1
|
Naikoo RA, Painuli R, Akhter Z, Singh PP. Cannabinoid receptor 2 (CB2) modulators: A patent review (2016-2024). Bioorg Chem 2024; 153:107775. [PMID: 39288632 DOI: 10.1016/j.bioorg.2024.107775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/28/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024]
Abstract
Cannabinoid receptors CB1 and CB2 play critical roles in regulating numerous central and peripheral physiological activities. While efforts have been made to develop ligands for both CB1 and CB2 receptors, CB1 receptor ligands often have restricted use due to undesirable psychotropic side effects. Consequently, recent cannabis research has increasingly focused on CB2-specific ligands. Pharmacological agonists of CB2 receptors have shown potential in managing pain, inflammation, arthritis, neuroprotection, cancer, and other disorders. Despite several CB2 receptor ligands entering clinical trials, none have achieved market approval except natural cannabinoids and their derivatives, primarily due to insufficient CB2/CB1 receptor selectivity. However, new-generation ligands developed in recent years have demonstrated improved selectivity. This review covers patent literature on CB2 modulators from 2016 to 2024, highlighting the major advances in the field. During this period, the majority of research has concentrated on using CB2 modulators to alleviate inflammation and pain. Additionally, patents have explored CB2 modulators for a range of specific diseases, including: psychiatric and neuropsychiatric disorders, schizophrenia, multiple myeloma and osteoporosis, ocular inflammation and neuropathic Pain, cancer anorexia and weight loss, antioxidant and anti-aging agents, lymphocytopenia, hearing loss, Alzheimer's disease, cancer and non-malignant tumors. Notably, recent years have seen increased interest in CB2 antagonists/inverse agonists, with few candidates advancing to clinical studies. Significant progress has been made in the synthesis and modulation of selective CB2 agonists and antagonists, paving the way for future developments in CB2 modulators. This review provides insights and prospects for the continued evolution of CB2-targeted therapies.
Collapse
Affiliation(s)
- Rayees Ahmad Naikoo
- Natural Product & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Ritu Painuli
- Natural Product & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Zaheen Akhter
- Natural Product & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Parvinder Pal Singh
- Natural Product & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Chicca A, Bátora D, Ullmer C, Caruso A, Grüner S, Fingerle J, Hartung T, Degen R, Müller M, Grether U, Pacher P, Gertsch J. A Highly Potent, Orally Bioavailable Pyrazole-Derived Cannabinoid CB2 Receptor- Selective Full Agonist for In Vivo Studies. ACS Pharmacol Transl Sci 2024; 7:2424-2438. [PMID: 39144568 PMCID: PMC11320734 DOI: 10.1021/acsptsci.4c00269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 08/16/2024]
Abstract
The cannabinoid CB2 receptor (CB2R) is a potential therapeutic target for distinct forms of tissue injury and inflammatory diseases. To thoroughly investigate the role of CB2R in pathophysiological conditions and for target validation in vivo, optimal pharmacological tool compounds are essential. Despite the sizable progress in the generation of potent and selective CB2R ligands, pharmacokinetic parameters are often neglected for in vivo studies. Here, we report the generation and characterization of a tetra-substituted pyrazole CB2R full agonist named RNB-61 with high potency (K i 0.13-1.81 nM, depending on species) and a peripherally restricted action due to P-glycoprotein-mediated efflux from the brain. 3H and 14C labeled RNB-61 showed apparent K d values of <4 nM toward human CB2R in both cell and tissue experiments. The 6,800-fold selectivity over CB1 receptors and negligible off-targets in vitro, combined with high oral bioavailability and suitable systemic pharmacokinetic (PK) properties, prompted the assessment of RNB-61 in a mouse ischemia-reperfusion model of acute kidney injury (AKI) and in a rat model of chronic kidney injury/inflammation and fibrosis (CKI) induced by unilateral ureteral obstruction. RNB-61 exerted dose-dependent nephroprotective and/or antifibrotic effects in the AKI/CKI models. Thus, RNB-61 is an optimal CB2R tool compound for preclinical in vivo studies with superior biophysical and PK properties over generally used CB2R ligands.
Collapse
Affiliation(s)
- Andrea Chicca
- Institute
of Biochemistry and Molecular Medicine, University of Bern, Bern 3012, Switzerland
| | - Daniel Bátora
- Institute
of Biochemistry and Molecular Medicine, University of Bern, Bern 3012, Switzerland
- Graduate
School for Cellular and Biomedical Sciences, University of Bern, Bern 3012, Switzerland
| | - Christoph Ullmer
- Pharmaceutical
Sciences, Roche Innovation Center Basel,
Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Antonello Caruso
- Pharmaceutical
Sciences, Roche Innovation Center Basel,
Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Sabine Grüner
- Pharmaceutical
Sciences, Roche Innovation Center Basel,
Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Jürgen Fingerle
- Pharmaceutical
Sciences, Roche Innovation Center Basel,
Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Thomas Hartung
- Pharmaceutical
Sciences, Roche Innovation Center Basel,
Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Roland Degen
- Pharmaceutical
Sciences, Roche Innovation Center Basel,
Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Matthias Müller
- Pharmaceutical
Sciences, Roche Innovation Center Basel,
Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Uwe Grether
- Pharmaceutical
Sciences, Roche Innovation Center Basel,
Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Pal Pacher
- Laboratory
of Cardiovascular Physiology and Tissue Injury (P.P.), National Institute on Alcohol Abuse and Alcoholism,
National Institutes of Health (NIH), Bethesda MD 20892-9304, United States
| | - Jürg Gertsch
- Institute
of Biochemistry and Molecular Medicine, University of Bern, Bern 3012, Switzerland
| |
Collapse
|
3
|
Abdollahzadeh Hamzekalayi MR, Hooshyari Ardakani M, Moeini Z, Rezaei R, Hamidi N, Rezaei Somee L, Zolfaghar M, Darzi R, Kamalipourazad M, Riazi G, Meknatkhah S. A systematic review of novel cannabinoids and their targets: Insights into the significance of structure in activity. Eur J Pharmacol 2024; 976:176679. [PMID: 38821167 DOI: 10.1016/j.ejphar.2024.176679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/26/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
To provide a comprehensive framework of the current information on the potency and efficacy of interaction between phyto- and synthetic cannabinoids and their respective receptors, an electronic search of the PubMed, Scopus, and EMBASE literature was performed. Experimental studies included reports of mechanistic data providing affinity, efficacy, and half-maximal effective concentration (EC50). Among the 108 included studies, 174 structures, and 16 targets were extracted. The most frequent ligands belonged to the miscellaneous category with 40.2% followed by phytocannabinoid-similar, indole-similar, and pyrrole-similar structures with an abundance of 17.8%, 16.6%, and 12% respectively. 64.8% of structures acted as agonists, 17.1 % appeared as inverse agonists, 10.8% as antagonists, and 7.2% of structures were reported with antagonist/inverse agonist properties. Our outcomes identify the affinity, EC50, and efficacy of the interactions between cannabinoids and their corresponding receptors and the subsequent response, evaluated in the available evidence. Considering structures' significance and very important effects of on the activities, the obtained results also provide clues to drug repurposing.
Collapse
Affiliation(s)
| | | | - Zahra Moeini
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Reza Rezaei
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Negin Hamidi
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Leila Rezaei Somee
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mahdis Zolfaghar
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Raheleh Darzi
- Department of Plant Science, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Kamalipourazad
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modarres University, Tehran, Iran
| | - Gholamhossein Riazi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Sogol Meknatkhah
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
4
|
Chicca A, Batora D, Ullmer C, Caruso A, Fingerle J, Hartung T, Degen R, Müller M, Grether U, Pacher P, Gertsch J. A highly potent, orally bioavailable pyrazole-derived cannabinoid CB2 receptor-selective full agonist for in vivo studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591311. [PMID: 38903103 PMCID: PMC11188143 DOI: 10.1101/2024.04.26.591311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The cannabinoid CB2 receptor (CB2R) is a potential therapeutic target for distinct forms of tissue injury and inflammatory diseases. To thoroughly investigate the role of CB2R in pathophysiological conditions and for target validation in vivo, optimal pharmacological tool compounds are essential. Despite the sizable progress in the generation of potent and selective CB2R ligands, pharmacokinetic parameters are often neglected for in vivo studies. Here, we report the generation and characterization of a tetra-substituted pyrazole CB2R full agonist named RNB-61 with high potency (K i 0.13-1.81 nM, depending on species) and a peripherally restricted action due to P-glycoprotein mediated efflux from the brain. 3H and 14C labelled RNB-61 showed apparent K d values < 4 nM towards human CB2R in both cell and tissue experiments. The >6000-fold selectivity over CB1 receptors and negligible off-targets in vitro, combined with high oral bioavailability and suitable systemic pharmacokinetic (PK) properties, prompted the assessment of RNB-61 in a mouse ischemia-reperfusion model of acute kidney injury (AKI) and in a rat model of chronic kidney injury/inflammation and fibrosis (CKI) induced by unilateral ureteral obstruction. RNB-61 exerted dose-dependent nephroprotective and/or antifibrotic effects in the AKI/CKI models. Thus, RNB-61 is an optimal CB2R tool compound for preclinical in vivo studies with superior biophysical and PK properties over generally used CB2R ligands.
Collapse
Affiliation(s)
- Andrea Chicca
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern 3012, Switzerland
| | - Daniel Batora
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern 3012, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Christoph Ullmer
- Pharmaceutical Sciences, Roche Innovation Center Basel, Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Antonello Caruso
- Pharmaceutical Sciences, Roche Innovation Center Basel, Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Jürgen Fingerle
- Pharmaceutical Sciences, Roche Innovation Center Basel, Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Thomas Hartung
- Pharmaceutical Sciences, Roche Innovation Center Basel, Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Roland Degen
- Pharmaceutical Sciences, Roche Innovation Center Basel, Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Matthias Müller
- Pharmaceutical Sciences, Roche Innovation Center Basel, Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Uwe Grether
- Pharmaceutical Sciences, Roche Innovation Center Basel, Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury (P.P.), National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health (NIH), Bethesda, MD
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern 3012, Switzerland
| |
Collapse
|
5
|
Maccarrone M, Di Marzo V, Gertsch J, Grether U, Howlett AC, Hua T, Makriyannis A, Piomelli D, Ueda N, van der Stelt M. Goods and Bads of the Endocannabinoid System as a Therapeutic Target: Lessons Learned after 30 Years. Pharmacol Rev 2023; 75:885-958. [PMID: 37164640 PMCID: PMC10441647 DOI: 10.1124/pharmrev.122.000600] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/12/2023] Open
Abstract
The cannabis derivative marijuana is the most widely used recreational drug in the Western world and is consumed by an estimated 83 million individuals (∼3% of the world population). In recent years, there has been a marked transformation in society regarding the risk perception of cannabis, driven by its legalization and medical use in many states in the United States and worldwide. Compelling research evidence and the Food and Drug Administration cannabis-derived cannabidiol approval for severe childhood epilepsy have confirmed the large therapeutic potential of cannabidiol itself, Δ9-tetrahydrocannabinol and other plant-derived cannabinoids (phytocannabinoids). Of note, our body has a complex endocannabinoid system (ECS)-made of receptors, metabolic enzymes, and transporters-that is also regulated by phytocannabinoids. The first endocannabinoid to be discovered 30 years ago was anandamide (N-arachidonoyl-ethanolamine); since then, distinct elements of the ECS have been the target of drug design programs aimed at curing (or at least slowing down) a number of human diseases, both in the central nervous system and at the periphery. Here a critical review of our knowledge of the goods and bads of the ECS as a therapeutic target is presented to define the benefits of ECS-active phytocannabinoids and ECS-oriented synthetic drugs for human health. SIGNIFICANCE STATEMENT: The endocannabinoid system plays important roles virtually everywhere in our body and is either involved in mediating key processes of central and peripheral diseases or represents a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of the components of this complex system, and in particular of key receptors (like cannabinoid receptors 1 and 2) and metabolic enzymes (like fatty acid amide hydrolase and monoacylglycerol lipase), will advance our understanding of endocannabinoid signaling and activity at molecular, cellular, and system levels, providing new opportunities to treat patients.
Collapse
Affiliation(s)
- Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Vincenzo Di Marzo
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Jürg Gertsch
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Uwe Grether
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Allyn C Howlett
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Tian Hua
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Alexandros Makriyannis
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Daniele Piomelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Natsuo Ueda
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Mario van der Stelt
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| |
Collapse
|
6
|
Piscura MK, Henderson-Redmond AN, Barnes RC, Mitra S, Guindon J, Morgan DJ. Mechanisms of cannabinoid tolerance. Biochem Pharmacol 2023; 214:115665. [PMID: 37348821 PMCID: PMC10528043 DOI: 10.1016/j.bcp.2023.115665] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
Cannabis has been used recreationally and medically for centuries, yet research into understanding the mechanisms of its therapeutic effects has only recently garnered more attention. There is evidence to support the use of cannabinoids for the treatment of chronic pain, muscle spasticity, nausea and vomiting due to chemotherapy, improving weight gain in HIV-related cachexia, emesis, sleep disorders, managing symptoms in Tourette syndrome, and patient-reported muscle spasticity from multiple sclerosis. However, tolerance and the risk for cannabis use disorder are two significant disadvantages for cannabinoid-based therapies in humans. Recent work has revealed prominent sex differences in the acute response and tolerance to cannabinoids in both humans and animal models. This review will discuss evidence demonstrating cannabinoid tolerance in rodents, non-human primates, and humans and our current understanding of the neuroadaptations occurring at the cannabinoid type 1 receptor (CB1R) that are responsible tolerance. CB1R expression is downregulated in tolerant animals and humans while there is strong evidence of CB1R desensitization in cannabinoid tolerant rodent models. Throughout the review, critical knowledge gaps are indicated and discussed, such as the lack of a neuroimaging probe to assess CB1R desensitization in humans. The review discusses the intracellular signaling pathways that are responsible for mediating CB1R desensitization and downregulation including the action of G protein-coupled receptor kinases, β-arrestin2 recruitment, c-Jun N-terminal kinases, protein kinase A, and the intracellular trafficking of CB1R. Finally, the review discusses approaches to reduce cannabinoid tolerance in humans based on our current understanding of the neuroadaptations and mechanisms responsible for this process.
