. Uranga
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (P.G.-B.); (D.B.-Á.); (B.S.-R.); (A.M.-R.); (L.L.-G.); (G.V.); (J.A.U.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos, 28922 Alcorcón, Spain; (M.D.d.C.)
| | - Raquel Abalo
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (P.G.-B.); (D.B.-Á.); (B.S.-R.); (A.M.-R.); (L.L.-G.); (G.V.); (J.A.U.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos, 28922 Alcorcón, Spain; (M.D.d.C.)
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), 28006 Madrid, Spain
- Working Group of Basic Sciences on Pain and Analgesia of the Spanish Pain Society, 28046 Madrid, Spain
- Working Group of Basic Sciences on Cannabinoids of the Spanish Pain Society, 28046 Madrid, Spain
| |
Collapse
|
4
|
Alshaarawy O, Balasubramanian G, Venkatesan T. Cannabis use in the United States and its impact on gastrointestinal health. Nutr Clin Pract 2024; 39:281-292. [PMID: 38142306 DOI: 10.1002/ncp.11111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/13/2023] [Accepted: 11/17/2023] [Indexed: 12/25/2023] Open
Abstract
In recent years, the legalization and social acceptability of cannabis use have increased in the United States. Concurrently, the prevalence of cannabis use has continued to rise, and cannabis products have diversified. There are growing concerns regarding the health effects of regular and high-potency cannabis use, and new research has shed light on its potentially negative effects. Here, we review evidence of the gastrointestinal (GI) effects of cannabis and cannabinoids. Dysregulation of the endocannabinoid system might contribute to various GI disorders, including irritable bowel syndrome and cyclic vomiting syndrome, and endocannabinoids have been found to regulate visceral sensation, nausea, vomiting, and the gut microbiome. Cannabis has been shown to have antiemetic properties, and the US Food and Drug Administration has approved cannabis-based medications for treating chemotherapy-induced nausea and vomiting. Yet, chronic heavy cannabis use has been linked to recurrent episodes of severe nausea and intractable vomiting (cannabinoid hyperemesis syndrome). Given the considerable heterogeneity in the scientific literature, it is unclear if cannabinoid hyperemesis syndrome is truly a distinct entity or a subtype of cyclic vomiting that is unmasked by heavy cannabis use and the associated dysregulation of the endocannabinoid system. The changes in cannabis legalization, availability, and public risk perceptions have outpaced research in this area and there is a need for robust, prospective, large-scale studies to understand the effects of cannabis use on GI health.
Collapse
Affiliation(s)
- Omayma Alshaarawy
- Department of Family Medicine, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Gokulakrishnan Balasubramanian
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Thangam Venkatesan
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
5
|
López-Tofiño Y, Barragán del Caz LF, Benítez-Álvarez D, Molero-Mateo P, Nurgali K, Vera G, Bagües A, Abalo R. Contractility of isolated colonic smooth muscle strips from rats treated with cancer chemotherapy: differential effects of cisplatin and vincristine. Front Neurosci 2023; 17:1304609. [PMID: 38192512 PMCID: PMC10773793 DOI: 10.3389/fnins.2023.1304609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
Background Certain antineoplastic drugs cause gastrointestinal disorders even after the end of treatment. Enteric neuropathy has been associated with some of these alterations. Our goal was to assess the impact of repeated treatment with cisplatin and vincristine on the contractility of circular and longitudinal muscle strips isolated from the rat colon. Methods Two cohorts of male rats were used: in cohort 1, rats received one intraperitoneal (ip) injection of saline or cisplatin (2 mg kg-1 week-1) on the first day of weeks 1-5; in cohort 2, rats received two cycles of five daily ip injections (Monday to Friday, weeks 1-2) of saline or vincristine (0.1 mg kg-1 day-1). Body weight and food and water intake were monitored throughout the study. One week after treatment, responses of colonic smooth muscle strips to acetylcholine (10-9-10-5 M) and electrical field stimulation (EFS, 0.1-20 Hz), before and after atropine (10-6 M), were evaluated in an organ bath. Results Both drugs decreased body weight gain. Compared to saline, cisplatin significantly decreased responses of both longitudinal and circular smooth muscle strips to EFS, whereas vincristine tended to increase them, although in a non-significant manner. No differences were observed in the muscle response to acetylcholine. Atropine abolished the contractile responses induced by acetylcholine, although those induced by EFS were only partially reduced in the presence of atropine. Conclusion The findings suggest that although both drugs cause the development of enteric neuropathy, this seems to have a functional impact only in cisplatin-treated animals. Understanding the effects of chemotherapy on gastrointestinal motor function is vital for enhancing the quality of life of cancer patients.
Collapse
Affiliation(s)
- Yolanda López-Tofiño
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), Alcorcón, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), Alcorcón, Spain
- International Doctoral School, URJC, Móstoles, Spain
| | | | - David Benítez-Álvarez
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), Alcorcón, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), Alcorcón, Spain
| | - Paula Molero-Mateo
- International Doctoral School, URJC, Móstoles, Spain
- Lescer Center (Neurological Rehabilitation), Madrid, Spain
- Department of Physiotherapy, Occupational Therapy, Rehabilitation and Physical Medicine, URJC, Alcorcón, Spain
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Department of Medicine Western Health, The University of Melbourne, Melbourne, VIC, Australia
- Regenerative Medicine and Stem Cell Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia
| | - Gema Vera
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), Alcorcón, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), Alcorcón, Spain
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), Madrid, Spain
| | - Ana Bagües
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), Alcorcón, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), Alcorcón, Spain
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), Madrid, Spain
- High Performance Research Group in Experimental Pharmacology (PHARMAKOM-URJC), URJC, Alcorcón, Spain
| | - Raquel Abalo
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), Alcorcón, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), Alcorcón, Spain
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), Madrid, Spain
- Working Group of Basic Sciences on Pain and Analgesia of the Spanish Pain Society, Madrid, Spain
- Working Group of Basic Sciences on Cannabinoids of the Spanish Pain Society, Madrid, Spain
| |
Collapse
|
6
|
Camilleri M, Zheng T. Cannabinoids and the Gastrointestinal Tract. Clin Gastroenterol Hepatol 2023; 21:3217-3229. [PMID: 37678488 PMCID: PMC10872845 DOI: 10.1016/j.cgh.2023.07.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 09/09/2023]
Abstract
The synthesis and degradation of endocannabinoids, location of cannabinoid (CB) receptors, and cannabinoid mechanisms of action on immune/inflammatory, neuromuscular, and sensory functions in digestive organs are well documented. CB2 mechanisms are particularly relevant in immune and sensory functions. Increasing use of cannabinoids in the United States is impacted by social determinants of health including racial discrimination, which is associated with tobacco and cannabis co-use, and combined use disorders. Several conditions associated with emesis are related to cannabinoid use, including cannabinoid hyperemesis or withdrawal, cyclic vomiting syndrome, and nausea and vomiting of pregnancy. Cannabinoids generally inhibit gastrointestinal motor function; yet they relieve symptoms in patients with gastroparesis and diverse nausea syndromes. Cannabinoid effects on inflammatory mechanisms have shown promise in relatively small placebo-controlled studies in reducing disease activity and abdominal pain in patients with inflammatory bowel disease. Cannabinoids have been studied in disorders of motility, pain, and disorders of gut-brain interaction. The CB2-receptor agonist, cannabidiol, reduced the total Gastroparesis Cardinal Symptom Index and increases the ability to tolerate a meal in patients with gastroparesis appraised over 4 weeks of treatment. In contrast, predominant-pain end points in functional dyspepsia with normal gastric emptying were not improved significantly with cannabidiol. The CB2 agonist, olorinab, reduced abdominal pain in inflammatory bowel disease in an open-label trial and in constipation-predominant irritable bowel syndrome in a placebo-controlled trial. Cannabinoid mechanisms alter inflammation in pancreatic and liver diseases. In conclusion, cannabinoids, particularly agents affecting CB2 mechanisms, have potential for inflammatory, gastroparesis, and pain disorders; however, the trials require replication and further understanding of risk-benefit to enhance use of cannabinoids in gastrointestinal diseases.
Collapse
Affiliation(s)
- Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.
| | - Ting Zheng
- Clinical Enteric Neuroscience Translational and Epidemiological Research, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
7
|
Muacevic A, Adler JR, Oxner A. A Case of Panic Attacks Developing After 10 Years of Chronic Cannabis Use in a Patient With No Prior Psychiatric History. Cureus 2023; 15:e34197. [PMID: 36843769 PMCID: PMC9954761 DOI: 10.7759/cureus.34197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/25/2023] [Indexed: 01/26/2023] Open
Abstract
Cannabis use for medical and recreational purposes is increasing. Inhibitory activity of cannabinoids (CB) at the CB1 and CB2 receptors centrally and peripherally mediate the therapeutic effects that are wielded for palliation of pain, anxiety, inflammation, and nausea in indicated conditions. Cannabis dependence is also associated with anxiety; however, the direction of causality is unknown, such as whether anxiety disorders lead to cannabis use, or whether cannabis contributes to the development of anxiety disorder. The evidence hints that both may have validity. Here we present a case of cannabis-associated panic attacks following 10 years of chronic cannabis dependence in an individual with no prior psychiatric history. The patient is a 32-year-old male with no significant past medical history who presented complaining of five-minute episodes of palpitations, dyspnea, upper extremity paresthesia, subjective tachycardia, and cold diaphoresis occurring in a variety of circumstances for the past two years. His social history was significant for 10 years of smoking marijuana multiple times daily, which he had quit over two years ago. The patient denied past psychiatric history or known anxiety problems. Symptoms were unrelated to activity and only relieved with deep breathing. The episodes were not associated with chest pain, syncope, headache, or emotional triggers. The patient had no family history of cardiac disease or sudden death. The episodes were refractory to the elimination of caffeine, alcohol, or other sugary beverages. The patient had already stopped smoking marijuana when the episodes began. Due to the unpredictable nature of the episodes, the patient reported a growing fear of being in public. On laboratory workup, metabolic and blood panels were within normal limits, as well as thyroid studies. Electrocardiogram showed normal sinus rhythm, and continuous cardiac monitoring revealed no arrhythmias or abnormalities despite the patient indicating multiple triggered events within the duration of monitoring. Echocardiography also showed no abnormalities. With organic cardiac causes of the subjective palpitation episodes ruled out, a psychogenic etiology of the episodes was presumed, and the patient was referred to behavioral health services. In conclusion, cannabis-induced anxiety or panic disorders should be considered in patients with no prior psychiatric history presenting with anxiety-like attacks following a period of cannabis dependence or current use. These patients should be advised to cease cannabis use and referred to behavioral medicine.
Collapse
|
8
|
Ricci MF, Béla SR, Barbosa JL, Moraes MM, Mazzeti AL, Bahia MT, Horta LS, Santiago HDC, Cruz JS, Capettini LDSA, Arantes RME. A Potential Role of Cholinergic Dysfunction on Impaired Colon Motility in Experimental Intestinal Chagas Disease. J Neurogastroenterol Motil 2022; 28:483-500. [PMID: 35799242 PMCID: PMC9274474 DOI: 10.5056/jnm21074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/21/2021] [Accepted: 10/11/2021] [Indexed: 12/01/2022] Open
Abstract
Background/Aims Chagasic megacolon is caused by Trypanosoma cruzi, which promotes in several cases, irreversible segmental colonic dilation. This alteration is the major anatomic-clinical disorder, characterized by the enteric nervous system and muscle wall structural damage. Herein, we investigate how T. cruzi-induced progressive colonic structural changes modulate the colonic contractile pattern activity. Methods We developed a murine model of T. cruzi-infection that reproduced long-term modifications of the enlarged colon. We evaluated colonic and total intestinal transit time in animals. The patterns of motor response at several time intervals between the acute and chronic phases were evaluated using the organ bath assays. Enteric motor neurons were stimulated by electric field stimulation. The responses were analyzed in the presence of the nicotinic and muscarinic acetylcholine receptor antagonists. Western blot was performed to evaluate the expression of nicotinic and muscarinic receptors. The neurotransmitter expression was analyzed by real-time polymerase chain reaction. Results In the chronic phase of infection, there was decreased intestinal motility associated with decreased amplitude and rhythmicity of intestinal contractility. Pharmacological tests suggested a defective response mediated by acetylcholine receptors. The contractile response induced by acetylcholine was decreased by atropine in the acute phase while the lack of its action in the chronic phase was associated with tissue damage, and decreased expression of choline acetyltransferase, nicotinic subunits of acetylcholine receptors, and neurotransmitters. Conclusions T. cruzi-induced damage of smooth muscles was accompanied by motility disorders such as decreased intestinal peristalsis and cholinergic system response impairment. This study allows integration of the natural history of Chagasic megacolon motility disorders and opens new perspectives for the design of effective therapeutic.
