1
|
Svandova E, Vesela B, Janeckova E, Chai Y, Matalova E. Exploring caspase functions in mouse models. Apoptosis 2024; 29:938-966. [PMID: 38824481 PMCID: PMC11263464 DOI: 10.1007/s10495-024-01976-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 06/03/2024]
Abstract
Caspases are enzymes with protease activity. Despite being known for more than three decades, caspase investigation still yields surprising and fascinating information. Initially associated with cell death and inflammation, their functions have gradually been revealed to extend beyond, targeting pathways such as cell proliferation, migration, and differentiation. These processes are also associated with disease mechanisms, positioning caspases as potential targets for numerous pathologies including inflammatory, neurological, metabolic, or oncological conditions. While in vitro studies play a crucial role in elucidating molecular pathways, they lack the context of the body's complexity. Therefore, laboratory animals are an indispensable part of successfully understanding and applying caspase networks. This paper aims to summarize and discuss recent knowledge, understanding, and challenges in caspase knock-out mice.
Collapse
Affiliation(s)
- Eva Svandova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetic, Brno, Czech Republic.
| | - Barbora Vesela
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetic, Brno, Czech Republic
| | - Eva Janeckova
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, USA
| | - Eva Matalova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetic, Brno, Czech Republic
- Department of Physiology, University of Veterinary Sciences, Brno, Czech Republic
| |
Collapse
|
2
|
Malila Y, Uengwetwanit T, Sanpinit P, Songyou W, Srimarut Y, Kunhareang S. Thermal impacts on transcriptome of Pectoralis major muscle collected from commercial broilers, Thai native chickens and its crossbreeds. Anim Biosci 2024; 37:61-73. [PMID: 37905317 PMCID: PMC10766454 DOI: 10.5713/ab.23.0195] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/03/2023] [Accepted: 09/06/2023] [Indexed: 11/02/2023] Open
Abstract
OBJECTIVE The main objective of this study was to define molecular mechanisms associated with thermal stress responses of chickens from commercial broilers (BR, Ross 308), Thai native chickens (NT) and crossbreeds between BR×NT (H75). METHODS Twenty days before reaching specific market age, chickens from each breed were divided into control and thermal-stressed groups. The stressed groups were exposed to a cyclic thermal challenge (35°C±1°C for 6 h, followed by 26°C±1°C for 18 h) for 20 days. Control group was raised under a constant temperature of 26°C±1°C. Pectoralis major (n = 4) from each group was collected for transcriptome analysis using HiSeq Illumina and analysis of glycogen and lactate. Gene expression patterns between control and thermalstressed groups were compared within the same breeds. RESULTS Differentially expressed transcripts of 65, 59, and 246 transcripts for BR, NT, and H75, respectively, were revealed by RNA-Seq and recognized by Kyoto encyclopedia of genes and genomes database. Pathway analysis underlined altered glucose homeostasis and protein metabolisms in all breeds. The signals centered around phosphatidylinositol 3-kinase (PI3K)/Akt signaling, focal adhesion, and MAPK signaling in all breeds with slight differences in molecular signal transduction patterns among the breeds. An extensive apoptosis was underlined for BR. Roles of AMPK, MAPK signaling and regulation of actin cytoskeleton in adaptive response were suggested for H75 and NT chickens. Lower glycogen content was observed in the breast muscles of BR and NT (p<0.01) compared to their control counterparts. Only BR muscle exhibited increased lactate (p<0.01) upon exposure to the stress. CONCLUSION The results provided a better comprehension regarding the associated biological pathways in response to the cyclic thermal stress in each breed and in chickens with different growth rates.
