1
|
Amjadi R, Werten S, Lomada SK, Baldin C, Scheffzek K, Dunzendorfer-Matt T, Wieland T. Mechanistic Insights into Substrate Recognition of Human Nucleoside Diphosphate Kinase C Based on Nucleotide-Induced Structural Changes. Int J Mol Sci 2024; 25:9768. [PMID: 39337255 PMCID: PMC11431768 DOI: 10.3390/ijms25189768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Nucleoside diphosphate kinases (NDPKs) are encoded by nme genes and exist in various isoforms. Based on interactions with other proteins, they are involved in signal transduction, development and pathological processes such as tumorigenesis, metastasis and heart failure. In this study, we report a 1.25 Å resolution structure of human homohexameric NDPK-C bound to ADP and describe the yet unknown complexes formed with GDP, UDP and cAMP, all obtained at a high resolution via X-ray crystallography. Each nucleotide represents a distinct group of mono- or diphosphate purine or pyrimidine bases. We analyzed different NDPK-C nucleotide complexes in the presence and absence of Mg2+ and explain how this ion plays an essential role in NDPKs' phosphotransferase activity. By analyzing a nucleotide-depleted NDPK-C structure, we detected conformational changes upon substrate binding and identify flexible regions in the substrate binding site. A comparison of NDPK-C with other human isoforms revealed a strong similarity in the overall composition with regard to the 3D structure, but significant differences in the charge and hydrophobicity of the isoforms' surfaces. This may play a role in isoform-specific NDPK interactions with ligands and/or important complex partners like other NDPK isoforms, as well as monomeric and heterotrimeric G proteins. Considering the recently discovered role of NDPK-C in different pathologies, these high-resolution structures thus might provide a basis for interaction studies with other proteins or small ligands, like activators or inhibitors.
Collapse
Affiliation(s)
- Rezan Amjadi
- Institute of Molecular Biochemistry, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (R.A.); (K.S.)
| | - Sebastiaan Werten
- Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria;
| | - Santosh Kumar Lomada
- Experimental Pharmacology Mannheim, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13–17, 68167 Mannheim, Germany;
| | - Clara Baldin
- Department of Microbiology, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria;
| | - Klaus Scheffzek
- Institute of Molecular Biochemistry, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (R.A.); (K.S.)
| | - Theresia Dunzendorfer-Matt
- Institute of Molecular Biochemistry, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (R.A.); (K.S.)
| | - Thomas Wieland
- Experimental Pharmacology Mannheim, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13–17, 68167 Mannheim, Germany;
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 68167 Mannheim, Germany
| |
Collapse
|
2
|
Chicco D, Sanavia T, Jurman G. Signature literature review reveals AHCY, DPYSL3, and NME1 as the most recurrent prognostic genes for neuroblastoma. BioData Min 2023; 16:7. [PMID: 36870971 PMCID: PMC9985261 DOI: 10.1186/s13040-023-00325-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Neuroblastoma is a childhood neurological tumor which affects hundreds of thousands of children worldwide, and information about its prognosis can be pivotal for patients, their families, and clinicians. One of the main goals in the related bioinformatics analyses is to provide stable genetic signatures able to include genes whose expression levels can be effective to predict the prognosis of the patients. In this study, we collected the prognostic signatures for neuroblastoma published in the biomedical literature, and noticed that the most frequent genes present among them were three: AHCY, DPYLS3, and NME1. We therefore investigated the prognostic power of these three genes by performing a survival analysis and a binary classification on multiple gene expression datasets of different groups of patients diagnosed with neuroblastoma. Finally, we discussed the main studies in the literature associating these three genes with neuroblastoma. Our results, in each of these three steps of validation, confirm the prognostic capability of AHCY, DPYLS3, and NME1, and highlight their key role in neuroblastoma prognosis. Our results can have an impact on neuroblastoma genetics research: biologists and medical researchers can pay more attention to the regulation and expression of these three genes in patients having neuroblastoma, and therefore can develop better cures and treatments which can save patients' lives.
Collapse
Affiliation(s)
- Davide Chicco
- Institute of Health Policy Management and Evaluation, University of Toronto, 155 College Street, M5T 3M7 Toronto, Ontario, Canada
| | - Tiziana Sanavia
- Dipartimento di Scienze Mediche, Università di Torino, Via Verdi 8, 10124 Turin, Italy
| | - Giuseppe Jurman
- Data Science for Health Unit, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Povo (Trento), Italy
| |
Collapse
|
3
|
Proust B, Radić M, Vidaček NŠ, Cottet C, Attia S, Lamarche F, Ačkar L, Mikulčić VG, Tokarska-Schlattner M, Ćetković H, Schlattner U, Bosnar MH. NME6 is a phosphotransfer-inactive, monomeric NME/NDPK family member and functions in complexes at the interface of mitochondrial inner membrane and matrix. Cell Biosci 2021; 11:195. [PMID: 34789336 PMCID: PMC8597243 DOI: 10.1186/s13578-021-00707-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/01/2021] [Indexed: 11/10/2022] Open
Abstract
Background NME6 is a member of the nucleoside diphosphate kinase (NDPK/NME/Nm23) family which has key roles in nucleotide homeostasis, signal transduction, membrane remodeling and metastasis suppression. The well-studied NME1-NME4 proteins are hexameric and catalyze, via a phospho-histidine intermediate, the transfer of the terminal phosphate from (d)NTPs to (d)NDPs (NDP kinase) or proteins (protein histidine kinase). For the NME6, a gene/protein that emerged early in eukaryotic evolution, only scarce and partially inconsistent data are available. Here we aim to clarify and extend our knowledge on the human NME6. Results We show that NME6 is mostly expressed as a 186 amino acid protein, but that a second albeit much less abundant isoform exists. The recombinant NME6 remains monomeric, and does not assemble into homo-oligomers or hetero-oligomers with NME1-NME4. Consequently, NME6 is unable to catalyze phosphotransfer: it does not generate the phospho-histidine intermediate, and no NDPK activity can be detected. In cells, we could resolve and extend existing contradictory reports by localizing NME6 within mitochondria, largely associated with the mitochondrial inner membrane and matrix space. Overexpressing NME6 reduces ADP-stimulated mitochondrial respiration and complex III abundance, thus linking NME6 to dysfunctional oxidative phosphorylation. However, it did not alter mitochondrial membrane potential, mass, or network characteristics. Our screen for NME6 protein partners revealed its association with NME4 and OPA1, but a direct interaction was observed only with RCC1L, a protein involved in mitochondrial ribosome assembly and mitochondrial translation, and identified as essential for oxidative phosphorylation. Conclusions NME6, RCC1L and mitoribosomes localize together at the inner membrane/matrix space where NME6, in concert with RCC1L, may be involved in regulation of the mitochondrial translation of essential oxidative phosphorylation subunits. Our findings suggest new functions for NME6, independent of the classical phosphotransfer activity associated with NME proteins. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00707-0.
Collapse
Affiliation(s)
- Bastien Proust
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Martina Radić
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Nikolina Škrobot Vidaček
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000, Zagreb, Croatia.,Division of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Cécile Cottet
- Laboratory of Fundamental and Applied Bioenergetics, Univ. Grenoble Alpes and Inserm U1055, Grenoble, France
| | - Stéphane Attia
- Laboratory of Fundamental and Applied Bioenergetics, Univ. Grenoble Alpes and Inserm U1055, Grenoble, France
| | - Frédéric Lamarche
- Laboratory of Fundamental and Applied Bioenergetics, Univ. Grenoble Alpes and Inserm U1055, Grenoble, France
| | - Lucija Ačkar
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Vlatka Godinić Mikulčić
- The Miroslav Krleža Institute of Lexicography, 10000, Zagreb, Croatia.,Division of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | | | - Helena Ćetković
- Division of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Uwe Schlattner
- Univ. Grenoble Alpes and Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France, and Institut Universitaire de France (IUF), Paris, France
| | - Maja Herak Bosnar
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000, Zagreb, Croatia.