Collapse
Affiliation(s)
- Mayra F Ricci
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Samantha R Béla
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
- Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Joana L Barbosa
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Michele M Moraes
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Ana L Mazzeti
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brasil
| | - Maria T Bahia
- Escola de Medicina & Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Laila S Horta
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Helton da C Santiago
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Jader S Cruz
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Luciano dos S A Capettini
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Rosa M E Arantes
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| |
Collapse
|
9
|
Maselli DB, Camilleri M. Pharmacology, Clinical Effects, and Therapeutic Potential of Cannabinoids for Gastrointestinal and Liver Diseases. Clin Gastroenterol Hepatol 2021; 19:1748-1758.e2. [PMID: 32673642 PMCID: PMC7854774 DOI: 10.1016/j.cgh.2020.04.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/30/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023]
Abstract
Cannabis and cannabinoids (such as tetrahydrocannabinol and cannabidiol) are frequently used to relieve gastrointestinal symptoms. Cannabinoids have effects on the immune system and inflammatory responses, as well as neuromuscular and sensory functions of digestive organs, including pancreas and liver. Cannabinoids can cause hyperemesis and cyclic vomiting syndrome, but they might also be used to reduce gastrointestinal, pancreatic, or hepatic inflammation, as well as to treat motility, pain, and functional disorders. Cannabinoids activate cannabinoid receptors, which inhibit release of transmitters from presynaptic neurons and also inhibit diacylglycerol lipase alpha, to prevent synthesis of the endocannabinoid 2-arachidonoyl glycerol. However, randomized trials are needed to clarify their effects in patients; these compounds can have adverse effects on the central nervous system (such as somnolence and psychosis) or the developing fetus, when used for nausea and vomiting during pregnancy. Cannabinoid-based therapies can also hide symptoms and disease processes, such as in patients with inflammatory bowel diseases. It is important for gastroenterologists and hepatologists to understand cannabinoid mechanisms, effects, and risks.
Collapse
Affiliation(s)
- Daniel B Maselli
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
10
|
Dahiya DS, Kichloo A, Shaka H, Singh J, Edigin E, Solanki D, Eseaton PO, Wani F. Gastroparesis with Cannabis Use: A Retrospective Study from the Nationwide Inpatient Sample. Postgrad Med 2021; 133:791-797. [PMID: 34096455 DOI: 10.1080/00325481.2021.1940219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Background: With increasing utilization of cannabis in the United States (US), clinicians may encounter more cases of Gastroparesis (GP) in coming years.Objective: The primary outcome was inpatient mortality for GP with cannabis use. Secondary outcomes included system-based complications and the burden of the disease on the US healthcare system.Methods: From the Nationwide Inpatient Sample (NIS), we identified adult hospitalizations with a primary discharge diagnosis of GP for 2016 and 2017. Individuals ≤18 years of age were excluded. The study population was subdivided based on a secondary diagnosis of cannabis use. The outcomes included biodemographic characteristics, mortality, complications, and burden of disease on the US healthcare system.Results: For 2016 and 2017, we identified 99,695 hospitalizations with GP. Of these hospitalizations, 8,870 had a secondary diagnosis of cannabis use while 90,825 served as controls. The prevalence of GP with cannabis use was 8.9%. For GP with cannabis use, the patients were younger (38.5 vs 48.1 years, p < 0.001) with a Black predominance (Table 1) and lower proportion of females (52.3 vs 68.3%, p < 0.001) compared to the non-cannabis use cohort. Additionally, the cannabis use cohort had higher percentage of patients with co-morbidities like hypertension, diabetes mellitus and a history of smoking. The inpatient mortality for GP with cannabis use was noted to be 0.27%. Furthermore, we noted shorter mean length of stay (LOS) (3.4 vs 4.4 days, aMD: -0.7, 95%CI: -0.9 - [-0.5], p < 0.001), lower mean total hospital charge (THC) ($30,400 vs $38,100, aMD: -5100, 95%CI: -6900 - [-3200], p < 0.001), and lower rates of sepsis (0.11 vs 0.60%, aOR: 0.22, 95% CI: 0.05-0.91, p = 0.036) for GP hospitalizations with cannabis use compared to the non-cannabis use cohort.Conclusion: Inpatient mortality for GP hospitalizations with cannabis use was 0.27%. Additionally, these patients had shorter LOS, lower THC, and lower sepsis rates.
Collapse
Affiliation(s)
- Dushyant Singh Dahiya
- Department of Internal Medicine, Central Michigan University, Saginaw, Michigan, USA
| | - Asim Kichloo
- Department of Internal Medicine, Central Michigan University, Saginaw, Michigan, USA.,Department of Internal Medicine, Samaritan Medical Center, Watertown, New York, USA
| | - Hafeez Shaka
- Department of Internal Medicine, John H Stroger Jr. Hospital Cook County, Chicago, Ilinois, USA
| | - Jagmeet Singh
- Department of Internal Medicine, Geisinger School of Medicine, Scranton, Pennsylvania, USA
| | - Ehizogie Edigin
- Department of Internal Medicine, John H Stroger Jr. Hospital Cook County, Chicago, Ilinois, USA
| | - Dhanshree Solanki
- Department of Internal Medicine, Rutgers University, New Brunswick, New Jersey, USA
| | | | - Farah Wani
- Department of Family Medicine, Samaritan Medical Center, Watertown, New York, USA
| |
Collapse
|
11
|
Karoly HC, Mueller RL, Bidwell LC, Hutchison KE. Cannabinoids and the Microbiota-Gut-Brain Axis: Emerging Effects of Cannabidiol and Potential Applications to Alcohol Use Disorders. Alcohol Clin Exp Res 2019; 44:340-353. [PMID: 31803950 DOI: 10.1111/acer.14256] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
The endocannabinoid system (ECS) has emerged in recent years as a potential treatment target for alcohol use disorders (AUD). In particular, the nonpsychoactive cannabinoid cannabidiol (CBD) has shown preclinical promise in ameliorating numerous clinical symptoms of AUD. There are several proposed mechanism(s) through which cannabinoids (and CBD in particular) may confer beneficial effects in the context of AUD. First, CBD may directly impact specific brain mechanisms underlying AUD to influence alcohol consumption and the clinical features of AUD. Second, CBD may influence AUD symptoms through its actions across the digestive, immune, and central nervous systems, collectively known as the microbiota-gut-brain axis (MGBA). Notably, emerging work suggests that alcohol and cannabinoids exert opposing effects on the MGBA. Alcohol is linked to immune dysfunction (e.g., chronic systemic inflammation in the brain and periphery) as well as disturbances in gut microbial species (microbiota) and increased intestinal permeability. These MGBA disruptions have been associated with AUD symptoms such as craving and impaired cognitive control. Conversely, existing preclinical data suggest that cannabinoids may confer beneficial effects on the gastrointestinal and immune system, such as reducing intestinal permeability, regulating gut bacteria, and reducing inflammation. Thus, cannabinoids may exert AUD harm-reduction effects, at least in part, through their beneficial actions across the MGBA. This review will provide a brief introduction to the ECS and the MGBA, discuss the effects of cannabinoids (particularly CBD) and alcohol in the brain, gut, and immune system (i.e., across the MGBA), and put forth a theoretical framework to inform future research questions.
Collapse
Affiliation(s)
- Hollis C Karoly
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, Colorado
| | - Raeghan L Mueller
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| | - L Cinnamon Bidwell
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, Colorado.,Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| | - Kent E Hutchison
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| |
Collapse
|
12
|
Camilleri M. Cannabinoids and gastrointestinal motility: Pharmacology, clinical effects, and potential therapeutics in humans. Neurogastroenterol Motil 2018; 30:e13370. [PMID: 29745439 PMCID: PMC6150799 DOI: 10.1111/nmo.13370] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cannabinoid agents and cannabis are frequently used for relief of diverse gastrointestinal symptoms. PURPOSE The objective of this article is to increase the awareness of gastroenterologists to the effects of cannabinoids on gastrointestinal motility, as gastroenterologists are likely to encounter patients who are taking cannabinoids, or those with dysmotility that may be associated with cannabinoid mechanisms. The non-selective cannabinoid agonist, dronabinol, retards gastric emptying and inhibits colonic tone and phasic pressure activity. In addition to the well-recognized manifestations of cannabinoid hyperemesis, cannabinoid mechanisms result in human and animal models of gastrointestinal and colonic dysmotility. Decreased enteric FAAH activity is associated with colonic inertia in slow transit constipation and, conversely, the orphan G protein-coupled receptor, GPR55, is overexpressed in streptozotocin-induced gastroparesis, suggesting it is involved in inhibition of antral motility. Experimental therapies in gastrointestinal motility and functional disorders are focused predominantly on pain relief mediated through cannabinoid 2 receptors or inhibition of DAGLα to normalize colonic transit. In summary, cannabinoid mechanisms and pharmacology are relevant to the current and future practice of clinical gastroenterology.
Collapse
Affiliation(s)
- Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Mayo Clinic, Rochester, MN
| |
Collapse
|
13
|
Murillo-Rodríguez E, Arankowsky-Sandoval G, Rocha NB, Peniche-Amante R, Veras AB, Machado S, Budde H. Systemic Injections of Cannabidiol Enhance Acetylcholine Levels from Basal Forebrain in Rats. Neurochem Res 2018; 43:1511-1518. [PMID: 29876791 DOI: 10.1007/s11064-018-2565-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/09/2018] [Accepted: 05/28/2018] [Indexed: 12/17/2022]
Abstract
Cannabis sativa is a plant that contains more than 500 components, of which the most studied are Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD). Several studies have indicated that CBD displays neurobiological effects, including wake promotion. Moreover, experimental evidence has shown that injections of CBD enhance wake-related compounds, such as monoamines (dopamine, serotonin, epinephrine, and norepinephrine). However, no clear evidence is available regarding the effects of CBD on additional wake-related neurochemicals such as acetylcholine (ACh). Here, we demonstrate that systemic injections of CBD (0, 5, 10 or 30 mg/kg, i.p.) at the beginning of the lights-on period, increase the extracellular levels of ACh collected from the basal forebrain and measured by microdialysis and HPLC means. Moreover, the time course effects on the contents of ACh were present 5 h post-injection of CBD. Altogether, these data demonstrate that CBD increases ACh levels in a brain region related to wake control. This study is the first to show the effects of ACh levels in CBD-treated rats and suggests that the basal forebrain might be a site of action of CBD for wakefulness modulation.
