1
|
Zhou C, Li W, Liang Z, Wu X, Cheng S, Peng J, Zeng K, Li W, Lan P, Yang X, Xiong L, Zeng Z, Zheng X, Huang L, Fan W, Liu Z, Xing Y, Kang L, Liu H. Mutant KRAS-activated circATXN7 fosters tumor immunoescape by sensitizing tumor-specific T cells to activation-induced cell death. Nat Commun 2024; 15:499. [PMID: 38216551 PMCID: PMC10786880 DOI: 10.1038/s41467-024-44779-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024] Open
Abstract
Mutant KRAS (KRASMUT) is often exploited by cancers to shape tumor immunity, but the underlying mechanisms are not fully understood. Here we report that tumor-specific cytotoxic T lymphocytes (CTLs) from KRASMUT cancers are sensitive to activation-induced cell death (AICD). circATXN7, an NF-κB-interacting circular RNA, governs T cell sensitivity to AICD by inactivating NF-κB. Mechanistically, histone lactylation derived from KRASMUT tumor cell-produced lactic acid directly activates transcription of circATXN7, which binds to NF-κB p65 subunit and masks the p65 nuclear localization signal motif, thereby sequestering it in the cytoplasm. Clinically, circATXN7 upregulation in tumor-specific CTLs correlates with adverse clinical outcomes and immunotherapeutic resistance. Genetic ablation of circAtxn7 in CD8+ T cells leads to mutant-selective tumor inhibition, while also increases anti-PD1 efficacy in multiple tumor models in female mice. Furthermore, targeting circATXN7 in adoptively transferred tumor-reactive CTLs improves their antitumor activities. These findings provide insight into how lymphocyte-expressed circRNAs contribute to T-cell fate decisions and anticancer immunotherapies.
Collapse
Affiliation(s)
- Chi Zhou
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenxin Li
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhenxing Liang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xianrui Wu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Sijing Cheng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jianhong Peng
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Kaixuan Zeng
- Precision Medical Research Institute, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi'an, China
| | - Weihao Li
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ping Lan
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xin Yang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Li Xiong
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ziwei Zeng
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaobin Zheng
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liang Huang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenhua Fan
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhanzhen Liu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yue Xing
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Liang Kang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Huashan Liu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China.
| |
Collapse
|
2
|
Ruiz-Pacheco JA, Castillo-Díaz LA, Arreola-Torres R, Fonseca-Coronado S, Gómez-Navarro B. Diabetes mellitus: Lessons from COVID-19 for monkeypox infection. Prim Care Diabetes 2023; 17:113-118. [PMID: 36737358 PMCID: PMC9884624 DOI: 10.1016/j.pcd.2023.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/18/2023] [Indexed: 01/31/2023]
Abstract
BACKGROUND AND AIMS Type 2 Diabetes Mellitus is known to be linked to malfunctioning antiviral defense; however, its association with the severity of monkeypox is poorly understood. In this review, we discuss key immunological mechanisms in the antiviral response affected by poor glucose control that could impact the susceptibility and severity of monkeypox infection, leading to a heightened emphasis on the use of the available antidiabetic drugs. METHODS We searched PubMed and Google scholar for articles published from January 1985 to August 2022. No criteria for publication data were set, and all articles in English were included. RESULTS Currently, there are no studies about the risk or consequences of monkeypox infection in the diabetic population. A high incidence of diabetes is reported in countries such as China, India, Pakistan, EUA, Indonesia, Brazil, Mexico, Bangladesh, Japan, and Egypt, where unfortunately imported cases of monkeypox have been reported and the infection continues to spread. CONCLUSIONS High incidence of diabetes together with the cessation of smallpox vaccination has left large numbers of the human population unprotected against monkeypox. The best option for the population remains confined to the prevention of infection as well as the use of hypoglycemic agents that have also been shown to improve immune mechanisms associated with viral protection.