Collapse
Affiliation(s)
- Mary K Piscura
- Department of Biomedical Sciences, Marshall University, Huntington, WV 25755, USA; Department of Biomedical Sciences, Edward Via College of Osteopathic Medicine, Auburn, AL 36832, USA
| | | | - Robert C Barnes
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Swarup Mitra
- Department of Biomedical Sciences, Marshall University, Huntington, WV 25755, USA
| | - Josée Guindon
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Daniel J Morgan
- Department of Biomedical Sciences, Marshall University, Huntington, WV 25755, USA.
| |
Collapse
|
7
|
Graziano G, Delre P, Carofiglio F, Brea J, Ligresti A, Kostrzewa M, Riganti C, Gioè-Gallo C, Majellaro M, Nicolotti O, Colabufo NA, Abate C, Loza MI, Sotelo E, Mangiatordi GF, Contino M, Stefanachi A, Leonetti F. N-adamantyl-anthranil amide derivatives: New selective ligands for the cannabinoid receptor subtype 2 (CB2R). Eur J Med Chem 2023; 248:115109. [PMID: 36657299 DOI: 10.1016/j.ejmech.2023.115109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Cannabinoid type 2 receptor (CB2R) is a G-protein-coupled receptor that, together with Cannabinoid type 1 receptor (CB1R), endogenous cannabinoids and enzymes responsible for their synthesis and degradation, forms the EndoCannabinoid System (ECS). In the last decade, several studies have shown that CB2R is overexpressed in activated central nervous system (CNS) microglia cells, in disorders based on an inflammatory state, such as neurodegenerative diseases, neuropathic pain, and cancer. For this reason, the anti-inflammatory and immune-modulatory potentials of CB2R ligands are emerging as a novel therapeutic approach. The design of selective ligands is however hampered by the high sequence homology of transmembrane domains of CB1R and CB2R. Based on a recent three-arm pharmacophore hypothesis and latest CB2R crystal structures, we designed, synthesized, and evaluated a series of new N-adamantyl-anthranil amide derivatives as CB2R selective ligands. Interestingly, this new class of compounds displayed a high affinity for human CB2R along with an excellent selectivity respect to CB1R. In this respect, compounds exhibiting the best pharmacodynamic profile in terms of CB2R affinity were also evaluated for the functional behavior and molecular docking simulations provided a sound rationale by highlighting the relevance of the arm 1 substitution to prompt CB2R action. Moreover, the modulation of the pro- and anti-inflammatory cytokines production was also investigated to exert the ability of the best compounds to modulate the inflammatory cascade.
Collapse
Affiliation(s)
- Giovanni Graziano
- Department of Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari "Aldo Moro", Via E.Orabona 4, 70125, Bari, Italy
| | - Pietro Delre
- CNR - Institute of Crystallography, Via Giovanni Amendola, 122/O, 70126, Bari, Italy
| | - Francesca Carofiglio
- Department of Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari "Aldo Moro", Via E.Orabona 4, 70125, Bari, Italy
| | - Josè Brea
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Av. Barcelona, 15782, Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Alessia Ligresti
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - Magdalena Kostrzewa
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - Chiara Riganti
- Department of Oncology, University of Turin, Turin, Italy
| | - Claudia Gioè-Gallo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Maria Majellaro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Orazio Nicolotti
- Department of Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari "Aldo Moro", Via E.Orabona 4, 70125, Bari, Italy
| | - Nicola Antonio Colabufo
- Department of Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari "Aldo Moro", Via E.Orabona 4, 70125, Bari, Italy
| | - Carmen Abate
- Department of Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari "Aldo Moro", Via E.Orabona 4, 70125, Bari, Italy; CNR - Institute of Crystallography, Via Giovanni Amendola, 122/O, 70126, Bari, Italy
| | - Maria Isabel Loza
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Av. Barcelona, 15782, Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Eddy Sotelo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | | | - Marialessandra Contino
- Department of Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari "Aldo Moro", Via E.Orabona 4, 70125, Bari, Italy.
| | - Angela Stefanachi
- Department of Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari "Aldo Moro", Via E.Orabona 4, 70125, Bari, Italy.
| | - Francesco Leonetti
- Department of Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari "Aldo Moro", Via E.Orabona 4, 70125, Bari, Italy
| |
Collapse
|
8
|
Miranda-Cortés A, Mota-Rojas D, Crosignani-Outeda N, Casas-Alvarado A, Martínez-Burnes J, Olmos-Hernández A, Mora-Medina P, Verduzco-Mendoza A, Hernández-Ávalos I. The role of cannabinoids in pain modulation in companion animals. Front Vet Sci 2023; 9:1050884. [PMID: 36686189 PMCID: PMC9848446 DOI: 10.3389/fvets.2022.1050884] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023] Open
Abstract
The use of cannabinoids in both veterinary and human medicine is controversial for legal and ethical reasons. Nonetheless, the availability and therapeutic use of naturally occurring or synthetic phytocannabinoids, such as Δ9-tetrahydrocannabidiol and cannabidiol, have been the focus of attention in studies regarding their medical uses. This review aims to examine the role of cannabinoids in pain modulation by analyzing scientific findings regarding the signaling pathways of the endocannabinoid system and discussing the analgesic effects of synthetic cannabinoids compared to cannabinoid extracts and the extent and involvement of their receptors. In animals, studies have shown the analgesic properties of these substances and the role of the cannabinoid binding -1 (CB1) and cannabinoid binding -2 (CB2) receptors in the endocannabinoid system to modulate acute, chronic and neuropathic pain. This system consists of three main components: endogenous ligands (anandamide and 2-arachidonoylglycerol), G protein-coupled receptors and enzymes that degrade and recycle the ligands. Evidence suggests that their interaction with CB1 receptors inhibits signaling in pain pathways and causes psychoactive effects. On the other hand, CB2 receptors are associated with anti-inflammatory and analgesic reactions and effects on the immune system. Cannabis extracts and their synthetic derivatives are an effective therapeutic tool that contributes to compassionate pain care and participates in its multimodal management. However, the endocannabinoid system interacts with different endogenous ligands and neurotransmitters, thus offering other therapeutic possibilities in dogs and cats, such is the case of those patients who suffer from seizures or epilepsy, contact and atopic dermatitis, degenerative myelopathies, asthma, diabetes and glaucoma, among other inflammatory diseases. Moreover, these compounds have been shown to possess antineoplastic, appetite-stimulating, and antiemetic properties. Ultimately, the study of the endocannabinoid system, its ligands, receptors, mechanism of action, and signaling, has contributed to the development of research that shows that hemp-derived and their synthetic derivatives are an effective therapeutic alternative in the multimodal management of pain in dogs and cats due to their ability to prevent peripheral and central sensitization.
Collapse
Affiliation(s)
- Agatha Miranda-Cortés
- Department of Biological Science, Clinical Pharmacology and Veterinary Anesthesia, Universidad Nacional Autónoma de México (UNAM), FESC, Mexico City, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology of Pain, Behavior and Assessment of Welfare in Domestic Animals, DPAA, Universidad Autónoma Metropolitana, (UAM), Mexico City, Mexico
| | - Nadia Crosignani-Outeda
- Department of Clinics and Veterinary Hospital, School of Veterinary, University of Republic, Montevideo, Uruguay
| | - Alejandro Casas-Alvarado
- Neurophysiology of Pain, Behavior and Assessment of Welfare in Domestic Animals, DPAA, Universidad Autónoma Metropolitana, (UAM), Mexico City, Mexico
| | - Julio Martínez-Burnes
- Animal Health Group, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Ciudad Victoria, Tamaulipas, Mexico
| | - Adriana Olmos-Hernández
- Department Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Calzada México Xochimilco, Mexico City, Mexico
| | - Patricia Mora-Medina
- Livestock Science Department, Universidad Nacional Autónoma de México (UNAM), FESC, Mexico City, Mexico
| | - Antonio Verduzco-Mendoza
- Department Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Calzada México Xochimilco, Mexico City, Mexico
| | - Ismael Hernández-Ávalos
- Department of Biological Science, Clinical Pharmacology and Veterinary Anesthesia, Universidad Nacional Autónoma de México (UNAM), FESC, Mexico City, Mexico
| |
Collapse
|
9
|
Carmon I, Smoum R, Farhat E, Reich E, Kandel L, Yekhtin Z, Gallily R, Mechoulam R, Dvir-Ginzberg M. A Fenchone Derivative Effectively Abrogates Joint Damage Following Post-Traumatic Osteoarthritis in Lewis Rats. Cells 2022; 11:cells11244084. [PMID: 36552848 PMCID: PMC9777073 DOI: 10.3390/cells11244084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND In a previous report, we have identified the cannabinoid receptor 2 (CB2) agonist HU308 to possess a beneficial effect in preventing age and trauma-induced osteoarthritis (OA) in mice. The effects of HU308 were largely related to the capacity of this compound to induce cartilage anabolism which was dependent on the CREB/SOX9 axis, and exhibited pro-survival and pro-proliferative hallmarks of articular cartilage following treatment. Here, we utilized the novel cannabinoid-fenchone CB2 agonists (1B, 1D), which were previously reported to render anti-inflammatory effects in a zymosan model. METHODS Initially, we assessed the selectivity of CB2 using a Gs-protein receptor cAMP potency assay, which was also validated for antagonistic effects dependent on the Gi-protein receptor cAMP pathway. Based on EC50 values, 1D was selected for a zymosan inflammatory pain model. Next, 1D was administered in two doses intra-articularly (IA), in a post-traumatic medial meniscal tear (MMT, Lewis rats) model, and compared to sham, vehicle, and a positive control consisting of fibroblast growth factor 18 (FGF18) administration. The histopathological assessment was carried out according to the Osteoarthritis Research Society International (OARSI) guidelines for rat models following 28 days post-MMT. RESULTS The G protein receptor assays confirmed that both 1B and 1D possess CB2 agonistic effects in cell lines and in chondrocytes. Co-administering a CB2 antagonists to 25 mg/kg 1D in a paw inflammatory pain model abolished 1D-related anti-swelling effect and partially abolishing its analgesic effects. Using an MMT model, the high dose (i.e., 24 µg) of 1D administered via IA route, exhibited reduced cartilage damage. Particularly, this dose of 1D exhibited a 30% improvement in cartilage degeneration (zonal/total tibial scores) and lesion depth ratios (44%), comparable to the FGF18 positive control. Synovitis scores remained unaffected and histopathologic evaluation of subchondral bone damage did not suggest that 1D treatment changed the load-bearing ability of the rats. Contrary to the anabolic effect of FGF18, synovial inflammation was observed and was accompanied by increased osteophyte size. CONCLUSION The structural histopathological analysis supports a disease-modifying effect of IA-administered 1D compound without any deleterious effects on the joint structure.