Collapse
Affiliation(s)
- Eric Murillo-Rodríguez
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud, Universidad Anáhuac Mayab, Carretera Mérida-Progreso Km. 15.5, A.P. 96 Cordemex, C.P. 97310, Mérida, Yucatán, Mexico. .,Intercontinental Neuroscience Research Group, Mérida, Yucatán, Mexico.
| | - Gloria Arankowsky-Sandoval
- Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Nuno Barbosa Rocha
- Intercontinental Neuroscience Research Group, Mérida, Yucatán, Mexico.,Health School, Polytechnic Institute of Porto, Porto, Portugal
| | - Rodrigo Peniche-Amante
- Coordinación de Psicología Organizacional, División de Estudios Profesionales, Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - André Barciela Veras
- Intercontinental Neuroscience Research Group, Mérida, Yucatán, Mexico.,Universidade Catolica Dom Bosco, Campo Grande, Mato Grosso Do Sul, Brazil
| | - Sérgio Machado
- Intercontinental Neuroscience Research Group, Mérida, Yucatán, Mexico.,Laboratory of Panic and Respiration, Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Salgado de Oliveira University, Rio de Janeiro, Brazil.,Physical Activity Neuroscience Laboratory, Physical Activity Sciences Postgraduate Program-Salgado de Oliveira University (UNIVERSO), Rio de Janeiro, Brazil
| | - Henning Budde
- Intercontinental Neuroscience Research Group, Mérida, Yucatán, Mexico.,Faculty of Human Sciences, Medical School Hamburg, Hamburg, Germany.,Physical Activity, Physical Education, Health and Sport Research Centre (PAPESH), Sports Science Department, School of Science and Engineering, Reykjavik University, Reykjavík, Iceland.,Lithuanian Sports University, Kaunas, Lithuania
| |
Collapse
|
14
|
Fabisiak A, Fichna J. Cannabinoids as gastrointestinal anti-inflammatory drugs. Neurogastroenterol Motil 2017; 29. [PMID: 28239924 DOI: 10.1111/nmo.13038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 02/08/2023]
Abstract
In this mini-review, we focus on the potential of the endocannabinoid system as a target for novel therapies to treat gastrointestinal (GI) inflammation. We discuss the organization of the endocannabinoid signaling and present possible pharmacological sites in the endocannabinoid system. We also refer to recent clinical findings in the field. Finally, we point at the potential use of cannabinoids at low, non-psychoactive doses to counteract non-inflammatory pathological events in the GI tract, like chemotherapy-induced diarrhea, as evidenced by Abalo et al. in the rat model.
Collapse
Affiliation(s)
- A Fabisiak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - J Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
15
|
McQuade RM, Stojanovska V, Abalo R, Bornstein JC, Nurgali K. Chemotherapy-Induced Constipation and Diarrhea: Pathophysiology, Current and Emerging Treatments. Front Pharmacol 2016; 7:414. [PMID: 27857691 PMCID: PMC5093116 DOI: 10.3389/fphar.2016.00414] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/19/2016] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal (GI) side-effects of chemotherapy are a debilitating and often overlooked clinical hurdle in cancer management. Chemotherapy-induced constipation (CIC) and Diarrhea (CID) present a constant challenge in the efficient and tolerable treatment of cancer and are amongst the primary contributors to dose reductions, delays and cessation of treatment. Although prevalence of CIC is hard to estimate, it is believed to affect approximately 16% of cancer patients, whilst incidence of CID has been estimated to be as high as 80%. Despite this, the underlying mechanisms of both CID and CIC remain unclear, but are believed to result from a combination of intersecting mechanisms including inflammation, secretory dysfunctions, GI dysmotility and alterations in GI innervation. Current treatments for CIC and CID aim to reduce the severity of symptoms rather than combating the pathophysiological mechanisms of dysfunction, and often result in worsening of already chronic GI symptoms or trigger the onset of a plethora of other side-effects including respiratory depression, uneven heartbeat, seizures, and neurotoxicity. Emerging treatments including those targeting the enteric nervous system present promising avenues to alleviate CID and CIC. Identification of potential targets for novel therapies to alleviate chemotherapy-induced toxicity is essential to improve clinical outcomes and quality of life amongst cancer sufferers.
Collapse
Affiliation(s)
- Rachel M McQuade
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne VIC, Australia
| | - Vanesa Stojanovska
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne VIC, Australia
| | - Raquel Abalo
- Área de Farmacología y Nutrición, Universidad Rey Juan CarlosMadrid, Spain; Grupo de Excelencia Investigadora URJC, Banco de Santander Grupo Multidisciplinar de Investigación y Tratamiento del Dolor, Universidad Rey Juan CarlosMadrid, Spain; Unidad Asociada al Instituto de Química Médica del Consejo Superior de Investigaciones CientíficasMadrid, Spain; Unidad Asociada al Instituto de Investigación en Ciencias de la Alimentación del Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Joel C Bornstein
- Department of Physiology, University of Melbourne, Melbourne VIC, Australia
| | - Kulmira Nurgali
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne VIC, Australia
| |
Collapse
|
16
|
Safdari B, Sia T, Wattchow D, Smid S. Effects of pro-inflammatory cytokines, lipopolysaccharide and COX-2 mediators on human colonic neuromuscular function and epithelial permeability. Cytokine 2016; 83:231-238. [DOI: 10.1016/j.cyto.2016.04.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 01/08/2023]
|
17
|
Li XH, Lin ML, Wang ZL, Wang P, Tang HH, Lin YY, Li N, Fang Q, Wang R. Central administrations of hemopressin and related peptides inhibit gastrointestinal motility in mice. Neurogastroenterol Motil 2016; 28:891-9. [PMID: 26991932 DOI: 10.1111/nmo.12789] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 01/06/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Hemopressin was identified as an endogenous inverse agonist/antagonist of CB1 receptor, whereas VD-hemopressin(α) [VD-Hpα] and VD-hemopressin(β) [VD-Hpβ] were found as the novel endogenous peptidic agonists of cannabinoid receptors. As cannabinoids are potent modulators of gastrointestinal (GI) motility, our aim was to characterize the effects of hemopressin and related peptides on GI motility in vivo. METHODS The responses of intracerebroventricular (i.c.v.) administration of the reference compound WIN55,212-2, hemopressin, and related peptides to GI motility were investigated by measuring upper GI transit, colonic bead expulsion, and whole gut transit in mice. KEY RESULTS Central administration of the classical cannabinoid receptor agonist WIN55,212-2 dose-dependently slowed upper GI transit, colonic expulsion, and whole gut transit via CB1 receptor. Similarly, Hpα, VD-Hpα, and VD-Hpβ delayed upper GI transit and colonic expulsion after i.c.v. administration. At the high doses, Hpα and VD-Hpβ inhibited whole gut transit, whereas VD-Hpα had no effect on whole gut transit. In addition, the effects of these three peptides on GI transit were antagonized by the CB1 receptor selective antagonist AM251, but not by the CB2 receptor selective antagonist AM630. CONCLUSION & INFERENCES The endogenous cannabinoid peptide ligands hemopressin, VD-Hpα, and VD-Hpβ inhibited GI transit through the activation of CB1 , but not CB2 cannabinoid receptors. The lower potencies of the hemopressin and related peptides in GI transit assays may be important for the future development of cannabinoid peptides as the therapeutic analgesics with limited GI side effects.
Collapse
Affiliation(s)
- X-H Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - M-L Lin
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Z-L Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - P Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - H-H Tang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Y-Y Lin
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - N Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Q Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - R Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
18
|
Bozkurt TE, Kaya Y, Durlu-Kandilci NT, Onder S, Sahin-Erdemli I. The effect of cannabinoids on dinitrofluorobenzene-induced experimental asthma in mice. Respir Physiol Neurobiol 2016; 231:7-13. [PMID: 27216000 DOI: 10.1016/j.resp.2016.05.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 05/13/2016] [Accepted: 05/20/2016] [Indexed: 10/21/2022]
Abstract
Cannabinoids have anti-inflammatory effects and can produce bronchodilation in the airways. We have investigated the effects of cannabinoids on tracheal hyperreactivity and airway inflammation in dinitrofluorobenzene (DNFB)-induced experimental non-atopic asthma in mice. 5-hydroxytryptamine (5-HT)-induced contraction response was enhanced while carbachol- and electrical field stimulation-induced contractions, and isoprenaline-induced relaxation responses were remained unchanged in DNFB group. The increased 5-HT-induced contractions were inhibited by incubation with either atropine or tetrodotoxin. DNFB application resulted in increased macrophage number in the bronchoalveolar lavage fluid (BALF). In vivo ACEA (CB1 agonist) treatment prevented the increase in 5-HT contractions, while JWH133 (CB2 agonist) had no effect. However, neither ACEA nor JWH133 prevented the increase in macrophage number in BALF. In vitro ACEA incubation also inhibited the increase in 5-HT contraction in DNFB group. These results show that cannabinoid CB1 receptor agonist can prevent tracheal hyperreactivity to 5-HT in DNFB-induced non-atopic asthma in mice.
Collapse
Affiliation(s)
- Turgut Emrah Bozkurt
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Sihhiye, Ankara 06100, Turkey.
| | - Yesim Kaya
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Sihhiye, Ankara 06100, Turkey
| | | | - Sevgen Onder
- Hacettepe University, Faculty of Medicine, Department of Pathology, Sihhiye, Ankara 06100, Turkey
| | - Inci Sahin-Erdemli
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Sihhiye, Ankara 06100, Turkey
| |
Collapse
|
19
|
Grassin-Delyle S, Naline E, Buenestado A, Faisy C, Alvarez JC, Salvator H, Abrial C, Advenier C, Zemoura L, Devillier P. Cannabinoids inhibit cholinergic contraction in human airways through prejunctional CB1 receptors. Br J Pharmacol 2014; 171:2767-77. [PMID: 24467410 DOI: 10.1111/bph.12597] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 12/11/2013] [Accepted: 01/08/2014] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND AND PURPOSE Marijuana smoking is widespread in many countries, and the use of smoked synthetic cannabinoids is increasing. Smoking a marijuana joint leads to bronchodilation in both healthy subjects and asthmatics. The effects of Δ(9) -tetrahydrocannabinol and synthetic cannabinoids on human bronchus reactivity have not previously been investigated. Here, we sought to assess the effects of natural and synthetic cannabinoids on cholinergic bronchial contraction. EXPERIMENTAL APPROACH Human bronchi isolated from 88 patients were suspended in an organ bath and contracted by electrical field stimulation (EFS) in the presence of the phytocannabinoid Δ(9) -tetrahydrocannabinol, the endogenous 2-arachidonoylglycerol, the synthetic dual CB1 and CB2 receptor agonists WIN55,212-2 and CP55,940, the synthetic, CB2 -receptor-selective agonist JWH-133 or the selective GPR55 agonist O-1602. The receptors involved in the response were characterized by using selective CB1 and CB2 receptor antagonists (SR141716 and SR144528 respectively). KEY RESULTS Δ(9) -tetrahydrocannabinol, WIN55,212-2 and CP55,940 induced concentration-dependent inhibition of cholinergic contractions, with maximum inhibitions of 39, 76 and 77% respectively. JWH-133 only had an effect at high concentrations. 2-Arachidonoylglycerol and O-1602 were devoid of any effect. Only CB1 receptors were involved in the response because the effects of cannabinoids were antagonized by SR141716, but not by SR144528. The cannabinoids did not alter basal tone or contractions induced by exogenous Ach. CONCLUSIONS AND IMPLICATIONS Activation of prejunctional CB1 receptors mediates the inhibition of EFS-evoked cholinergic contraction in human bronchus. This mechanism may explain the acute bronchodilation produced by marijuana smoking.
Collapse
Affiliation(s)
- S Grassin-Delyle
- Laboratoire de Pharmacologie Respiratoire, UPRES EA220, Hôpital Foch, Suresnes, France; Laboratoire de Pharmacologie-Toxicologie, Hôpital Raymond Poincaré, Garches, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Jiang Y, Nie Y, Li Y, Zhang L. Association of cannabinoid type 1 receptor and fatty acid amide hydrolase genetic polymorphisms in Chinese patients with irritable bowel syndrome. J Gastroenterol Hepatol 2014; 29:1186-91. [PMID: 24444427 DOI: 10.1111/jgh.12513] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/12/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIM The endocannabinoid system is involved in the pathophysiology of irritable bowel syndrome (IBS). Here, we investigated whether genetic variants of the cannabinoid type 1 receptor (CNR1) and fatty acid amide hydrolase (FAAH) are associated with the pathogenesis of IBS. METHODS In total, 292 patients with IBS and 298 healthy controls were enrolled. Polymerase chain reaction (PCR) and DNA sequencing were applied to determine the genotyping of polymorphic triplet AAT repeats located at the 3'-end of the CNR1 gene. The single nucleotide polymorphism (SNP) C385A at the FAAH gene (rs324420) was determined by PCR using TaqMan SNP Genotyping Assay Sets. RESULTS A total of eight alleles with AAT triplet repeats in the CNR1 gene were detected. The alleles were divided into two groups (≤ 10 and > 10) and three genotypes (≤ 10/≤ 10, ≤ 10/> 10, and > 10/> 10). The frequency of > 10 alleles was significantly higher in the IBS group (90.6%) when compared with the control group {81.7%, P < 0.001, odds ratio (OR) (95% confidence interval [CI]) = -0.128}. In addition, the genotypes > 10/> 10 were significantly associated with IBS (P < 0.001, OR [95% CI] = -0.163). The frequency of the A allele and the distribution of the AA genotype in the FAAH gene in the IBS group were not significantly different from those in the control group (P > 0.05), even though the frequency of the AA genotype was lower in the IBS group (1.0%) than that in the control group (3.4%, P = 0.089, OR [95% CI] = 3.345). CONCLUSIONS The variation in the (AAT)n repeat of the CNR1 gene conferred an increased risk for developing IBS, while rs324420 (C385) in the FAAH gene was not associated with IBS pathogenesis.
