1
|
Foti R, Storti G, Palmesano M, Scioli MG, Fiorelli E, Terriaca S, Cervelli G, Kim BS, Orlandi A, Cervelli V. Senescence in Adipose-Derived Stem Cells: Biological Mechanisms and Therapeutic Challenges. Int J Mol Sci 2024; 25:8390. [PMID: 39125960 PMCID: PMC11312747 DOI: 10.3390/ijms25158390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Adipose tissue-derived stem cells (ADSCs) represent a subset of the mesenchymal stem cells in every adipose compartment throughout the body. ADSCs can differentiate into various cell types, including chondrocytes, osteocytes, myocytes, and adipocytes. Moreover, they exhibit a notable potential to differentiate in vitro into cells from other germinal lineages, including endothelial cells and neurons. ADSCs have a wide range of clinical applications, from breast surgery to chronic wounds. Furthermore, they are a promising cell population for future tissue-engineering uses. Accumulating evidence indicates a decreased proliferation and differentiation potential of ADSCs with an increasing age, increasing body mass index, diabetes mellitus, metabolic syndrome, or exposure to radiotherapy. Therefore, the recent literature thoroughly investigates this cell population's senescence mechanisms and how they can hinder its possible therapeutic applications. This review will discuss the biological mechanisms and the physio-pathological causes behind ADSC senescence and how they can impact cellular functionality. Moreover, we will examine the possible strategies to invert these processes, re-establishing the full regenerative potential of this progenitor population.
Collapse
Affiliation(s)
- Riccardo Foti
- Plastic Surgery, Department of Surgical Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.F.); (M.P.); (V.C.)
| | - Gabriele Storti
- Plastic Surgery, Department of Surgical Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.F.); (M.P.); (V.C.)
| | - Marco Palmesano
- Plastic Surgery, Department of Surgical Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.F.); (M.P.); (V.C.)
| | - Maria Giovanna Scioli
- Anatomy Pathology Institute, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.G.S.); (E.F.); (S.T.); (A.O.)
| | - Elena Fiorelli
- Anatomy Pathology Institute, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.G.S.); (E.F.); (S.T.); (A.O.)
| | - Sonia Terriaca
- Anatomy Pathology Institute, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.G.S.); (E.F.); (S.T.); (A.O.)
| | - Giulio Cervelli
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Bong Sung Kim
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8006 Zurich, Switzerland;
| | - Augusto Orlandi
- Anatomy Pathology Institute, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.G.S.); (E.F.); (S.T.); (A.O.)
| | - Valerio Cervelli
- Plastic Surgery, Department of Surgical Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.F.); (M.P.); (V.C.)
| |
Collapse
|
2
|
Wang B, Zhang G, Hu Y, Mohsin A, Chen Z, Hao W, Li Z, Gao WQ, Guo M, Xu H. Uncovering impaired mitochondrial and lysosomal function in adipose-derived stem cells from obese individuals with altered biological activity. Stem Cell Res Ther 2024; 15:12. [PMID: 38185703 PMCID: PMC10773039 DOI: 10.1186/s13287-023-03625-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 12/22/2023] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND Adipose-derived stem cells (ADSCs) have been extensively used in preclinical and clinical trials for treating various diseases. However, the differences between ADSCs from lean individuals (L-ADSCs) and those from obese individuals (O-ADSCs) have not been thoroughly investigated, particularly regarding their mitochondrial and lysosomal functions. Therefore, this study aims to evaluate the differences between L-ADSCs and O-ADSCs in terms of cell biological activity, mitochondria, and lysosomes. METHODS We first isolated and cultured L-ADSCs and O-ADSCs. We then compared the differences between the two groups in terms of biological activity, including cell proliferation, differentiation potential, and their effect on the polarization of macrophages. Additionally, we observed the mitochondrial and lysosomal morphology of ADSCs using an electronic microscope, MitoTracker Red, and lysotracker Red dyes. We assessed mitochondrial function by examining mitochondrial membrane potential and membrane fluidity, antioxidative ability, and cell energy metabolism. Lysosomal function was evaluated by measuring autophagy and phagocytosis. Finally, we performed transcriptome analysis of the ADSCs using RNA sequencing. RESULTS The biological activities of