Collapse
Affiliation(s)
- Yuwares Malila
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120,
Thailand
| | - Tanaporn Uengwetwanit
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120,
Thailand
| | - Pornnicha Sanpinit
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120,
Thailand
| | - Wipakarn Songyou
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120,
Thailand
| | - Yanee Srimarut
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120,
Thailand
| | - Sajee Kunhareang
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002,
Thailand
| |
Collapse
|
3
|
Wang J, Zhao X, Zhou R, Wang M, Xiang W, You Z, Li M, Tang R, Zheng J, Li J, Zhu L, Gao J, Li H, Pang R, Zhang A. Gut microbiota and transcriptome dynamics in every-other-day fasting are associated with neuroprotection in rats with spinal cord injury. Front Microbiol 2023; 14:1206909. [PMID: 37577426 PMCID: PMC10417830 DOI: 10.3389/fmicb.2023.1206909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Every-other-day fasting (EODF) is a classical intermittent fasting (IF) mode with neuroprotective effects that promotes motor function recovery after spinal cord injury (SCI) in rats. However, its dynamic effects on the gut microbiota and spinal cord transcriptome remain unknown. Methods In this study, 16S rRNA sequencing and RNA-seq analysis were used to investigate the effects of ad libitum (AL) and EODF dietary modes on the structural characteristics of rat gut microbiota in rats and the spinal cord transcriptome at various time points after SCI induction. Results Our results showed that both dietary modes affected the bacterial community composition in SCI rats, with EODF treatment inducing and suppressing dynamic changes in the abundances of potentially anti-inflammatory and pro-inflammatory bacteria. Furthermore, the differentially expressed genes (DEGs) enriched after EODF intervention in SCI rats were associated with various biological events, including immune inflammatory response, cell differentiation, protein modification, neural growth, and apoptosis. In particular, significant spatiotemporal differences were apparent in the DEGs associated with neuroprotection between the EODF and AL interventions. These DGEs were mainly focused on days 1, 3, and 7 after SCI. The relative abundance of certain genera was significantly correlated with DEGs associated with neuroprotective effects in the EODF-SCI group. Discussion Our results showed that EODF treatment may exert neuroprotective effects by modulating the transcriptome expression profile following SCI in rats. Furthermore, gut microbiota may be partially involved in mediating these effects.
Collapse
Affiliation(s)
- Junyu Wang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohua Zhao
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
- Department of Rehabilitation Medicine, The People’s Hospital of Tongliang District, Chongqing, China
| | - Ruihan Zhou
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Meiyu Wang
- Rehabilitation and Wellness Care Centre, Tian Fu College of Swufe, Chengdu, China
| | - Wu Xiang
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Zilong You
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Min Li
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Ruiling Tang
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Jingqi Zheng
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Jiayu Li
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Zhu
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Jiaxin Gao
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Huaqiang Li
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rizhao Pang
- Department of Rehabilitation Medicine, The People’s Hospital of Tongliang District, Chongqing, China
| | - Anren Zhang
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Li L, Zhang B, Tang X, Yu Q, He A, Lu Y, Li X. A selective degeneration of cholinergic neurons mediated by NRADD in an Alzheimer's disease mouse model. CELL INSIGHT 2022; 1:100060. [PMID: 37193353 PMCID: PMC10120297 DOI: 10.1016/j.cellin.2022.100060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 05/18/2023]
Abstract
Cholinergic neurons in the basal forebrain constitute a major source of cholinergic inputs to the forebrain, modulate diverse functions including sensory processing, memory and attention, and are vulnerable to Alzheimer's disease (AD). Recently, we classified cholinergic neurons into two distinct subpopulations; calbindin D28K-expressing (D28K+) versus D28K-lacking (D28K-) neurons. Yet, which of these two cholinergic subpopulations are selectively degenerated in AD and the molecular mechanisms underlying this selective degeneration remain unknown. Here, we reported a discovery that D28K+ neurons are selectively degenerated and this degeneration induces anxiety-like behaviors in the early stage of AD. Neuronal type specific deletion of NRADD effectively rescues D28K+ neuronal degeneration, whereas genetic introduction of exogenous NRADD causes D28K- neuronal loss. This gain- and loss-of-function study reveals a subtype specific degeneration of cholinergic neurons in the disease progression of AD and hence warrants a novel molecular target for AD therapy.