Collapse
Affiliation(s)
- J A Ruiz-Pacheco
- Investigador por México-CONACYT, Centro de Investigaciones Biomédicas de Occidente, IMSS, Guadalajara, Jalisco, México.
| | - L A Castillo-Díaz
- Departamento de Medicina y Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad de Sonora, Hermosillo, México
| | - R Arreola-Torres
- Servicio de Cardiología, Hospital de Especialidades, Centro Médico Nacional de Occidente, IMSS, Guadalajara, Jalisco, México
| | - S Fonseca-Coronado
- Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Estado de México, México
| | - B Gómez-Navarro
- Servicio de Nefrología, Hospital de Especialidades, Centro Médico Nacional de Occidente, IMSS, Guadalajara, Jalisco, México
| |
Collapse
|
3
|
Yang J, Kim J, Kwak C, Poo H. Poly-γ-glutamic acid/Alum adjuvanted pH1N1 vaccine-immunized aged mice exhibit a significant increase in vaccine efficacy with a decrease in age-associated CD8+ T cell proportion in splenocytes. Immun Ageing 2022; 19:22. [PMID: 35606855 PMCID: PMC9124744 DOI: 10.1186/s12979-022-00282-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/16/2022] [Indexed: 11/23/2022]
Abstract
Background Highly contagious respiratory diseases caused by viral infections are a constantly emerging threat, particularly the elderly with the higher risk of developing serious complications. Vaccines are the best strategy for protection against influenza-related diseases. However, the elderly has lower vaccine efficacy than young population and the age-driven decline of the influenza vaccine efficacy remains unresolved. Objectives This study investigates the effect of an adjuvant, poly-γ-glutamic acid and alum (PGA/Alum) on vaccine efficacy in aged mice (18-months) and its mechanism is investigated using ovalbumin as a model antigen and a commercial pandemic H1N1 (pH1N1) flu vaccine. Antigen trafficking, dendritic cell (DC) activation, and the DC-mediated T cell activation were analyzed via in vivo imaging and flow cytometry. Antigen-specific humoral and cellular immune responses were evaluated in sera and splenocytes from the vaccinated mice. Also, we analyzed gene expression profiles of splenocytes from the vaccinated mice via single-cell transcriptome sequencing and evaluated the protective efficacy against pH1N1 virus challenge. Results Aged mice had lower antigen trafficking and DC activation than younger mice (6-weeks), which was ameliorated by PGA/Alum with increased antigen uptake and DC activation leading to improved antigen-specific IFN-γ+CD8+ T lymphocyte frequencies higher in the vaccinated aged mice, to a similar extent as PGA/Alum adjuvanted vaccine-immunized young mice. The results of single-cell transcriptome sequencing display that PGA/Alum also reduced the proportion of age-associated CD8+ T cell subsets and gene levels of inhibitory regulators in CD8+ T cells, which may play a role in the recovery of CD8+ T cell activation. Finally, PGA/Alum adjuvanted pH1N1 vaccine-immunized aged mice were completely protected (100% survival) compared to aged mice immunized with vaccine only (0% survival) after pH1N1 virus challenge, akin to the efficacy of the vaccinated young mice (100% survival). Conclusions PGA/Alum adjuvanted pH1N1 vaccine-immunized aged mice showed a significant increase in vaccine efficacy compared to aged mice administered with vaccine only. The enhanced vaccine efficacy by PGA/Alum is associated with significant increases of activation of DCs and effector CD8+ T cells and a decrease in age-associated CD8+ T cell proportion of splenocytes. Collectively, PGA/Alum adjuvanted flu vaccine may be a promising vaccine candidate for the elderly. Supplementary information The online version contains supplementary material available at 10.1186/s12979-022-00282-z.
Collapse
|
4
|
Feng E, Balint E, Poznanski SM, Ashkar AA, Loeb M. Aging and Interferons: Impacts on Inflammation and Viral Disease Outcomes. Cells 2021; 10:708. [PMID: 33806810 PMCID: PMC8004738 DOI: 10.3390/cells10030708] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/16/2022] Open
Abstract
As highlighted by the COVID-19 global pandemic, elderly individuals comprise the majority of cases of severe viral infection outcomes and death. A combined inability to control viral replication and exacerbated inflammatory immune activation in elderly patients causes irreparable immune-mediated tissue pathology in response to infection. Key to these responses are type I, II, and III interferons (IFNs), which are involved in inducing an antiviral response, as well as controlling and suppressing inflammation and immunopathology. IFNs support monocyte/macrophage-stimulated immune responses that clear infection and promote their immunosuppressive functions that prevent excess inflammation and immune-mediated pathology. The timing and magnitude of IFN responses to infection are critical towards their immunoregulatory functions and ability to prevent immunopathology. Aging is associated with multiple defects in the ability of macrophages and dendritic cells to produce IFNs in response to viral infection, leading to a dysregulation of inflammatory immune responses. Understanding the implications of aging on IFN-regulated inflammation will give critical insights on how to treat and prevent severe infection in vulnerable individuals. In this review, we describe the causes of impaired IFN production in aging, and the evidence to suggest that these impairments impact the regulation of the innate and adaptive immune response to infection, thereby causing disease pathology.