O-ADSCs were decreased, including cell immunophenotypic profiles, cell proliferation, and differentiation potential. Furthermore, compared to L-ADSCs, O-ADSCs promoted M1-type macrophage polarization and inhibited M2-type macrophage polarization. Additionally, the mitochondrial morphology of O-ADSCs was altered, with the size of the cells becoming smaller and mitochondrial fragments increasing. O-ADSCs also exhibited decreased mitochondrial membrane potential and membrane fluidity, antioxidative ability, and energy metabolism. With respect to lysosomes, O-ADSCs contained ungraded materials in their lysosomes, enhanced lysosomal permeability, and reduced autophagy and phagocytosis ability. RNA sequence analysis indicated that the signalling pathways related to cell senescence, cancer, and inflammation were upregulated, whereas the signalling pathways associated with stemness, cell differentiation, metabolism, and response to stress and stimuli were downregulated. CONCLUSIONS This study indicates that ADSCs from individuals (BMI > 30 kg/m2) exhibit impaired mitochondrial and lysosomal function with decreased biological activity.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., P.O. Box 329#, Shanghai, 200237, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, and Renji-MedX Clinical Stem Cell Research Center RenJi Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People's Republic of China
| | - Ge Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., P.O. Box 329#, Shanghai, 200237, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, and Renji-MedX Clinical Stem Cell Research Center RenJi Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People's Republic of China
| | - Yuwen Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., P.O. Box 329#, Shanghai, 200237, People's Republic of China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., P.O. Box 329#, Shanghai, 200237, People's Republic of China
| | - Zhimin Chen
- State Key Laboratory of Oncogenes and Related Genes, and Renji-MedX Clinical Stem Cell Research Center RenJi Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People's Republic of China
| | - Weijie Hao
- State Key Laboratory of Oncogenes and Related Genes, and Renji-MedX Clinical Stem Cell Research Center RenJi Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People's Republic of China
| | - Zhanxia Li
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Xuhui District, Shanghai, 200235, People's Republic of China.
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, and Renji-MedX Clinical Stem Cell Research Center RenJi Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People's Republic of China.
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China.
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., P.O. Box 329#, Shanghai, 200237, People's Republic of China.
| | - Huiming Xu
- State Key Laboratory of Oncogenes and Related Genes, and Renji-MedX Clinical Stem Cell Research Center RenJi Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
3
|
Fini MA, Monks JA, Li M, Gerasimovskaya E, Paucek P, Wang K, Frid MG, Pugliese SC, Bratton D, Yu YR, Irwin D, Karin M, Wright RM, Stenmark KR. Macrophage Xanthine Oxidoreductase Links LPS Induced Lung Inflammatory Injury to NLRP3 Inflammasome Expression and Mitochondrial Respiration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.550055. [PMID: 37502951 PMCID: PMC10370167 DOI: 10.1101/2023.07.21.550055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS) remain poorly treated inflammatory lung disorders. Both reactive oxygen species (ROS) and macrophages are involved in the pathogenesis of ALI/ARDS. Xanthine oxidoreductase (XOR) is an ROS generator that plays a central role in the inflammation that contributes to ALI. To elucidate the role of macrophage-specific XOR in endotoxin induced ALI, we developed a conditional myeloid specific XOR knockout in mice. Myeloid specific ablation of XOR in LPS insufflated mice markedly attenuated lung injury demonstrating the essential role of XOR in this response. Macrophages from myeloid specific XOR knockout exhibited loss of inflammatory activation and increased expression of anti-inflammatory genes/proteins. Transcriptional profiling of whole lung tissue of LPS insufflated XOR fl/fl//LysM-Cre mice demonstrated an important role for XOR in expression and activation of the NLRP3 inflammasome and acquisition of a glycolytic phenotype by inflammatory macrophages. These results identify XOR as an unexpected link between macrophage redox status, mitochondrial respiration and inflammatory activation.