Collapse
Affiliation(s)
- Yingjie Jiang
- Department of Gastroenterology Hepatology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | | | | | | |
Collapse
|
21
|
Sanger GJ, Broad J, Kung V, Knowles CH. Translational neuropharmacology: the use of human isolated gastrointestinal tissues. Br J Pharmacol 2014; 168:28-43. [PMID: 22946540 DOI: 10.1111/j.1476-5381.2012.02198.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 08/08/2012] [Accepted: 08/23/2012] [Indexed: 12/22/2022] Open
Abstract
Translational sciences increasingly emphasize the measurement of functions in native human tissues. However, such studies must confront variations in patient age, gender, genetic background and disease. Here, these are discussed with reference to neuromuscular and neurosecretory functions of the human gastrointestinal (GI) tract. Tissues are obtained after informed consent, in collaboration with surgeons (surgical techniques help minimize variables) and pathologists. Given the difficulties of directly recording from human myenteric neurones (embedded between muscle layers), enteric motor nerve functions are studied by measuring muscle contractions/relaxations evoked by electrical stimulation of intrinsic nerves; responses are regionally dependent, often involving cholinergic and nitrergic phenotypes. Enteric sensory functions can be studied by evoking the peristaltic reflex, involving enteric sensory and motor nerves, but this has rarely been achieved. As submucosal neurones are more accessible (after removing the mucosa), direct neuronal recordings are possible. Neurosecretory functions are studied by measuring changes in short-circuit current across the mucosa. For all experiments, basic questions must be addressed. Because tissues are from patients, what are the controls and the influence of disease? How long does it take before function fully recovers? What is the impact of age- and gender-related differences? What is the optimal sample size? Addressing these and other questions minimizes variability and raises the scientific credibility of human tissue research. Such studies also reduce animal use. Further, the many differences between animal and human GI functions also means that human tissue research must question the ethical validity of using strains of animals with unproved translational significance.
Collapse
Affiliation(s)
- G J Sanger
- Neurogastroenterology Group, Blizard Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, UK.
| | | | | | | |
Collapse
|
22
|
Sun Y, Chen JD. Rimonabant, gastrointestinal motility and obesity. Curr Neuropharmacol 2013; 10:212-8. [PMID: 23449551 PMCID: PMC3468875 DOI: 10.2174/157015912803217297] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 06/04/2012] [Accepted: 07/09/2012] [Indexed: 01/09/2023] Open
Abstract
Background: Obesity and overweight affect more than half of the US population and are associated with a number of diseases. Rimonabant, a cannabinoid receptor 1 blocker in the endocannabinoid (EC) system, was indicated in Europe for the treatment of obesity and overweight patients with associated risk factors but withdrawn on Jan, 2009 because of side effects. Many studies have reported the effects of rimonabant on gastrointestinal (GI) motility and food intake. The aims of this review are: to review the relationship of EC system with GI motility and food intake; to review the
studies of rimonabant on GI motility, food intake and obesity; and to report the tolerance and side effects of rimonabant.
Methods: the literature (Pubmed database) was searched using keywords: rimonabant, obesity and GI motility. Results: GI motility is related with appetite, food intake and nutrients absorption. The EC system inhibits GI motility, reduces emesis and increases food intake; Rimonabant accelerates gastric emptying and intestinal transition but decreases energy metabolism and food intake. There is rapid onset of tolerance to the prokinetic effect of rimonabant. The main side effects of rimonabant are depression and GI symptoms. Conclusions: Rimonabant has significant effects on energy metabolism and food intake, probably mediated via its effects on GI motility.
Collapse
Affiliation(s)
- Yan Sun
- Veterans Research and Education Foundation, VA Medical Center, Oklahoma City, OK
| | | |
Collapse
|
23
|
Camilleri M, Kolar GJ, Vazquez-Roque MI, Carlson P, Burton DD, Zinsmeister AR. Cannabinoid receptor 1 gene and irritable bowel syndrome: phenotype and quantitative traits. Am J Physiol Gastrointest Liver Physiol 2013; 304:G553-60. [PMID: 23306084 PMCID: PMC3602676 DOI: 10.1152/ajpgi.00376.2012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genetic variations in metabolism of endocannabinoids and in CNR1 (gene for cannabinoid 1 receptor) are associated with symptom phenotype, colonic transit, and left colon motility in irritable bowel syndrome (IBS). Our aim was to evaluate associations between two variations in CNR1 genotype (rs806378 and [AAT]n triplets) with symptom phenotype, small bowel and colonic transit, and rectal sensations in 455 patients with IBS and 228 healthy controls. Small bowel and colonic transit were measured by scintigraphy, rectal sensation by isobaric distensions. Associations with genotype were assessed by χ(2) test (symptom phenotype) and ANCOVA (quantitative traits) based on a dominant genetic model. Significant association of CNR1 rs806378 (but not CNR1 [AAT]n) genotype and symptom phenotype was observed (χ(2) P = 0.028). There was significant association of CNR1 rs806378 (P = 0.014; CC vs. CT/TT) with colonic transit in IBS-diarrhea (IBS-D) group; the TT group had the fastest colonic transit at 24 and 48 h. There was significant overall association of CNR1 rs806378 with sensation rating of gas (P = 0.025), but not pain; the strongest associations for gas ratings were in IBS-D (P = 0.002) and IBS-alternating (P = 0.025) subgroups. For CNR1 (AAT)n, gene-by-phenotype interactions were observed for colonic transit at 24 (P = 0.06) and 48 h (P = 0.002) and gas (P = 0.046, highest for IBS-D, P = 0.034), but not pain sensation; the strongest association with transit was in controls, not in IBS. These data support the hypothesis that cannabinoid receptors may play a role in control of colonic transit and sensation in humans and deserve further study as potential mediators or therapeutic targets in lower functional gastrointestinal disorders.
Collapse
Affiliation(s)
- Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Mayo Clinic, Rochester, MN 55905, USA.
| | - Gururaj J. Kolar
- 1Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Mayo Clinic, Rochester, Minnesota; and
| | | | - Paula Carlson
- 1Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Mayo Clinic, Rochester, Minnesota; and
| | - Duane D. Burton
- 1Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Mayo Clinic, Rochester, Minnesota; and
| | - Alan R. Zinsmeister
- 2Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota; and
| |
Collapse
|
24
|
Schicho R, Storr M. Targeting the endocannabinoid system for gastrointestinal diseases: future therapeutic strategies. Expert Rev Clin Pharmacol 2012; 3:193-207. [PMID: 22111567 DOI: 10.1586/ecp.09.62] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cannabinoids extracted from the marijuana plant (Cannabis sativa) and synthetic cannabinoids have numerous effects on gastrointestinal (GI) functions. Recent experimental data support an important role for cannabinoids in GI diseases. Genetic studies in humans have proven that defects in endocannabinoid metabolism underlie functional GI disorders. Mammalian cells have machinery, the so-called endocannabinoid system (ECS), to produce and metabolize their own cannabinoids in order to control homeostasis of the gut in a rapidly adapting manner. Pharmacological manipulation of the ECS by cannabinoids, or by drugs that raise the levels of endogenous cannabinoids, have shown beneficial effects on GI pathophysiology. This review gives an introduction into the functions of the ECS in the GI tract, highlights the role of the ECS in GI diseases and addresses its potential pharmacological exploitation.
Collapse
Affiliation(s)
- Rudolf Schicho
- Division of Gastroenterology, Department of Medicine, University of Calgary, 6D25, TRW Building, 3280 Hospital Drive NW, Calgary T2N 4N1, AB, Canada.
| | | |
Collapse
|
25
|
Garella R, Baccari MC. Endocannabinoids modulate non-adrenergic, non-cholinergic inhibitory neurotransmission in strips from the mouse gastric fundus. Acta Physiol (Oxf) 2012; 206:80-7. [PMID: 22510304 DOI: 10.1111/j.1748-1716.2012.02444.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/06/2011] [Accepted: 04/10/2012] [Indexed: 02/06/2023]
Abstract
AIM To investigate the effects of endocannabinoids on non-adrenergic, non-cholinergic (NANC) relaxant responses in gastric strips from mice. METHODS Gastric longitudinal strips from the fundus region were mounted in organ baths for isometric recording. RESULTS In carbachol-precontracted strips, electrical field stimulation (EFS) elicited tetrodotoxin (TTX)-sensitive fast nitrergic relaxant responses that were followed, at the highest stimulation frequency, by sustained relaxations. The latter were abolished by α-chymotrypsin. Anandamide caused a TTX-sensitive relaxation that was abolished by α-chymotrypsin but unaffected by the nitric oxide (NO) synthesis inhibitor, Nω-nitro-L-arginine (L-NNA). Anandamide reduced the amplitude of EFS-induced fast relaxations, whereas increased that of sustained ones. Relaxation to the nicotinic receptor agonist dimethylphenyl piperazinium iodide (DMPP) was decreased in amplitude by either anandamide or L-NNA, whereas, surprisingly, it was increased by α-chymotrypsin and abolished by L-NNA plus α-chymotrypsin. Relaxation to vasoactive intestinal polypeptide (VIP) was not influenced by anandamide or L-NNA and was abolished by α-chymotrypsin. Following VIP desensitization, fast relaxant responses to EFS were reduced and the sustained ones abolished. The CB1 receptor antagonist AM251 increased, only at the highest stimulation frequency, the amplitude of the EFS-induced fast relaxation and reduced the sustained one. AM251 increased the response to DMPP and abolished that to anandamide. The CB2 receptor antagonist AM630 had no effects. CONCLUSION These results indicate that endocannabinoids modulate, via prejunctional CB1 receptors, the NANC peptidergic neurotransmission that, in turn, affects the nitrergic one.
Collapse
Affiliation(s)
- R. Garella
- Department of Physiological Sciences; University of Florence; Florence; Italy
| | - M. C. Baccari
- Department of Physiological Sciences; University of Florence; Florence; Italy
| |
Collapse
|
26
|
Wong BS, Camilleri M, Eckert D, Carlson P, Ryks M, Burton D, Zinsmeister AR. Randomized pharmacodynamic and pharmacogenetic trial of dronabinol effects on colon transit in irritable bowel syndrome-diarrhea. Neurogastroenterol Motil 2012; 24:358-e169. [PMID: 22288893 PMCID: PMC3775711 DOI: 10.1111/j.1365-2982.2011.01874.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Genetic variation in endocannabinoid metabolism is associated with colonic transit in irritable bowel syndrome (IBS) with diarrhea (IBS-D). The nonselective cannabinoid (CB) receptor agonist, dronabinol (DRO), reduced fasting colonic motility in nonconstipated IBS. FAAH and CNR1 variants influenced DRO's effects on colonic motility. Our aims were: (i) to compare dose-related effects of DRO to placebo (PLA) on gut transit in IBS-D, and (ii) to examine influence of genetic variations in CB mechanisms on DRO’s transit effects. METHODS Thirty-six IBS-D volunteers were randomized (double-blind, concealed allocation) to twice per day PLA (n = 13), DRO 2.5 mg (n = 10), or DRO 5 mg (n = 13) for 2 days. We assessed gastric, small bowel, and colonic transit by validated radioscintigraphy and genotyped the single nucleotide polymorphisms CNR1 rs806378 and FAAH rs324420. Data analysis utilized a dominant genetic model. KEY RESULTS Overall treatment effects of DRO on gastric, small bowel, or colonic transit were not detected. CNR1 rs806378 CT/TT was associated with a modest delay in colonic transit at 24 h compared with CC (P = 0.13 for differential treatment effects on postminus pretreatment changes in colonic transit by genotype). No significant interaction of treatment with FAAH rs324420 was detected. CONCLUSIONS & INFERENCES Overall, DRO 2.5 or 5 mg twice per day for 2 days had no effect on gut transit in IBS-D. There appears to be a treatment-by-genotype effect, whereby DRO preferentially delays colonic transit in those with the CNR1 rs806378 CT/TT genotypes. Further study of CB pharmacogenetics may help identify a subset of IBS-D patients most likely to benefit from CB agonist therapy.