Collapse
Affiliation(s)
| | | | | | - Ali A. Ashkar
- Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada; (E.F.); (E.B.); (S.M.P.); (M.L.)
| | | |
Collapse
|
5
|
Klomp M, Ghosh S, Mohammed S, Nadeem Khan M. From virus to inflammation, how influenza promotes lung damage. J Leukoc Biol 2020; 110:115-122. [PMID: 32895987 DOI: 10.1002/jlb.4ru0820-232r] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/03/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022] Open
Abstract
Despite seasonal vaccines, influenza-related hospitalization and death rates have remained unchanged over the past 5 years. Influenza pathogenesis has 2 crucial clinical components; first, influenza causes acute lung injury that may require hospitalization. Second, acute injury promotes secondary bacterial pneumonia, a leading cause of hospitalization and disease burden in the United States and globally. Therefore, developing an effective therapeutic regimen against influenza requires a comprehensive understanding of the damage-associated immune-mechanisms to identify therapeutic targets for interventions to mitigate inflammation/tissue-damage, improve antiviral immunity, and prevent influenza-associated secondary bacterial diseases. In this review, the pathogenic immune mechanisms implicated in acute lung injury and the possibility of using lung inflammation and barrier crosstalk for developing therapeutics against influenza are highlighted.
Collapse
Affiliation(s)
- Mitchell Klomp
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Sumit Ghosh
- Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Sohail Mohammed
- Department of Biomedical Sciences, University of North Dakota, USA
| | - M Nadeem Khan
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| |
Collapse
|
6
|
Kim CW, Yoo HJ, Park JH, Oh JE, Lee HK. Exogenous Interleukin-33 Contributes to Protective Immunity via Cytotoxic T-Cell Priming against Mucosal Influenza Viral Infection. Viruses 2019; 11:v11090840. [PMID: 31509992 PMCID: PMC6783873 DOI: 10.3390/v11090840] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/21/2019] [Accepted: 09/08/2019] [Indexed: 12/22/2022] Open
Abstract
Influenza is an infectious respiratory illness caused by the influenza virus. Though vaccines against influenza exist, they have limited efficacy. To additionally develop effective treatments, there is a need to study the mechanisms of host defenses from influenza viral infections. To date, the mechanism by which interleukin (IL)-33 modulates the antiviral immune response post-influenza infection is unclear. In this study, we demonstrate that exogenous IL-33 enhanced antiviral protection against influenza virus infection. Exogenous IL-33 induced the recruitment of dendritic cells, increased the secretion of pro-inflammatory cytokine IL-12, and promoted cytotoxic T-cell responses in the local microenvironment. Thus, our findings suggest a role of exogenous IL-33 in the antiviral immune response against influenza infection.
Collapse
Affiliation(s)
- Chae Won Kim
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| | - Hye Jee Yoo
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| | - Jang Hyun Park
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| | - Ji Eun Oh
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea.
| | - Heung Kyu Lee
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea.
- KAIST Institute for Health Science and Technology, KAIST, Daejeon 34141, Korea.