Collapse
|
4
|
Lin M, Yang C, Liu X, Zhao S, Tian B, Hou X, Xu J, Yang P. Increased Levels of VCAM-1 in Sera and VLA-4 Expression on Neutrophils in Dermatomyositis with Interstitial Lung Disease. Immunol Invest 2021; 51:980-992. [PMID: 33724131 DOI: 10.1080/08820139.2021.1897611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Vascular cell adhesion molecule-1 (VCAM-1) and its ligand very late antigen (VLA-4) play important roles in many autoimmune diseases. Our study aimed to investigate the serum level of VCAM-1 and VLA-4 expression on peripheral blood neutrophil surface in patients with dermatomyositis (DM), especially focusing on patients with interstitial lung disease (ILD). Blood specimens of 42 patients with DM and 42 healthy controls matched for age and gender were recruited. Total serum VCAM-1 level was measured using commercial enzyme-linked immunosorbent assay (ELISA) and the percentages of VLA-4 expression on neutrophils were analyzed by flow cytometry. We divided patients into subgroups according to whether they had ILD and whether they exhibited diffuse alveolar damage (DAD) via high-resolution computed tomography (HRCT). sVCAM-1 was increased in classical DM (cDM) and clinical amyopathic dermatomyositis (CADM) compared with healthy controls (both p < .01). DM-ILD had higher sVCAM-1 levels than the none-ILD group (p < .01). sVCAM-1 was also significantly increased in the DAD group compared to the none-DAD group (p < .01). The percentages of VLA-4 expression on neutrophils in cDM and CADM patients were significantly elevated than that in healthy controls (both p < .01). The percentage of VLA-4 expression on neutrophils in DM patients with ILD was higher than none-ILD group (p < .01). In the patients with ILD, DAD group had a higher percentage of VLA-4 expression on neutrophils than none-DAD group (p < .01). Our findings indicated that serum VCAM-1 levels combined with VLA-4 expression on neutrophils might be useful for detecting the severity of lung disease in patients with DM.
Collapse
Affiliation(s)
- Meiyi Lin
- Department of Rheumatology and Immunology, First Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| | - Chunshu Yang
- Department of 1st Cancer Institute, First Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| | - Xudong Liu
- Department of Rheumatology and Immunology, First Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| | - Shan Zhao
- Department of Rheumatology and Immunology, First Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| | - Bailing Tian
- Department of Rheumatology and Immunology, First Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| | - Xiaoyu Hou
- Department of Rheumatology and Immunology, First Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| | - Jingyi Xu
- Department of Rheumatology and Immunology, First Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| | - Pingting Yang
- Department of Rheumatology and Immunology, First Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
5
|
Schweitzer KS, Jinawath N, Yonescu R, Ni K, Rush N, Charoensawan V, Bronova I, Berdyshev E, Leach SM, Gillenwater LA, Bowler RP, Pearse DB, Griffin CA, Petrache I. IGSF3 mutation identified in patient with severe COPD alters cell function and motility. JCI Insight 2020; 5:138101. [PMID: 32573489 PMCID: PMC7453886 DOI: 10.1172/jci.insight.138101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/10/2020] [Indexed: 11/17/2022] Open
Abstract
Cigarette smoking (CS) and genetic susceptibility determine the risk for development, progression, and severity of chronic obstructive pulmonary diseases (COPD). We posited that an incidental balanced reciprocal chromosomal translocation was linked to a patient's risk of severe COPD. We determined that 46,XX,t(1;4)(p13.1;q34.3) caused a breakpoint in the immunoglobulin superfamily member 3 (IGSF3) gene, with markedly decreased expression. Examination of COPDGene cohort identified 14 IGSF3 SNPs, of which rs1414272 and rs12066192 were directly and rs6703791 inversely associated with COPD severity, including COPD exacerbations. We confirmed that IGSF3 is a tetraspanin-interacting protein that colocalized with CD9 and integrin B1 in tetraspanin-enriched domains. IGSF3-deficient patient-derived lymphoblastoids exhibited multiple alterations in gene expression, especially in the unfolded protein response and ceramide pathways. IGSF3-deficient lymphoblastoids had high ceramide and sphingosine-1 phosphate but low glycosphingolipids and ganglioside levels, and they were less apoptotic and more adherent, with marked changes in multiple TNFRSF molecules. Similarly, IGSF3 knockdown increased ceramide in lung structural cells, rendering them more adherent, with impaired wound repair and weakened barrier function. These findings suggest that, by maintaining sphingolipid and membrane receptor homeostasis, IGSF3 is required for cell mobility-mediated lung injury repair. IGSF3 deficiency may increase susceptibility to CS-induced lung injury in COPD.