Collapse
Affiliation(s)
- Banny S. Wong
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Mayo Clinic, Rochester, Minnesota, USA
| | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Mayo Clinic, Rochester, Minnesota, USA
| | - Deborah Eckert
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Mayo Clinic, Rochester, Minnesota, USA
| | - Paula Carlson
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Mayo Clinic, Rochester, Minnesota, USA
| | - Michael Ryks
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Mayo Clinic, Rochester, Minnesota, USA
| | - Duane Burton
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Mayo Clinic, Rochester, Minnesota, USA
| | - Alan R. Zinsmeister
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
27
|
Kopach O, Vats J, Netsyk O, Voitenko N, Irving A, Fedirko N. Cannabinoid receptors in submandibular acinar cells: functional coupling between saliva fluid and electrolytes secretion and Ca2+ signalling. J Cell Sci 2012; 125:1884-95. [PMID: 22366450 DOI: 10.1242/jcs.088930] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cannabinoid receptors (CBRs) belong to the G protein-coupled receptor superfamily, and activation of CBRs in salivary cells inhibits agonist-stimulated salivation and modifies saliva content. However, the role of different CBR subtypes in acinar cell physiology and in intracellular signalling remains unclear. Here, we uncover functional CB(1)Rs and CB(2)Rs in acinar cells of rat submandibular gland and their essential role in saliva secretion. Pharmacological activation of CB(1)Rs and CB(2)Rs in the submandibular gland suppressed saliva outflow and modified saliva content produced by the submandibular gland in vivo. Using Na(+)-selective microelectrodes to record secretory Na(+) responses in the lumen of acini, we observed a reduction in Na(+) transport following the activation of CBRs, which was counteracted by the selective CB(1)R antagonist AM251. In addition, activation of CB(1)Rs or CB Rs caused inhibition of Na(+)-K(+) 2 -ATPase activity in microsomes derived from the gland tissue as well as in isolated acinar cells. Using a Ca(2+) imaging technique, we showed that activation of CB(1)Rs and CB(2)Rs alters [Ca(2+)](cyt) signalling in acinar cells by distinct pathways, involving Ca(2+) release from the endoplasmic reticulum (ER) and store-operated Ca(2+) entry (SOCE), respectively. Our data demonstrate the expression of CB(1)Rs and CB(2)Rs in acinar cells, and their involvement in the regulation of salivary gland functioning.
Collapse
Affiliation(s)
- Olga Kopach
- State Key Laboratory of Molecular and Cellular Biology, Bogomoletz Institute of Physiology, Kiev 01024, Ukraine
| | | | | | | | | | | |
Collapse
|
28
|
Galli JA, Sawaya RA, Friedenberg FK. Cannabinoid hyperemesis syndrome. CURRENT DRUG ABUSE REVIEWS 2011; 4:241-9. [PMID: 22150623 PMCID: PMC3576702 DOI: 10.2174/1874473711104040241] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 10/14/2011] [Accepted: 10/26/2011] [Indexed: 11/22/2022]
Abstract
Coinciding with the increasing rates of cannabis abuse has been the recognition of a new clinical condition known as Cannabinoid Hyperemesis Syndrome. Cannabinoid Hyperemesis Syndrome is characterized by chronic cannabis use, cyclic episodes of nausea and vomiting, and frequent hot bathing. Cannabinoid Hyperemesis Syndrome occurs by an unknown mechanism. Despite the well-established anti-emetic properties of marijuana, there is increasing evidence of its paradoxical effects on the gastrointestinal tract and CNS. Tetrahydrocannabinol, cannabidiol, and cannabigerol are three cannabinoids found in the cannabis plant with opposing effects on the emesis response. The clinical course of Cannabinoid Hyperemesis Syndrome may be divided into three phases: prodromal, hyperemetic, and recovery phase. The hyperemetic phase usually ceases within 48 hours, and treatment involves supportive therapy with fluid resuscitation and anti-emetic medications. Patients often demonstrate the learned behavior of frequent hot bathing, which produces temporary cessation of nausea, vomiting, and abdominal pain. The broad differential diagnosis of nausea and vomiting often leads to delay in the diagnosis of Cannabinoid Hyperemesis Syndrome. Cyclic Vomiting Syndrome shares several similarities with CHS and the two conditions are often confused. Knowledge of the epidemiology, pathophysiology, and natural course of Cannabinoid Hyperemesis Syndrome is limited and requires further investigation.
Collapse
|
29
|
Wong BS, Camilleri M, Busciglio I, Carlson P, Szarka LA, Burton D, Zinsmeister AR. Pharmacogenetic trial of a cannabinoid agonist shows reduced fasting colonic motility in patients with nonconstipated irritable bowel syndrome. Gastroenterology 2011; 141:1638-47.e1-7. [PMID: 21803011 PMCID: PMC3202649 DOI: 10.1053/j.gastro.2011.07.036] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/01/2011] [Accepted: 07/19/2011] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Cannabinoid receptors are located on cholinergic neurons. Genetic variants that affect endocannabinoid metabolism are associated with colonic transit in patients with irritable bowel syndrome (IBS) with diarrhea. We compared the effects of dronabinol, a nonselective agonist of the cannabinoid receptor, with those of placebo on colonic motility and sensation in patients with IBS, and examined the effects of IBS subtype and specific genetic variants in cannabinoid mechanisms. METHODS Seventy-five individuals with IBS (35 with IBS with constipation, 35 with IBS with diarrhea, and with 5 IBS alternating) were randomly assigned to groups that were given 1 dose of placebo or 2.5 mg or 5.0 mg dronabinol. We assessed left colonic compliance, motility index (MI), tone, and sensation during fasting and after a meal. We analyzed the single nucleotide polymorphisms CNR1 rs806378, fatty acid amide hydrolase (FAAH) rs324420, and MGLL rs4881. RESULTS In all patients, dronabinol decreased fasting proximal left colonic MI compared with placebo (overall P = .05; for 5 mg dronabinol, P = .046), decreased fasting distal left colonic MI (overall P = .08; for 5 mg, P = .13), and increased colonic compliance (P = .058). The effects of dronabinol were greatest in patients with IBS with diarrhea or IBS alternating (proximal colonic MI, overall P = .022; compliance, overall P = .03). Dronabinol did not alter sensation or tone. CNR1 rs806378 (CC vs CT/TT) appeared to affect fasting proximal MI in all patients with IBS (P = .075). Dronabinol affected fasting distal MI in patients, regardless of FAAH rs324420 variant (CA/AA vs CC) (P = .046); the greatest effects were observed among IBS with constipation patients with the FAAH CC variant (P = .045). Dronabinol affected fasting proximal MI in patients with IBS with diarrhea or alternating with the variant FAAH CA/AA (P = .013). CONCLUSIONS In patients with IBS with diarrhea or alternating, dronabinol reduces fasting colonic motility; FAAH and CNR1 variants could influence the effects of this drug on colonic motility.
Collapse
Affiliation(s)
- Banny S. Wong
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Biomedical Statistics and Informatics College of Medicine, Mayo Clinic Rochester, Minnesota
| | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Biomedical Statistics and Informatics College of Medicine, Mayo Clinic Rochester, Minnesota
| | - Irene Busciglio
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Biomedical Statistics and Informatics College of Medicine, Mayo Clinic Rochester, Minnesota
| | - Paula Carlson
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Biomedical Statistics and Informatics College of Medicine, Mayo Clinic Rochester, Minnesota
| | - Lawrence A. Szarka
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Biomedical Statistics and Informatics College of Medicine, Mayo Clinic Rochester, Minnesota
| | - Duane Burton
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Biomedical Statistics and Informatics College of Medicine, Mayo Clinic Rochester, Minnesota
| | - Alan R. Zinsmeister
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics College of Medicine, Mayo Clinic Rochester, Minnesota
| |
Collapse
|
30
|
Petrella C, Agostini S, Alema' GS, Casolini P, Carpino F, Giuli C, Improta G, Linari G, Petrozza V, Broccardo M. Cannabinoid agonist WIN55,212 in vitro inhibits interleukin-6 (IL-6) and monocyte chemo-attractant protein-1 (MCP-1) release by rat pancreatic acini and in vivo induces dual effects on the course of acute pancreatitis. Neurogastroenterol Motil 2010; 22:1248-56, e323. [PMID: 20659297 DOI: 10.1111/j.1365-2982.2010.01569.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Cannabinoids (CBs) evoke their effects by activating the cannabinoid receptor subtypes CB1-r and CB2-r and exert anti-inflammatory effects altering chemokine and cytokine expression. Various cytokines and chemokines are produced and released by rodent pancreatic acini in acute pancreatitis. Although CB1-r and CB2-r expressed in rat exocrine pancreatic acinar cells do not modulate digestive enzyme release, whether they modulate inflammatory mediators remains unclear. We investigated the CB-r system role on exocrine pancreas in unstimulated conditions and during acute pancreatitis. METHODS We evaluated in vitro and in vivo changes induced by WIN55,212 on the inflammatory variables amylasemia, pancreatic edema and morphology, and on acinar release and content of the cytokine interleukin-6 (IL-6) and chemokine monocyte chemo-attractant protein-1 (MCP-1) in untreated rats and rats with caerulein (CK)-induced pancreatitis. KEY RESULTS In the in vitro experiments, WIN55,212 (10(-6) mol L(-1)) inhibited IL-6 and MCP-1 release from acinar cells of unstimulated rats and after CK-induced pancreatitis. In vivo, when rats were pretreated with WIN55,212 (2 mg kg(-1), intraperitoneally) before experimentally-induced pancreatitis, serum amylase, pancreatic edema and IL-6 and MCP-1 acinar content diminished and pancreatic morphology improved. Conversely, when rats with experimentally-induced pancreatitis were post-treated with WIN55,212, pancreatitis worsened. CONCLUSIONS & INFERENCES These findings provide new evidence showing that the pancreatic CB1-r/CB2-r system modulates pro-inflammatory factor levels in rat exocrine pancreatic acinar cells. The dual, time-dependent WIN55,212-induced changes in the development and course of acute pancreatitis support the idea that the role of the endogenous CB receptor system differs according to the local inflammatory status.
Collapse
Affiliation(s)
- C Petrella
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Storr MA, Bashashati M, Hirota C, Vemuri VK, Keenan CM, Duncan M, Lutz B, Mackie K, Makriyannis A, MacNaughton WK, Sharkey KA. Differential effects of CB(1) neutral antagonists and inverse agonists on gastrointestinal motility in mice. Neurogastroenterol Motil 2010; 22:787-96, e223. [PMID: 20180825 PMCID: PMC2943391 DOI: 10.1111/j.1365-2982.2010.01478.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Cannabinoid type 1 (CB(1)) receptors are involved in the regulation of gastrointestinal (GI) motility and secretion. Our aim was to characterize the roles of the CB(1) receptor on GI motility and secretion in vitro and in vivo by using different classes of CB(1) receptor antagonists. METHODS Immunohistochemistry was used to examine the localization of CB(1) receptor in the mouse ileum and colon. Organ bath experiments on mouse ileum and in vivo motility testing comprising upper GI transit, colonic expulsion, and whole gut transit were performed to characterize the effects of the inverse agonist/antagonist AM251 and the neutral antagonist AM4113. As a marker of secretory function we measured short circuit current in vitro using Ussing chambers and stool fluid content in vivo in mouse colon. We also assessed colonic epithelial permeability in vitro using FITC-labeled inulin. KEY RESULTS In vivo, the inverse agonist AM251 increased upper GI transit and whole gut transit, but it had no effect on colonic expulsion. By contrast, the neutral antagonist AM4113 increased upper GI transit, but unexpectedly reduced both colonic expulsion and whole gut transit at high, but not lower doses. CONCLUSIONS & INFERENCES Cannabinoid type 1 receptors regulate small intestinal and colonic motility, but not GI secretion under physiological conditions. Cannabinoid type 1 inverse agonists and CB(1) neutral antagonists have different effects on intestinal motility. The ability of the neutral antagonist not to affect whole gut transit may be important for the future development of CB(1) receptor antagonists as therapeutic agents.