| |
Collapse
|
7
|
Zhang Y, Wang Y, Zhang M, Liu L, Mbawuike IN. Restoration of Retarded Influenza Virus-specific Immunoglobulin Class Switch in Aged Mice. ACTA ACUST UNITED AC 2016; 7. [PMID: 27274907 PMCID: PMC4892186 DOI: 10.4172/2155-9899.1000403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objective The declined immune response to infection causes significant higher morbidity and mortality in aging in spite of the coexisted hyperimmunoglobulinemia (HIG). This study is to reveal the cellular basis of HIG and mechanism of weakened HA-specific IgG response in aged mice and to test cell therapy in the treatment of age-related IgG antibody production deficiency with immunocyte adoptive transfer. Methods BALB/c mice was immunized with Influenza A/Taiwan vaccine and challenged with the same strain of virus. ELISA was used to assess the levels of total immunoglobulins and antigen specific antibody response. The flow cytometry and ELISPOT were used to evaluate the frequencies of total immunoglobulin- and specific antibody-producing and secreting B lymphocytes. In vitro expanded mononuclear cells, CD4+ T lymphocytes and CD20+ B lymphocytes from old and young mice were adoptively transferred into influenza virus-challenged aged mice, and HA-specific IgG responses were observed. Results It is found that old mice exhibited higher levels of total serum IgG, IgM and IgA, higher frequencies of IgG+, IgM+ and IgA+ cells, and greater antigen-specific IgM and IgA responses to influenza infection, in comparison to young mice. However, influenza antigen- specific IgG and its subclass responses in old mice were significantly lower. Conclusion The retarded specific IgG response could be attributed to an insufficiency of immunoglobulin class switch in aging. Correlation analysis indicated that HIG and deficient specific IgG production in aged mice could be independent to each other in their pathogenesis. Correction of deficient specific IgG production by adoptive transfer of in vitro expanded and unexpanded CD4+ cells from immunized young mice suggests the CD4+ cell dysfunction contributes to the insufficiency of immunoglobulin class switch in aged mice. The transfusion of in vitro expanded lymphocytes could be a potential effective therapy for the age-related immunodeficiency and could play a role in the infection prevention in aging.
Collapse
Affiliation(s)
- Yongxin Zhang
- ZYX Biotech Company, 1452 Halsey Way, Suite 100, Carrollton, TX 75007, USA; Influenza Research Center, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ying Wang
- ZYX Biotech Company, 1452 Halsey Way, Suite 100, Carrollton, TX 75007, USA; Influenza Research Center, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Monica Zhang
- ZYX Biotech Company, 1452 Halsey Way, Suite 100, Carrollton, TX 75007, USA
| | - Lin Liu
- Influenza Research Center, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Innocent N Mbawuike
- Influenza Research Center, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
8
|
Kreuzer D, Nikoopour E, Au BCY, Krougly O, Lee-Chan E, Summers KL, Haeryfar SMM, Singh B. Reduced interferon-α production by dendritic cells in type 1 diabetes does not impair immunity to influenza virus. Clin Exp Immunol 2015; 179:245-55. [PMID: 25286929 DOI: 10.1111/cei.12462] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2014] [Indexed: 12/30/2022] Open
Abstract
The increased risk and persistence of infections in diabetic condition is probably associated with defects in the cellular immune responses. We have previously shown a decrease in the production of interferon (IFN)-α by dendritic cells (DCs) in diabetic subjects. The basal level of IFN-α in splenic plasmacytoid DCs (pDCs) is also lower in non-obese diabetic (NOD) mice compared to prediabetic mice. The objective of this study was to analyse the ability of diabetic mice to mobilize innate and CD8(+) T cell-mediated immune response to influenza A virus (IAV) with the live influenza A/Puerto Rico/8/1934 H1N1 (PR8) strain or with its immunodominant CD8(+) T cell epitopes. We found that following immunization with IAV, the level of IFN-α in diabetic mice was increased to the level in prediabetic mice. Immunization of NOD mice with the immunodominant IAV PR8 peptide induced clonal expansion of IFN-γ-producing CD8(+) T cells similar to the response observed in prediabetic mice. Thus, diabetic and prediabetic NOD mice have a similar capacity for IFN-α and IFN-γ production by pDCs and CD8(+) T cells, respectively. Therefore, the DC-related immune defect in diabetic NOD mice does not impair their capacity to develop an effective immune response to IAV. Our results suggest that reduced IFN-α production by diabetic human and mouse DCs is not an impediment to an effective immunity to IAV in type 1 diabetic subjects vaccinated with live attenuated influenza vaccine.