| |
Collapse
|
4
|
Zheng S, Liu T, Liu Q, Yang L, Zhang Q, Han X, Shen T, Zhang X, Lu X. Widely targeted metabolomic analyses unveil the metabolic variations after stable knock-down of NME4 in esophageal squamous cell carcinoma cells. Mol Cell Biochem 2020; 471:81-89. [PMID: 32504364 DOI: 10.1007/s11010-020-03768-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/26/2020] [Indexed: 01/23/2023]
Abstract
NME4, also designated nm23-H4 or NDPK-D, has been known for years for its well-established roles in the synthesis of nucleoside triphosphates, though; little has been known regarding the differential metabolites involved as well as the biological roles NME4 plays in proliferation and invasion of esophageal squamous cell carcinoma (ESCC) cells. To understand the biological roles of NME4 in ESCC cells, lentiviral-based short hairpin RNA interference (shRNA) vectors were constructed and used to stably knock down NME4. Then, the proliferative and invasive variations were assessed using MTT, Colony formation and Transwell assays. To understand the metabolites involved after silencing of NME4 in ESCC cells, widely targeted metabolomic screening was taken. It was discovered that silencing of NME4 can profoundly suppress the proliferation and invasion in ESCC cells in vitro. Metabolically, a total of 11 differential metabolites were screened. KEGG analyses revealed that Tryptophan, Riboflavin, Purine, Nicotinate, lysine degradation, and Linoleic acid metabolism were also involved in addition to the well-established nucleotides metabolism. Some of these differential metabolites, say, 2-Picolinic Acid, Nicotinic Acid and Pipecolinic Acid were suggested to be associated with tumor immunomodulation. The data we described here support the idea that metabolisms occurred in mitochondrial was closely related to tumor immunity.
Collapse
Affiliation(s)
- Shutao Zheng
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China
| | - Tao Liu
- Health Management Center, Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China
| | - Qing Liu
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China
| | - Lifei Yang
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China
| | - Qiqi Zhang
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China
| | - Xiujuan Han
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China
| | - Tongxue Shen
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China
| | - Xiao Zhang
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China
| | - Xiaomei Lu
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China.
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Xinjiang Uygur Autonomous Region, Ürümqi, People's Republic of China.
| |
Collapse
|
5
|
Characterization of Nme5-Like Gene/Protein from the Red Alga Chondrus Crispus. Mar Drugs 2019; 18:md18010013. [PMID: 31877804 PMCID: PMC7024210 DOI: 10.3390/md18010013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022] Open
Abstract
The Nme gene/protein family of nucleoside diphosphate kinases (NDPK) was originally named after its member Nm23-H1/Nme1, the first identified metastasis suppressor. Human Nme proteins are divided in two groups. They all possess nucleoside diphosphate kinase domain (NDK). Group I (Nme1-Nme4) display a single type NDK domain, whereas Group II (Nme5-Nme9) display a single or several different NDK domains, associated or not associated with extra-domains. Data strongly suggest that, unlike Group I, none of the members of Group II display measurable NDPK activity, although some of them autophosphorylate. The multimeric form is required for the NDPK activity. Group I proteins are known to multimerize, while there are no data on the multimerization of Group II proteins. The Group II ancestral type protein was shown to be conserved in several species from three eukaryotic supergroups. Here, we analysed the Nme protein from an early branching eukaryotic lineage, the red alga Chondrus crispus. We show that the ancestral type protein, unlike its human homologue, was fully functional multimeric NDPK with high affinity to various types of DNA and dispersed localization throughout the eukaryotic cell. Its overexpression inhibits both cell proliferation and the anchorage-independent growth of cells in soft agar but fails to deregulate cell apoptosis. We conclude that the ancestral gene has changed during eukaryotic evolution, possibly in correlation with the protein function.
Collapse
|
6
|
Chen J, Jiang Q, Jiang XQ, Li DQ, Jiang XC, Wu XB, Cao YL. miR-146a promoted breast cancer proliferation and invasion by regulating NM23-H1. J Biochem 2019; 167:41-48. [PMID: 31598678 DOI: 10.1093/jb/mvz079] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/12/2019] [Indexed: 01/05/2023] Open
Abstract
Abstract
The study aimed to investigate the regulatory effect of miR-146a in proliferation, invasion and migration of breast cancer and its possible mechanism via NM23-H1. The expression levels of miR-146a in breast cancer with different pathological classification were significantly increased, while the expression levels of NM23-H1 were significantly decreased, which were closely correlated. Double luciferase reporter gene was used to verify the target regulatory relationship between miR-146 and NM23-H1 on a human breast cancer cell line. miR-146a was closely related to the proliferation and metastasis of breast cancer. miR-146a also promoted the growth of breast cancer in vivo via targeting NM23-H1. In conclusion, miR-146 can promote the proliferation and invasion of breast cancer by targeting NM23-H1.
Collapse
Affiliation(s)
- Jun Chen
- Breast Tumor Department, 3rd Hospital of Nanchang, No. 2 Xiangshan South Road, Xihu District, Nanchang, Jiangxi, China
| | - Qiang Jiang
- Oncology Department, Jiangxi Provincial Chest Hospital, No. 346, Dieshan Road, East Lake District, Nanchang, Jiangxi, China
| | - Xue-Qin Jiang
- Breast Tumor Department, 3rd Hospital of Nanchang, No. 2 Xiangshan South Road, Xihu District, Nanchang, Jiangxi, China
| | - De-Quan Li
- Breast Tumor Department, 3rd Hospital of Nanchang, No. 2 Xiangshan South Road, Xihu District, Nanchang, Jiangxi, China
| | - Xiao-Cheng Jiang
- Breast Tumor Department, 3rd Hospital of Nanchang, No. 2 Xiangshan South Road, Xihu District, Nanchang, Jiangxi, China
| | - Xiao-Bo Wu
- Breast Tumor Department, 3rd Hospital of Nanchang, No. 2 Xiangshan South Road, Xihu District, Nanchang, Jiangxi, China
| | - Ya-Li Cao
- Breast Tumor Department, 3rd Hospital of Nanchang, No. 2 Xiangshan South Road, Xihu District, Nanchang, Jiangxi, China
| |
Collapse
|
7
|
Lacombe ML, Tokarska-Schlattner M, Boissan M, Schlattner U. The mitochondrial nucleoside diphosphate kinase (NDPK-D/NME4), a moonlighting protein for cell homeostasis. J Transl Med 2018; 98:582-588. [PMID: 29491425 DOI: 10.1038/s41374-017-0004-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/12/2017] [Accepted: 11/13/2017] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial nucleoside diphosphate kinase (NDPK-D; synonyms: NME4, NM23-H4) represents the major mitochondrial NDP kinase. The homohexameric complex emerged as a protein with multiple functions in bioenergetics and phospholipid signaling. It occurs at different but precise mitochondrial locations and can affect among other mitochondrial shapes and dynamics, as well as the specific elimination of defective mitochondria or cells via mitophagy or apoptosis. With these various functions in cell homeostasis, NDPK-D/NME4 adds to the group of so-called moonlighting (or gene sharing) proteins.
Collapse
Affiliation(s)
- Marie-Lise Lacombe
- Sorbonne Université, UPMC Univ Paris 06, Paris, France. .,INSERM UMR-S 938, Saint-Antoine Research Center, Paris, France.
| | - Malgorzata Tokarska-Schlattner
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), University Grenoble Alpes, Grenoble, France.,Inserm U1055, Grenoble, France
| | - Mathieu Boissan
- Sorbonne Université, UPMC Univ Paris 06, Paris, France.,INSERM UMR-S 938, Saint-Antoine Research Center, Paris, France.,AP-HP, Hôpital Tenon, Service de Biochimie et Hormonologie, Paris, 75020, France
| | - Uwe Schlattner
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), University Grenoble Alpes, Grenoble, France.,Inserm U1055, Grenoble, France
| |
Collapse
|
8
|
Zala D, Schlattner U, Desvignes T, Bobe J, Roux A, Chavrier P, Boissan M. The advantage of channeling nucleotides for very processive functions. F1000Res 2017; 6:724. [PMID: 28663786 PMCID: PMC5473427 DOI: 10.12688/f1000research.11561.2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/17/2017] [Indexed: 12/26/2022] Open
Abstract
Nucleoside triphosphate (NTP)s, like ATP (adenosine 5'-triphosphate) and GTP (guanosine 5'-triphosphate), have long been considered sufficiently concentrated and diffusible to fuel all cellular ATPases (adenosine triphosphatases) and GTPases (guanosine triphosphatases) in an energetically healthy cell without becoming limiting for function. However, increasing evidence for the importance of local ATP and GTP pools, synthesised in close proximity to ATP- or GTP-consuming reactions, has fundamentally challenged our view of energy metabolism. It has become evident that cellular energy metabolism occurs in many specialised 'microcompartments', where energy in the form of NTPs is transferred preferentially from NTP-generating modules directly to NTP-consuming modules. Such energy channeling occurs when diffusion through the cytosol is limited, where these modules are physically close and, in particular, if the NTP-consuming reaction has a very high turnover, i.e. is very processive. Here, we summarise the evidence for these conclusions and describe new insights into the physiological importance and molecular mechanisms of energy channeling gained from recent studies. In particular, we describe the role of glycolytic enzymes for axonal vesicle transport and nucleoside diphosphate kinases for the functions of dynamins and dynamin-related GTPases.