Collapse
Affiliation(s)
- Lanfang Li
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bing Zhang
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaomei Tang
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Quntao Yu
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Aodi He
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Anatomy, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Youming Lu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xinyan Li
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Anatomy, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
5
|
Ozalp O, Cark O, Azbazdar Y, Haykir B, Cucun G, Kucukaylak I, Alkan-Yesilyurt G, Sezgin E, Ozhan G. Nradd Acts as a Negative Feedback Regulator of Wnt/β-Catenin Signaling and Promotes Apoptosis. Biomolecules 2021; 11:100. [PMID: 33466728 PMCID: PMC7828832 DOI: 10.3390/biom11010100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Wnt/β-catenin signaling controls many biological processes for the generation and sustainability of proper tissue size, organization and function during development and homeostasis. Consequently, mutations in the Wnt pathway components and modulators cause diseases, including genetic disorders and cancers. Targeted treatment of pathway-associated diseases entails detailed understanding of the regulatory mechanisms that fine-tune Wnt signaling. Here, we identify the neurotrophin receptor-associated death domain (Nradd), a homolog of p75 neurotrophin receptor (p75NTR), as a negative regulator of Wnt/β-catenin signaling in zebrafish embryos and in mammalian cells. Nradd significantly suppresses Wnt8-mediated patterning of the mesoderm and neuroectoderm during zebrafish gastrulation. Nradd is localized at the plasma membrane, physically interacts with the Wnt receptor complex and enhances apoptosis in cooperation with Wnt/β-catenin signaling. Our functional analyses indicate that the N-glycosylated N-terminus and the death domain-containing C-terminus regions are necessary for both the inhibition of Wnt signaling and apoptosis. Finally, Nradd can induce apoptosis in mammalian cells. Thus, Nradd regulates cell death as a modifier of Wnt/β-catenin signaling during development.
Collapse
Affiliation(s)
- Ozgun Ozalp
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, 35340 Izmir, Turkey; (O.O.); (O.C.); (Y.A.); (B.H.); (G.C.); (I.K.); (G.A.-Y.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, 35340 Izmir, Turkey
| | - Ozge Cark
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, 35340 Izmir, Turkey; (O.O.); (O.C.); (Y.A.); (B.H.); (G.C.); (I.K.); (G.A.-Y.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, 35340 Izmir, Turkey
| | - Yagmur Azbazdar
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, 35340 Izmir, Turkey; (O.O.); (O.C.); (Y.A.); (B.H.); (G.C.); (I.K.); (G.A.-Y.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, 35340 Izmir, Turkey
| | - Betul Haykir
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, 35340 Izmir, Turkey; (O.O.); (O.C.); (Y.A.); (B.H.); (G.C.); (I.K.); (G.A.-Y.)
- Institute of Physiology, Switzerland and National Center of Competence in Research NCCR Kidney, University of Zurich, CH-8057 Zurich, Switzerland
| | - Gokhan Cucun
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, 35340 Izmir, Turkey; (O.O.); (O.C.); (Y.A.); (B.H.); (G.C.); (I.K.); (G.A.-Y.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, 35340 Izmir, Turkey
| | - Ismail Kucukaylak
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, 35340 Izmir, Turkey; (O.O.); (O.C.); (Y.A.); (B.H.); (G.C.); (I.K.); (G.A.-Y.)
- Institute of Zoology-Developmental Biology, University of Cologne, 50674 Cologne, Germany
| | - Gozde Alkan-Yesilyurt
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, 35340 Izmir, Turkey; (O.O.); (O.C.); (Y.A.); (B.H.); (G.C.); (I.K.); (G.A.-Y.)
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden;
- MRC Weatherall Institute of Molecular Medicine, MRC Human Immunology Unit, University of Oxford, Oxford OX39DS, UK
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, 35340 Izmir, Turkey; (O.O.); (O.C.); (Y.A.); (B.H.); (G.C.); (I.K.); (G.A.-Y.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, 35340 Izmir, Turkey
| |
Collapse
|
6
|
Morris G, Puri BK, Walder K, Berk M, Stubbs B, Maes M, Carvalho AF. The Endoplasmic Reticulum Stress Response in Neuroprogressive Diseases: Emerging Pathophysiological Role and Translational Implications. Mol Neurobiol 2018; 55:8765-8787. [PMID: 29594942 PMCID: PMC6208857 DOI: 10.1007/s12035-018-1028-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/20/2018] [Indexed: 02/07/2023]
Abstract
The endoplasmic reticulum (ER) is the main cellular organelle involved in protein synthesis, assembly and secretion. Accumulating evidence shows that across several neurodegenerative and neuroprogressive diseases, ER stress ensues, which is accompanied by over-activation of the unfolded protein response (UPR). Although the UPR could initially serve adaptive purposes in conditions associated with higher cellular demands and after exposure to a range of pathophysiological insults, over time the UPR may become detrimental, thus contributing to neuroprogression. Herein, we propose that immune-inflammatory, neuro-oxidative, neuro-nitrosative, as well as mitochondrial pathways may reciprocally interact with aberrations in UPR pathways. Furthermore, ER stress may contribute to a deregulation in calcium homoeostasis. The common denominator of these pathways is a decrease in neuronal resilience, synaptic dysfunction and even cell death. This review also discusses how mechanisms related to ER stress could be explored as a source for novel therapeutic targets for neurodegenerative and neuroprogressive diseases. The design of randomised controlled trials testing compounds that target aberrant UPR-related pathways within the emerging framework of precision psychiatry is warranted.