Collapse
Affiliation(s)
- Idan Carmon
- Multidisciplinary Center for Cannabinoid Research, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Institute of BioMedical and Oral Research, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Reem Smoum
- Multidisciplinary Center for Cannabinoid Research, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Eli Farhat
- Multidisciplinary Center for Cannabinoid Research, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Institute of BioMedical and Oral Research, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Eli Reich
- Institute of BioMedical and Oral Research, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Leonid Kandel
- Orthopedic Surgery Complex, Hebrew University-Hadassah Medical Center, Jerusalem 91120, Israel
| | - Zhannah Yekhtin
- The Lautenberg Center for Immunology and Cancer Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ruth Gallily
- The Lautenberg Center for Immunology and Cancer Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Raphael Mechoulam
- Multidisciplinary Center for Cannabinoid Research, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Mona Dvir-Ginzberg
- Multidisciplinary Center for Cannabinoid Research, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Institute of BioMedical and Oral Research, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Correspondence: ; Tel.: +972-2-675-7614
| |
Collapse
|
10
|
GW842166X Alleviates Osteoarthritis by Repressing LPS-mediated Chondrocyte Catabolism in Mice. Curr Med Sci 2022; 42:1046-1054. [DOI: 10.1007/s11596-022-2627-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/28/2021] [Indexed: 11/26/2022]
|
11
|
Miagkoff L, Girard CA, St-Jean G, Richard H, Beauchamp G, Laverty S. Cannabinoid receptors are expressed in equine synovium and upregulated with synovitis. Equine Vet J 2022. [PMID: 35836386 DOI: 10.1111/evj.13860] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/10/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is a major cause of equine lameness. Cannabinoid receptors (CB) are now considered to be promising therapeutic targets in human rheumatology for pain and inflammation, however little is known about the equine endocannabinoid system. OBJECTIVES The primary goal was to assess the presence and expression pattern of CB1 and CB2 in the synovium of healthy joints. A secondary goal was to explore the relationship between the CB expression, degree of synovitis and OA pathology. STUDY DESIGN Ex vivo experimental study. METHODS Metacarpophalangeal joints (n=25) from a tissue bank were studied. The joints were dissected, and the articular cartilage lesions were scored. Synovial membrane specimens (n=45) were harvested, fixed and the degree of synovitis was graded on histological sections. Co-localised synovial sections were also immunostained with antibodies to CB1 and CB2. Five regions of interest (ROIs) were randomly selected from digital images of manually segmented synovial intima and scored blindly for positive cellular immunoreactive staining by 2 independent observers. Interobserver agreement was calculated with an intraclass correlation coefficient (ICC). Relationships between CB1 and CB2 immunoreactive scores and synovitis or joint OA grade were explored with mixed linear models. RESULTS CB1 was expressed in synovial intimal cells in all specimens studied whereas CB2 expression was identified in 94%. Both receptors were also expressed in the subintimal blood vessel walls. ICCs were 84.6% (CB1) and 92.9% (CB2) for the immunoreactivity scores. Both CB1 and CB2 expression were significantly upregulated (p=0.04 and p=0.03 respectively) with increasing degree of synovitis. Conversely, CB1 expression significantly decreased (p=0.03) with increasing severity of OA. MAIN LIMITATIONS The type of synovial cell expressing CB1 or CB2 was not investigated. CONCLUSIONS Equine synovial intimal cells constitutively express both CB1 and CB2 receptors that are upregulated with synovitis and may have a role in joint pain. They are potential targets for therapy with cannabinoid molecules or their derivatives. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ludovic Miagkoff
- Comparative Orthopedic Research Laboratory, Department of Clinical Sciences, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, St. Hyacinthe, Quebec, Canada
| | - Christiane A Girard
- Comparative Orthopedic Research Laboratory, Department of Clinical Sciences, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, St. Hyacinthe, Quebec, Canada
| | - Guillaume St-Jean
- Comparative Orthopedic Research Laboratory, Department of Clinical Sciences, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, St. Hyacinthe, Quebec, Canada
| | - Hélène Richard
- Comparative Orthopedic Research Laboratory, Department of Clinical Sciences, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, St. Hyacinthe, Quebec, Canada
| | - Guy Beauchamp
- Comparative Orthopedic Research Laboratory, Department of Clinical Sciences, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, St. Hyacinthe, Quebec, Canada
| | - Sheila Laverty
- Comparative Orthopedic Research Laboratory, Department of Clinical Sciences, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, St. Hyacinthe, Quebec, Canada
| |
Collapse
|
12
|
Wang F, Liu M, Wang N, Luo J. G Protein-Coupled Receptors in Osteoarthritis. Front Endocrinol (Lausanne) 2022; 12:808835. [PMID: 35154008 PMCID: PMC8831737 DOI: 10.3389/fendo.2021.808835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is the most common chronic joint disease characterized, for which there are no available therapies being able to modify the progression of OA and prevent long-term disability. Critical roles of G-protein coupled receptors (GPCRs) have been established in OA cartilage degeneration, subchondral bone sclerosis and chronic pain. In this review, we describe the pathophysiological processes targeted by GPCRs in OA, along with related preclinical model and/or clinical trial data. We review examples of GPCRs which may offer attractive therapeutic strategies for OA, including receptors for cannabinoids, hormones, prostaglandins, fatty acids, adenosines, chemokines, and discuss the main challenges for developing these therapies.
Collapse
Affiliation(s)
- Fanhua Wang
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Ning Wang
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield, United Kingdom
| | - Jian Luo
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
13
|
Lowe H, Toyang N, Steele B, Bryant J, Ngwa W. The Endocannabinoid System: A Potential Target for the Treatment of Various Diseases. Int J Mol Sci 2021; 22:9472. [PMID: 34502379 PMCID: PMC8430969 DOI: 10.3390/ijms22179472] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
The Endocannabinoid System (ECS) is primarily responsible for maintaining homeostasis, a balance in internal environment (temperature, mood, and immune system) and energy input and output in living, biological systems. In addition to regulating physiological processes, the ECS directly influences anxiety, feeding behaviour/appetite, emotional behaviour, depression, nervous functions, neurogenesis, neuroprotection, reward, cognition, learning, memory, pain sensation, fertility, pregnancy, and pre-and post-natal development. The ECS is also involved in several pathophysiological diseases such as cancer, cardiovascular diseases, and neurodegenerative diseases. In recent years, genetic and pharmacological manipulation of the ECS has gained significant interest in medicine, research, and drug discovery and development. The distribution of the components of the ECS system throughout the body, and the physiological/pathophysiological role of the ECS-signalling pathways in many diseases, all offer promising opportunities for the development of novel cannabinergic, cannabimimetic, and cannabinoid-based therapeutic drugs that genetically or pharmacologically modulate the ECS via inhibition of metabolic pathways and/or agonism or antagonism of the receptors of the ECS. This modulation results in the differential expression/activity of the components of the ECS that may be beneficial in the treatment of a number of diseases. This manuscript in-depth review will investigate the potential of the ECS in the treatment of various diseases, and to put forth the suggestion that many of these secondary metabolites of Cannabis sativa L. (hereafter referred to as "C. sativa L." or "medical cannabis"), may also have potential as lead compounds in the development of cannabinoid-based pharmaceuticals for a variety of diseases.
Collapse
Affiliation(s)
- Henry Lowe
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
- Vilotos Pharmaceuticals Inc., Baltimore, MD 21202, USA;
- Flavocure Biotech Inc., Baltimore, MD 21202, USA
- Department of Medicine, University of Maryland Medical School, Baltimore, MD 21202, USA
| | - Ngeh Toyang
- Vilotos Pharmaceuticals Inc., Baltimore, MD 21202, USA;
- Flavocure Biotech Inc., Baltimore, MD 21202, USA
| | - Blair Steele
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
| | - Joseph Bryant
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
| | - Wilfred Ngwa
- Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA;
- Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| |
Collapse
|
14
|
Cytotoxicity, metabolism, and isozyme mapping of the synthetic cannabinoids JWH-200, A-796260, and 5F-EMB-PINACA studied by means of in vitro systems. Arch Toxicol 2021; 95:3539-3557. [PMID: 34453555 PMCID: PMC8492589 DOI: 10.1007/s00204-021-03148-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022]
Abstract
Intake of synthetic cannabinoids (SC), one of the largest classes of new psychoactive substances, was reported to be associated with acute liver damage but information about their hepatotoxic potential is limited. The current study aimed to analyze the hepatotoxicity including the metabolism-related impact of JWH-200, A-796260, and 5F-EMB-PINACA in HepG2 cells allowing a tentative assessment of different SC subclasses. A formerly adopted high-content screening assay (HCSA) was optimized using a fully automated epifluorescence microscope. Metabolism-mediated effects in the HCSA were additionally investigated using the broad CYP inhibitor 1-aminobenzotriazole. Furthermore, phase I metabolites and isozymes involved were identified by in vitro assays and liquid chromatography–high-resolution tandem mass spectrometry. A strong cytotoxic potential was observed for the naphthoylindole SC JWH-200 and the tetramethylcyclopropanoylindole compound A-796260, whereas the indazole carboxamide SC 5F-EMB-PINACA showed moderate effects. Numerous metabolites, which can serve as analytical targets in urine screening procedures, were identified in pooled human liver microsomes. Most abundant metabolites of JWH-200 were formed by N-dealkylation, oxidative morpholine cleavage, and oxidative morpholine opening. In case of A-796260, most abundant metabolites included an oxidative morpholine cleavage, oxidative morpholine opening, hydroxylation, and dihydroxylation followed by dehydrogenation. Most abundant 5F-EMB-PINACA metabolites were generated by ester hydrolysis plus additional steps such as oxidative defluorination and hydroxylation. To conclude, the data showed that a hepatotoxicity of the investigated SC cannot be excluded, that metabolism seems to play a minor role in the observed effects, and that the extensive phase I metabolism is mediated by several isozymes making interaction unlikely.
Collapse
|
15
|
Cabañero D, Martín-García E, Maldonado R. The CB2 cannabinoid receptor as a therapeutic target in the central nervous system. Expert Opin Ther Targets 2021; 25:659-676. [PMID: 34424117 DOI: 10.1080/14728222.2021.1971196] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Targeting CB2 cannabinoid receptor (CB2r) represents a promising approach for the treatment of central nervous system disorders. These receptors were identified in peripheral tissues, but also in neurons in the central nervous system. New findings have highlighted the interest to target these central receptors to obtain therapeutic effects devoid of the classical cannabinoid side-effects. AREAS COVERED In this review, we searched PubMed (January 1991-May 2021), ClinicalTrials.gov and Cochrane Library databases for articles, reviews and clinical trials. We first introduce the relevance of CB2r as a key component of the endocannabinoid system. We discuss CB2r interest as a possible novel target in the treatment of pain. This receptor has raised interest as a potential target for neurodegenerative disorders treatment, as we then discussed. Finally, we underline studies revealing a novel potential CB2r interest in mental disorders treatment. EXPERT OPINION In spite of the interest of targeting CB2r for pain, clinical trials evaluating CB2r agonist analgesic efficacy have currently failed. The preferential involvement of CB2r in preventing the development of chronic pain could influence the failure of clinical trials designed for the treatment of already established pain syndromes. Specific trials should be designed to target the prevention of chronic pain development.
Collapse
Affiliation(s)
- David Cabañero
- Institute of Research, Development and Innovation in Healthcare Biotechnology of Elche (IDiBE), Universidad Miguel Hernández. Elche, Alicante, Spain
| | - Elena Martín-García
- Neuropharmacology Laboratory, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain.,IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Spain
| | - Rafael Maldonado
- Neuropharmacology Laboratory, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain.,IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Spain
| |
Collapse
|
16
|
Abstract
In this review, the state of the art for compounds affecting the endocannabinoid (eCB) system is described with a focus on the treatment of pain. Amongst directly acting CB receptor ligands, clinical experience with ∆9 -tetrahydracannabinol and medical cannabis in chronic non-cancer pain indicates that there are differences between the benefits perceived by patients and the at best modest effect seen in meta-analyses of randomized controlled trials. The reason for this difference is not known but may involve differences in the type of patients that are recruited, the study conditions that are chosen and the degree to which biases such as reporting bias are operative. Other directly acting CB receptor ligands such as biased agonists and allosteric receptor modulators have not yet reached the clinic. Amongst indirectly acting compounds targeting the enzymes responsible for the synthesis and catabolism of the eCBs anandamide and 2-arachidonoylglycerol, fatty acid amide hydrolase (FAAH) inhibitors have been investigated clinically but were per se not useful for the treatment of pain, although they may be useful for the treatment of post-traumatic stress disorder and cannabis use disorder. Dual-acting compounds targeting this enzyme and other targets such as cyclooxygenase-2 or transient potential vanilloid receptor 1 may be a way forward for the treatment of pain.
Collapse
Affiliation(s)
- C J Fowler
- From the, Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
17
|
Cannabinoid-based therapy as a future for joint degeneration. Focus on the role of CB 2 receptor in the arthritis progression and pain: an updated review. Pharmacol Rep 2021; 73:681-699. [PMID: 34050525 PMCID: PMC8180479 DOI: 10.1007/s43440-021-00270-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
Over the last several decades, the percentage of patients suffering from different forms of arthritis has increased due to the ageing population and the increasing risk of civilization diseases, e.g. obesity, which contributes to arthritis development. Osteoarthritis and rheumatoid arthritis are estimated to affect 50-60% of people over 65 years old and cause serious health and economic problems. Currently, therapeutic strategies are limited and focus mainly on pain attenuation and maintaining joint functionality. First-line therapies are nonsteroidal anti-inflammatory drugs; in more advanced stages, stronger analgesics, such as opioids, are required, and in the most severe cases, joint arthroplasty is the only option to ensure joint mobility. Cannabinoids, both endocannabinoids and synthetic cannabinoid receptor (CB) agonists, are novel therapeutic options for the treatment of arthritis-associated pain. CB1 receptors are mainly located in the nervous system; thus, CB1 agonists induce many side effects, which limit their therapeutic efficacy. On the other hand, CB2 receptors are mainly located in the periphery on immune cells, and CB2 modulators exert analgesic and anti-inflammatory effects in vitro and in vivo. In the current review, novel research on the cannabinoid-mediated analgesic effect on arthritis is presented, with particular emphasis on the role of the CB2 receptor in arthritis-related pain and the suppression of inflammation.
Collapse
|
18
|
Fulo HF, Shoeib A, Cabanlong CV, Williams AH, Zhan CG, Prather PL, Dudley GB. Synthesis, Molecular Pharmacology, and Structure-Activity Relationships of 3-(Indanoyl)indoles as Selective Cannabinoid Type 2 Receptor Antagonists. J Med Chem 2021; 64:6381-6396. [PMID: 33887913 PMCID: PMC8683641 DOI: 10.1021/acs.jmedchem.1c00442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Synthetic indole cannabinoids characterized by a 2',2'-dimethylindan-5'-oyl group at the indole C3 position constitute a new class of ligands possessing high affinity for human CB2 receptors at a nanomolar concentration and a good selectivity index. Starting from the neutral antagonist 4, the effects of indole core modification on the pharmacodynamic profile of the ligands were investigated. Several N1 side chains afforded potent and CB2-selective neutral antagonists, notably derivatives 26 (R1 = n-propyl, R2 = H) and 35 (R1 = 4-pentynyl, R2 = H). Addition of a methyl group at C2 improved the selectivity for the CB2 receptor. Moreover, C2 indole substitution may control the CB2 activity as shown by the functionality switch in 35 (antagonist) and 49 (R1 = 4-pentynyl, R2 = CH3, partial agonist).