Collapse
Affiliation(s)
- Martin A. Storr
- Snyder Institute of Infection, Immunity & Inflammation, University Calgary, Calgary, Alberta, Canada,Division of Gastroenterology, Department of Medicine, University Calgary, Calgary, Alberta, Canada
| | - Mohammad Bashashati
- Snyder Institute of Infection, Immunity & Inflammation, University Calgary, Calgary, Alberta, Canada,Hotchkiss Brain Institute, University Calgary, Calgary, Alberta, Canada,Department of Physiology & Pharmacology, University Calgary, Calgary, Alberta, Canada
| | - Christina Hirota
- Snyder Institute of Infection, Immunity & Inflammation, University Calgary, Calgary, Alberta, Canada,Department of Physiology & Pharmacology, University Calgary, Calgary, Alberta, Canada
| | - V. Kiran Vemuri
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - Catherine M. Keenan
- Snyder Institute of Infection, Immunity & Inflammation, University Calgary, Calgary, Alberta, Canada,Hotchkiss Brain Institute, University Calgary, Calgary, Alberta, Canada,Department of Physiology & Pharmacology, University Calgary, Calgary, Alberta, Canada
| | - Marnie Duncan
- Snyder Institute of Infection, Immunity & Inflammation, University Calgary, Calgary, Alberta, Canada,Hotchkiss Brain Institute, University Calgary, Calgary, Alberta, Canada,Department of Physiology & Pharmacology, University Calgary, Calgary, Alberta, Canada
| | - Beat Lutz
- Department of Physiological Chemistry, University Medical Center of the Johannes Gutenberg-University, 55099 Mainz, Germany
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA
| | | | - Wallace K. MacNaughton
- Snyder Institute of Infection, Immunity & Inflammation, University Calgary, Calgary, Alberta, Canada,Department of Physiology & Pharmacology, University Calgary, Calgary, Alberta, Canada
| | - Keith A. Sharkey
- Snyder Institute of Infection, Immunity & Inflammation, University Calgary, Calgary, Alberta, Canada,Hotchkiss Brain Institute, University Calgary, Calgary, Alberta, Canada,Department of Physiology & Pharmacology, University Calgary, Calgary, Alberta, Canada
| |
Collapse
|
32
|
Gratzke C, Weinhold P, Reich O, Seitz M, Schlenker B, Stief CG, Andersson KE, Hedlund P. Transient Receptor Potential A1 and Cannabinoid Receptor Activity in Human Normal and Hyperplastic Prostate: Relation to Nerves and Interstitial Cells. Eur Urol 2010; 57:902-10. [DOI: 10.1016/j.eururo.2009.08.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Accepted: 08/20/2009] [Indexed: 11/26/2022]
|
33
|
Izzo AA, Sharkey KA. Cannabinoids and the gut: new developments and emerging concepts. Pharmacol Ther 2010; 126:21-38. [PMID: 20117132 DOI: 10.1016/j.pharmthera.2009.12.005] [Citation(s) in RCA: 309] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 12/24/2009] [Indexed: 12/11/2022]
Abstract
Cannabis has been used to treat gastrointestinal (GI) conditions that range from enteric infections and inflammatory conditions to disorders of motility, emesis and abdominal pain. The mechanistic basis of these treatments emerged after the discovery of Delta(9)-tetrahydrocannabinol as the major constituent of Cannabis. Further progress was made when the receptors for Delta(9)-tetrahydrocannabinol were identified as part of an endocannabinoid system, that consists of specific cannabinoid receptors, endogenous ligands and their biosynthetic and degradative enzymes. Anatomical, physiological and pharmacological studies have shown that the endocannabinoid system is widely distributed throughout the gut, with regional variation and organ-specific actions. It is involved in the regulation of food intake, nausea and emesis, gastric secretion and gastroprotection, GI motility, ion transport, visceral sensation, intestinal inflammation and cell proliferation in the gut. Cellular targets have been defined that include the enteric nervous system, epithelial and immune cells. Molecular targets of the endocannabinoid system include, in addition to the cannabinoid receptors, transient receptor potential vanilloid 1 receptors, peroxisome proliferator-activated receptor alpha receptors and the orphan G-protein coupled receptors, GPR55 and GPR119. Pharmacological agents that act on these targets have been shown in preclinical models to have therapeutic potential. Here, we discuss cannabinoid receptors and their localization in the gut, the proteins involved in endocannabinoid synthesis and degradation and the presence of endocannabinoids in the gut in health and disease. We focus on the pharmacological actions of cannabinoids in relation to GI disorders, highlighting recent data on genetic mutations in the endocannabinoid system in GI disease.
Collapse
Affiliation(s)
- Angelo A Izzo
- Department of Experimental Pharmacology, University of Naples Federico II and Endocannabinoid Research Group, Naples, Italy.
| | | |
Collapse
|
34
|
Houlihan DD, Dennedy MC, Morrison JJ. Effects of abnormal cannabidiol on oxytocin-induced myometrial contractility. Reproduction 2010; 139:783-8. [PMID: 20068032 DOI: 10.1530/rep-09-0496] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The objective of this study was to investigate the effects of abnormal cannabidiol (abn-cbd) on oxytocin-induced myometrial contractility occurring during pregnancy. Isometric tension recordings were performed in isolated myometrial strips from biopsies obtained at elective cesarean section. The effects of cumulative doses of abn-cbd (10(-9)-10(-5) M) on oxytocin-induced myometrial contractions alone, and on those following pre-incubation with SR 144528, AM 251, methylene blue, and iberiotoxin were measured, and dose-response curves were constructed. The pD(2) (-log EC(50)) values and the maximal inhibitory (MMI) values that were achieved were compared for each tissue type. Abn-cbd exerted a potent relaxant effect on oxytocin-induced myometrial contractions in vitro. Pre-incubation with the guanylate cyclase inhibitor, methylene blue, and the BK(Ca) channel antagonist, iberiotoxin, significantly attenuated this effect (for pD(2), P<0.01; for MMI, P<0.01). Abn-cbd exerts a potent inhibitory effect on human uterine contractility. This effect is partially mediated through modulation of guanylate cyclase and activation of BK(Ca) channel activity. These findings have implications for physiologic regulation of myometrial quiescence.
Collapse
Affiliation(s)
- Diarmaid D Houlihan
- Department of Obstetrics and Gynecology, Clinical Sciences Institute, University College Hospital, National University of Ireland Galway, Newcastle Road, Galway, Ireland
| | | | | |
Collapse
|
35
|
Boesmans W, Ameloot K, van den Abbeel V, Tack J, Vanden Berghe P. Cannabinoid receptor 1 signalling dampens activity and mitochondrial transport in networks of enteric neurones. Neurogastroenterol Motil 2009; 21:958-e77. [PMID: 19374636 DOI: 10.1111/j.1365-2982.2009.01300.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cannabinoid (CB) receptors are expressed in the enteric nervous system (ENS) and CB(1) receptor activity slows down motility and delays gastric emptying. This receptor system has become an important target for GI-related drug development such as in obesity treatment. The aim of the study was to investigate how CB(1) ligands and antagonists affect ongoing activity in enteric neurone networks, modulate synaptic vesicle cycling and influence mitochondrial transport in nerve processes. Primary cultures of guinea-pig myenteric neurones were loaded with different fluorescent markers: Fluo-4 to measure network activity, FM1-43 to image synaptic vesicles and Mitotracker green to label mitochondria. Synaptic vesicle cluster density was assessed by immunohistochemistry and expression of CB(1) receptors was confirmed by RT-PCR. Spontaneous network activity, displayed by both excitatory and inhibitory neurones, was significantly increased by CB(1) receptor antagonists (AM-251 and SR141716), abolished by CB(1) activation (methanandamide, mAEA) and reduced by two different inhibitors (arachidonylamide serotonin, AA-5HT and URB597) of fatty acid amide hydrolase. Antagonists reduced the number of synaptic vesicles that were recycled during an electrical stimulus. CB(1) agonists (mAEA and WIN55,212) reduced and antagonists enhanced the fraction of transported mitochondria in enteric nerve fibres. We found immunohistochemical evidence for an enhancement of synaptophysin-positive release sites with SR141716, while WIN55,212 caused a reduction. The opposite effects of agonists and antagonists suggest that enteric nerve signalling is under the permanent control of CB(1) receptor activity. Using inhibitors of the endocannabinoid degrading enzyme, we were able to show there is endogenous production of a CB ligand in the ENS.
Collapse
Affiliation(s)
- W Boesmans
- Center for Gastroenterological Research, KULeuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
36
|
Borrelli F, Izzo AA. Role of acylethanolamides in the gastrointestinal tract with special reference to food intake and energy balance. Best Pract Res Clin Endocrinol Metab 2009; 23:33-49. [PMID: 19285259 DOI: 10.1016/j.beem.2008.10.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acylethanolamides (AEs) are a group of lipids occurring in both plants and animals. The best-studied AEs are the endocannabinoid anandamide (AEA), the anti-inflammatory compound palmitoylethanolamide (PEA), and the potent anorexigenic molecule oleoylethanolamide (OEA). AEs are biosynthesized in the gastrointestinal tract, and their levels may change in response to noxious stimuli, food deprivation or diet-induced obesity. The biological actions of AEs within the gut are not limited to the modulation of food intake and energy balance. For example, AEs exert potential beneficial effects in the regulation of intestinal motility, secretion, inflammation and cellular proliferation. Molecular targets of AEs, which have been identified in the gastrointestinal tract, include cannabinoid CB(1) and CB(2) receptors (activated by AEA), transient receptor potential vanilloid type 1 (TRPV1, activated by AEA and OEA), the nuclear receptor peroxisome proliferators-activated receptor-alpha (PPAR-alpha, activated by OEA and, to a less extent, by PEA), and the orphan G-coupled receptors GPR119 (activated by OEA) and GPR55 (activated by PEA and, with lower potency, by AEA and OEA). Modulation of AE levels in the gut may provide new pharmacological strategies not only for the treatment of feeding disorders but also for the prevention or cure of widespread intestinal diseases such as inflammatory bowel disease and colon cancer.
Collapse
Affiliation(s)
- Francesca Borrelli
- Department of Experimental Pharmacology, University of Naples Federico II and Endocannabinoid Research Group, via D. Montesano 49, 80131 Naples, Italy
| | | |
Collapse
|
37
|
Murakami I, Hamada Y, Yamane S, Fujino H, Horie S, Murayama T. Nicotine-induced neurogenic relaxation in the mouse colon: changes with dextran sodium sulfate-induced colitis. J Pharmacol Sci 2009; 109:128-38. [PMID: 19129681 DOI: 10.1254/jphs.08241fp] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Nicotine has been shown to reduce both tone and muscular activity in the human colon by releasing nitric oxide (NO) from nerves. To our knowledge, however, the effect of nicotine on mouse colon has not been elucidated, and the response in tissue from ulcerative colitis (UC) has not been investigated. We examined nicotine-induced responses in colon from control mice and mice with dextran sodium sulfate (DSS)-induced UC. In controls, bath application of nicotine caused a transient relaxation in longitudinal preparations from the transverse and distal colons but not from the rectum. The response was observed in the presence of bethanechol, abolished by treatment with tetrodotoxin and hexamethonium, and mediated partially (>50%) by the NO pathway. In longitudinal preparations of the distal colon from DSS-treated mice, spontaneous contractions decreased markedly, and nicotine caused contraction without relaxation in half of the preparations tested. Nicotine-induced relaxation in the presence of bethanechol was significantly decreased in the DSS-treated distal colon without changing bethanechol-induced contractions. These data suggest that 1) responses to nicotine differ dependent on colon regions, 2) DSS treatment predominantly caused nicotine-sensitive neurogenic changes in distal colon, and 3) DSS treatment may reverse the direction of nicotine-evoked responses in the colon, in mice.