Collapse
Affiliation(s)
- Gerwyn Morris
- Tir Na Nog, Bryn Road seaside 87, Llanelli, Wales, SA15 2LW, UK
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia
| | - Basant K Puri
- Department of Medicine, Imperial College London, Hammersmith Hospital, London, England, W12 0HS, UK.
| | - Ken Walder
- The Centre for Molecular and Medical Research, School of Medicine, Deakin University, P.O. Box 291, Geelong, 3220, Australia
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia
- Department of Psychiatry, University of Melbourne, Melbourne, Australia
- Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
- Florey Institute for Neuroscience and Mental Health, Melbourne, Australia
| | - Brendon Stubbs
- Physiotherapy Department, South London and Maudsley NHS Foundation Trust, London, UK
- Health Service and Population Research Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Faculty of Health, Social Care and Education, Anglia Ruskin University, Chelmsford, UK
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia
- Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | - André F Carvalho
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Centre for Addiction & Mental Health (CAMH), Toronto, ON, Canada
| |
Collapse
|
7
|
Unsain N, Dorval G, Sheen JH, Barker PA. Generation and characterization of mice bearing null alleles of nradd/Nrh2. Genesis 2016; 54:605-612. [PMID: 27775873 DOI: 10.1002/dvg.22989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/10/2016] [Accepted: 10/20/2016] [Indexed: 11/11/2022]
Abstract
The Neurotrophin receptor associated death domain gene (Nradd/Nrh2/Plaidd) is a type I transmembrane protein with a unique and short N-terminal extracellular domain and a transmembrane and intracellular domain that bears high similarity to the p75 neurotrophin receptor (p75NTR/Ngfr). Initial studies suggested that NRADD regulates neurotrophin signaling but very little is known about its physiological roles. We have generated and characterized NRADD conditional and germ-line null mouse lines. These mice are viable and fertile and dońt show evident abnormalities. However, NRADD deletion results in an increase in the proportion of dorsal root ganglion neurons expressing p75NTR. The NRADD conditional and complete knockout mouse lines generated are new and useful tools to study the physiological roles of NRADD. Birth Defects Research (Part A) 106:605-612, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nicolas Unsain
- Laboratorio de Neurobiología, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Friuli 2434, Córdoba, 5016, Argentina
| | - Genevieve Dorval
- Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QCH3A 2B4, Canada
| | - Jae Hyung Sheen
- Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QCH3A 2B4, Canada
| | - Philip A Barker
- Vice Principal Research University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, British Columbia, V1V1V7, Canada
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Genome-wide association studies have been used as an unbiased tool to identify novel genes that contribute to variations in LDL cholesterol levels in the hopes of uncovering new biology and new therapeutic targets for the treatment of atherosclerotic cardiovascular disease. The locus identified by genome-wide association studies with the strongest association with LDL cholesterol and atherosclerotic cardiovascular disease is the 1p13 sortilin-1 (SORT1) locus. Here, we review the identification and characterization of this locus, the initial physiological studies describing the role of SORT1 in lipoprotein metabolism, and recent work that has begun to sort out the complexity of this role. RECENT FINDINGS Studies by several groups support an important role for sortilin in lipoprotein metabolism; however, the directionality of the effect of sortilin on plasma cholesterol and its role in the secretion of hepatic lipoproteins remains controversial. Studies by several groups support a role for sortilin in inhibiting lipoprotein export, whereas other studies suggest that sortilin facilitates lipoprotein export. SUMMARY Understanding the mechanism by which sortilin affects LDL cholesterol will increase our understanding of the regulation of lipoprotein metabolism and hepatic lipoprotein export and may also allow us to harness the power of the 1p13 SORT1 locus for the treatment of atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Alanna Strong
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
9
|
Vilar M, Sung TC, Chen Z, García-Carpio I, Fernandez EM, Xu J, Riek R, Lee KF. Heterodimerization of p45-p75 modulates p75 signaling: structural basis and mechanism of action. PLoS Biol 2014; 12:e1001918. [PMID: 25093680 PMCID: PMC4122344 DOI: 10.1371/journal.pbio.1001918] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/25/2014] [Indexed: 12/26/2022] Open
Abstract