Collapse
Affiliation(s)
- Kelly S Schweitzer
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Natini Jinawath
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, and
- Integrative Computational Bioscience Center, Mahidol University, Nakhon Pathom, Thailand
| | - Raluca Yonescu
- Department of Pathology, Division of Molecular Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Kevin Ni
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Natalia Rush
- Department of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Varodom Charoensawan
- Integrative Computational Bioscience Center, Mahidol University, Nakhon Pathom, Thailand
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Irina Bronova
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Evgeny Berdyshev
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Sonia M Leach
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | | | - Russel P Bowler
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - David B Pearse
- Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Constance A Griffin
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, and
| | - Irina Petrache
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, Indiana University, Indianapolis, Indiana, USA
- Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Zhang XP, Zhang WT, Qiu Y, Ju MJ, Tu GW, Luo Z. Understanding Gene Therapy in Acute Respiratory Distress Syndrome. Curr Gene Ther 2019; 19:93-99. [PMID: 31267871 DOI: 10.2174/1566523219666190702154817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/07/2019] [Accepted: 06/17/2019] [Indexed: 02/06/2023]
Abstract
Acute Respiratory Distress Syndrome (ARDS) and its complications remain lifethreatening conditions for critically ill patients. The present therapeutic strategies such as prone positioning ventilation strategies, nitric oxide inhalation, restrictive intravenous fluid management, and extracorporeal membrane oxygenation (ECMO) do not contribute much to improving the mortality of ARDS. The advanced understanding of the pathophysiology of acute respiratory distress syndrome suggests that gene-based therapy may be an innovative method for this disease. Many scientists have made beneficial attempts to regulate the immune response genes of ARDS, maintain the normal functions of alveolar epithelial cells and endothelial cells, and inhibit the fibrosis and proliferation of ARDS. Limitations to effective pulmonary gene therapy still exist, including the security of viral vectors and the pulmonary defense mechanisms against inhaled particles. Here, we summarize and review the mechanism of gene therapy for acute respiratory distress syndrome and its application.
Collapse
Affiliation(s)
- Xue-Peng Zhang
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Wei-Tao Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
- Shanghai Key Laboratory of Organ Transplantation, No. 179 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Yue Qiu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Min-Jie Ju
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Guo-Wei Tu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Zhe Luo
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
- Department of Critical Care Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, No. 668 Jinghu Road, Huli District, Xiamen 361015, China
| |
Collapse
|
7
|
Dattoli SD, Baiula M, De Marco R, Bedini A, Anselmi M, Gentilucci L, Spampinato S. DS-70, a novel and potent α 4 integrin antagonist, is an effective treatment for experimental allergic conjunctivitis in guinea pigs. Br J Pharmacol 2018; 175:3891-3910. [PMID: 30051467 DOI: 10.1111/bph.14458] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Allergic conjunctivitis is an eye inflammation that involves the infiltration of immune cells into the conjunctiva via cell surface-adhesion receptors, such as integrin α4 β1 . These receptors interact with adhesion molecules expressed on the conjunctival endothelium and may be a target to treat this disease. We synthesized DS-70, a novel α/β-peptidomimetic α4 integrin antagonist, to prevent the conjunctival infiltration of immune cells and clinical symptoms in a model of allergic conjunctivitis. EXPERIMENTAL APPROACH In vitro, DS-70 was pharmacologically characterized using a scintillation proximity procedure to measure its affinity for α4 β1 integrin, and its effect on cell adhesion mediated by different integrins was also evaluated. The effects of DS-70 on vascular cell adhesion molecule-1 (VCAM-1)-mediated degranulation of a human mast cell line and an eosinophilic cell line, which both express α4 β1 , and on VCAM-1-mediated phosphorylation of ERK 1/2 in Jurkat E6.1 cells were investigated. Effects of DS-70 administered in the conjunctival fornix of ovalbumin-sensitized guinea pigs were evaluated. KEY RESULTS DS-70 bound to integrin α4 β1 with nanomolar affinity, prevented the adhesion of α4 integrin-expressing cells, antagonized VCAM-1-mediated degranulation of mast cells and eosinophils and ERK 1/2 phosphorylation. Only 20% was degraded after an 8 h incubation with serum. DS-70 dose-dependently reduced the clinical symptoms of allergic conjunctivitis, conjunctival α4 integrin expression and conjunctival levels of chemokines and cytokines in ovalbumin-sensitized guinea pigs. CONCLUSIONS AND IMPLICATIONS These findings highlight the role of α4 integrin in allergic conjunctivitis and suggest that DS-70 is a potential treatment for this condition.