Collapse
Affiliation(s)
- D Kreuzer
- Centre for Human Immunology, Department of Microbiology and Immunology and Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Enhanced keratinocyte proliferation and migration in co-culture with fibroblasts. PLoS One 2012; 7:e40951. [PMID: 22911722 PMCID: PMC3401236 DOI: 10.1371/journal.pone.0040951] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 06/19/2012] [Indexed: 12/31/2022] Open
Abstract
Wound healing is primarily controlled by the proliferation and migration of keratinocytes and fibroblasts as well as the complex interactions between these two cell types. To investigate the interactions between keratinocytes and fibroblasts and the effects of direct cell-to-cell contact on the proliferation and migration of keratinocytes, keratinocytes and fibroblasts were stained with different fluorescence dyes and co-cultured with or without transwells. During the early stage (first 5 days) of the culture, the keratinocytes in contact with fibroblasts proliferated significantly faster than those not in contact with fibroblasts, but in the late stage (11(th) to 15(th) day), keratinocyte growth slowed down in all cultures unless EGF was added. In addition, keratinocyte migration was enhanced in co-cultures with fibroblasts in direct contact, but not in the transwells. Furthermore, the effects of the fibroblasts on keratinocyte migration and growth at early culture stage correlated with heparin-binding EGF-like growth factor (HB-EGF), IL-1α and TGF-β1 levels in the cultures where the cells were grown in direct contact. These effects were inhibited by anti-HB-EGF, anti-IL-1α and anti-TGF-β1 antibodies and anti-HB-EGF showed the greatest inhibition. Co-culture of keratinocytes and IL-1α and TGF-β1 siRNA-transfected fibroblasts exhibited a significant reduction in HB-EGF production and keratinocyte proliferation. These results suggest that contact with fibroblasts stimulates the migration and proliferation of keratinocytes during wound healing, and that HB-EGF plays a central role in this process and can be up-regulated by IL-1α and TGF-β1, which also regulate keratinocyte proliferation differently during the early and late stage.
Collapse
|
10
|
Ko JH, Kim JH, Kang JH, Kim JH, Eun BW, Kim KH, Hong JY, Oh SH. Characteristics of hospitalized children with 2009 pandemic influenza A (H1N1): a multicenter study in Korea. J Korean Med Sci 2012; 27:408-15. [PMID: 22468105 PMCID: PMC3314854 DOI: 10.3346/jkms.2012.27.4.408] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 01/17/2012] [Indexed: 12/19/2022] Open
Abstract
The majority of Korean patients with pandemic influenza A (H1N1) during the 2009 epidemic were under 20 yr of age. The limited data on the clinical characteristics of these children led us to conduct a case note-based investigation of children admitted to 6 university hospitals with 2009 H1N1 influenza. A total of 804 children was enrolled. The median age was 5 yr; 63.8% were males; and 22.4% had at least one chronic underlying disease. Ninety-five of the patients (11.8%) were critically ill and they suffered more from shortness of breath, dyspnea and lymphopenia than the other patients. Among all the patients, 98.8% were treated with antivirals and 73% received treatment within 48 hr of illness onset. All the enrolled patients are alive and appear to have had good outcomes, probably due to the early intervention and antiviral treatment. This study deals with hospitalized children whose diagnoses of influenza A (H1N1) were confirmed, and therefore provides important new information about the clinical patterns of children with influenza A (H1N1) in Korea.
Collapse
Affiliation(s)
- Jeong Hee Ko
- Department of Pediatrics, Hanyang University School of Medicine, Seoul, Korea
| | - Ji Hye Kim
- Department of Pediatrics, Green Hospital, Seoul, Korea
| | - Jin Han Kang
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jong-Hyun Kim
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Byung Wook Eun
- Department of Pediatrics, Gachon University Gil Medical Center, Incheon, Korea
| | - Kyung Hyo Kim
- Department of Pediatrics, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Jung Youn Hong
- Department of Pediatrics, Jeju National University School of Medicine, Jeju, Korea
| | - Sung Hee Oh
- Department of Pediatrics, Hanyang University School of Medicine, Seoul, Korea
| |
Collapse
|
11
|
Chun JK, Cha BH, Uh Y, Kim HY, Kim YK, Kwon W, Kim HM. The Association of Lymphopenia with the Clinical Severity in the Korean Children Admitted to the Hospital with Pandemic (H1N1) 2009 Infection. Infect Chemother 2011. [DOI: 10.3947/ic.2011.43.1.36] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Jin-Kyong Chun