The formation of a p45-p75 heterodimer overrides p75’s inhibition of nerve regeneration by stopping p75 homodimers from forming and creating a complex with the Nogo receptor. The p75 neurotrophin receptor, a member of the tumor necrosis factor receptor superfamily, is required as a co-receptor for the Nogo receptor (NgR) to mediate the activity of myelin-associated inhibitors such as Nogo, MAG, and OMgp. p45/NRH2/PLAIDD is a p75 homologue and contains a death domain (DD). Here we report that p45 markedly interferes with the function of p75 as a co-receptor for NgR. P45 forms heterodimers with p75 and thereby blocks RhoA activation and inhibition of neurite outgrowth induced by myelin-associated inhibitors. p45 binds p75 through both its transmembrane (TM) domain and DD. To understand the underlying mechanisms, we have determined the three-dimensional NMR solution structure of the intracellular domain of p45 and characterized its interaction with p75. We have identified the residues involved in such interaction by NMR and co-immunoprecipitation. The DD of p45 binds the DD of p75 by electrostatic interactions. In addition, previous reports suggested that Cys257 in the p75 TM domain is required for signaling. We found that the interaction of the cysteine 58 of p45 with the cysteine 257 of p75 within the TM domain is necessary for p45–p75 heterodimerization. These results suggest a mechanism involving both the TM domain and the DD of p45 to regulate p75-mediated signaling. Injuries to the brain and spinal cord often result in paralysis due to the fact that the injured nerves cannot regrow to reach their normal targets and carry out their functions. At the injury sites, there are proteins released from the damaged myelin that bind the Nogo receptor (NgR) on the nerve and inhibit its regeneration. The NgR needs to form a complex with the p75 neurotrophin receptor in order to mediate this inhibitory signal. Here we found that p45, a homologue of p75, can also bind to p75 and block its inhibitory activity when overexpressed. To perform its function, p75 needs to dimerize through both its transmembrane and intracellular domains, facilitating the recruitment of several proteins. Our structural and functional studies show that p45 binds specifically to conserved regions in the p75 transmembrane and the intracellular domain and that this blocks p75 dimerization along with its downstream signaling. Thus, this study demonstrates that altering the oligomerization of p75 is a good strategy to override p75's inhibitory effects on nerve regeneration, and it opens the door for the design of specific p75 inhibitors for therapeutic applications.
Collapse
Affiliation(s)
- Marçal Vilar
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, California, United States of America
- Neurodegeneration Unit, Chronic Disease Program, Spanish Institute of Health Carlos III, Madrid, Spain
- * E-mail: (K.-F.L.); (R.R.); (M.V.)
| | - Tsung-Chang Sung
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, California, United States of America
| | - Zhijiang Chen
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, California, United States of America
| | - Irmina García-Carpio
- Neurodegeneration Unit, Chronic Disease Program, Spanish Institute of Health Carlos III, Madrid, Spain
| | - Eva M. Fernandez
- Neurodegeneration Unit, Chronic Disease Program, Spanish Institute of Health Carlos III, Madrid, Spain
| | - Jiqing Xu
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, California, United States of America
| | - Roland Riek
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, California, United States of America
- Laboratory for Physical Chemistry, ETH Zürich, Zürich, Switzerland
- * E-mail: (K.-F.L.); (R.R.); (M.V.)
| | - Kuo-Fen Lee
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, California, United States of America
- * E-mail: (K.-F.L.); (R.R.); (M.V.)
| |
Collapse
|
10
|
Sung TC, Chen Z, Thuret S, Vilar M, Gage FH, Riek R, Lee KF. P45 forms a complex with FADD and promotes neuronal cell survival following spinal cord injury. PLoS One 2013; 8:e69286. [PMID: 23935974 PMCID: PMC3720591 DOI: 10.1371/journal.pone.0069286] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 06/06/2013] [Indexed: 12/02/2022] Open
Abstract
Fas-associated death domain (DD) adaptor (FADD), a member of the DD superfamily, contains both a DD and a death effector domain (DED) that are important in mediating FAS ligand-induced apoptotic signaling. P45 is a unique member of the DD superfamily in that it has a domain with sequence and structural characteristics of both DD and DED. We show that p45 forms a complex with FADD and diminishes Fas-FADD mediated death signaling. The DED of FADD is required for the complex formation with p45. Following spinal cord injury, transgenic mice over-expressing p45 exhibit increased neuronal survival, decreased retraction of corticospinal tract fibers and improved functional recovery. Understanding p45-mediated cellular and molecular mechanisms may provide insights into facilitating nerve regeneration in humans.