Collapse
Affiliation(s)
- Diana Zala
- ESPCI - Paris, PSL Research University, Paris, F-75005, France.,CNRS, UMR8249, Paris, F-75005, France
| | - Uwe Schlattner
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), U1055, University Grenoble Alpes, Grenoble, 38058, France.,Inserm-U1055, Grenoble, F-38058, France
| | - Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, OR, 97401, USA
| | - Julien Bobe
- INRA, UR1037 LPGP, Campus de Beaulieu, Rennes, F-35000, France
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, Geneva, CH-1211, Switzerland.,Swiss National Centre for Competence in Research Programme Chemical Biology, Geneva, CH-1211, Switzerland
| | - Philippe Chavrier
- Institut Curie, Paris, F-75248, France.,PSL Research University, Paris, F-75005, France.,CNRS, UMR144, Paris, F-75248, France
| | - Mathieu Boissan
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMRS938, Saint-Antoine Research Center, Paris, F-75012, France.,AP-HP, Hospital Tenon, Service de Biochimie et Hormonologie, Paris, F-75020, France
| |
Collapse
|
9
|
Zala D, Schlattner U, Desvignes T, Bobe J, Roux A, Chavrier P, Boissan M. The advantage of channeling nucleotides for very processive functions. F1000Res 2017; 6:724. [PMID: 28663786 DOI: 10.12688/f1000research.11561.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/15/2017] [Indexed: 01/01/2023] Open
Abstract
Nucleoside triphosphate (NTP)s, like ATP (adenosine 5'-triphosphate) and GTP (guanosine 5'-triphosphate), have long been considered sufficiently concentrated and diffusible to fuel all cellular ATPases (adenosine triphosphatases) and GTPases (guanosine triphosphatases) in an energetically healthy cell without becoming limiting for function. However, increasing evidence for the importance of local ATP and GTP pools, synthesised in close proximity to ATP- or GTP-consuming reactions, has fundamentally challenged our view of energy metabolism. It has become evident that cellular energy metabolism occurs in many specialised 'microcompartments', where energy in the form of NTPs is transferred preferentially from NTP-generating modules directly to NTP-consuming modules. Such energy channeling occurs when diffusion through the cytosol is limited, where these modules are physically close and, in particular, if the NTP-consuming reaction has a very high turnover, i.e. is very processive. Here, we summarise the evidence for these conclusions and describe new insights into the physiological importance and molecular mechanisms of energy channeling gained from recent studies. In particular, we describe the role of glycolytic enzymes for axonal vesicle transport and nucleoside diphosphate kinases for the functions of dynamins and dynamin-related GTPases.
Collapse
Affiliation(s)
- Diana Zala
- ESPCI - Paris, PSL Research University, Paris, F-75005, France.,CNRS, UMR8249, Paris, F-75005, France
| | - Uwe Schlattner
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), U1055, University Grenoble Alpes, Grenoble, 38058, France.,Inserm-U1055, Grenoble, F-38058, France
| | - Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, OR, 97401, USA
| | - Julien Bobe
- INRA, UR1037 LPGP, Campus de Beaulieu, Rennes, F-35000, France
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, Geneva, CH-1211, Switzerland.,Swiss National Centre for Competence in Research Programme Chemical Biology, Geneva, CH-1211, Switzerland
| | - Philippe Chavrier
- Institut Curie, Paris, F-75248, France.,PSL Research University, Paris, F-75005, France.,CNRS, UMR144, Paris, F-75248, France
| | - Mathieu Boissan
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMRS938, Saint-Antoine Research Center, Paris, F-75012, France.,AP-HP, Hospital Tenon, Service de Biochimie et Hormonologie, Paris, F-75020, France
| |
Collapse
|
10
|
Progress on Nme (NDP kinase/Nm23/Awd) gene family-related functions derived from animal model systems: studies on development, cardiovascular disease, and cancer metastasis exemplified. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2015; 388:109-17. [PMID: 25585611 PMCID: PMC10153104 DOI: 10.1007/s00210-014-1079-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/10/2014] [Indexed: 12/17/2022]
|
11
|
Lu YC, Chang JT, Liao CT, Kang CJ, Huang SF, Chen IH, Huang CC, Huang YC, Chen WH, Tsai CY, Wang HM, Yen TC, You GR, Chiang CH, Cheng AJ. OncomiR-196 promotes an invasive phenotype in oral cancer through the NME4-JNK-TIMP1-MMP signaling pathway. Mol Cancer 2014; 13:218. [PMID: 25233933 PMCID: PMC4176851 DOI: 10.1186/1476-4598-13-218] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 09/11/2014] [Indexed: 12/12/2022] Open
Abstract
Background MicroRNA-196 (miR-196), which is highly up-regulated in oral cancer cells, has been reported to be aberrantly expressed in several cancers; however, the significance of miR-196 in oral cancer has not yet been addressed. Methods Cellular functions in response to miR-196 modulation were examined, including cell growth, migration, invasion and radio/chemosensitivity. Algorithm-based studies were used to identify the regulatory target of miR-196. The miR-196 target gene and downstream molecular mechanisms were confirmed by RT-qPCR, western blot, luciferase reporter and confocal microscopy analyses. miR-196 expression was determined in paired cancer and adjacent normal tissues from oral cancer patients. Results Both miR-196a and miR-196b were highly over-expressed in the cancer tissue and correlated with lymph node metastasis (P = 0.001 and P = 0.006, respectively). Functionally, miR-196 actively promoted cell migration and invasion without affecting cell growth. Mechanistically, miR-196 performed it's their function by inhibiting NME4 expression and further activating p-JNK, suppressing TIMP1, and augmenting MMP1/9. Conclusion miR-196 contributes to oral cancer by promoting cell migration and invasion. Clinically, miR-196a/b was significantly over-expressed in the cancer tissues and correlated with lymph node metastasis. Thus, our findings provide new knowledge of the underlying mechanism of cancer metastasis. miR-196 may serve as a promising marker for better oral cancer management. Electronic supplementary material The online version of this article (doi:10.1186/1476-4598-13-218) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Ann-Joy Cheng
- Department of Medical Biotechnology, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Taoyuan, 333, Taiwan.