Collapse
Affiliation(s)
- Ikuo Murakami
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Inhibition of cyclooxygenase-2 and EP1 receptor antagonism reduces human colonic longitudinal muscle contractility in vitro. Prostaglandins Other Lipid Mediat 2008; 88:117-21. [PMID: 19126433 DOI: 10.1016/j.prostaglandins.2008.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 12/03/2008] [Accepted: 12/06/2008] [Indexed: 11/24/2022]
Abstract
We investigated the contribution of cyclo-oxygenase enzyme inhibition and prostamide agonism on human colonic contractility in vitro. The effects of the non-specific COX inhibitor diclofenac were compared against selective COX-2 inhibition via nimesulide, the prostanoid EP(1) receptor antagonist SC19220 or the prostaglandin prodrug/prostamide receptor agonist bimatoprost, on potency of contraction to acetylcholine in human colonic circular and longitudinal muscle strips. Pre-treatment with either nimesulide (10(-5)M) or diclofenac (10(-6)M) caused a significant decrease in the potency of acetylcholine-evoked longitudinal muscle contraction, but did not inhibit acetylcholine-evoked circular muscle contraction. Pre-treatment with the EP(1) receptor antagonist SC19220 (10(-5)M) similarly decreased cholinergic potency in longitudinal muscle, without influence on circular muscle contraction. The prostamide agonist bimatoprost (10(-6)M) increased basal circular and longitudinal muscle tone, but did not alter cholinergic potency in either muscle layer. In conclusion, colonic longitudinal muscle contraction is augmented by COX-2 activity, most likely via PGE(2) acting at EP(1) receptors. While colonic contraction is tonically modulated by bimatoprost, it does not share the same functional properties attributed to other endogenous COX-2 metabolites on colonic contractile function.
Collapse
|
39
|
Effects of excitatory and inhibitory neurotransmission on motor patterns of human sigmoid colon in vitro. Br J Pharmacol 2008; 155:1043-55. [PMID: 18846038 DOI: 10.1038/bjp.2008.332] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND AND PURPOSE To characterize the in vitro motor patterns and the neurotransmitters released by enteric motor neurons (EMNs) in the human sigmoid colon. EXPERIMENTAL APPROACH Sigmoid circular strips were studied in organ baths. EMNs were stimulated by electrical field stimulation (EFS) and through nicotinic ACh receptors. KEY RESULTS Strips developed weak spontaneous rhythmic contractions (3.67+/-0.49 g, 2.54+/-0.15 min) unaffected by the neurotoxin tetrodotoxin (TTX; 1 microM). EFS induced strong contractions during (on, 56%) or after electrical stimulus (off, 44%), both abolished by TTX. Nicotine (1-100 microM) inhibited spontaneous contractions. Latency of off-contractions and nicotine responses were reduced by N(G)-nitro-L-arginine (1 mM) and blocked after further addition of apamin (1 microM) or the P2Y(1) receptor antagonist MRS 2179 (10 microM) and were unaffected by the P2X antagonist NF279 (10 microM) or alpha-chymotrypsin (10 U mL(-1)). Amplitude of on- and off-contractions was reduced by atropine (1 microM) and the selective NK(2) receptor antagonist Bz-Ala-Ala-D-Trp-Phe-D-Pro-Pro-Nle-NH(2) (1 microM). MRS 2179 reduced the amplitude of EFS on- and off-contractions without altering direct muscular contractions induced by ACh (1 nM-1 mM) or substance P (1 nM-10 microM). CONCLUSIONS AND IMPLICATIONS Latency of EFS-induced off-contractions and inhibition of spontaneous motility by nicotine are caused by stimulation of inhibitory EMNs coreleasing NO and a purine acting at muscular P2Y(1) receptors through apamin-sensitive K(+) channels. EFS-induced on- and off-contractions are caused by stimulation of excitatory EMNs coreleasing ACh and tachykinins acting on muscular muscarinic and NK(2) receptors. Prejunctional P2Y(1) receptors might modulate the activity of excitatory EMNs. P2Y(1) and NK(2) receptors might be therapeutic targets for colonic motor disorders.
Collapse
|
40
|
Storr MA, Yüce B, Andrews CN, Sharkey KA. The role of the endocannabinoid system in the pathophysiology and treatment of irritable bowel syndrome. Neurogastroenterol Motil 2008; 20:857-68. [PMID: 18710476 DOI: 10.1111/j.1365-2982.2008.01175.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Irritable bowel syndrome (IBS) is a spectrum of disorders characterized by abdominal discomfort and pain, associated with altered bowel habits. Though gut motility, secretion and sensation may be altered in patients with IBS, the pathophysiology of this condition remains to be fully understood. The endocannabinoid system is involved in the regulation of numerous gastrointestinal functions including motility, sensation and secretion under both physiological and pathophysiological conditions. Activation of cannabinoid (CB)(1) and CB(2) receptors under various circumstances reduces motility, limits secretion and decreases hypersensitivity in the gut. Drugs that alter the levels of endocannabinoids in the gut also reduce motility and attenuate inflammation. In this review, we discuss the role of the endocannabinoid system in gastrointestinal physiology. We go on to consider the involvement of the endocannabinoid system in the context of symptoms associated with IBS and a possible role of this system in the pathophysiology and treatment of IBS.
Collapse
Affiliation(s)
- M A Storr
- Division of Gastroenterology, Department of Medicine, Snyder Institute of Infection, Immunity and Inflammation, University Calgary, Calgary, AB, Canada.
| | | | | | | |
Collapse
|
41
|
Smid SD. Gastrointestinal endocannabinoid system: multifaceted roles in the healthy and inflamed intestine. Clin Exp Pharmacol Physiol 2008; 35:1383-7. [PMID: 18671715 DOI: 10.1111/j.1440-1681.2008.05016.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. The endogenous cannabinoid (endocannabinoid) system is emerging as a key modulator of intestinal physiology, influencing motility, secretion, epithelial integrity and immune function in the gut, in addition to influencing satiety and emesis. 2. Accumulating evidence suggests that the endocannabinoid system may play a pivotal role in the pathophysiology of gastrointestinal disease, particularly in the light of recent studies demonstrating an effect of endocannabinoids on the development of experimental inflammation and linkages with functional clinical disorders characterized by altered motility. 3. The predominant endocannabinoids, anandamide and 2-arachidonoylglycerol, not only mediate their effects via two recognized cannabinoid receptor subtypes, namely CB(1) and CB(2), but emerging evidence now shows they are also substrates for cyclo-oxygenase (COX)-2, generating a distinct and novel class of prostaglandin ethanolamides (prostamides) and prostaglandin glycerol esters. These compounds are bioactive and may mediate an array of biological effects distinct to those of conventional prostanoids. 4. The effects of prostamides on gastrointestinal motility, secretion, sensation and immune function have not been characterized extensively. Prostamides may play an important role in gastrointestinal inflammation, particularly given the enhanced expression of both COX-2 and endocannabinoids that occurs in the inflamed gut. 5. Further preclinical studies are needed to determine the therapeutic potential of drugs targeting the endocannabinoid system in functional and inflammatory gut disorders, to assist with the determination of feasibility for clinical translation.
Collapse
Affiliation(s)
- Scott D Smid
- Discipline of Pharmacology, School of Medical Sciences, Faculty of Health Sciences, The University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
42
|
Fioramonti J, Bueno L. Role of cannabinoid receptors in the control of gastrointestinal motility and perception. Expert Rev Gastroenterol Hepatol 2008; 2:385-97. [PMID: 19072387 DOI: 10.1586/17474124.2.3.385] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The identification of endocannabinoids and cannabinoid CB1 receptors in key areas of the intestinal wall, such as cholinergic neurons, supports a role for cannabinoids in the control of gastrointestinal motility. Activation of CB1 receptors inhibits the peristaltic reflex and slows down gastrointestinal and colonic transit. Endocannabinoids play an important inhibitory role in the control of the occurrence of transient lower esophageal sphincter relaxations. Cannabinoid receptor agonists inhibit gastric emptying and intestinal motility in humans. There is strong anatomical support for a role of CB1 receptors in the control of gastrointestinal perception, since these receptors have been identified in key sites of the neuronal circuitry involved in the transmission of visceral pain. Experimental data indicate a visceral antinociceptive action of cannabinoid receptor agonists, which remains to be confirmed in humans.
Collapse
Affiliation(s)
- Jean Fioramonti
- Neurogastroenterology and Nutrition Unit, INRA, 180 Chemin de Tournefeuille, BP 3, F-31931 Toulouse Cedex 9, France.
| | | |
Collapse
|
43
|
Capasso R, Izzo AA. Gastrointestinal regulation of food intake: general aspects and focus on anandamide and oleoylethanolamide. J Neuroendocrinol 2008; 20 Suppl 1:39-46. [PMID: 18426498 DOI: 10.1111/j.1365-2826.2008.01686.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The gastrointestinal tract plays a pivotal role in the regulation of food intake and energy balance. Signals from the gastrointestinal tract generally function to limit ingestion in the interest of efficient digestion. These signals may be released into the bloodstream or may activate afferent neurones that carry information to the brain and its cognitive centres, which regulates food intake. The rate at which nutrients become systemically available is also influenced by gastrointestinal motility: a delay in gastric emptying may evoke a satiety effect. Recent evidence suggests that the endocannabinoid anandamide and the related acylethanolamide oleoylethanolamide are produced in the intestine and might regulate feeding behaviour by engaging sensory afferent neurones that converge information to specific areas of the brain. The intestinal levels of these acylethanolamides are inversely correlated to feeding, as food deprivation increases intestinal levels of anandamide (which acts in the gut as a 'hunger signal'), while it decreases the levels of oleoylethanolamide (which acts in the gut as a 'satiety signal'). Additionally, these acylethanolamides, whose gastric levels change in response to diet-induced obesity, alter gastrointestinal motility, which might contribute to their effect on food intake and nutrient absorption.