Collapse
Affiliation(s)
- Harvey F Fulo
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Amal Shoeib
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Christian V Cabanlong
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Alexander H Williams
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Paul L Prather
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Gregory B Dudley
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
19
|
Cannabinoid receptor type 2 ligands: an analysis of granted patents since 2010. Pharm Pat Anal 2021; 10:111-163. [DOI: 10.4155/ppa-2021-0002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The G-protein-coupled cannabinoid receptor type 2 (CB2R) is a key element of the endocannabinoid (EC) system. EC/CB2R signaling has significant therapeutic potential in major pathologies affecting humans such as allergies, neurodegenerative disorders, inflammation or ocular diseases. CB2R agonism exerts anti-inflammatory and tissue protective effects in preclinical animal models of cardiovascular, gastrointestinal, liver, kidney, lung and neurodegenerative disorders. Existing ligands can be subdivided into endocannabinoids, cannabinoid-like and synthetic CB2R ligands that possess various degrees of potency on and selectivity against the cannabinoid receptor type 1. This review is an account of granted CB2R ligand patents from 2010 up to the present, which were surveyed using Derwent Innovation®.
Collapse
|
20
|
Walsh KB, Andersen HK. Molecular Pharmacology of Synthetic Cannabinoids: Delineating CB1 Receptor-Mediated Cell Signaling. Int J Mol Sci 2020; 21:E6115. [PMID: 32854313 PMCID: PMC7503917 DOI: 10.3390/ijms21176115] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/17/2022] Open
Abstract
Synthetic cannabinoids (SCs) are a class of new psychoactive substances (NPSs) that exhibit high affinity binding to the cannabinoid CB1 and CB2 receptors and display a pharmacological profile similar to the phytocannabinoid (-)-trans-Δ9-tetrahydrocannabinol (THC). SCs are marketed under brand names such as K2 and Spice and are popular drugs of abuse among male teenagers and young adults. Since their introduction in the early 2000s, SCs have grown in number and evolved in structural diversity to evade forensic detection and drug scheduling. In addition to their desirable euphoric and antinociceptive effects, SCs can cause severe toxicity including seizures, respiratory depression, cardiac arrhythmias, stroke and psychosis. Binding of SCs to the CB1 receptor, expressed in the central and peripheral nervous systems, stimulates pertussis toxin-sensitive G proteins (Gi/Go) resulting in the inhibition of adenylyl cyclase, a decreased opening of N-type Ca2+ channels and the activation of G protein-gated inward rectifier (GIRK) channels. This combination of signaling effects dampens neuronal activity in both CNS excitatory and inhibitory pathways by decreasing action potential formation and neurotransmitter release. Despite this knowledge, the relationship between the chemical structure of the SCs and their CB1 receptor-mediated molecular actions is not well understood. In addition, the potency and efficacy of newer SC structural groups has not been determined. To address these limitations, various cell-based assay technologies are being utilized to develop structure versus activity relationships (SAR) for the SCs and to explore the effects of these compounds on noncannabinoid receptor targets. This review focuses on describing and evaluating these assays and summarizes our current knowledge of SC molecular pharmacology.
Collapse
Affiliation(s)
- Kenneth B. Walsh
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina, School of Medicine, Columbia, SC 29208, USA;
| | | |
Collapse
|
21
|
Wouters E, Walraed J, Banister SD, Stove CP. Insights into biased signaling at cannabinoid receptors: synthetic cannabinoid receptor agonists. Biochem Pharmacol 2019; 169:113623. [DOI: 10.1016/j.bcp.2019.08.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/26/2019] [Indexed: 01/09/2023]
|
22
|
Scheiner M, Dolles D, Gunesch S, Hoffmann M, Nabissi M, Marinelli O, Naldi M, Bartolini M, Petralla S, Poeta E, Monti B, Falkeis C, Vieth M, Hübner H, Gmeiner P, Maitra R, Maurice T, Decker M. Dual-Acting Cholinesterase-Human Cannabinoid Receptor 2 Ligands Show Pronounced Neuroprotection in Vitro and Overadditive and Disease-Modifying Neuroprotective Effects in Vivo. J Med Chem 2019; 62:9078-9102. [PMID: 31609608 PMCID: PMC7640639 DOI: 10.1021/acs.jmedchem.9b00623] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We have designed and synthesized a series of 14 hybrid molecules out of the cholinesterase (ChE) inhibitor tacrine and a benzimidazole-based human cannabinoid receptor subtype 2 (hCB2R) agonist and investigated them in vitro and in vivo. The compounds are potent ChE inhibitors, and for the most promising hybrids, the mechanism of human acetylcholinesterase (hAChE) inhibition as well as their ability to interfere with AChE-induced aggregation of β-amyloid (Aβ), and Aβ self-aggregation was assessed. All hybrids were evaluated for affinity and selectivity for hCB1R and hCB2R. To ensure that the hybrids retained their agonist character, the expression of cAMP-regulated genes was quantified, and potency and efficacy were determined. Additionally, the effects of the hybrids on microglia activation and neuroprotection on HT-22 cells were investigated. The most promising in vitro hybrids showed pronounced neuroprotection in an Alzheimer's mouse model at low dosage (0.1 mg/kg, i.p.), lacking hepatotoxicity even at high dose (3 mg/kg, i.p.).
Collapse
Affiliation(s)
- Matthias Scheiner
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Dominik Dolles
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Sandra Gunesch
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Matthias Hoffmann
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Massimo Nabissi
- School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - Oliviero Marinelli
- School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - Marina Naldi
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Sabrina Petralla
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Eleonora Poeta
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Barbara Monti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Christina Falkeis
- Pathology, Clinical Center Bayreuth, Preuschwitzer Straße 101, 95445 Bayreuth, Germany
| | - Michael Vieth
- Pathology, Clinical Center Bayreuth, Preuschwitzer Straße 101, 95445 Bayreuth, Germany
| | - Harald Hübner
- Medicinal Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg, Schuhstraße 19, 91052 Erlangen, Germany
| | - Peter Gmeiner
- Medicinal Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg, Schuhstraße 19, 91052 Erlangen, Germany
| | - Rangan Maitra
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Tangui Maurice
- MMDN, University of Montpellier, INSERM, EPHE, UMR-S1198, 34095 Montpellier, France
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
23
|
de Sousa Valente J. The Pharmacology of Pain Associated With the Monoiodoacetate Model of Osteoarthritis. Front Pharmacol 2019; 10:974. [PMID: 31619987 PMCID: PMC6759799 DOI: 10.3389/fphar.2019.00974] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/31/2019] [Indexed: 12/31/2022] Open
Abstract
The high incidence of osteoarthritis (OA) in an increasingly elderly population anticipates a dramatic rise in the number of people suffering from this disease in the near future. Because pain is the main reason patients seek medical help, effective pain management-which is currently lacking-is paramount to improve the quality of life that OA sufferers desperately seek. Good animal models are, in this day and age, fundamental tools for basic research of new therapeutic pathways. Several animal models of OA have been characterized, but none of them reproduces entirely all symptoms of the disease. Choosing between different animal models depends largely on which aspect of OA one aims to study. Here, we review the current understanding of the monoiodoacetate (MIA) model of OA. MIA injection in the knee joint leads to the progressive disruption of cartilage, which, in turn, is associated with the development of pain-like behavior. There are several reasons why the MIA model of OA seems to be the most adequate to study the pharmacological effect of new drugs in pain associated with OA. First, the pathological changes induced by MIA share many common traits with those observed in human OA (Van Der Kraan et al., 1989; Guingamp et al., 1997; Guzman et al., 2003), including loss of cartilage and alterations in the subchondral bone. The model has been extensively utilized in basic research, which means that the time course of pain-related behaviors and histopathological changes, as well as pharmacological profile, namely of commonly used pain-reducing drugs, is now moderately understood. Also, the severity of the progression of pathological changes can be controlled by grading the concentration of MIA administered. Further, in contrast with other OA models, MIA offers a rapid induction of pain-related phenotypes, with the cost-saving consequence in new drug screening. This model, therefore, may be more predictive of clinical efficacy of novel pharmacological tools than other chronic or acute OA models.
Collapse
Affiliation(s)
- João de Sousa Valente
- Vascular Biology and Inflammation Section, Cardiovascular School of Medicine and Sciences, British Heart Foundation Centre of Excellence, King's College London, London, United Kingdom
| |
Collapse
|
24
|
Páez JA, Campillo NE. Innovative Therapeutic Potential of Cannabinoid Receptors as Targets in Alzheimer’s Disease and Less Well-Known Diseases. Curr Med Chem 2019; 26:3300-3340. [DOI: 10.2174/0929867325666180226095132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/08/2018] [Accepted: 02/15/2018] [Indexed: 02/07/2023]
Abstract
:
The discovery of cannabinoid receptors at the beginning of the 1990s, CB1 cloned
in 1990 and CB2 cloned in 1993, and the availability of selective and potent cannabimimetics
could only be justified by the existence of endogenous ligands that are capable of binding to
them. Thus, the characterisation and cloning of the first cannabinoid receptor (CB1) led to the
isolation and characterisation of the first endocannabinoid, arachidonoylethanolamide (AEA),
two years later and the subsequent identification of a family of lipid transmitters known as the
fatty acid ester 2-arachidonoylglycerol (2-AG).
:
The endogenous cannabinoid system is a complex signalling system that comprises transmembrane
endocannabinoid receptors, their endogenous ligands (the endocannabinoids), the
specific uptake mechanisms and the enzymatic systems related to their biosynthesis and degradation.
:
The endocannabinoid system has been implicated in a wide diversity of biological processes,
in both the central and peripheral nervous systems, including memory, learning, neuronal development,
stress and emotions, food intake, energy regulation, peripheral metabolism, and
the regulation of hormonal balance through the endocrine system.
:
In this context, this article will review the current knowledge of the therapeutic potential of
cannabinoid receptor as a target in Alzheimer’s disease and other less well-known diseases
that include, among others, multiple sclerosis, bone metabolism, and Fragile X syndrome.
:
The therapeutic applications will be addressed through the study of cannabinoid agonists acting
as single drugs and multi-target drugs highlighting the CB2 receptor agonist.
Collapse
Affiliation(s)
- Juan A. Páez
- Instituto de Quimica Medica (IQM-CSIC). C/ Juan de la Cierva, 3, 28006, Madrid, Spain
| | - Nuria E. Campillo
- Centro de Investigaciones Biologicas (CIB-CSIC). C/ Ramiro de Maeztu, 9, 28040, Madrid, Spain
| |
Collapse
|
25
|
Antiallodynic Effects of Cannabinoid Receptor 2 (CB 2R) Agonists on Retrovirus Infection-Induced Neuropathic Pain. Pain Res Manag 2019; 2019:1260353. [PMID: 31354896 PMCID: PMC6637694 DOI: 10.1155/2019/1260353] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
Abstract
The most common neurological complication in patients receiving successful combination antiretroviral therapy (cART) is peripheral neuropathic pain. Data show that distal symmetric polyneuropathy (DSP) also develops along with murine acquired immunodeficiency syndrome (MAIDS) after infection with the LP-BM5 murine retrovirus mixture. Links between cannabinoid receptor 2 (CB2R) and peripheral neuropathy have been established in animal models using nerve transection, chemotherapy-induced pain, and various other stimuli. Diverse types of neuropathic pain respond differently to standard drug intervention, and little is currently known regarding the effects of modulation through CB2Rs. In this study, we evaluated whether treatment with the exogenous synthetic CB2R agonists JWH015, JWH133, Gp1a, and HU308 controls neuropathic pain and neuroinflammation in animals with chronic retroviral infection. Hind-paw mechanical hypersensitivity in CB2R agonist-treated versus untreated animals was assessed using the MouseMet electronic von Frey system. Multicolor flow cytometry was used to determine the effects of CB2R agonists on macrophage activation and T-lymphocyte infiltration into dorsal root ganglia (DRG) and lumbar spinal cord (LSC). Results demonstrated that, following weekly intraperitoneal injections starting at 5 wk p.i., JWH015, JWH133, and Gp1a, but not HU308 (5 mg/kg), significantly ameliorated allodynia when assessed 2 h after ligand injection. However, these same agonists (2x/wk) did not display antiallodynic effects when mechanical sensitivity was assessed 24 h after ligand injection. Infection-induced macrophage activation and T-cell infiltration into the DRG and LSC were observed at 12 wk p.i., but this neuroinflammation was not affected by treatment with any CB2R agonist. Activation of JAK/STAT3 has been shown to contribute to development of neuropathic pain in the LSC and pretreatment of primary murine microglia (2 h) with JWH015-, JWH133-, or Gp1a-blocked IFN-gamma-induced phosphorylation of STAT1 and STAT3. Taken together, these data show that CB2R agonists demonstrate acute, but not long-term, antiallodynic effects on retrovirus infection-induced neuropathic pain.