| |
Collapse
|
12
|
Fancsalszky L, Monostori E, Farkas Z, Pourkarimi E, Masoudi N, Hargitai B, Bosnar MH, Deželjin M, Zsákai A, Vellai T, Mehta A, Takács-Vellai K. NDK-1, the homolog of NM23-H1/H2 regulates cell migration and apoptotic engulfment in C. elegans. PLoS One 2014; 9:e92687. [PMID: 24658123 PMCID: PMC3962447 DOI: 10.1371/journal.pone.0092687] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/25/2014] [Indexed: 11/18/2022] Open
Abstract
Abnormal regulation of cell migration and altered rearrangement of cytoskeleton are characteristic of metastatic cells. The first described suppressor of metastatic processes is NM23-H1, which displays NDPK (nucleoside-diphosphate kinase) activity. To better understand the role of nm23 genes in cell migration, we investigated the function of NDK-1, the sole Caenorhabditis elegans homolog of group I NDPKs in distal tip cell (DTC) migration. Dorsal phase of DTC migration is regulated by integrin mediated signaling. We find that ndk-1 loss of function mutants show defects in this phase. Epistasis analysis using mutants of the α-integrin ina-1 and the downstream functioning motility-promoting signaling module (referred to as CED-10 pathway) placed NDK-1 downstream of CED-10/Rac. As DTC migration and engulfment of apoptotic corpses are analogous processes, both partially regulated by the CED-10 pathway, we investigated defects of apoptosis in ndk-1 mutants. Embryos and germ cells defective for NDK-1 showed an accumulation of apoptotic cell corpses. Furthermore, NDK-1::GFP is expressed in gonadal sheath cells, specialized cells for engulfment and clearence of apoptotic corpses in germ line, which indicates a role for NDK-1 in apoptotic corpse removal. In addition to the CED-10 pathway, engulfment in the worm is also mediated by the CED-1 pathway. abl-1/Abl and abi-1/Abi, which function in parallel to both CED-10/CED-1 pathways, also regulate engulfment and DTC migration. ndk-1(-);abi-1(-) double mutant embryos display an additive phenotype (e. g. enhanced number of apoptotic corpses) which suggests that ndk-1 acts in parallel to abi-1. Corpse number in ndk-1(-);ced-10(-) double mutants, however, is similar to ced-10(-) single mutants, suggesting that ndk-1 acts downstream of ced-10 during engulfment. In addition, NDK-1 shows a genetic interaction with DYN-1/dynamin, a downstream component of the CED-1 pathway. In summary, we propose that NDK-1/NDPK might represent a converging point of CED-10 and CED-1 pathways in the process of cytoskeleton rearrangement.
Collapse
Affiliation(s)
- Luca Fancsalszky
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Eszter Monostori
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Zsolt Farkas
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Ehsan Pourkarimi
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Neda Masoudi
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Balázs Hargitai
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Maja Herak Bosnar
- Laboratory for Molecular Oncology, Division of Molecular Medicine, Rudjer Bošković Institute, Zagreb, Croatia
| | - Martina Deželjin
- Laboratory for Molecular Oncology, Division of Molecular Medicine, Rudjer Bošković Institute, Zagreb, Croatia
| | - Annamária Zsákai
- Department of Biological Anthropology, Eötvös Loránd University, Budapest, Hungary
| | - Tibor Vellai
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Anil Mehta
- Medical Research Institute, Ninewells Hospital Medical School, University of Dundee, Dundee, United Kingdom
| | | |
Collapse
|
13
|
Schlattner U, Tokarska-Schlattner M, Rousseau D, Boissan M, Mannella C, Epand R, Lacombe ML. Mitochondrial cardiolipin/phospholipid trafficking: the role of membrane contact site complexes and lipid transfer proteins. Chem Phys Lipids 2013; 179:32-41. [PMID: 24373850 DOI: 10.1016/j.chemphyslip.2013.12.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/17/2013] [Accepted: 12/19/2013] [Indexed: 11/18/2022]
Abstract
Historically, cellular trafficking of lipids has received much less attention than protein trafficking, mostly because its biological importance was underestimated, involved sorting and translocation mechanisms were not known, and analytical tools were limiting. This has changed during the last decade, and we discuss here some progress made in respect to mitochondria and the trafficking of phospholipids, in particular cardiolipin. Different membrane contact site or junction complexes and putative lipid transfer proteins for intra- and intermembrane lipid translocation have been described, involving mitochondrial inner and outer membrane, and the adjacent membranes of the endoplasmic reticulum. An image emerges how cardiolipin precursors, remodeling intermediates, mature cardiolipin and its oxidation products could migrate between membranes, and how this trafficking is involved in cardiolipin biosynthesis and cell signaling events. Particular emphasis in this review is given to mitochondrial nucleoside diphosphate kinase D and mitochondrial creatine kinases, which emerge to have roles in both, membrane junction formation and lipid transfer.
Collapse
Affiliation(s)
- Uwe Schlattner
- Univ. Grenoble-Alpes, Laboratory of Fundamental and Applied Bioenergetics (LBFA) and SFR Environmental and Systems Biology (BEeSy), Grenoble, France; Inserm, U1055, Grenoble, France.
| | - Malgorzata Tokarska-Schlattner
- Univ. Grenoble-Alpes, Laboratory of Fundamental and Applied Bioenergetics (LBFA) and SFR Environmental and Systems Biology (BEeSy), Grenoble, France; Inserm, U1055, Grenoble, France
| | - Denis Rousseau
- Univ. Grenoble-Alpes, Laboratory of Fundamental and Applied Bioenergetics (LBFA) and SFR Environmental and Systems Biology (BEeSy), Grenoble, France; Inserm, U1055, Grenoble, France
| | - Mathieu Boissan
- UPMC Université Paris 06, Paris, France; Inserm, UMRS938, Paris, France; Hôpital Tenon, AP-HP, Service de Biochimie et Hormonologie, Paris, France
| | - Carmen Mannella
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Richard Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
14
|
Prabhu VV, Siddikuzzaman, Grace VMB, Guruvayoorappan C. Targeting tumor metastasis by regulating Nm23 gene expression. Asian Pac J Cancer Prev 2013; 13:3539-48. [PMID: 23098432 DOI: 10.7314/apjcp.2012.13.8.3539] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The Nm23 gene is a metastatic suppressor identified in a melanoma cell line and expressed in different tumors where their levels of expression are associated with reduced or increased metastatic potential. Nm23 is one of the over 20 metastasis suppressor genes (MSGs) confirmed in vivo. It is highly conserved from yeast to human, implying a critical developmental function. Tumors with alteration of the p53 gene and reduced expression of the Nm23 gene are more prone to metastasis. Nm23-H1 has 3'-5' exonuclease activity. This review focuses on the role of Nm23 in cancer progression and also a potential novel target for cancer therapy.
Collapse
Affiliation(s)
- V Vinod Prabhu
- Department of Biotechnology, Karunya University, Karunya Nagar, Coimbatore, Tamil Nadu, India
| | | | | | | |
Collapse
|
15
|
Owlanj H, Jie Yang H, Wei Feng Z. Nucleoside diphosphate kinase Nm23-M1 involves in oligodendroglial versus neuronal cell fate decision in vitro. Differentiation 2012; 84:281-93. [PMID: 23023023 DOI: 10.1016/j.diff.2012.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 08/22/2012] [Accepted: 08/27/2012] [Indexed: 12/30/2022]
Abstract
The adult glial progenitor cells were recently shown to be able to produce neurons in central nervous system (CNS) and to become multipotent in vitro. Although the fate decision of glial progenitors was studied extensively, the signals and factors which regulate the timing of neuronal differentiation still remain unknown. To elucidate the mechanisms underlying the neuronal differentiation from glial progenitors, we modified the gene expression profile in NG2(+) glial progenitor cells using enhanced retroviral mutagen (ERM) technique followed by phenotype screening to identify possible gene(s) responsible for glial-neuronal cell fate determination. Among the identified molecules, we found the gene named non-metastatic cell 1 which encodes a nucleoside diphosphate kinase protein A (Nm23-M1 or NME1). So far, the Nm23 members have been shown to be involved in various molecular processes including tumor metastasis, cell proliferation, differentiation and cell fate determination. In the present study, we provide evidence suggesting the role of NME1 in glial-neuronal cell fate determination in vitro. We showed that NME1 is widely expressed in neuronal structures throughout adult mouse CNS. Our immunohistochemical results revealed that NME1 is strongly colocalized with NF200 through white matter of spinal cord and brain. Interestingly, NME1 overexpression in oligodendrocyte progenitor OLN-93 cells potently induced the acquisition of neuronal fate, while its silencing was shown to promote oligodendrocyte differentiation. Furthermore, we demonstrated that dual-functional role of NME1 is achieved through cAMP-dependent protein kinase (PKA). Our data therefore suggested that NME1 acts as a switcher or reprogramming factor which involves in oligodentrocyte versus neuron cell fate specification in vitro.