Collapse
Affiliation(s)
- R Capasso
- Department of Experimental Pharmacology, University of Naples Federico II, Naples, Italy
| | | |
Collapse
|
44
|
Wang X, Zhang F, Liu Z, Feng H, Yu ZB, Lu Y, Zhai H, Bai F, Shi Y, Lan M, Jin J, Fan D. Effects of essential oil from Croton tiglium L. on intestinal transit in mice. JOURNAL OF ETHNOPHARMACOLOGY 2008; 117:102-107. [PMID: 18329205 DOI: 10.1016/j.jep.2008.01.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 10/18/2007] [Accepted: 01/23/2008] [Indexed: 05/26/2023]
Abstract
AIM OF THE STUDY Croton tiglium (Croton tiglium L., Euphorbiaceae) is widely used as a herb for treatment of gastrointestinal disturbances. Previous studies established its purgative and inflammational properties. The present study aimed to investigate the effects of Croton tiglium oil (CO) on intestinal transit in mice. MATERIALS AND METHODS Gastrointestinal transit in mice and contractile characteristics of isolated intestinal strips from mice were evaluated. Intestinal inflammation was confirmed by histological examination. RESULTS Low dose of CO increased the gastrointestinal transit of charcoal and barium meal as well as the production of fecal pellets in mice. In contrast, high dose exerted inhibitory effects. For normal colonic circular strips, both high and low dose of CO inhibited the contractile frequency. Low doses (0-20 microg/ml) of CO enhanced the phasic contractions, while high doses (>40 microg/ml) reduced them. Colonic longitudinal strips in CO-treated mice were less sensitive to electrical field stimulation than those in control mice. The contraction of colonic longitudinal, colonic and jejunal circular strips in CO-treated mice was more sensitive to atropine than that in control mice. CONCLUSIONS CO might modulate gastrointestinal motility and induce intestinal inflammation related to immunological milieu and motor activity. Our findings may highlight the ethno-medical uses of Croton tiglium on intestinal disorders.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Changle West Road, Xi'an 710032, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Di Marzo V, Capasso R, Matias I, Aviello G, Petrosino S, Borrelli F, Romano B, Orlando P, Capasso F, Izzo AA. The role of endocannabinoids in the regulation of gastric emptying: alterations in mice fed a high-fat diet. Br J Pharmacol 2008; 153:1272-80. [PMID: 18223666 DOI: 10.1038/sj.bjp.0707682] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Endocannabinoids (via cannabinoid CB(1) receptor activation) are physiological regulators of intestinal motility and food intake. However, their role in the regulation of gastric emptying is largely unexplored. The purpose of the present study was to investigate the involvement of the endocannabinoid system in the regulation of gastric emptying in mice fed either a standard diet (STD) or a high-fat diet (HFD) for 14 weeks. EXPERIMENTAL APPROACH Gastric emptying was evaluated by measuring the amount of phenol red recovered in the stomach after oral challenge; CB(1) expression was analysed by quantitative reverse transcription-PCR; endocannabinoid (anandamide and 2-arachidonoyl glycerol) levels were measured by liquid chromatography-mass spectrometry. KEY RESULTS Gastric emptying was reduced by anandamide, an effect counteracted by the CB(1) receptor antagonist rimonabant, but not by the CB(2) receptor antagonist SR144528 or by the transient receptor potential vanilloid type 1 (TRPV1) antagonist 5'-iodoresiniferatoxin. The fatty acid amide hydrolase (FAAH) inhibitor N-arachidonoyl-5-hydroxytryptamine (but not the anandamide uptake inhibitor OMDM-2) reduced gastric emptying in a way partly reduced by rimonabant. Compared to STD mice, HFD mice exhibited significantly higher body weight and fasting glucose levels, delayed gastric emptying and lower anandamide and CB(1) mRNA levels. N-arachidonoylserotonin (but not rimonabant) affected gastric emptying more efficaciously in HFD than STD mice. CONCLUSIONS AND IMPLICATIONS Gastric emptying is physiologically regulated by the endocannabinoid system, which is downregulated following a HFD leading to overweight.
Collapse
Affiliation(s)
- V Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Camilleri M, Carlson P, McKinzie S, Grudell A, Busciglio I, Burton D, Baxter K, Ryks M, Zinsmeister AR. Genetic variation in endocannabinoid metabolism, gastrointestinal motility, and sensation. Am J Physiol Gastrointest Liver Physiol 2008; 294:G13-9. [PMID: 17962356 DOI: 10.1152/ajpgi.00371.2007] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cannabinoid agonist inhibits gastrointestinal motility. The endocannabinoid, anandamide, is inactivated by fatty acid amide hydrolase (FAAH). A single nucleotide polymorphism in the human FAAH gene (C385A) reduces FAAH expression. Our aim was to evaluate associations between FAAH genotype variation and symptom phenotype, gastric emptying and volume, colonic transit, and rectal sensation in patients with functional gastrointestinal disorders (FGID). 482 FGID patients [Rome II positive, 159 constipation disorders, 184 diarrhea disorders (D-IBS), 86 mixed bowel function (M-IBS), 20 chronic abdominal pain (CAP), 33 functional dyspepsia], and 252 healthy volunteers (HV) underwent questionnaires and studies of phenotype and genotype from 2000 to 2007: 250 gastric emptying, 210 fasting and postprandial gastric volume, 152 colonic transit, and 123 rectal sensation. All had FAAH genotype [CC vs. polymorphic (CA/AA)] determined by TaqMan. FAAH genotype distribution of FGID patients and HV did not deviate from Hardy-Weinberg equilibrium. There was a significant association of FAAH genotype with FGID phenotype (overall chi(2), P = 0.011) and with specific individual phenotypes (P = 0.048). Thus FAAH CA/AA increases the odds (relative to HV) for D-IBS (P = 0.008), M-IBS (P = 0.012), and, possibly, CAP (P = 0.055). There was a significant association of FAAH CA/AA genotype with accelerated colonic transit in D-IBS (P = 0.037). There was no association of FAAH genotype with rectal sensation thresholds or ratings. The association of genetic variation in metabolism of endocannabinoids with symptom phenotype in D-IBS and M-IBS and with faster colonic transit in D-IBS supports the hypothesis that cannabinoid mechanisms may play a role in the control of colonic motility in humans and deserve further study.
Collapse
|
47
|
Smid SD, Bjorklund CK, Svensson KM, Heigis S, Revesz A. The endocannabinoids anandamide and 2-arachidonoylglycerol inhibit cholinergic contractility in the human colon. Eur J Pharmacol 2007; 575:168-76. [PMID: 17706636 DOI: 10.1016/j.ejphar.2007.07.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 07/10/2007] [Accepted: 07/17/2007] [Indexed: 11/25/2022]
Abstract
The effects of the endocannabinoids anandamide and 2-arachidonoylglycerol (2-AG) were determined on cholinergic contractility in strips of human colonic longitudinal muscle and circular muscle in vitro, in the presence of nitric oxide synthase blockade with N-nitro-l-arginine (10(-4) M). Anandamide and 2-AG inhibited longitudinal muscle and circular muscle contractile responses to acetylcholine (10(-9)-10(-4) M) in a concentration-dependent manner. This was unaltered following pretreatment with the cannabinoid CB(1) receptor-selective antagonist AM251 (10(-7) M), however in isolation AM251 elicited a significant rightward shift in the potency of acetylcholine-evoked contraction in both longitudinal muscle and circular muscle preparations. Pretreatment with an inhibitor of anandamide catabolism, arachidonoyl trifluoromethyl ketone (10(-5) M), alone caused a significant decrease in the potency of acetylcholine-evoked contraction in both longitudinal and circular muscle, but had no significant additional effect on the anandamide-induced (10(-5) M) suppression of contraction. Pretreatment with the cannabinoid CB(2) receptor inverse agonist JTE 907 (10(-6) M) neither influenced the potency of acetylcholine-evoked contraction alone nor prevented the potency shift in acetylcholine-evoked contraction in the presence of anandamide (10(-5) M). The findings of the present study indicate that the endocannabinoids anandamide and 2-arachidonoylglycerol suppress colonic cholinergic contractility via a non conventional cannabinoid or non-cannabinoid receptor-mediated pathway. Cholinergic contraction may be tonically modulated by endocannabinoids and/or products of arachidonate metabolism unrelated to endocannabinoid production. The extent of anandamide metabolism is not sufficient to influence the functional effects of its exogenous administration in human colonic tissue in vitro.
Collapse
Affiliation(s)
- Scott D Smid
- Discipline of Pharmacology, School of Medical Sciences, Faculty of Health Sciences, The University of Adelaide, Adelaide, Australia.
| | | | | | | | | |
Collapse
|
48
|
Sanger GJ. Endocannabinoids and the gastrointestinal tract: what are the key questions? Br J Pharmacol 2007; 152:663-70. [PMID: 17767170 PMCID: PMC2190011 DOI: 10.1038/sj.bjp.0707422] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 06/26/2007] [Accepted: 07/23/2007] [Indexed: 02/03/2023] Open
Abstract
Cannabinoid (CB1) receptor activation acts neuronally, reducing GI motility, diarrhoea, pain, transient lower oesophageal sphincter relaxations (TLESRs) and emesis, and promoting eating. CB2 receptor activation acts mostly via immune cells to reduce inflammation. What are the key questions which now need answering to further understand endocannabinoid pathophysiology? GPR55. Does this receptor have a GI role? Satiety, Nausea, Vomiting, Gastro-Oesophageal Reflux, Gastric Emptying. Endocannabinoids acting at CB1 receptors can increase food intake and body weight, exert anti-emetic activity, reduce gastric acid secretion and TLESRs; CB2 receptors may have a small role in emesis. Question 1: CB1 receptor activation reduces emesis and gastric emptying but the latter is associated with nausea. How is the paradox explained? Q2: Do non-CB receptor actions of endocannabinoids (for example TRPV1) also modulate emesis? Q3: Is pathology necessary (gastritis, gastro-oesophageal reflux) to observe CB2 receptor function? Intestinal Transit and Secretion. Reduced by endocannabinoids at CB1 receptors, but not by CB2 receptor agonists. Q1: Do the effects of endocannabinoids rapidly diminish with repeat-dosing? Q2: Do CB2 receptors need to be pathologically upregulated before they are active? Inflammation. CB1, CB2 and TRPV1 receptors may mediate an ability of endocannabinoids to reduce GI inflammation or its consequences. Q1: Are CB2 receptors upregulated by inflammatory or other pathology? Pain. Colonic bacterial flora may upregulate CB2 receptor expression and thereby increase intestinal sensitivity to noxious stimuli. Q1: Are CB2 receptors the interface between colonic bacteria and enteric- or extrinsic nerve sensitivity? Relevance of endocannabinoids to humans. Perhaps apart from appetite, this is largely unknown.
Collapse
Affiliation(s)
- G J Sanger
- Neurology and Gastrointestinal Centre of Excellence for Drug Discovery, GlaxoSmithKline Research & Development Limited, New Frontiers Science Park, Harlow, UK.
| |
Collapse
|
49
|
Abstract
Mammalian tissues express the cannabinoid 1 (CB(1)) receptor and the cannabinoid 2 (CB(2)) receptor, the latter being involved in inflammation and pain. In somatic nerve pathways, the analgesic effects of CB(2) agonism are well documented. Two papers published in the Journal have provided evidence that CB(2) receptor activation inhibits visceral afferent nerve activity in rodents. These exciting findings are discussed in the context of recent data highlighting the emerging role of CB(2) receptor as a critical target able to counteract hypermotility in pathophysiological states, gut inflammation and possibly colon cancer.
Collapse
Affiliation(s)
- A A Izzo
- Endocannabinoid Research Group, Department of Experimental Pharmacology, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
50
|
Esfandyari T, Camilleri M, Busciglio I, Burton D, Baxter K, Zinsmeister AR. Effects of a cannabinoid receptor agonist on colonic motor and sensory functions in humans: a randomized, placebo-controlled study. Am J Physiol Gastrointest Liver Physiol 2007; 293:G137-45. [PMID: 17395895 DOI: 10.1152/ajpgi.00565.2006] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cannabinoid receptors (CBR) are located on cholinergic neurons in the brain stem, stomach, and colon. CBR stimulation inhibits motility in rodents. Effects in humans are unclear. Dronabinol (DRO), a nonselective CBR agonist, inhibits colonic motility and sensation. The aim of this study was to compare effects of DRO and placebo (PLA) on colonic motility and sensation in healthy volunteers. Fifty-two volunteers were randomly assigned (double-blind) to a single dose of 7.5 mg DRO or PLA postoperative with concealed allocation. A balloon-manometric assembly placed into the descending colon allowed assessment of colonic compliance, motility, tone, and sensation before and 1 h after oral ingestion of medication, and during fasting, and for 1 h after 1,000-kcal meal. There was an overall significant increase in colonic compliance (P = 0.045), a borderline effect of relaxation in fasting colonic tone (P = 0.096), inhibition of postprandial colonic tone (P = 0.048), and inhibition of fasting and postprandial phasic pressure (P = 0.008 and 0.030, respectively). While DRO did not significantly alter thresholds for first gas or pain sensation, there was an increase in sensory rating for pain during random phasic distensions at all pressures tested and in both genders (P = 0.024). In conclusion, in humans the nonselective CBR agonist, DRO, relaxes the colon and reduces postprandial colonic motility and tone. Increase in sensation ratings to distension in the presence of relaxation of the colon suggests central modulation of perception. The potential for CBR to modulate colonic motor function in diarrheal disease such as irritable bowel syndrome deserves further study.
Collapse
|