Collapse
Affiliation(s)
| | - Monica Baiula
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Rossella De Marco
- Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy
| | - Andrea Bedini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Michele Anselmi
- Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy
| | - Luca Gentilucci
- Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy
| | - Santi Spampinato
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Pan Z, Liu L, Nie W, Miggin S, Qiu F, Cao Y, Chen J, Yang B, Zhou Y, Lu J, Yang L. Long non-coding RNA AGER-1 functionally upregulates the innate immunity gene AGER and approximates its anti-tumor effect in lung cancer. Mol Carcinog 2017; 57:305-318. [PMID: 29068471 DOI: 10.1002/mc.22756] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 10/08/2017] [Accepted: 10/23/2017] [Indexed: 12/17/2022]
Abstract
Little is known about long non-coding RNA (lncRNA) related to innate immunity in lung cancer. The advanced glycosylation end-product specific receptor (AGER) belongs to the immunoglobulin superfamily, and currently, is the only innate immune pattern-recognition receptor whose abnormal expression has been detected in lung cancer. We aimed to explore the lncRNA that is related to AGER and test its effect on lung carcinogenesis. We selected one lncRNA whose chromosome location is in close proximity to AGER namely lnc-AGER-1 (defined as lncAGER). The expression of lncAGER was tested in 276 pairs of lung cancer tissues and adjacent lung normal tissues, and its correlation with lung cancer clinical progress was analyzed. A series of assays were further used to assess the biological function of lncAGER on lung cancer development, tumor immunity and autophagy. LncAGER expression was moderately correlated with AGER expression (r = 0.360, P = 2.15 × 10-18 ) underlying a mechanism that lncAGER upregulates AGER by competitively binding to miRNA-185. LncAGER was significantly down-regulated in 76.4% of lung cancer tissues compared to adjacent normal tissues due to promoter hypermethylation. Over-expression of the lncRNA resulted in significant decreases in proliferation rate, migration ability, colony formation efficiency of lung cancer cells and tumor growth in nude mice. Notably, lncAGER possibly conduced to enhancement of cytotoxic effect of THP1. Additionally, the lncRNA also promoted cell apoptosis by strengthening autophagy. Taken together, these observations suggest that lncAGER has an inhibitory effect on lung cancer development via AGER, which may serve as a target for lung cancer treatment.
Collapse
Affiliation(s)
- Zihua Pan
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Yuexiu District, Guangzhou, P.R. China
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, P.R. China
| | - Li Liu
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, P.R. China
| | - Wenjing Nie
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, P.R. China
| | - Sinead Miggin
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Fuman Qiu
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, P.R. China
| | - Yi Cao
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, P.R. China
| | - Jinbin Chen
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, P.R. China
| | - Binyao Yang
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, P.R. China
| | - Yifeng Zhou
- Department of Genetics, Medical College of Soochow University, Suzhou, P.R. China
| | - Jiachun Lu
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Yuexiu District, Guangzhou, P.R. China
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, P.R. China
| | - Lei Yang
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Yuexiu District, Guangzhou, P.R. China
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, P.R. China
| |
Collapse
|
9
|
Antonelli A, Di Maggio S, Rejman J, Sanvito F, Rossi A, Catucci A, Gorzanelli A, Bragonzi A, Bianchi ME, Raucci A. The shedding-derived soluble receptor for advanced glycation endproducts sustains inflammation during acute Pseudomonas aeruginosa lung infection. Biochim Biophys Acta Gen Subj 2017; 1861:354-364. [DOI: 10.1016/j.bbagen.2016.11.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 11/22/2016] [Accepted: 11/28/2016] [Indexed: 01/07/2023]
|
10
|
Mishra A, Guo Y, Zhang L, More S, Weng T, Chintagari NR, Huang C, Liang Y, Pushparaj S, Gou D, Breshears M, Liu L. A Critical Role for P2X7 Receptor-Induced VCAM-1 Shedding and Neutrophil Infiltration during Acute Lung Injury. THE JOURNAL OF IMMUNOLOGY 2016; 197:2828-37. [PMID: 27559050 DOI: 10.4049/jimmunol.1501041] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/25/2016] [Indexed: 01/23/2023]
Abstract
Pulmonary neutrophils are the initial inflammatory cells that are recruited during lung injury and are crucial for innate immunity. However, pathological recruitment of neutrophils results in lung injury. The objective of this study is to determine whether the novel neutrophil chemoattractant, soluble VCAM-1 (sVCAM-1), recruits pathological levels of neutrophils to injury sites and amplifies lung inflammation during acute lung injury. The mice with P2X7 receptor deficiency, or treated with a P2X7 receptor inhibitor or anti-VCAM-1 Abs, were subjected to a clinically relevant two-hit LPS and mechanical ventilation-induced acute lung injury. Neutrophil infiltration and lung inflammation were measured. Neutrophil chemotactic activities were determined by a chemotaxis assay. VCAM-1 shedding and signaling pathways were assessed in isolated lung epithelial cells. Ab neutralization of sVCAM-1 or deficiency or antagonism of P2X7R reduced neutrophil infiltration and proinflammatory cytokine levels. The ligands for sVCAM-1 were increased during acute lung injury. sVCAM-1 had neutrophil chemotactic activities and activated alveolar macrophages. VCAM-1 is released into the alveolar airspace from alveolar epithelial type I cells through P2X7 receptor-mediated activation of the metalloproteinase ADAM-17. In conclusion, sVCAM-1 is a novel chemoattractant for neutrophils and an activator for alveolar macrophages. Targeting sVCAM-1 provides a therapeutic intervention that could block pathological neutrophil recruitment, without interfering with the physiological recruitment of neutrophils, thus avoiding the impairment of host defenses.