- Department of Pediatrics, Yonsei University, Wonju College of Medicine, Wonju, Korea
| | - Byung Ho Cha
- Department of Pediatrics, Yonsei University, Wonju College of Medicine, Wonju, Korea
| | - Young Uh
- Department of Laboratory Medicine, Yonsei University, Wonju College of Medicine, Wonju, Korea
| | - Hyo Youl Kim
- Department of Internal Medicine, Yonsei University, Wonju College of Medicine, Wonju, Korea
| | - Young Keun Kim
- Department of Internal Medicine, Yonsei University, Wonju College of Medicine, Wonju, Korea
| | - Woocheol Kwon
- Department of Diagnostic Radiology, Yonsei University, Wonju College of Medicine, Wonju, Korea
| | - Hwang Min Kim
- Department of Pediatrics, Yonsei University, Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
12
|
Cao JN, Gollapudi S, Sharman EH, Jia Z, Gupta S. Age-related alterations of gene expression patterns in human CD8+ T cells. Aging Cell 2010; 9:19-31. [PMID: 19878143 DOI: 10.1111/j.1474-9726.2009.00534.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aging is associated with progressive T-cell deficiency and increased incidence of infections, cancer and autoimmunity. In this comprehensive study, we have compared the gene expression profiles in CD8+ T cells from aged and young healthy subjects using Affymetrix microarray Human Genome U133A-2 GeneChips. A total of 5.2% (754) of the genes analyzed had known functions and displayed statistically significant age-associated expression changes. These genes were involved in a broad array of complex biological processes, mainly in nucleic acid and protein metabolism. Functional groups, in which downregulated genes were overrepresented, were the following: RNA transcription regulation, RNA and DNA metabolism, intracellular (Golgi, endoplasmic reticulum and nuclear) transportation, signaling transduction pathways (T-cell receptor, Ras/MAPK, JNK/Stat, PI3/AKT, Wnt, TGFbeta, insulin-like growth factor and insulin), and the ubiquitin cycle. In contrast, the following functional groups contained more up-regulated genes than expected: response to oxidative stress and cytokines, apoptosis, and the MAPKK signaling cascade. These age-associated gene expression changes may be responsible for impaired DNA replication, RNA transcription, and signal transduction, possibly resulting in instability of cellular and genomic integrity, and alterations of growth, differentiation, apoptosis and anergy in human aged CD8+ T cells.
Collapse
Affiliation(s)
- Jia-Ning Cao
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Medical Sciences I, C-240 Irvine, CA 92697, USA
| | | | | | | | | |
Collapse
|
13
|
Petukhova G, Naikhin A, Chirkova T, Donina S, Korenkov D, Rudenko L. Comparative studies of local antibody and cellular immune responses to influenza infection and vaccination with live attenuated reassortant influenza vaccine (LAIV) utilizing a mouse nasal-associated lymphoid tissue (NALT) separation method. Vaccine 2009; 27:2580-7. [PMID: 19428864 DOI: 10.1016/j.vaccine.2009.02.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 01/31/2009] [Accepted: 02/11/2009] [Indexed: 10/21/2022]
Abstract
The first and most significant barrier against influenza infection is the mucosal-associated lymphoid tissue of the upper airways and rodent nasopharyngeal-associated lymphoid tissue (NALT) is considered equivalent to the lymphoid tissue of human Valdryer's ring. This study is the first attempt to analyze and compare local and systemic cellular and antibody immune responses in NALT and spleen in a mouse model of experimental influenza infection and intranasal vaccination with LAIV (live attenuated reassortant influenza vaccine). It was shown that the vaccine strain completely inherited the ability to induce high-grade local antibody responses (secretory IgA+IgG+IgM), local cellular lymphoproliferative activity, CD4(+), CD8(+) and CD19(+) lymphocyte and cytokine production responses from the virulent parental strain but it had less capacity to stimulate production of serum IgG, accumulation of CD8(+) cells and IFN-gamma production in the spleen. Primary non-complicated influenza infection and primary vaccination were accompanied by a short-term (24h) increase in the levels of lymphocyte apoptosis in both NALT and spleen. However, experimental data indicated that vaccination with LAIV and uncomplicated forms of influenza infection did not influence immune system apoptosis following a secondary immune response.
Collapse
Affiliation(s)
- Galina Petukhova
- Department of Virology, Institute of Experimental Medicine RAMS, Acad. Pavlov Street 12, Saint-Petersburg 197379, Russia.