Collapse
|
26
|
Wu J, Hocevar M, Bie B, Foss JF, Naguib M. Cannabinoid Type 2 Receptor System Modulates Paclitaxel-Induced Microglial Dysregulation and Central Sensitization in Rats. THE JOURNAL OF PAIN 2019; 20:501-514. [DOI: 10.1016/j.jpain.2018.10.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/12/2018] [Accepted: 10/24/2018] [Indexed: 12/30/2022]
|
27
|
The Endocannabinoid/Endovanilloid System in Bone: From Osteoporosis to Osteosarcoma. Int J Mol Sci 2019; 20:ijms20081919. [PMID: 31003519 PMCID: PMC6514542 DOI: 10.3390/ijms20081919] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/20/2022] Open
Abstract
Bone is a dynamic tissue, whose homeostasis is maintained by a fine balance between osteoclast (OC) and osteoblast (OB) activity. The endocannabinoid/endovanilloid (EC/EV) system’s receptors are the cannabinoid receptor type 1 (CB1), the cannabinoid receptor type 2 (CB2), and the transient receptor potential cation channel subfamily V member 1 (TRPV1). Their stimulation modulates bone formation and bone resorption. Bone diseases are very common worldwide. Osteoporosis is the principal cause of bone loss and it can be caused by several factors such as postmenopausal estrogen decrease, glucocorticoid (GC) treatments, iron overload, and chemotherapies. Studies have demonstrated that CB1 and TRPV1 stimulation exerts osteoclastogenic effects, whereas CB2 stimulation has an anti-osteoclastogenic role. Moreover, the EC/EV system has been demonstrated to have a role in cancer, favoring apoptosis and inhibiting cell proliferation. In particular, in bone cancer, the modulation of the EC/EV system not only reduces cell growth and enhances apoptosis but it also reduces cell invasion and bone pain in mouse models. Therefore, EC/EV receptors may be a useful pharmacological target in the prevention and treatment of bone diseases. More studies to better investigate the biochemical mechanisms underlining the EC/EV system effects in bone are needed, but the synthesis of hybrid molecules, targeting these receptors and capable of oppositely regulating bone homeostasis, seems to be a promising and encouraging prospective in bone disease management.
Collapse
|
28
|
Scott CE, Tang Y, Alt A, Burford NT, Gerritz SW, Ogawa LM, Zhang L, Kendall DA. Identification and biochemical analyses of selective CB 2 agonists. Eur J Pharmacol 2019; 854:1-8. [PMID: 30951717 DOI: 10.1016/j.ejphar.2019.03.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/19/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022]
Abstract
Cannabinoid CB1 and CB2 receptors are activated by Δ9-tetrahydrocannabinol, a psychoactive component of marijuana. The cannabinoid CB1 receptor is primarily located in the brain and is responsible for the psychoactive side effects, whereas the cannabinoid CB2 receptor is located in immune cells and is an attractive target for immune-related maladies. We identify small molecules that selectively bind to the cannabinoid CB2 receptor and can be further developed into therapeutics. The affinity of three molecules, ABK5, ABK6, and ABK7, to the cannabinoid CB2 receptor was determined with radioligand competition binding. The potency of G-protein coupling was determined with GTPγS binding. The three compounds bound selectively to the cannabinoid CB2 receptor, and no binding to the cannabinoid CB1 receptor was detected up to 10 μM. Immunoblotting studies show that the amount of ERK1/2 and MEK phosphorylation increased in a Gi/o-dependent manner. Furthermore, an immune cell line (Jurkat cells) was treated with ABK5, and as a result, inhibited cell proliferation. These three compounds are novel cannabinoid CB2 receptor agonists and hold promise to be further developed to treat inflammation and the often-associated pain.
Collapse
Affiliation(s)
- Caitlin E Scott
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N Eagleville Rd, Storrs, CT, 06269, USA
| | - Yaliang Tang
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N Eagleville Rd, Storrs, CT, 06269, USA
| | - Andrew Alt
- Bristol-Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, CT, 06492, USA
| | - Neil T Burford
- Bristol-Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, CT, 06492, USA
| | - Samuel W Gerritz
- Bristol-Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, CT, 06492, USA
| | - Lisa M Ogawa
- Bristol-Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, CT, 06492, USA
| | - Litao Zhang
- Bristol-Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, CT, 06492, USA
| | - Debra A Kendall
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N Eagleville Rd, Storrs, CT, 06269, USA.
| |
Collapse
|
29
|
Li AL, Lin X, Dhopeshwarkar AS, Thomaz AC, Carey LM, Liu Y, Nikas SP, Makriyannis A, Mackie K, Hohmann AG. Cannabinoid CB2 Agonist AM1710 Differentially Suppresses Distinct Pathological Pain States and Attenuates Morphine Tolerance and Withdrawal. Mol Pharmacol 2019; 95:155-168. [PMID: 30504240 PMCID: PMC6324648 DOI: 10.1124/mol.118.113233] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 11/26/2018] [Indexed: 01/09/2023] Open
Abstract
AM1710 (3-(1,1-dimethyl-heptyl)-1-hydroxy-9-methoxy-benzo(c) chromen-6-one), a cannabilactone cannabinoid receptor 2 (CB2) agonist, suppresses chemotherapy-induced neuropathic pain in rodents without producing tolerance or unwanted side effects associated with CB1 receptors; however, the signaling profile of AM1710 remains incompletely characterized. It is not known whether AM1710 behaves as a broad-spectrum analgesic and/or suppresses the development of opioid tolerance and physical dependence. In vitro, AM1710 inhibited forskolin-stimulated cAMP production and produced enduring activation of extracellular signal-regulated kinases 1/2 phosphorylation in human embryonic kidney (HEK) cells stably expressing mCB2. Only modest species differences in the signaling profile of AM1710 were observed between HEK cells stably expressing mCB2 and hCB2. In vivo, AM1710 produced a sustained inhibition of paclitaxel-induced allodynia in mice. In paclitaxel-treated mice, a history of AM1710 treatment (5 mg/kg per day × 12 day, i.p.) delayed the development of antinociceptive tolerance to morphine and attenuated morphine-induced physical dependence. AM1710 (10 mg/kg, i.p.) did not precipitate CB1 receptor-mediated withdrawal in mice rendered tolerant to Δ9-tetrahydrocannabinol, suggesting that AM1710 is not a functional CB1 antagonist in vivo. Furthermore, AM1710 (1, 3, 10 mg/kg, i.p.) did not suppress established mechanical allodynia induced by complete Freund's adjuvant (CFA) or by partial sciatic nerve ligation (PSNL). Similarly, prophylactic and chronic dosing with AM1710 (10 mg/kg, i.p.) did not produce antiallodynic efficacy in the CFA model. By contrast, gabapentin suppressed allodynia in both CFA and PSNL models. Our results indicate that AM1710 is not a broad-spectrum analgesic agent in mice and suggest the need to identify signaling pathways underlying CB2 therapeutic efficacy to identify appropriate indications for clinical translation.
Collapse
Affiliation(s)
- Ai-Ling Li
- Department of Psychological and Brain Sciences (A.-L.L., X.L., A.S.D., A.C.T., L.M.C., K.M., A.G.H.), Program in Neuroscience (A.C.T., L.M.C., K.M., A.G.H.), Genome, Cell and Developmental Biology Program (A.C.T., A.G.H.), and Gill Center for Biomolecular Science (K.M., A.G.H.), Indiana University, Bloomington, Indiana; and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (Y.L., S.P.N., A.M.)
| | - Xiaoyan Lin
- Department of Psychological and Brain Sciences (A.-L.L., X.L., A.S.D., A.C.T., L.M.C., K.M., A.G.H.), Program in Neuroscience (A.C.T., L.M.C., K.M., A.G.H.), Genome, Cell and Developmental Biology Program (A.C.T., A.G.H.), and Gill Center for Biomolecular Science (K.M., A.G.H.), Indiana University, Bloomington, Indiana; and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (Y.L., S.P.N., A.M.)
| | - Amey S Dhopeshwarkar
- Department of Psychological and Brain Sciences (A.-L.L., X.L., A.S.D., A.C.T., L.M.C., K.M., A.G.H.), Program in Neuroscience (A.C.T., L.M.C., K.M., A.G.H.), Genome, Cell and Developmental Biology Program (A.C.T., A.G.H.), and Gill Center for Biomolecular Science (K.M., A.G.H.), Indiana University, Bloomington, Indiana; and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (Y.L., S.P.N., A.M.)
| | - Ana Carla Thomaz
- Department of Psychological and Brain Sciences (A.-L.L., X.L., A.S.D., A.C.T., L.M.C., K.M., A.G.H.), Program in Neuroscience (A.C.T., L.M.C., K.M., A.G.H.), Genome, Cell and Developmental Biology Program (A.C.T., A.G.H.), and Gill Center for Biomolecular Science (K.M., A.G.H.), Indiana University, Bloomington, Indiana; and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (Y.L., S.P.N., A.M.)
| | - Lawrence M Carey
- Department of Psychological and Brain Sciences (A.-L.L., X.L., A.S.D., A.C.T., L.M.C., K.M., A.G.H.), Program in Neuroscience (A.C.T., L.M.C., K.M., A.G.H.), Genome, Cell and Developmental Biology Program (A.C.T., A.G.H.), and Gill Center for Biomolecular Science (K.M., A.G.H.), Indiana University, Bloomington, Indiana; and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (Y.L., S.P.N., A.M.)
| | - Yingpeng Liu
- Department of Psychological and Brain Sciences (A.-L.L., X.L., A.S.D., A.C.T., L.M.C., K.M., A.G.H.), Program in Neuroscience (A.C.T., L.M.C., K.M., A.G.H.), Genome, Cell and Developmental Biology Program (A.C.T., A.G.H.), and Gill Center for Biomolecular Science (K.M., A.G.H.), Indiana University, Bloomington, Indiana; and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (Y.L., S.P.N., A.M.)
| | - Spyros P Nikas
- Department of Psychological and Brain Sciences (A.-L.L., X.L., A.S.D., A.C.T., L.M.C., K.M., A.G.H.), Program in Neuroscience (A.C.T., L.M.C., K.M., A.G.H.), Genome, Cell and Developmental Biology Program (A.C.T., A.G.H.), and Gill Center for Biomolecular Science (K.M., A.G.H.), Indiana University, Bloomington, Indiana; and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (Y.L., S.P.N., A.M.)
| | - Alexandros Makriyannis
- Department of Psychological and Brain Sciences (A.-L.L., X.L., A.S.D., A.C.T., L.M.C., K.M., A.G.H.), Program in Neuroscience (A.C.T., L.M.C., K.M., A.G.H.), Genome, Cell and Developmental Biology Program (A.C.T., A.G.H.), and Gill Center for Biomolecular Science (K.M., A.G.H.), Indiana University, Bloomington, Indiana; and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (Y.L., S.P.N., A.M.)
| | - Ken Mackie
- Department of Psychological and Brain Sciences (A.-L.L., X.L., A.S.D., A.C.T., L.M.C., K.M., A.G.H.), Program in Neuroscience (A.C.T., L.M.C., K.M., A.G.H.), Genome, Cell and Developmental Biology Program (A.C.T., A.G.H.), and Gill Center for Biomolecular Science (K.M., A.G.H.), Indiana University, Bloomington, Indiana; and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (Y.L., S.P.N., A.M.)
| | - Andrea G Hohmann
- Department of Psychological and Brain Sciences (A.-L.L., X.L., A.S.D., A.C.T., L.M.C., K.M., A.G.H.), Program in Neuroscience (A.C.T., L.M.C., K.M., A.G.H.), Genome, Cell and Developmental Biology Program (A.C.T., A.G.H.), and Gill Center for Biomolecular Science (K.M., A.G.H.), Indiana University, Bloomington, Indiana; and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (Y.L., S.P.N., A.M.)
| |
Collapse
|
30
|
Guerrero-Alba R, Barragán-Iglesias P, González-Hernández A, Valdez-Moráles EE, Granados-Soto V, Condés-Lara M, Rodríguez MG, Marichal-Cancino BA. Some Prospective Alternatives for Treating Pain: The Endocannabinoid System and Its Putative Receptors GPR18 and GPR55. Front Pharmacol 2019; 9:1496. [PMID: 30670965 PMCID: PMC6331465 DOI: 10.3389/fphar.2018.01496] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/07/2018] [Indexed: 12/12/2022] Open
Abstract
Background: Marijuana extracts (cannabinoids) have been used for several millennia for pain treatment. Regarding the site of action, cannabinoids are highly promiscuous molecules, but only two cannabinoid receptors (CB1 and CB2) have been deeply studied and classified. Thus, therapeutic actions, side effects and pharmacological targets for cannabinoids have been explained based on the pharmacology of cannabinoid CB1/CB2 receptors. However, the accumulation of confusing and sometimes contradictory results suggests the existence of other cannabinoid receptors. Different orphan proteins (e.g., GPR18, GPR55, GPR119, etc.) have been proposed as putative cannabinoid receptors. According to their expression, GPR18 and GPR55 could be involved in sensory transmission and pain integration. Methods: This article reviews select relevant information about the potential role of GPR18 and GPR55 in the pathophysiology of pain. Results: This work summarized novel data supporting that, besides cannabinoid CB1 and CB2 receptors, GPR18 and GPR55 may be useful for pain treatment. Conclusion: There is evidence to support an antinociceptive role for GPR18 and GPR55.