Collapse
Affiliation(s)
- Amarjit Mishra
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078
| | - Yujie Guo
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078; Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078
| | - Li Zhang
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078
| | - Sunil More
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078; Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078
| | - Tingting Weng
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078
| | - Narendranath Reddy Chintagari
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078
| | - Chaoqun Huang
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078; Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078
| | - Yurong Liang
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078; Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078
| | - Samuel Pushparaj
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078; Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078
| | - Deming Gou
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong 518060, China; and
| | - Melanie Breshears
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078; Department of Pathobiology, Oklahoma State University, Stillwater, OK 74078
| | - Lin Liu
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078; Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078;
| |
Collapse
|
11
|
Receptor for advanced glycation end products and its involvement in inflammatory diseases. Int J Inflam 2013; 2013:403460. [PMID: 24102034 PMCID: PMC3786507 DOI: 10.1155/2013/403460] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 07/29/2013] [Indexed: 02/06/2023] Open
Abstract
The receptor for advanced glycation end products (RAGE) is a transmembrane receptor of the immunoglobulin superfamily, capable of binding a broad repertoire of ligands. RAGE-ligands interaction induces a series of signal transduction cascades and lead to the activation of transcription factor NF-κB as well as increased expression of cytokines, chemokines, and adhesion molecules. These effects endow RAGE with the role in the signal transduction from pathogen substrates to cell activation during the onset and perpetuation of inflammation. RAGE signaling and downstream pathways have been implicated in a wide spectrum of inflammatory-related pathologic conditions such as arteriosclerosis, Alzheimer's disease, arthritis, acute respiratory failure, and sepsis. Despite the significant progress in other RAGE studies, the functional importance of the receptor in clinical situations and inflammatory diseases still remains to be fully realized. In this review, we will summarize current understandings and lines of evidence on the molecular mechanisms through which RAGE signaling contributes to the pathogenesis of the aforementioned inflammation-associated conditions.
Collapse
|
12
|
Stogsdill JA, Stogsdill MP, Porter JL, Hancock JM, Robinson AB, Reynolds PR. Embryonic Overexpression of Receptors for Advanced Glycation End-Products by Alveolar Epithelium Induces an Imbalance between Proliferation and Apoptosis. Am J Respir Cell Mol Biol 2012; 47:60-6. [DOI: 10.1165/rcmb.2011-0385oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
13
|
Bosnjak B, Stelzmueller B, Erb KJ, Epstein MM. Treatment of allergic asthma: modulation of Th2 cells and their responses. Respir Res 2011; 12:114. [PMID: 21867534 PMCID: PMC3179723 DOI: 10.1186/1465-9921-12-114] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 08/25/2011] [Indexed: 02/08/2023] Open
Abstract
Atopic asthma is a chronic inflammatory pulmonary disease characterised by recurrent episodes of wheezy, laboured breathing with an underlying Th2 cell-mediated inflammatory response in the airways. It is currently treated and, more or less, controlled depending on severity, with bronchodilators e.g. long-acting beta agonists and long-acting muscarinic antagonists or anti-inflammatory drugs such as corticosteroids (inhaled or oral), leukotriene modifiers, theophyline and anti-IgE therapy. Unfortunately, none of these treatments are curative and some asthmatic patients do not respond to intense anti-inflammatory therapies. Additionally, the use of long-term oral steroids has many undesired side effects. For this reason, novel and more effective drugs are needed. In this review, we focus on the CD4+ Th2 cells and their products as targets for the development of new drugs to add to the current armamentarium as adjuncts or as potential stand-alone treatments for allergic asthma. We argue that in early disease, the reduction or elimination of allergen-specific Th2 cells will reduce the consequences of repeated allergic inflammatory responses such as lung remodelling without causing generalised immunosuppression.