Collapse
Affiliation(s)
- Hamed Owlanj
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | | |
Collapse
|
16
|
Hawley RG, Chen Y, Riz I, Zeng C. An Integrated Bioinformatics and Computational Biology Approach Identifies New BH3-Only Protein Candidates. ACTA ACUST UNITED AC 2012; 5:6-16. [PMID: 22754595 DOI: 10.2174/1874196701205010006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this study, we utilized an integrated bioinformatics and computational biology approach in search of new BH3-only proteins belonging to the BCL2 family of apoptotic regulators. The BH3 (BCL2 homology 3) domain mediates specific binding interactions among various BCL2 family members. It is composed of an amphipathic α-helical region of approximately 13 residues that has only a few amino acids that are highly conserved across all members. Using a generalized motif, we performed a genome-wide search for novel BH3-containing proteins in the NCBI Consensus Coding Sequence (CCDS) database. In addition to known pro-apoptotic BH3-only proteins, 197 proteins were recovered that satisfied the search criteria. These were categorized according to α-helical content and predictive binding to BCL-xL (encoded by BCL2L1) and MCL-1, two representative anti-apoptotic BCL2 family members, using position-specific scoring matrix models. Notably, the list is enriched for proteins associated with autophagy as well as a broad spectrum of cellular stress responses such as endoplasmic reticulum stress, oxidative stress, antiviral defense, and the DNA damage response. Several potential novel BH3-containing proteins are highlighted. In particular, the analysis strongly suggests that the apoptosis inhibitor and DNA damage response regulator, AVEN, which was originally isolated as a BCL-xL-interacting protein, is a functional BH3-only protein representing a distinct subclass of BCL2 family members.
Collapse
Affiliation(s)
- Robert G Hawley
- Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037, USA
| | | | | | | |
Collapse
|
17
|
Xiang FF, Mao GP. Association between colorectal cancer and tumor suppressor genes: recent research progress. Shijie Huaren Xiaohua Zazhi 2012; 20:394-398. [DOI: 10.11569/wcjd.v20.i5.394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is a common high-risk gastrointestinal cancer, and approximately 1.2 million new cases are diagnosed each year worldwide. In recent years, due to the improvement of people's living standards and changes in dietary habits and structure, the incidence and mortality rate of colorectal cancer increase rapidly in China. Moreover, patients have a significantly earlier age of onset. At present, the median age of colorectal cancer onset in China is 58 years old, 12 to 18 years earlier than other countries in Europe and America. The development of colorectal cancer is a complex multi-stage process involving multiple genetic alterations. Many studies have shown that colorectal carcinogenesis involves activation of oncogenes and inactivation of tumor suppressor genes. Tumor suppressor genes associated with colorectal carcinogenesis include p53, APC, DCC, and MMR, and proto-oncogenes include K-ras and c-myc. In this paper, we discuss the association between tumor suppressor genes and colorectal carcinogenesis.
Collapse
|
18
|
Qu LJ, Su JJ, Liang L. Construction of a lentiviral vector carrying the DR-nm23 gene and its stable expression in colorectal carcinoma SW620 cells. Shijie Huaren Xiaohua Zazhi 2011; 19:2226-2232. [DOI: 10.11569/wcjd.v19.i21.2226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM: To construct a lentiviral vector carrying the DR-nm23 gene and to establish a human colorectal carcinoma cell line SW620 stably expressing this gene.
METHODS: Endogenous expression of the DR-nm23 gene in colorectal carcinoma cell lines was investigated by RT-PCR. The DR-nm23 cDNA was cloned into the lentiviral expression vector pGC-FU. Recombinant lentiviruses were produced by 293T cells following the co-transfection of pGC-FU-DR-nm23-GFP and packaging plasmids. Lentivirus titer was determined by serial dilution method. The supernatants of virus-producing cells containing DR-nm23 and GFP genes were used to transfect SW620 cells. GFP fluorescence was detected by fluorescent microscopy. The expression of DR-nm23 protein in SW620 cells was detected by Western blot.
RESULTS: The recombinant lentiviral vector pGC-FU-DR-nm23-GFP was successfully constructed, and the sequence of the DR-nm23 gene in the vector was identical to those recorded in NCBI (NM_002510). The recombinant lentiviral plasmid could effective1y transfect 293T cells, with a lentivirus titer of 2E+9 TU/mL. The supernatants of lentivirus could effectively infect SW620 cells. Abundant green fluorescence was observed by fluorescent microscopy, and more than 85% of SW620 cells stably and highly expressed the target gene.
CONCLUSION: A recombinant lentiviral vector carrying the DR-nm23 gene (pGC-FU-DR-nm23-GFP) has been constructed successfully, and a SW620 subline stably expressing the DR-nm23 gene has been successfully generated.
Collapse
|
19
|
Li Y, Nie CJ, Hu L, Qin Y, Liu HB, Zeng TT, Chen L, Fu L, Deng W, Chen SP, Jia WH, Zhang C, Xie D, Guan XY. Characterization of a novel mechanism of genomic instability involving the SEI1/SET/NM23H1 pathway in esophageal cancers. Cancer Res 2010; 70:5695-705. [PMID: 20570897 DOI: 10.1158/0008-5472.can-10-0392] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Amplification of 19q is a frequent genetic alteration in many solid tumors, and SEI1 is a candidate oncogene within the amplified region. Our previous study found that the oncogenic function of SEI1 was associated with chromosome instability. In this study, we report a novel mechanism of genomic instability involving the SEI1-SET-NM23H1 pathway. Overexpression of SEI1 was observed in 57 of 100 of esophageal squamous cell carcinoma cases. Functional study showed that SEI1 had strong tumorigenic ability, and overexpression of SEI1 could induce the genomic instability by increasing micronuclei formation and reducing the number of chromosomes. Further study found that SEI1 was able to upregulate SET expression and subsequently promote the translocation of a small amount of NM23H1 from the cytoplasm to the nucleus. Nuclear NM23H1 can induce DNA damage through its DNA nick activity. Unlike CTL attack, only a small amount of NM23H1 translocated into the nucleus (<10%) induced by the overexpression of SEI1. Further study found that the small amount of NM23H1 only induced minor DNA damage and subsequently increased genomic instability, rather than inducing irreparable DNA damage and initiating apoptosis by CTL attack. Sister chromatid exchange experiment found that the translocation of small amount of NM23H1 into the nucleus induced by the overexpressions of SEI1/SET could increase the frequency of sister chromatid exchange. In addition, overexpression of SEI1 was associated with poor prognosis of esophageal squamous cell carcinoma. Taken together, these findings define a novel mechanism of genomic instability and malignant progression in esophageal cancers, a deadly disease of increasing incidence in developed countries.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Yang Z, Qu LJ, Wu YM, Zeng L, Xiong XS. Significance of DR-nm23 protein expression in colorectal carcinoma. Shijie Huaren Xiaohua Zazhi 2010; 18:1563-1568. [DOI: 10.11569/wcjd.v18.i15.1563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the relationship between the expression of DR-nm23 protein and the carcinogenesis, progression and metastasis of colorectal carcinoma.
METHODS: Ninety-eight colorectal carcinoma specimens, 57 adenoma specimens and 42 normal colorectal tissue specimens were examined by immunohistochemistry using the streptavidin-peroxidase method. The correlation of DR-nm23 protein expression with the carcinogenesis, progression, lymph node metastasis, histological type and differentiation grade of colorectal carcinoma was then analyzed.
RESULTS: The positive rate of DR-nm23 protein expression was significantly higher in normal colorectal tissue than in adenoma and colorectal carcinoma (71.4% vs 38.6% and 35.7%, respectively; both P < 0.01). The positive rate of DR-nm23 protein expression was significantly lower in high-grade intraepithelial tumors than in low-grade intraepithelial tumors in the adenoma group (25.7% vs 59.1%, P < 0.05), and in metastatic colorectal carcinoma than in non-metastatic colorectal carcinoma (23.1% vs 44.1%, P < 0.05). The expression of DR-nm23 is negatively related to lymph node metastasis (P < 0.05). DR-nm23 expression is also closely related to histological type (χ2 = 13.731, P < 0.01) and differentiation grade (χ2 = 12.198, P < 0.01). The positive rate of DR-nm23 protein was higher in secondary tumors than in primary tumors in the metastatic colorectal carcinoma group though no significant difference was noted between them (P > 0.05).
CONCLUSION: Decreased DR-nm23 protein expression is closely related to tumor differentiation, carcinogenesis, progression and metastasis in colorectal carcinoma. DR-nm23 is an important parameter for evaluation of the biological behavior and prognosis of colorectal carcinoma.