Collapse
Affiliation(s)
- Raquel Guerrero-Alba
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Paulino Barragán-Iglesias
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, United States
| | - Abimael González-Hernández
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico
| | - Eduardo E Valdez-Moráles
- Cátedras CONACYT, Departamento de Cirugía, Centro de Ciencias Biomédicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, Mexico City, Mexico
| | - Miguel Condés-Lara
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico
| | - Martín G Rodríguez
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Bruno A Marichal-Cancino
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| |
Collapse
|
31
|
Yuan XC, Wang Q, Su W, Li HP, Wu CH, Gao F, Xiang HC, Zhu H, Lin LX, Hu XF, Cao J, Li JJ, Li M. Electroacupuncture potentiates peripheral CB2 receptor-inhibited chronic pain in a mouse model of knee osteoarthritis. J Pain Res 2018; 11:2797-2808. [PMID: 30510442 PMCID: PMC6231462 DOI: 10.2147/jpr.s171664] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose Knee osteoarthritis (KOA) is a highly prevalent, chronic joint disorder, with chronic pain as its typical symptom. Although studies have shown that an activated peripheral CB2 receptor can reduce acute pain, whether the CB2 receptor is involved in electroacupuncture (EA) inhibiting chronic pain and the involved mechanism remains unclear. The aim of this study was to investigate whether EA may strengthen peripheral CB2 receptor-inhibited chronic pain in a mouse model of KOA. Materials and methods: KOA was induced by intra-articular injection of monosodium iodoacetate (MIA) into the left knee joint of mice. Thermal hyperalgesia was tested with the hot plate test, and mechanical allodynia was quantified using von Frey filaments. The expression of CB2 receptor and IL-1β were quantified by using immunofluorescence labeling. Results EA treatment at 2 Hz+1 mA significantly increased the expression of CB2 receptor in fibroblasts and decreased the expression of IL-1β in the menisci compared with that in the KOA group. However, EA had no effect on the expression of IL-1β in CB2−/− mice. At 2 Hz+1 mA, EA significantly increased mechanical threshold, thermal latency, and weight borne after KOA modeling. However, knockout of the CB2 receptor blocked these effects of EA. After 2 Hz+1 mA treatment, EA significantly reduced the Osteoarthritis Research Society International (OARSI) score after KOA modeling. However, EA had no significant effect on the OARSI score in CB2−/− mice. Conclusion EA reduced the expression of IL-1β by activating the CB2 receptor, thus inhibiting the chronic pain in the mouse model of KOA.
Collapse
Affiliation(s)
- Xiao-Cui Yuan
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, The Institute of Brain Research, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China, ;
| | - Qiang Wang
- Department of Anesthesiology, First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, People's Republic of China
| | - Wen Su
- Department of Acupuncture, Wuhan First Hospital, Wuhan 430030, People's Republic of China
| | - Hong-Ping Li
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, The Institute of Brain Research, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China, ;
| | - Cai-Hua Wu
- Department of Acupuncture, Wuhan First Hospital, Wuhan 430030, People's Republic of China
| | - Fang Gao
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, The Institute of Brain Research, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China, ;
| | - Hong-Chun Xiang
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, The Institute of Brain Research, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China, ;
| | - He Zhu
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, The Institute of Brain Research, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China, ;
| | - Li-Xue Lin
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, The Institute of Brain Research, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China, ;
| | - Xue-Fei Hu
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, The Institute of Brain Research, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China, ;
| | - Jie Cao
- Department of Neurology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Jing-Jing Li
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, The Institute of Brain Research, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China, ;
| | - Man Li
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, The Institute of Brain Research, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China, ;
| |
Collapse
|
32
|
An overview of the cannabinoid type 2 receptor system and its therapeutic potential. Curr Opin Anaesthesiol 2018; 31:407-414. [PMID: 29794855 DOI: 10.1097/aco.0000000000000616] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW This narrative review summarizes recent insights into the role of the cannabinoid type 2 (CB2) receptor as potential therapeutic target in neuropathic pain and neurodegenerative conditions. RECENT FINDINGS The cannabinoid system continues to receive attention as a therapeutic target. The CB2 receptor is primarily expressed on glial cells only when there is active inflammation and appears to be devoid of undesired psychotropic effects or addiction liability. The CB2 receptor has been shown to have potential as a therapeutic target in models of diseases with limited or no currently approved therapies, such as neuropathic pain and neurodegenerative conditions such as Alzheimer's disease. SUMMARY The functional involvement of CB2 receptor in neuropathic pain and other neuroinflammatory diseases highlights the potential therapeutic role of drugs acting at the CB2 receptor.
Collapse
|
33
|
Franks LN, Ford BM, Fujiwara T, Zhao H, Prather PL. The tamoxifen derivative ridaifen-B is a high affinity selective CB 2 receptor inverse agonist exhibiting anti-inflammatory and anti-osteoclastogenic effects. Toxicol Appl Pharmacol 2018; 353:31-42. [PMID: 29906493 PMCID: PMC6487498 DOI: 10.1016/j.taap.2018.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/25/2018] [Accepted: 06/11/2018] [Indexed: 12/15/2022]
Abstract
Selective estrogen receptor modulators (SERMs) target estrogen receptors (ERs) to treat breast cancer and osteoporosis. Several SERMs exhibit anti-cancer activity not related to ERs. To discover novel anti-cancer drugs acting via ER-independent mechanisms, derivatives of the SERM tamoxifen, known as the "ridaifen" compounds, have been developed that exhibit reduced or no ER affinity, while maintaining cytotoxicity. Tamoxifen and other SERMs bind to cannabinoid receptors with moderate affinity. Therefore, ER-independent effects of SERMs might be mediated via cannabinoid receptors. This study determined whether RID-B, a first generation ridaifen compound, exhibits affinity and/or activity at CB1 and/or CB2 cannabinoid receptors. RID-B binds with high affinity (Ki = 43.7 nM) and 17-fold selectivity to CB2 over CB1 receptors. RID-B acts as an inverse agonist at CB2 receptors, modulating G-protein and adenylyl cyclase activity with potency values predicted by CB2 affinity. Characteristic of an antagonist, RID-B co-incubation produces a parallel-rightward shift in the concentration-effect curve of CB2 agonist WIN-55,212-2 to inhibit adenylyl cyclase activity. CB2 inverse agonists are reported to exhibit anti-inflammatory and anti-ostoeclastogenic effects. In LPS-activated macrophages, RID-B exhibits anti-inflammatory effects by reducing levels of nitric oxide (NO), IL-6 and IL-1α, but not TNFα. Only reduction of NO concentration by RID-B is mediated by cannabinoid receptors. RID-B also exhibits pronounced anti-osteoclastogenic effects, reducing the number of osteoclasts differentiating from primary bone marrow macrophages in a cannabinoid receptor-dependent manner. In summary, the tamoxifen derivative RID-B, developed with reduced affinity for ERs, is a high affinity selective CB2 inverse agonist with anti-inflammatory and anti-osteoclastogenic properties.
Collapse
MESH Headings
- Adenylyl Cyclase Inhibitors/pharmacology
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Benzoxazines/pharmacology
- Binding, Competitive/drug effects
- Bone Marrow Cells/drug effects
- CHO Cells
- Cell Differentiation/drug effects
- Cricetinae
- Cricetulus
- Drug Inverse Agonism
- Mice
- Mice, Inbred C57BL
- Morpholines/pharmacology
- Naphthalenes/pharmacology
- Osteoclasts/drug effects
- Pyrrolidines/metabolism
- Pyrrolidines/pharmacology
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/metabolism
- Selective Estrogen Receptor Modulators/metabolism
- Selective Estrogen Receptor Modulators/pharmacology
- Tamoxifen/analogs & derivatives
- Tamoxifen/metabolism
- Tamoxifen/pharmacology
Collapse
Affiliation(s)
- Lirit N Franks
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Benjamin M Ford
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Toshifumi Fujiwara
- Department of Internal Medicine, Endocrinology Division, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Haibo Zhao
- Department of Internal Medicine, Endocrinology Division, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Paul L Prather
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
34
|
O’Brien M, McDougall JJ. Cannabis and joints: scientific evidence for the alleviation of osteoarthritis pain by cannabinoids. Curr Opin Pharmacol 2018; 40:104-109. [DOI: 10.1016/j.coph.2018.03.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/23/2018] [Indexed: 12/21/2022]
|
35
|
Brown MRD, Farquhar-Smith WP. Cannabinoids and cancer pain: A new hope or a false dawn? Eur J Intern Med 2018; 49:30-36. [PMID: 29482740 DOI: 10.1016/j.ejim.2018.01.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/11/2018] [Accepted: 01/14/2018] [Indexed: 02/08/2023]
Abstract
The endocannabinoid system is involved in many areas of physiological function and homeostasis. Cannabinoid receptors are expressed in the peripheral and central nervous system and on immune cells, all areas ideally suited to modulation of pain processing. There are a wealth of preclinical data in a number of acute, chronic, neuropathic and cancer pain models that have demonstrated a potent analgesic potential for cannabinoids, especially in patients with cancer. However, although there are some positive results in pain of cancer patients, the clinical evidence for cannabinoids as analgesics has not been convincing and their use can only be weakly recommended. The efficacy of cannabinoids seems to have been 'lost in translation' which may in part be related to using extracts of herbal cannabis rather than targeted selective full agonists at the cannabinoid CB1 and CB2 receptors.
Collapse
Affiliation(s)
- Matthew R D Brown
- Department of Anaesthetics, The Royal Marsden NHS Foundation Trust, Fulham Road, London SW3 6JJ, United Kingdom.
| | - W Paul Farquhar-Smith
- Department of Anaesthetics, The Royal Marsden NHS Foundation Trust, Fulham Road, London SW3 6JJ, United Kingdom.
| |
Collapse
|
36
|
Dolles D, Hoffmann M, Gunesch S, Marinelli O, Möller J, Santoni G, Chatonnet A, Lohse MJ, Wittmann HJ, Strasser A, Nabissi M, Maurice T, Decker M. Structure-Activity Relationships and Computational Investigations into the Development of Potent and Balanced Dual-Acting Butyrylcholinesterase Inhibitors and Human Cannabinoid Receptor 2 Ligands with Pro-Cognitive in Vivo Profiles. J Med Chem 2018; 61:1646-1663. [PMID: 29400965 DOI: 10.1021/acs.jmedchem.7b01760] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The enzyme butyrylcholinesterase (BChE) and the human cannabinoid receptor 2 (hCB2R) represent promising targets for pharmacotherapy in the later stages of Alzheimer's disease. We merged pharmacophores for both targets into small benzimidazole-based molecules, investigated SARs, and identified several dual-acting ligands with a balanced affinity/inhibitory activity and an excellent selectivity over both hCB1R and hAChE. A homology model for the hCB2R was developed based on the hCB1R crystal structure and used for molecular dynamics studies to investigate binding modes. In vitro studies proved hCB2R agonism. Unwanted μ-opioid receptor affinity could be designed out. One well-balanced dual-acting and selective hBChE inhibitor/hCB2R agonist showed superior in vivo activity over the lead CB2 agonist with regards to cognition improvement. The data shows the possibility to combine a small molecule with selective and balanced GPCR-activity/enzyme inhibition and in vivo activity for the therapy of AD and may help to rationalize the development of other dual-acting ligands.
Collapse
Affiliation(s)
- Dominik Dolles
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg , Am Hubland, D-97074 Würzburg, Germany
| | - Matthias Hoffmann
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg , Am Hubland, D-97074 Würzburg, Germany
| | - Sandra Gunesch
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg , Am Hubland, D-97074 Würzburg, Germany
| | - Oliviero Marinelli
- School of Pharmacy, Department of Experimental Medicine, University of Camerino , I-62032 Camerino, Italy
| | - Jan Möller
- Institute of Pharmacology and Toxicology, Julius Maximilian University of Würzburg , Versbacher Strabe 9, D-97078 Würzburg, Germany
| | - Giorgio Santoni
- School of Pharmacy, Department of Experimental Medicine, University of Camerino , I-62032 Camerino, Italy
| | - Arnaud Chatonnet
- INRA UMR866, University of Montpellier , F-34060 Montpellier, France
| | - Martin J Lohse
- Institute of Pharmacology and Toxicology, Julius Maximilian University of Würzburg , Versbacher Strabe 9, D-97078 Würzburg, Germany
| | - Hans-Joachim Wittmann
- Pharmaceutical and Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg , D-95053 Regensburg, Germany
| | - Andrea Strasser
- Pharmaceutical and Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg , D-95053 Regensburg, Germany
| | - Massimo Nabissi
- School of Pharmacy, Department of Experimental Medicine, University of Camerino , I-62032 Camerino, Italy
| | - Tangui Maurice
- INSERM UMR-S1198, University of Montpellier, EPHE , F-34095 Montpellier, France
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg , Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
37
|
Donvito G, Nass SR, Wilkerson JL, Curry ZA, Schurman LD, Kinsey SG, Lichtman AH. The Endogenous Cannabinoid System: A Budding Source of Targets for Treating Inflammatory and Neuropathic Pain. Neuropsychopharmacology 2018; 43:52-79. [PMID: 28857069 PMCID: PMC5719110 DOI: 10.1038/npp.2017.204] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/24/2017] [Accepted: 08/27/2017] [Indexed: 02/07/2023]
Abstract
A great need exists for the development of new medications to treat pain resulting from various disease states and types of injury. Given that the endogenous cannabinoid (that is, endocannabinoid) system modulates neuronal and immune cell function, both of which play key roles in pain, therapeutics targeting this system hold promise as novel analgesics. Potential therapeutic targets include the cannabinoid receptors, type 1 and 2, as well as biosynthetic and catabolic enzymes of the endocannabinoids N-arachidonoylethanolamine and 2-arachidonoylglycerol. Notably, cannabinoid receptor agonists as well as inhibitors of endocannabinoid-regulating enzymes fatty acid amide hydrolase and monoacylglycerol lipase produce reliable antinociceptive effects, and offer opioid-sparing antinociceptive effects in myriad preclinical inflammatory and neuropathic pain models. Emerging clinical studies show that 'medicinal' cannabis or cannabinoid-based medications relieve pain in human diseases such as cancer, multiple sclerosis, and fibromyalgia. However, clinical data have yet to demonstrate the analgesic efficacy of inhibitors of endocannabinoid-regulating enzymes. Likewise, the question of whether pharmacotherapies aimed at the endocannabinoid system promote opioid-sparing effects in the treatment of pain reflects an important area of research. Here we examine the preclinical and clinical evidence of various endocannabinoid system targets as potential therapeutic strategies for inflammatory and neuropathic pain conditions.