| | | | | | | | | | | |
Collapse
|
14
|
Safdar A, Decker WK, Li S, Xing D, Robinson SN, Yang H, Steiner D, Rodriguez G, Shpall EJ, Bollard C. De novo T-lymphocyte responses against baculovirus-derived recombinant influenzavirus hemagglutinin generated by a naive umbilical cord blood model of dendritic cell vaccination. Vaccine 2009; 27:1479-84. [PMID: 19185049 DOI: 10.1016/j.vaccine.2009.01.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 12/17/2008] [Accepted: 01/08/2009] [Indexed: 12/09/2022]
Abstract
Cancer patients and recipients of hematopoietic stem cell transplantation exhibit a negligible response to influenza vaccine. Toward the goal of addressing this issue, we developed an in vitro model of dendritic cell (DC) immunotherapy utilizing DCs generated from naïve umbilical cord blood (UCB). UCB DCs were loaded with purified rHA protein and used to stimulate autologous T-lymphocytes. Upon recall with HA-loaded autologous DC, a 4-10-fold increase in the number of IFN-gamma producing T-lymphocytes was observed in comparison to T-cells stimulated with control DCs. Antigen-specific T-cell functionality was determined by (51)Cr lytic assay. Using a peptide library of predicted HA binding epitopes, we mapped an HA-specific, DR15-restricted CD4 T-cell epitope and observed tetramer positive cells. This model demonstrates that HA-specific immune responses might possibly be generated in a de novo fashion and suggests that dendritic cell immunotherapy for the prevention of influenza in populations of immunosuppressed individuals could be feasible.
Collapse
Affiliation(s)
- Amar Safdar
- Department of Infectious Diseases, Infection Control, and Employee Health, University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, United States.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Almanzar G, Herndler-Brandstetter D, Chaparro SV, Jenewein B, Keller M, Grubeck-Loebenstein B. Immunodominant peptides from conserved influenza proteins – A tool for more efficient vaccination in the elderly? Wien Med Wochenschr 2007; 157:116-21. [PMID: 17427008 DOI: 10.1007/s10354-007-0393-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Accepted: 12/28/2006] [Indexed: 11/28/2022]
Abstract
Influenza-specific CD8+ T cells are important for the clearance of infection especially in high risk groups such as elderly persons. Activation of these cells by immunization might therefore be a useful tool for a better protection of this specific age group. We therefore analyzed the frequency, phenotype and function of CD8+ T cells with specificity to the influenza M1(58-66) peptide in young, middle-aged and elderly persons ex vivo and after in vitro stimulation. Significantly lower numbers of M1(58-66)-specific CD8+ T cells were detected in the middle-aged and elderly compared to young donors. M1(58-66)-specific CD8+ T cells were either CD45RA(low)CD45RO(low) or CD45RA-CD45RO+, expressed CD28 and CD62L and did not produce perforin. There was no difference in the phenotype of influenza-specific CD8+ T cells between the three age groups. Despite the initially low numbers of M1(58-66)-specific CD8+ T cells in the older age groups, these cells could be expanded in vitro following peptide stimulation. They also acquired a CD45RO+CD28+ CD62L(+/-) phenotype and produced perforin. Our results demonstrate that although initially low in number, M1(58-66)-specific CD8+ T cells from elderly persons can be propagated and differentiated into perforin producing effector cells upon appropriate stimulation. M1(58-66) peptide or other immunodominant peptides derived from conserved influenza proteins could therefore be useful in future influenza vaccines in order to render elderly persons better protected against disease, in particular in the case of an influenza pandemic.
Collapse
Affiliation(s)
- Giovanni Almanzar
- Institute for Biomedical Aging Research, Austrian Academy of Sciences, Rennweg 10, 6020 Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
16
|
Turnbull IR, Buchman TG, Javadi P, Woolsey CA, Hotchkiss RS, Karl IE, Coopersmith CM. Age disproportionately increases sepsis-induced apoptosis in the spleen and gut epithelium. Shock 2005; 22:364-8. [PMID: 15377893 DOI: 10.1097/01.shk.0000142552.77473.7d] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Both aging and sepsis independently increase splenic and gut epithelial apoptosis. Sepsis-induced apoptosis in either cell type is also associated with increased mortality in young mice. We sought to determine whether age alters sepsis-induced splenic and gut epithelial cell death. Young (2 months) and aged (22 months) male ND4 mice were subjected to either single-puncture cecal ligation and puncture (CLP) with a 23-gauge needle or sham laparotomy. Apoptosis was assessed 24 hours later in the spleen and gut epithelium by active caspase 3 and hematoxylin and eosin staining. Aged septic mice had increased splenic apoptosis compared with either young septic animals or aged sham animals (15 vs. 7 vs. 5 apoptotic cells/high-powered field, P < 0.05). Similarly, aged septic animals had an elevation in gut epithelial cell death compared with either young septic or aged sham mice (33 vs. 16 vs. 6 apoptotic cells/100 contiguous crypts, P < 0.05). Elevated intestinal cell death was not associated with changes in either gut proliferation or cell division. To verify that the increase in splenic apoptosis seen in septic aged animals was not strain specific, double-puncture CLP with a 25-gauge needle or sham laparotomy was performed on young (4 months) or aged (24 months) C57BL/6 male mice. Similar to results seen in outbred animals, aged septic animals in this inbred strain had increased splenic apoptosis compared with either young septic animals or aged sham animals (23 vs. 7 vs. 4 apoptotic cells/ high powered field, P < 0.05). These results indicate that although infection and aging each independently cause an increase in splenic and gut epithelial apoptosis, their combination leads to a disproportionate increase in cell death in these rapidly dividing cell populations,and potentially plays a role in the marked increase in mortality seen with aging in sepsis.