Collapse
Affiliation(s)
- Berislav Bosnjak
- Department of Dermatology, DIAID, Experimental Allergy Laboratory, Medical University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
14
|
Gibbings S, Elkins ND, Fitzgerald H, Tiao J, Weyman ME, Shibao G, Fini MA, Wright RM. Xanthine oxidoreductase promotes the inflammatory state of mononuclear phagocytes through effects on chemokine expression, peroxisome proliferator-activated receptor-{gamma} sumoylation, and HIF-1{alpha}. J Biol Chem 2010; 286:961-75. [PMID: 21059659 DOI: 10.1074/jbc.m110.150847] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The protective effects of pharmacological inhibitors of xanthine oxidoreductase (XOR) have implicated XOR in many inflammatory diseases. Nonetheless, the role played by XOR during inflammation is poorly understood. We previously observed that inhibition of XOR within the inflammatory mononuclear phagocytes (MNP) prevented neutrophil recruitment during adoptive transfer demonstrating the role of XOR in MNP-mediated neutrophil recruitment. To further explore the role of XOR in the inflammatory state of MNP, we studied MNP isolated from inflammatory lungs combined with analyses of MNP cell lines. We demonstrated that XOR activity was increased in inflammatory MNP following insufflation of Th-1 cytokines in vivo and that activity was specifically increased by MNP differentiation. Inhibition of XOR reduced levels of CINC-1 secreted by MNP. Expression of peroxisome proliferator-activated receptor γ (PPARγ) in purified rat lung MNP and MNP cell lines reflected both the presence of PPARγ isoforms and PPARγ SUMOylation, and XOR inhibitors increased levels of SUMO-PPARγ in MNP cell lines. Both ectopic overexpression of XOR cDNA and uric acid supplementation reduced SUMO-PPARγ in MNP cells. Levels of the M2 markers CD36, CD206, and arginase-1 were modulated by uric acid and oxonic acid, whereas siRNA to SUMO-1 or PIAS-1 also reduced arginase-1 in RAW264.7 cells. We also observed that HIF-1α was increased by XOR inhibitors in inflammatory MNP and in MNP cell lines. These data demonstrate that XOR promotes the inflammatory state of MNP through effects on chemokine expression, PPARγ SUMOylation, and HIF-1α and suggest that strategies for inhibiting XOR may be valuable in modulating lung inflammatory disorders.
Collapse
Affiliation(s)
- Sophie Gibbings
- Division of Pulmonary Sciences, Division of Pulmonary Sciences, University of Colorado Denver, Aurora, Colorado 80045, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
The receptor for advanced glycation end products (RAGE) and the lung. J Biomed Biotechnol 2010; 2010:917108. [PMID: 20145712 PMCID: PMC2817378 DOI: 10.1155/2010/917108] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 09/27/2009] [Accepted: 10/09/2009] [Indexed: 12/31/2022] Open
Abstract
The receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin superfamily of cell surface molecules. As a pattern-recognition receptor capable of binding a diverse range of ligands, it is typically expressed at low levels under normal physiological conditions in the majority of tissues. In contrast, the lung exhibits high basal level expression of RAGE localised primarily in alveolar type I (ATI) cells, suggesting a potentially important role for the receptor in maintaining lung homeostasis. Indeed, disruption of RAGE levels has been implicated in the pathogenesis of a variety of pulmonary disorders including cancer and fibrosis. Furthermore, its soluble isoforms, sRAGE, which act as decoy receptors, have been shown to be a useful marker of ATI cell injury. Whilst RAGE undoubtedly plays an important role in the biology of the lung, it remains unclear as to the exact nature of this contribution under both physiological and pathological conditions.
Collapse
|