Collapse
Affiliation(s)
- Giulia Donvito
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Sara R Nass
- Department of Psychology, West Virginia University, Morgantown, WV, USA
| | - Jenny L Wilkerson
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Zachary A Curry
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Lesley D Schurman
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Steven G Kinsey
- Department of Psychology, West Virginia University, Morgantown, WV, USA
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
38
|
Han S, Thoresen L, Jung JK, Zhu X, Thatte J, Solomon M, Gaidarov I, Unett DJ, Yoon WH, Barden J, Sadeque A, Usmani A, Chen C, Semple G, Grottick AJ, Al-Shamma H, Christopher R, Jones RM. Discovery of APD371: Identification of a Highly Potent and Selective CB 2 Agonist for the Treatment of Chronic Pain. ACS Med Chem Lett 2017; 8:1309-1313. [PMID: 29259753 DOI: 10.1021/acsmedchemlett.7b00396] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/30/2017] [Indexed: 11/30/2022] Open
Abstract
The discovery of a novel, selective and fully efficacious CB2 agonist with satisfactory pharmacokinetic and pharmaceutical properties is described. Compound 6 was efficacious in a rat model of osteoarthritis pain following oral administration and, in contrast to morphine, maintained its analgesic effect throughout a 5-day subchronic treatment paradigm. These data were consistent with our hypothesis that full agonist efficacy is required for efficient internalization and recycling of the CB2 receptor to avoid tachyphylaxis. Based on its overall favorable preclinical profile, 6 (APD371) was selected for further development for the treatment of pain.
Collapse
Affiliation(s)
- Sangdon Han
- Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, California 92121, United States
| | - Lars Thoresen
- Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, California 92121, United States
| | - Jae-Kyu Jung
- Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, California 92121, United States
| | - Xiuwen Zhu
- Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, California 92121, United States
| | - Jayant Thatte
- Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, California 92121, United States
| | - Michelle Solomon
- Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, California 92121, United States
| | - Ibragim Gaidarov
- Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, California 92121, United States
| | - David J. Unett
- Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, California 92121, United States
| | - Woo Hyun Yoon
- Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, California 92121, United States
| | - Jeremy Barden
- Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, California 92121, United States
| | - Abu Sadeque
- Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, California 92121, United States
| | - Amin Usmani
- Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, California 92121, United States
| | - Chuan Chen
- Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, California 92121, United States
| | - Graeme Semple
- Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, California 92121, United States
| | - Andrew J. Grottick
- Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, California 92121, United States
| | - Hussein Al-Shamma
- Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, California 92121, United States
| | - Ronald Christopher
- Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, California 92121, United States
| | - Robert M. Jones
- Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, California 92121, United States
| |
Collapse
|
39
|
Pajak A, Kostrzewa M, Malek N, Korostynski M, Starowicz K. Expression of matrix metalloproteinases and components of the endocannabinoid system in the knee joint are associated with biphasic pain progression in a rat model of osteoarthritis. J Pain Res 2017; 10:1973-1989. [PMID: 28860852 PMCID: PMC5573042 DOI: 10.2147/jpr.s132682] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are considered important in articular cartilage breakdown during osteoarthritis (OA). Similarly, the endocannabinoid system (ECS) is implicated in joint function and modulation of nociceptive processing. Functional interplay between ECS and MMPs has been recently indicated. Here, we tested if changes in the expression of selected MMPs and major ECS elements temporally correlate with the intensity of OA-related pain. Knee OA was induced in male Wistar rats by intra-articular sodium monoiodoacetate injection. OA-like pain behavior was tested using the dynamic weight bearing. Joint tissue samples at different time points after OA induction were subjected to gene (quantitative polymerase chain reaction) and protein (Western blot) expression analyses. Monoiodoacetate-induced nocifensive responses in rats showed a biphasic progression pattern. The alterations in expression of selected MMPs elegantly corresponded to the two-stage development of OA pain. The most substantial changes in the expression of the ECS system were revealed at a later stage of OA progression. Alterations within ECS are involved in the process of adaptation to persistent painful stimuli. The accumulation of MMPs in osteoarthritic cartilage may have a role in the biphasic progression of OA-related pain. Temporal association of changes in ECS and MMPs expression shows a potential therapeutic approach that utilizes the concept of combining indirect ECS-mediated MMP inhibition and ECS modulation of pain transduction.
Collapse
Affiliation(s)
- Agnieszka Pajak
- Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | | | - Natalia Malek
- Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | | | | |
Collapse
|
40
|
Li AL, Carey LM, Mackie K, Hohmann AG. Cannabinoid CB 2 Agonist GW405833 Suppresses Inflammatory and Neuropathic Pain through a CB 1 Mechanism that is Independent of CB 2 Receptors in Mice. J Pharmacol Exp Ther 2017; 362:296-305. [PMID: 28592614 PMCID: PMC5502377 DOI: 10.1124/jpet.117.241901] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/02/2017] [Indexed: 11/22/2022] Open
Abstract
GW405833, widely accepted as a cannabinoid receptor 2 (CB2) agonist, suppresses pathologic pain in preclinical models without the unwanted central side effects of cannabinoid receptor 1 (CB1) agonists; however, recent in vitro studies have suggested that GW405833 may also behave as a noncompetitive CB1 antagonist, suggesting that its pharmacology is more complex than initially appreciated. Here, we further investigated the pharmacologic specificity of in vivo antinociceptive actions of GW405833 in models of neuropathic (i.e., partial sciatic nerve ligation model) and inflammatory (i.e., complete Freund's adjuvant model) pain using CB2 and CB1 knockout (KO) mice, their respective wild-type (WT) mice, and both CB2 and CB1 antagonists. GW405833 (3, 10, and 30 mg/kg i.p.) dose dependently reversed established mechanical allodynia in both pain models in WT mice; however, the antiallodynic effects of GW405833 were fully preserved in CB2KO mice and absent in CB1KO mice. Furthermore, the antiallodynic efficacy of GW405833 (30 mg/kg i.p.) was completely blocked by the CB1 antagonist rimonabant (10 mg/kg i.p.) but not by the CB2 antagonist SR144528 (10 mg/kg i.p.). Thus, the antinociceptive properties of GW405833 are dependent on CB1 receptors. GW405833 (30 mg/kg i.p.) was also inactive in a tetrad of tests measuring cardinal signs of CB1 activation. Additionally, unlike rimonabant (10 mg/kg i.p.), GW405833 (10 mg/kg, i.p.) did not act as a CB1 antagonist in vivo to precipitate withdrawal in mice treated chronically with Δ9-tetrahydrocannabinol. The present results suggest that the antiallodynic efficacy of GW405833 is CB1-dependent but does not seem to involve engagement of the CB1 receptor's orthosteric site.
Collapse
MESH Headings
- Animals
- Cannabinoid Receptor Agonists/pharmacology
- Cannabinoid Receptor Agonists/therapeutic use
- Dose-Response Relationship, Drug
- Female
- Indoles/pharmacology
- Indoles/therapeutic use
- Inflammation/drug therapy
- Inflammation/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Morpholines/pharmacology
- Morpholines/therapeutic use
- Neuralgia/drug therapy
- Neuralgia/metabolism
- Pain Measurement/drug effects
- Pain Measurement/methods
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/deficiency
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/deficiency
Collapse
Affiliation(s)
- Ai-Ling Li
- Department of Psychological and Brain Sciences (A-L L, L.M.C., K.M., A.G.H.), Program in Neuroscience (L.M.C., K.M., A.G.H.), Gill Center for Biomolecular Science (K.M., A.G.H.), Indiana University, Bloomington, Indiana
| | - Lawrence M Carey
- Department of Psychological and Brain Sciences (A-L L, L.M.C., K.M., A.G.H.), Program in Neuroscience (L.M.C., K.M., A.G.H.), Gill Center for Biomolecular Science (K.M., A.G.H.), Indiana University, Bloomington, Indiana
| | - Ken Mackie
- Department of Psychological and Brain Sciences (A-L L, L.M.C., K.M., A.G.H.), Program in Neuroscience (L.M.C., K.M., A.G.H.), Gill Center for Biomolecular Science (K.M., A.G.H.), Indiana University, Bloomington, Indiana
| | - Andrea G Hohmann
- Department of Psychological and Brain Sciences (A-L L, L.M.C., K.M., A.G.H.), Program in Neuroscience (L.M.C., K.M., A.G.H.), Gill Center for Biomolecular Science (K.M., A.G.H.), Indiana University, Bloomington, Indiana
| |
Collapse
|
41
|
Barrie N, Kuruppu V, Manolios E, Ali M, Moghaddam M, Manolios N. Endocannabinoids in arthritis: current views and perspective. Int J Rheum Dis 2017; 20:789-797. [DOI: 10.1111/1756-185x.13146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nicola Barrie
- Department of Rheumatology; Westmead Hospital and University of Sydney; Sydney Australia
| | - Vindhya Kuruppu
- Department of Rheumatology; Westmead Hospital and University of Sydney; Sydney Australia
| | | | - Marina Ali
- Department of Dermatology; Westmead Hospital; Sydney Australia
| | | | - Nicholas Manolios
- Department of Rheumatology; Westmead Hospital and University of Sydney; Sydney Australia
| |
Collapse
|
42
|
Grenald SA, Young MA, Wang Y, Ossipov MH, Ibrahim MM, Largent-Milnes TM, Vanderah TW. Synergistic attenuation of chronic pain using mu opioid and cannabinoid receptor 2 agonists. Neuropharmacology 2017; 116:59-70. [PMID: 28007501 PMCID: PMC5385155 DOI: 10.1016/j.neuropharm.2016.12.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/22/2016] [Accepted: 12/11/2016] [Indexed: 12/22/2022]
Abstract
The misuse of prescription opiates is on the rise with combination therapies (e.g. acetaminophen or NSAIDs) resulting in severe liver and kidney damage. In recent years, cannabinoid receptors have been identified as potential modulators of pain and rewarding behaviors associated with cocaine, nicotine and ethanol in preclinical models. Yet, few studies have identified whether mu opioid agonists and CB2 agonists act synergistically to inhibit chronic pain while reducing unwanted side effects including reward liability. We determined if analgesic synergy exists between the mu-opioid agonist morphine and the selective CB2 agonist, JWH015, in rodent models of acute and chronic inflammatory, post-operative, and neuropathic pain using isobolographic analysis. We also investigated if the MOR-CB2 agonist combination decreased morphine-induced conditioned place preference (CPP) and slowing of gastrointestinal transit. Co-administration of morphine with JWH015 synergistically inhibited preclinical inflammatory, post-operative and neuropathic-pain in a dose- and time-dependent manner; no synergy was observed for nociceptive pain. Opioid-induced side effects of impaired gastrointestinal transit and CPP were significantly reduced in the presence of JWH015. Here we show that MOR + CB2 agonism results in a significant synergistic inhibition of preclinical pain while significantly reducing opioid-induced unwanted side effects. The opioid sparing effect of CB2 receptor agonism strongly supports the advancement of a MOR-CB2 agonist combinatorial pain therapy for clinical trials.
Collapse
MESH Headings
- Analgesics, Non-Narcotic/pharmacology
- Analgesics, Opioid/adverse effects
- Analgesics, Opioid/pharmacology
- Animals
- Cannabinoid Receptor Agonists/pharmacology
- Chronic Pain/drug therapy
- Chronic Pain/metabolism
- Constipation/chemically induced
- Constipation/drug therapy
- Constipation/metabolism
- Corpus Striatum/drug effects
- Corpus Striatum/metabolism
- Disease Models, Animal
- Dopamine/metabolism
- Dose-Response Relationship, Drug
- Drug Synergism
- Indoles/pharmacology
- Male
- Mice, Inbred ICR
- Morphine/adverse effects
- Morphine/pharmacology
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Reward
Collapse
Affiliation(s)
- Shaness A Grenald
- Department of Pharmacology, College of Medicine, The University of Arizona Tucson, AZ 85724, United States
| | - Madison A Young
- Department of Pharmacology, College of Medicine, The University of Arizona Tucson, AZ 85724, United States
| | - Yue Wang
- Department of Pharmacology, College of Medicine, The University of Arizona Tucson, AZ 85724, United States
| | - Michael H Ossipov
- Department of Pharmacology, College of Medicine, The University of Arizona Tucson, AZ 85724, United States
| | - Mohab M Ibrahim
- Department of Pharmacology, College of Medicine, The University of Arizona Tucson, AZ 85724, United States
| | - Tally M Largent-Milnes
- Department of Pharmacology, College of Medicine, The University of Arizona Tucson, AZ 85724, United States
| | - Todd W Vanderah
- Department of Pharmacology, College of Medicine, The University of Arizona Tucson, AZ 85724, United States.
| |
Collapse
|
43
|
Marino S, Idris AI. Emerging therapeutic targets in cancer induced bone disease: A focus on the peripheral type 2 cannabinoid receptor. Pharmacol Res 2017; 119:391-403. [PMID: 28274851 DOI: 10.1016/j.phrs.2017.02.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 01/26/2017] [Accepted: 02/27/2017] [Indexed: 12/17/2022]
Abstract
Skeletal complications are a common cause of morbidity in patients with primary bone cancer and bone metastases. The type 2 cannabinoid (Cnr2) receptor is implicated in cancer, bone metabolism and pain perception. Emerging data have uncovered the role of Cnr2 in the regulation of tumour-bone cell interactions and suggest that agents that target Cnr2 in the skeleton have potential efficacy in the reduction of skeletal complications associated with cancer. This review aims to provide an overview of findings relating to the role of Cnr2 receptor in the regulation of skeletal tumour growth, osteolysis and bone pain, and highlights the many unanswered questions and unmet needs. This review argues that development and testing of peripherally-acting, tumour-, Cnr2-selective ligands in preclinical models of metastatic cancer will pave the way for future research that will advance our knowledge about the basic mechanism(s) by which the endocannabinoid system regulate cancer metastasis, stimulate the development of a safer cannabis-based therapy for the treatment of cancer and provide policy makers with powerful tools to assess the science and therapeutic potential of cannabinoid-based therapy. Thus, offering the prospect of identifying selective Cnr2 ligands, as novel, alternative to cannabis herbal extracts for the treatment of advanced cancer patients.