Collapse
Affiliation(s)
- Isaiah R Turnbull
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Soriano S, Martín-Malo A, Carracedo J, Ramírez R, Rodríguez M, Aljama P. Lymphocyte Apoptosis: Role of Uremia and Permeability of Dialysis Membrane. ACTA ACUST UNITED AC 2005; 100:c71-7. [PMID: 15824510 DOI: 10.1159/000085051] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Accepted: 12/22/2004] [Indexed: 02/04/2023]
Abstract
BACKGROUND Uremia is associated to host defense mechanism disorders. Lymphocyte apoptosis, which may cause alteration of the immune system, is increased in uremic patients. The aim of the present study was to determine if, in addition to uremia, dialysis membranes with different biocompatibility and permeability have an effect on lymphocyte apoptosis. METHODS Cell apoptosis and Fas expression were assessed using flow cytometry in four groups of patients: (1) uremic non-dialyzed (Non-D) patients; (2) hemodialysis (HD) patients on hemophan; (3) low-flux polysulfone, and (4) high-flux polysulfone membrane. Ten healthy volunteers were used as controls. RESULTS At baseline, lymphocytes from patients on hemophan showed an increase in apoptosis (18.4 +/- 6.9%) as compared with Non-D (7.2 +/- 2.8%; p < 0.001), low-flux (6.4 +/- 2.4%; p < 0.001), high-flux (2.6 +/- 1.2%; p < 0.001) and controls (2.0 +/- 1.0%; p < 0.001). Fas expression was similar in lymphocytes from Non-D and hemophan dialyzed patients (40.5 +/- 5% vs. 40.4 +/- 6%), and in both groups it was greater than low-flux (30%+/-7%; p < 0.001), high-flux (11 +/- 4%; p < 0.001) and controls (12.6 +/- 3%; p < 0.001). When lymphocytes were cultured for 48 h, apoptosis was similar in Non-D and hemophan (27.0 +/- 4.3% vs. 27.1 +/- 6.9%); apoptosis of lymphocyte from patients on low-flux (14.1 +/- 3.5%) was greater than on high-flux polysulfone membrane (7.0 +/- 2.0%; p < 0.001). CONCLUSION These findings suggest that in dialysis patients lymphocyte apoptosis is influenced not only by the biocompatibility but also by the permeability of the dialysis membrane.
Collapse
Affiliation(s)
- Sagrario Soriano
- Servicio de Nefrología, Hospital Universitario Reina Sofía, Cordoba, Spain.
| | | | | | | | | | | |
Collapse
|
18
|
Jiang J, Anaraki F, Blank KJ, Murasko DM. Cuttine edge: T cells from aged mice are resistant to depletion early during virus infection. THE JOURNAL OF IMMUNOLOGY 2004; 171:3353-7. [PMID: 14500628 DOI: 10.4049/jimmunol.171.7.3353] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aging is associated with decreased expansion of T cells upon stimulation. In young mice, infection induces a transient T cell depletion followed by the development of an Ag-specific T cell response that controls the infection. We found that T cells were depleted early after infection with E55 + murine leukemia retrovirus in young, but not aged, mice. Adoptive transfer experiments showed donor T cells of young, but not aged, mice were depleted due to apoptosis in various tissues of young recipients. However, T cells of neither young nor aged donors were depleted in aged recipients. These results indicate that both environmental and intrinsic cellular properties limit depletion of T cells of aged mice and suggest a novel explanation for the decreased T cell response associated with aging.
Collapse
Affiliation(s)
- Jiu Jiang
- Departments of Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, PA 19129, USA
| | | | | | | |
Collapse
|