Collapse
|
21
|
Chlapek P, Redova M, Zitterbart K, Hermanova M, Sterba J, Veselska R. Enhancement of ATRA-induced differentiation of neuroblastoma cells with LOX/COX inhibitors: an expression profiling study. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:45. [PMID: 20459794 PMCID: PMC2874523 DOI: 10.1186/1756-9966-29-45] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 05/11/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND We performed expression profiling of two neuroblastoma cell lines, SK-N-BE(2) and SH-SY5Y, after combined treatment with all-trans retinoic acid (ATRA) and inhibitors of lipoxygenases (LOX) and cyclooxygenases (COX). This study is a continuation of our previous work confirming the possibility of enhancing ATRA-induced cell differentiation in these cell lines by the application of LOX/COX inhibitors and brings more detailed information concerning the mechanisms of the enhancement of ATRA-induced differentiation of neuroblastoma cells. METHODS Caffeic acid, as an inhibitor of 5-lipoxygenase, and celecoxib, as an inhibitor on cyclooxygenase-2, were used in this study. Expression profiling was performed using Human Cancer Oligo GEArray membranes that cover 440 cancer-related genes. RESULTS Cluster analyses of the changes in gene expression showed the concentration-dependent increase in genes known to be involved in the process of retinoid-induced neuronal differentiation, especially in cytoskeleton remodeling. These changes were detected in both cell lines, and they were independent of the type of specific inhibitors, suggesting a common mechanism of ATRA-induced differentiation enhancement. Furthermore, we also found overexpression of some genes in the same cell line (SK-N-BE(2) or SH-SY5Y) after combined treatment with both ATRA and CA, or ATRA and CX. Finally, we also detected that gene expression was changed after treatment with the same inhibitor (CA or CX) in combination with ATRA in both cell lines. CONCLUSIONS Obtained results confirmed our initial hypothesis of the common mechanism of enhancement in ATRA-induced cell differentiation via inhibition of arachidonic acid metabolic pathway.
Collapse
Affiliation(s)
- Petr Chlapek
- Laboratory of Tumor Biology and Genetics, Department of Experimental Biology, School of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
22
|
Ock J, Kim S, Yi KY, Kim NJ, Han HS, Cho JY, Suk K. A novel anti-neuroinflammatory pyridylimidazole compound KR-31360. Biochem Pharmacol 2010; 79:596-609. [DOI: 10.1016/j.bcp.2009.09.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 09/23/2009] [Accepted: 09/23/2009] [Indexed: 02/06/2023]
|
23
|
Desvignes T, Pontarotti P, Fauvel C, Bobe J. Nme protein family evolutionary history, a vertebrate perspective. BMC Evol Biol 2009; 9:256. [PMID: 19852809 PMCID: PMC2777172 DOI: 10.1186/1471-2148-9-256] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 10/23/2009] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The Nme family, previously known as Nm23 or NDPK, is involved in various molecular processes including tumor metastasis and some members of the family, but not all, exhibit a Nucleoside Diphosphate Kinase (NDPK) activity. Ten genes are known in humans, in which some members have been extensively studied. In non-mammalian species, the Nme protein family has received, in contrast, far less attention. The picture of the vertebrate Nme family remains thus incomplete and orthology relationships with mammalian counterparts were only partially characterized. The present study therefore aimed at characterizing the Nme gene repertoire in vertebrates with special interest for teleosts, and providing a comprehensive overview of the Nme gene family evolutionary history in vertebrates. RESULTS In the present study, we present the evolutionary history of the Nme family in vertebrates and characterize the gene family repertoire for the first time in several non-mammalian species. Our observations show that vertebrate Nme genes can be separated in two evolutionary distinct groups. Nme1, Nme2, Nme3, and Nme4 belong to Group I while vertebrate Nme5, Nme6, Nme7, Nme8, and Nme9 belong to Group II. The position of Nme10 is in contrast more debatable due to its very specific evolutionary history. The present study clearly indicates that Nme5, Nme6, Nme7, and Nme8 originate from duplication events that occurred before the chordate radiation. In contrast, Nme genes of the Group I have a very different evolutionary history as our results suggest that they all arise from a common gene present in the chordate ancestor. In addition, expression patterns of all zebrafish nme transcripts were studied in a broad range of tissues by quantitative PCR and discussed in the light of the function of their mammalian counterparts. CONCLUSION This work offers an evolutionary framework that will pave the way for future studies on vertebrate Nme proteins and provides a unified vertebrate Nme nomenclature that is consistent with the nomenclature in use in mammals. Based on protein structure and expression data, we also provide new insight into molecular functions of Nme proteins among vertebrates and raise intriguing questions on the roles of Nme proteins in gonads.
Collapse
Affiliation(s)
- Thomas Desvignes
- INRA, UR1037 SCRIBE, IFR140, Ouest-Genopole, F-35000 Rennes, France
- IFREMER, LALR, F-34250 Palavas Les Flots, France
| | - Pierre Pontarotti
- UMR 6632/IFR48 Université de Aix Marseille/CNRS. Equipe Evolution biologique et Modélisation, case 19, 3 place Victor Hugo, 13331 Marseille Cedex 03, France
| | | | - Julien Bobe
- INRA, UR1037 SCRIBE, IFR140, Ouest-Genopole, F-35000 Rennes, France
| |
Collapse
|
24
|
Abstract
Nucleoside diphosphate kinases (NDPK) are encoded by the NME genes, also called NM23. They catalyze the transfer of gamma-phosphate from nucleoside triphosphates to nucleoside diphosphates by a ping-pong mechanism involving the formation of a high energy phospho-histidine intermediate [1, 2]. Besides their known functions in the control of intracellular nucleotide homeostasis, they are involved in multiple physiological and pathological cellular processes such as differentiation, development, metastastic dissemination or cilia functions. Over the past 15 years, ten human genes have been discovered encoding partial, full length, and/or tandemly repeated Nm23/NDPK domains, with or without N-or C-terminal extensions and/or additional domains. These genes encode proteins exhibiting different functions at various tissular and subcellular localizations. Most of these genes appear late in evolution with the emergence of the vertebrate lineage. This review summarizes the present knowledge on these multitalented proteins.
Collapse
|
25
|
Boissan M, Dabernat S, Peuchant E, Schlattner U, Lascu I, Lacombe ML. The mammalian Nm23/NDPK family: from metastasis control to cilia movement. Mol Cell Biochem 2009; 329:51-62. [PMID: 19387795 DOI: 10.1007/s11010-009-0120-7] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 04/02/2009] [Indexed: 01/12/2023]
Abstract
Nucleoside diphosphate kinases (NDPK) are encoded by the NME genes, also called NM23. They catalyze the transfer of gamma-phosphate from nucleoside triphosphates to nucleoside diphosphates by a ping-pong mechanism involving the formation of a high energy phospho-histidine intermediate [1, 2]. Besides their known functions in the control of intracellular nucleotide homeostasis, they are involved in multiple physiological and pathological cellular processes such as differentiation, development, metastastic dissemination or cilia functions. Over the past 15 years, ten human genes have been discovered encoding partial, full length, and/or tandemly repeated Nm23/NDPK domains, with or without N-or C-terminal extensions and/or additional domains. These genes encode proteins exhibiting different functions at various tissular and subcellular localizations. Most of these genes appear late in evolution with the emergence of the vertebrate lineage. This review summarizes the present knowledge on these multitalented proteins.