Collapse
Affiliation(s)
- Silvia Marino
- Department of Oncology and Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK.
| | - Aymen I Idris
- Department of Oncology and Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK.
| |
Collapse
|
44
|
Lu C, Shi L, Sun B, Zhang Y, Hou B, Sun Y, Ma Z, Gu X. A Single Intrathecal or Intraperitoneal Injection of CB2 Receptor Agonist Attenuates Bone Cancer Pain and Induces a Time-Dependent Modification of GRK2. Cell Mol Neurobiol 2017; 37:101-109. [PMID: 26935064 PMCID: PMC11482228 DOI: 10.1007/s10571-016-0349-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 02/11/2016] [Indexed: 01/01/2023]
Abstract
The objective of this study was to explore the potential role of G-protein-coupled receptor kinase 2 (GRK2) in the progression of cannabinoid 2 receptor (CB2) agonist-induced analgesic effects of bone cancer pain. Female Sprague-Dawley rats, weighing 160-180 g, were utilized to establish a model of bone cancer pain induced by intra-tibia inoculation of Walker 256 mammary gland carcinoma cells. JWH-015, a selective CB2 agonist, was injected intrathecally or intraperitoneally on postoperative day 10. Bone cancer-induced pain behaviors-mechanical allodynia and ambulatory pain-were assessed on postoperative days -1 (baseline), 4, 7, and 10 and at post-treatment hours 2, 6, 24, 48, and 72. The expressions of spinal CB2 and GRK2 protein were detected by Western Blotting on postoperative days -1 (baseline), 4, 7, and 10 and at post-treatment hours 6, 24, and 72. The procedure produced prolonged mechanical allodynia, ambulatory pain, and different changes in spinal CB2 and GRK2 expression levels. Intrathecal or intraperitoneal administration of JWH-015 alleviated the induced mechanical allodynia and ambulatory pain, and inhibited the downregulation of spinal GRK2 expression. These effects were in a time-dependent manner and reversed by pretreatment of CB2 selective antagonist AM630. The results affirmed CB2 receptor agonists might serve as new treatment targets for bone cancer pain. Moreover, spinal GRK2 was an important regulator of CB2 receptor agonist-analgesia pathway.
Collapse
Affiliation(s)
- Cui'e Lu
- Department of Anesthesiology, Affiliated Drum-Tower Hospital of Medical College of Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Linyu Shi
- Department of Anesthesiology, Affiliated Drum-Tower Hospital of Medical College of Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Bei Sun
- Department of Anesthesiology, Affiliated Drum-Tower Hospital of Medical College of Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Yu Zhang
- Department of Anesthesiology, Affiliated Drum-Tower Hospital of Medical College of Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Bailing Hou
- Department of Anesthesiology, Affiliated Drum-Tower Hospital of Medical College of Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Yu'e Sun
- Department of Anesthesiology, Affiliated Drum-Tower Hospital of Medical College of Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Zhengliang Ma
- Department of Anesthesiology, Affiliated Drum-Tower Hospital of Medical College of Nanjing University, Nanjing, 210008, Jiangsu, China.
| | - Xiaoping Gu
- Department of Anesthesiology, Affiliated Drum-Tower Hospital of Medical College of Nanjing University, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
45
|
Osman NA, Ligresti A, Klein CD, Allarà M, Rabbito A, Di Marzo V, Abouzid KA, Abadi AH. Discovery of novel Tetrahydrobenzo[b]thiophene and pyrrole based scaffolds as potent and selective CB2 receptor ligands: The structural elements controlling binding affinity, selectivity and functionality. Eur J Med Chem 2016; 122:619-634. [PMID: 27448919 DOI: 10.1016/j.ejmech.2016.07.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 12/21/2022]
Abstract
CB2-based therapeutics show strong potential in the treatment of diverse diseases such as inflammation, multiple sclerosis, pain, immune-related disorders, osteoporosis and cancer, without eliciting the typical neurobehavioral side effects of CB1 ligands. For this reason, research activities are currently directed towards the development of CB2 selective ligands. Herein, the synthesis of novel heterocyclic-based CB2 selective compounds is reported. A set of 2,5-dialkyl-1-phenyl-1H-pyrrole-3-carboxamides, 5-subtituted-2-(acylamino)/(2-sulphonylamino)-thiophene-3-carboxylates and 2-(acylamino)/(2-sulphonylamino)-tetrahydrobenzo[b]thiophene-3-carboxylates were synthesized. Biological results revealed compounds with remarkably high CB2 binding affinity and CB2/CB1 subtype selectivity. Compound 19a and 19b from the pyrrole series exhibited the highest CB2 receptor affinity (Ki = 7.59 and 6.15 nM, respectively), as well as the highest CB2/CB1 subtype selectivity (∼70 and ∼200-fold, respectively). In addition, compound 6b from the tetrahydrobenzo[b]thiophene series presented the most potent and selective CB2 ligand in this series (Ki = 2.15 nM and CB2 subtype selectivity of almost 500-fold over CB1). Compound 6b showed a full agonism, while compounds 19a and 19b acted as inverse agonists when tested in an adenylate cyclase assay. The present findings thus pave the way to the design and optimization of heterocyclic-based scaffolds with lipophilic carboxamide and/or retroamide substituent that can be exploited as potential CB2 receptor activity modulators.
Collapse
Affiliation(s)
- Noha A Osman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Alessia Ligresti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Christian D Klein
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Marco Allarà
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Alessandro Rabbito
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Khaled A Abouzid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt.
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| |
Collapse
|
46
|
|
47
|
Aghazadeh Tabrizi M, Baraldi PG, Borea PA, Varani K. Medicinal Chemistry, Pharmacology, and Potential Therapeutic Benefits of Cannabinoid CB2 Receptor Agonists. Chem Rev 2016; 116:519-60. [PMID: 26741146 DOI: 10.1021/acs.chemrev.5b00411] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mojgan Aghazadeh Tabrizi
- Department of Chemical and Pharmaceutical Sciences and ‡Department of Medical Science, Pharmacology Section, University of Ferrara , Ferrara 44121, Italy
| | - Pier Giovanni Baraldi
- Department of Chemical and Pharmaceutical Sciences and ‡Department of Medical Science, Pharmacology Section, University of Ferrara , Ferrara 44121, Italy
| | - Pier Andrea Borea
- Department of Chemical and Pharmaceutical Sciences and ‡Department of Medical Science, Pharmacology Section, University of Ferrara , Ferrara 44121, Italy
| | - Katia Varani
- Department of Chemical and Pharmaceutical Sciences and ‡Department of Medical Science, Pharmacology Section, University of Ferrara , Ferrara 44121, Italy
| |
Collapse
|
48
|
Dolles D, Nimczick M, Scheiner M, Ramler J, Stadtmüller P, Sawatzky E, Drakopoulos A, Sotriffer C, Wittmann HJ, Strasser A, Decker M. Aminobenzimidazoles and Structural Isomers as Templates for Dual-Acting Butyrylcholinesterase Inhibitors andhCB2R Ligands To Combat Neurodegenerative Disorders. ChemMedChem 2015; 11:1270-83. [DOI: 10.1002/cmdc.201500418] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Dominik Dolles
- Pharmaceutical and Medicinal Chemistry; Institute of Pharmacy and Food Chemistry; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Martin Nimczick
- Pharmaceutical and Medicinal Chemistry; Institute of Pharmacy and Food Chemistry; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Matthias Scheiner
- Pharmaceutical and Medicinal Chemistry; Institute of Pharmacy and Food Chemistry; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Jacqueline Ramler
- Pharmaceutical and Medicinal Chemistry; Institute of Pharmacy and Food Chemistry; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Patricia Stadtmüller
- Pharmaceutical and Medicinal Chemistry; Institute of Pharmacy and Food Chemistry; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Edgar Sawatzky
- Pharmaceutical and Medicinal Chemistry; Institute of Pharmacy and Food Chemistry; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Antonios Drakopoulos
- Pharmaceutical and Medicinal Chemistry; Institute of Pharmacy and Food Chemistry; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Christoph Sotriffer
- Pharmaceutical and Medicinal Chemistry; Institute of Pharmacy and Food Chemistry; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Hans-Joachim Wittmann
- Pharmaceutical and Medicinal Chemistry II; Institute of Pharmacy; University of Regensburg; 95053 Regensburg Germany
| | - Andrea Strasser
- Pharmaceutical and Medicinal Chemistry II; Institute of Pharmacy; University of Regensburg; 95053 Regensburg Germany
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry; Institute of Pharmacy and Food Chemistry; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| |
Collapse
|
49
|
Sophocleous A, Börjesson AE, Salter DM, Ralston SH. The type 2 cannabinoid receptor regulates susceptibility to osteoarthritis in mice. Osteoarthritis Cartilage 2015; 23:1586-94. [PMID: 25937028 DOI: 10.1016/j.joca.2015.04.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/27/2015] [Accepted: 04/22/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Cannabinoid receptors and their ligands have been implicated in the regulation of various physiological processes but their role in osteoarthritis has not been investigated. The aim of this study was to evaluate the role of the type 2 cannabinoid receptor (Cnr2) in regulating susceptibility to osteoarthritis in mice. METHODS We analysed the severity of knee osteoarthritis as assessed by the Osteoarthritis Research Society International (OARSI) scoring system in mice with targeted deletion of Cnr2 (Cnr2(-/-)) and wild type (WT) littermates. Studies were conducted in mice subjected to surgical destabilisation of the medial meniscus (DMM) and in those with spontaneous age-related osteoarthritis (OA). RESULTS Osteoarthritis was more severe following DMM in the medial compartment of the knee in Cnr2(-/-) compared with WT mice (mean ± sem score = 4.9 ± 0.5 vs 3.6 ± 0.3; P = 0.017). Treatment of WT mice with the CB2-selective agonist HU308 following DMM reduced the severity of OA in the whole joint (HU308 = 8.4 ± 0.2 vs vehicle = 10.4 ± 0.6; P = 0.007). Spontaneous age related osteoarthritis was also more severe in the medial compartment of the knee in 12-month old Cnr2(-/-) mice compared with WT (5.6 ± 0.5 vs 3.5 ± 0.3, P = 0.008). Cultured articular chondrocytes from Cnr2(-/-) mice produced less proteoglycans in vitro than wild type chondrocytes. CONCLUSION These studies demonstrate that the Cnr2 pathway plays a role in the pathophysiology of osteoarthritis in mice and shows that pharmacological activation of CB2 has a protective effect. Further studies of the role of cannabinoid receptors in the pathogenesis of osteoarthritis in man are warranted.
Collapse
Affiliation(s)
- A Sophocleous
- Rheumatology and Bone Diseases Unit, Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, EH4 2XU, UK.
| | - A E Börjesson
- Rheumatology and Bone Diseases Unit, Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, EH4 2XU, UK.
| | - D M Salter
- Osteoarticular Research Group, Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK.
| | - S H Ralston
- Rheumatology and Bone Diseases Unit, Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, EH4 2XU, UK.
| |
Collapse
|
50
|
Han S, Zhang FF, Qian HY, Chen LL, Pu JB, Xie X, Chen JZ. Development of Quinoline-2,4(1H,3H)-diones as Potent and Selective Ligands of the Cannabinoid Type 2 Receptor. J Med Chem 2015; 58:5751-69. [PMID: 26151231 DOI: 10.1021/acs.jmedchem.5b00227] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cannabinoid type 2 receptors (CB2Rs) play crucial roles in inflammatory diseases. There has been considerable interest in developing potent and selective ligands for CB2R. In this study, quinoline-2,4(1H,3H)-dione analogs have been designed, synthesized, and evaluated for their potencies and binding properties toward the cannabinoid type 1 receptor (CB1R) and CB2R. C5- or C8-substituted quinoline-2,4(1H,3H)-diones demonstrate CB2R agonist activity, while the C6- or C7-substituted analogs are antagonists of CB2R. In addition, oral administration of 21 dose-dependently alleviates the clinical symptoms of experimental autoimmune encephalomyelitis in a mouse model of multiple sclerosis and protects the central nervous system from immune damage. Furthermore, the interaction modes predicted by docking simulations and the 3D-QSAR model generated with CoMFA may offer guidance for further design and modification of CB2R modulators.
Collapse
Affiliation(s)
- Shuang Han
- †College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Fei-Fei Zhang
- ‡CAS Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hai-Yan Qian
- †College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Li-Li Chen
- †College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jian-Bin Pu
- †College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xin Xie
- ‡CAS Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jian-Zhong Chen
- †College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|