Collapse
Affiliation(s)
- Mathieu Boissan
- INSERM UMRS_938, UMPC Université Paris 06, 75012 Paris, France
| | | | | | | | | | | |
Collapse
|
26
|
Lacombe ML, Tokarska-Schlattner M, Epand RF, Boissan M, Epand RM, Schlattner U. Interaction of NDPK-D with cardiolipin-containing membranes: Structural basis and implications for mitochondrial physiology. Biochimie 2009; 91:779-83. [PMID: 19254751 DOI: 10.1016/j.biochi.2009.02.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 02/18/2009] [Indexed: 01/20/2023]
Abstract
Nucleoside diphosphate kinases (NDPKs/Nm23), responsible for intracellular di- and tri-phosphonucleoside homeostasis, play multi-faceted roles in cellular energetic, signaling, proliferation, differentiation and tumor invasion. The mitochondrial NDPK-D, the NME4 gene product, is a peripheral protein of the inner membrane. Several new aspects of the interaction of NDPK-D with the inner mitochondrial membrane have been recently characterized. Surface plasmon resonance analysis using recombinant NDPK-D and different phospholipid liposomes showed that NDPK-D interacts electrostatically with anionic phospholipids, with highest affinity observed for cardiolipin, a phospholipid located mostly in the mitochondrial inner membrane. Mutation of the central arginine (R90) in a surface exposed cationic RRK motif unique to NDPK-D strongly reduced phospholipid interaction in vitro and in vivo. Stable expression of NDPK-D proteins in HeLa cells naturally almost devoid of this isoform revealed a tight functional coupling of NDPK-D with oxidative phosphorylation that depends on the membrane-bound state of the enzyme. Owing to its symmetrical hexameric structure exposing membrane binding motifs on two opposite sides, NDPK-D could bridge liposomes containing anionic phospholipids and promote lipid transfer between them. In vivo, NDPK-D could induce intermembrane contacts and facilitate lipid movements between mitochondrial membranes. Most of these properties are reminiscent to those of the mitochondrial creatine kinase. We review here the common properties of both kinases and we discuss their potential roles in mitochondrial functions such as energy production, apoptosis and mitochondrial dynamics.
Collapse
|
27
|
|
28
|
Nm23-H1 homologs suppress tumor cell motility and anchorage independent growth. Clin Exp Metastasis 2007; 25:131-8. [PMID: 18058029 DOI: 10.1007/s10585-007-9128-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 10/23/2007] [Indexed: 01/19/2023]
Abstract
Nm23-H1 suppresses metastasis, as well as in vitro cell motility, invasion and anchorage independent growth, in a variety of cancer models. Eight human homologs of Nm23 have been identified that share 26-88% identity with the prototype Nm23-H1. Here, we examine the potential of its homologs, -H2, DR-, -H4 and -H5, to inhibit in vitro correlates of metastasis in two highly metastatic human cell lines, MDA-MB-435 and MDA-MB-231. The metastatic cells were transfected with mammalian expression constructs containing the genes encoding for Nm23-H1, -H2, DR-, -H4 and -H5 and the resultant transfectants were analyzed by Boyden chamber motility and soft agar colonization assays. Nm23-H1 suppressed motility by 3.3- and 1.5-fold in MDA-MB-435 and MDA-MB-231 cells, respectively and inhibited anchorage independent growth in soft agar by 2.9- and 1.9-fold, respectively. None of the -H1 homologs were capable of suppressing motility in MDA-MB-435 cells, but in MDA-MB-231 cells, -H2 inhibited motility by 3-fold upon overexpression. When anchorage independent growth was assessed, -H2, -H4 and -H5 suppressed growth from 1.2- to 2.0-fold in both cell lines. Given their ability to suppress anchorage independent growth, Nm23-H1 homologs -H2, -H4 and -H5 may have some capacity to suppress metastasis. Motility suppression appears to be cell context dependent, but sequence disparities between -H1/H2 and the other family members may reveal regions critical for this inhibitory phenotype. Similarly, sequence differences between DR-Nm23 and its homologs may be important for anchorage independent growth suppression.
Collapse
|
29
|
Palmieri D, Horak CE, Lee JH, Halverson DO, Steeg PS. Translational approaches using metastasis suppressor genes. J Bioenerg Biomembr 2007; 38:151-61. [PMID: 16944301 DOI: 10.1007/s10863-006-9039-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cancer metastasis is a significant contributor to breast cancer patient morbidity and mortality. In order to develop new anti-metastatic therapies, we need to understand the biological and biochemical mechanisms of metastasis. Toward these efforts, we and others have studied metastasis suppressor genes, which halt metastasis in vivo without affecting primary tumor growth. The first metastasis suppressor gene identified was nm23, also known as NDP kinase. Nm23 represents the most widely validated metastasis suppressor gene, based on transfection and knock-out mouse strategies. The biochemical mechanism of metastasis suppression via Nm23 is unknown and likely complex. Two potential mechanisms include binding proteins and a histidine kinase activity. Elevation of Nm23 expression in micrometastatic tumor cells may constitute a translational strategy for the limitation of metastatic colonization in high risk cancer patients. To date, medroxyprogesterone acetate (MPA) has been identified as a candidate compound for clinical testing.
Collapse
Affiliation(s)
- Diane Palmieri
- Women's Cancers Section, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Building 37, Room 1122, NIH, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- Patricia S Steeg
- Women's Cancers Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
31
|
Rao RV, Poksay KS, Castro-Obregon S, Schilling B, Row RH, del Rio G, Gibson BW, Ellerby HM, Bredesen DE. Molecular components of a cell death pathway activated by endoplasmic reticulum stress. J Biol Chem 2003; 279:177-87. [PMID: 14561754 DOI: 10.1074/jbc.m304490200] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Alterations in Ca2+ homeostasis and accumulation of misfolded proteins in the endoplasmic reticulum (ER) cause ER stress that ultimately leads to programmed cell death. Recent studies have shown that ER stress triggers programmed cell death via an alternative intrinsic pathway of apoptosis that, unlike the intrinsic pathway described previously, is independent of Apaf-1 and cytochrome c. In the present work, we have used a set of complementary approaches, including two-dimensional gel electrophoresis coupled with matrix-assisted laser desorption ionization-time-of-flight mass spectrometry and nano-liquid chromatography-electrospray ionization mass spectrometry with tandem mass spectrometry, RNA interference, co-immunoprecipitation, immunodepletion of candidate proteins, and reconstitution studies, to identify mediators of the ER stress-induced cell death pathway. Our data identify two molecules, valosin-containing protein and apoptosis-linked gene-2 (ALG-2), that appear to play a role in mediating ER stress-induced cell death.
Collapse
Affiliation(s)
- Rammohan V Rao
- The Buck Institute for Age Research, Novato, California 94945, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Vitali R, Cesi V, Nicotra MR, McDowell HP, Donfrancesco A, Mannarino O, Natali PG, Raschellà G, Dominici C. c-Kit is preferentially expressed in MYCN-amplified neuroblastoma and its effect on cell proliferation is inhibited in vitro by STI-571. Int J Cancer 2003; 106:147-52. [PMID: 12800187 DOI: 10.1002/ijc.11187] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Coexpression for c-Kit receptor and its ligand stem cell factor (SCF) has been described in neuroblastoma (NB) cell lines and tumors, suggesting the existence of an autocrine loop modulating tumor growth. We evaluated c-Kit and SCF expression by immunohistochemistry in a series of 75 primary newly diagnosed neuroblastic tumors. Immunostaining for c-Kit was found in 10/75 and for SCF in 17/75, with 5/10 c-Kit-positive tumors also expressing SCF. For both, c-Kit and SCF staining were predominantly found in the most aggressive subset of tumors, i.e., those amplified for MYCN: c-Kit was detected in 8/14 amplified vs. 2/61 single copy (p<0.001), and SCF in 9/14 amplified vs. 8/61 single copy tumors (p<0.001). Furthermore, the association of c-Kit expression with advanced stage (3 or 4) (p=0.001) and of SCF expression with adrenal primary (p=0.03) was substantiated. The in vitro activity of the tyrosine kinase inhibitor STI-571 (imatinib mesylate, Gleevec, Glivec) on NB cell lines positive or negative for c-Kit was also assessed. When cells were grown in 10% fetal calf serum, the 4 c-Kit-positive cell lines tested were sensitive to STI-571 growth inhibition to a different extent (ranging from 30 to 80%); also the c-Kit-negative cell line GI-CA-N was slightly affected, suggesting that other STI-571 targets operate in regulating NB proliferation. In addition, c-Kit-positive cell lines SK-N-BE2(c) and HTLA230, grown in SCF only, remained sensitive (40 and 70% of growth inhibition, respectively), while, in the same conditions, proliferation of the c-Kit-negative cell line GI-CA-N was not affected. Immunoprecipitation of c-Kit from cell lysates of SK-N-BE2(c) and HTLA230 cells grown in SCF and subsequent western blot analysis of the immunoprecipitates revealed a sharp decrease of c-Kit phosphorylation after STI-571 treatment. These data demonstrate that both c-Kit and SCF are preferentially expressed in vivo in the most aggressive neuroblastic tumors and that their signaling is active in promoting in vitro NB cell proliferation that can be selectively inhibited by treatment with STI-571.
Collapse
Affiliation(s)
- Roberta Vitali
- Bambino Gesù Children's Hospital, Laboratory of Oncology, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Salerno M, Ouatas T, Palmieri D, Steeg PS. Inhibition of signal transduction by the nm23 metastasis suppressor: possible mechanisms. Clin Exp Metastasis 2003; 20:3-10. [PMID: 12650601 DOI: 10.1023/a:1022578000022] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The first metastasis suppressor gene identified was nm23. Transfection of nm23 into metastatic cell lines resulted in the inhibition of metastasis, but not primary tumor size in vivo. Using in vitro assays, nm23 overexpression resulted in reduced anchorage-independent colonization in response to TGF-beta, reduced invasion and motility in response to multiple factors, and increased differentiation. We hypothesize that the mechanism of action of Nm23 in metastasis suppression involves diminished signal transduction downstream of a particular receptor. Candidate biochemical mechanisms are identified and discussed herein.
Collapse
Affiliation(s)
- Massimiliano Salerno
- Women's Cancers Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
34
|
Fournier HN, Albigès-Rizo C, Block MR. New insights into Nm23 control of cell adhesion and migration. J Bioenerg Biomembr 2003; 35:81-7. [PMID: 12848345 DOI: 10.1023/a:1023450008347] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The molecular mechanisms underlying the role of Nm23/NDP kinase in controlling cell migration and metastasis have been investigated. The recent progress in our understanding of cell migration at a molecular level gives us some clues to the putative Nm23 function as a suppressor of metastasis. Screening of the literature indicates that NDP kinases have pleiotropic effects. By modifying cytoskeleton organization and protein trafficking, some NDP kinase isoforms may indirectly promote adhesion to the extracellular matrix in some cell types. Conversely, Nm23 regulates cell surface expression of integrin receptors and matrix metallo-proteases, and thus directly controls the cell adhesion machinery. Finally, the recent discovery of the interaction between Nm23-H2 and the negative regulator of beta1 integrin-mediated cell adhesion, ICAP-1, which targets the kinase to lamellipodia and cell protrusions, suggests that the Nm23-H2/ICAP-1 complex plays a role in integrin signaling, and exerts a fine-tuning between migration and spreading.
Collapse
Affiliation(s)
- Henri-Noël Fournier
- Laboratoire de la Différenciation et de l'Adherence Cellulaires, UMR CNRS/UJF 5538, Institut Albert Bonniot, Faculté de Médecine de Grenoble, F38706 La Tronche Cedex, France
| | | | | |
Collapse
|
35
|
Hartsough MT, Morrison DK, Salerno M, Palmieri D, Ouatas T, Mair M, Patrick J, Steeg PS. Nm23-H1 metastasis suppressor phosphorylation of kinase suppressor of Ras via a histidine protein kinase pathway. J Biol Chem 2002; 277:32389-99. [PMID: 12105213 DOI: 10.1074/jbc.m203115200] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The metastasis-suppressive activity of Nm23-H1 was previously correlated with its in vitro histidine protein kinase activity, but physiological substrates have not been identified. We hypothesized that proteins that interact with histidine kinases throughout evolution may represent partners for Nm23-H1 and focused on the interaction of Arabidopsis "two-component" histidine kinase ERS with CTR1. A mammalian homolog of CTR1 was previously reported to be c-Raf; we now report that CTR1 also exhibits homology to the kinase suppressor of Ras (KSR), a scaffold protein for the mitogen-activated protein kinase (MAPK) cascade. Nm23-H1 co-immunoprecipitated KSR from lysates of transiently transfected 293T cells and at endogenous protein expression levels in MDA-MB-435 breast carcinoma cells. Autophosphorylated recombinant Nm23-H1 phosphorylated KSR in vitro. Phosphoamino acid analysis identified serine as the major target, and two peaks of Nm23-H1 phosphorylation were identified upon high performance liquid chromatography analysis of KSR tryptic peptides. Using site-directed mutagenesis, we found that Nm23-H1 phosphorylated KSR serine 392, a 14-3-3-binding site, as well as serine 434 when serine 392 was mutated. Phosphorylated MAPK but not total MAPK levels were reduced in an nm23-H1 transfectant of MDA-MB-435 cells. The data identify a complex in vitro histidine-to-serine protein kinase pathway, which may contribute to signal transduction and metastasis.
Collapse
Affiliation(s)
- Melanie T Hartsough
- Women's Cancers Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Massé K, Dabernat S, Bourbon PM, Larou M, Amrein L, Barraud P, Perel Y, Camara M, Landry M, Lacombe ML, Daniel JY. Characterization of the nm23-M2, nm23-M3 and nm23-M4 mouse genes: comparison with their human orthologs. Gene 2002; 296:87-97. [PMID: 12383506 DOI: 10.1016/s0378-1119(02)00836-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The nm23 gene family is thought to be involved in physiopathological processes such as growth, differentiation and cancer promotion, progression or metastasis. We report here the mouse nm23-M3 and nm23-M4 complementary DNA sequences and the genomic cloning, characterization and tissue expression pattern of the nm23-M2, nm23-M3 and nm23-M4 genes, in comparison with their human and rat orthologs and with the human nm23-H1 and mouse nm23-M1 genes. The organization and structure of the members of this gene family are remarkably similar in human and rodents. Accordingly, the striking similarities between the human and mouse nm23 genes enable the use of mouse transgenic and knock-out models for studying the role of nucleoside diphosphate kinase isoforms in human physiopathology.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Northern
- Cloning, Molecular
- DNA/chemistry
- DNA/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Embryo, Mammalian/enzymology
- Embryo, Mammalian/metabolism
- Exons
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Enzymologic
- Genes/genetics
- Humans
- In Situ Hybridization
- Introns
- Isoenzymes/genetics
- Mice
- Molecular Sequence Data
- Monomeric GTP-Binding Proteins/genetics
- NM23 Nucleoside Diphosphate Kinases
- Nucleoside-Diphosphate Kinase/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Transcription Factors/genetics
- Transcription Initiation Site
Collapse
Affiliation(s)
- K Massé
- Biologie de la Différenciation et du Développement, Université Victor Segalen-Bordeaux2, 146 rue Léo Saignat, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Erent M, Gonin P, Cherfils J, Tissier P, Raschellà G, Giartosio A, Agou F, Sarger C, Lacombe ML, Konrad M, Lascu I. Structural and catalytic properties and homology modelling of the human nucleoside diphosphate kinase C, product of the DRnm23 gene. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:1972-81. [PMID: 11277919 DOI: 10.1046/j.1432-1327.2001.2076.doc.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The human DRnm23 gene was identified by differential screening of a cDNA library obtained from chronic myeloid leukaemia-blast crisis primary cells. The over-expression of this gene inhibits differentiation and induces the apoptosis of myeloid precursor cell lines. We overproduced in bacteria a truncated form of the encoded protein lacking the first 17 N-terminal amino acids. This truncated protein was called nucleoside diphosphate (NDP) kinase CDelta. NDP kinase CDelta had similar kinetic properties to the major human NDP kinases A and B, but was significantly more stable to denaturation by urea and heat. Analysis of denaturation by urea, using size exclusion chromatography, indicated unfolding without the dissociation of subunits, whereas renaturation occurred via a folded monomer. The stability of the protein depended primarily on subunit interactions. Homology modelling of the structure of NDP kinase CDelta, based on the crystal structure of NDP kinase B, indicated that NDP kinase CDelta had several additional stabilizing interactions. The overall structure of the two enzymes appears to be identical because NDP kinase CDelta readily formed mixed hexamers with NDP kinase A. It is possible that mixed hexamers can be observed in vivo.
Collapse
Affiliation(s)
- M Erent
- Institut de Biochimie et Génétique Cellulaires (UMR 5095), Centre National de la Recherche Scientifique et Université de Bordeaux-2, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|