Collapse
Affiliation(s)
- Tsung-Chang Sung
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, California, United States of America
| | - Zhijiang Chen
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, California, United States of America
| | - Sandrine Thuret
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, California, United States of America
- Centre for the Cellular Basis of Behaviour & Medical Research Council Centre for Neurodegeneration Research, Institute of Psychiatry, King’s College London, London, United Kingdom
| | - Marçal Vilar
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, California, United States of America
- Neurodegeneration Unit, Instituto de Salud Carlos III, Madrid, Spain
| | - Fred H. Gage
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, California, United States of America
| | - Roland Riek
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, California, United States of America
- Laboratory for Physical Chemistry, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Kuo-Fen Lee
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
11
|
Abstract
Zebrafish offers significant opportunities for the investigation of vertebrate development, evolution, physiology, and behavior and provides numerous models of human disease. Connecting zebrafish phenogenetic biology to that of humans and other vertebrates, however, requires the proper assignment of gene orthologies. Orthology assignments by phylogenetic analysis or by reciprocal best sequence similarity searches can lead to errors, especially in cases of gene duplication followed by gene loss or rapid lineage-specific gene evolution. Conserved synteny analysis provides a method that helps overcome such problems. Here we describe conserved synteny analysis for zebrafish genes and discuss the Synteny Database, a website specifically designed to identify conserved syntenies for zebrafish that takes into account the teleost genome duplication (TGD). We utilize the Synteny Database to demonstrate its power to resolve our understanding of the evolution of nerve growth factor receptor related genes, including Ngfr and the enigmatic Nradd. Finally, we compare conserved syntenies between zebrafish, stickleback, spotted gar, and human to understand the timing of chromosome rearrangements in teleost genome evolution. An improved understanding of gene histories that comes from the application of tools provided by the Synteny Database can facilitate the connectivity of zebrafish and human genomes.
Collapse
Affiliation(s)
- Julian M Catchen
- University of Oregon, Center for Ecology and Evolutionary Biology, Eugene Oregon, USA
| | | | | |
Collapse
|
12
|
Kim T, Hempstead BL. NRH2 is a trafficking switch to regulate sortilin localization and permit proneurotrophin-induced cell death. EMBO J 2009; 28:1612-23. [PMID: 19407813 DOI: 10.1038/emboj.2009.118] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 03/30/2009] [Indexed: 12/25/2022] Open
Abstract
Proneurotrophins mediate neuronal apoptosis using a dual receptor complex of sortilin and p75(NTR). Although p75(NTR) is highly expressed on the plasma membrane and accessible to proneurotrophin ligands, sortilin is primarily localized to intracellular membranes, limiting the formation of a cell surface co-receptor complex. Here, we show that the mammalian p75(NTR) homologue NRH2 critically regulates the expression of sortilin on the neuronal cell surface and promotes p75(NTR) and sortilin receptor complex formation, rendering cells responsive to proneurotrophins. This is accomplished by interactions between the cytoplasmic domains of NRH2 and sortilin that impair lysosomal degradation of sortilin. In proneurotrophin-responsive neurons, acute silencing of endogenous NRH2 significantly reduces cell surface-expressed sortilin and abolishes proneurotrophin-induced neuronal death. Thus, these data suggest that NRH2 acts as a trafficking switch to impair lysosomal-dependant sortilin degradation and to redistribute sortilin to the cell surface, rendering p75(NTR)-expressing cells susceptible to proneurotrophin-induced death.
Collapse
Affiliation(s)
- Taeho Kim
- Graduate Program in Neuroscience, Weill Medical College of Cornell University, New York, NY 10065, USA
| | | |
Collapse
|
13
|
Wong AW, Willingham M, Xiao J, Kilpatrick TJ, Murray SS. Neurotrophin receptor homolog-2 regulates nerve growth factor signaling. J Neurochem 2008; 106:1964-76. [PMID: 18624909 DOI: 10.1111/j.1471-4159.2008.05539.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The neurotrophin receptor homolog (NRH2) is closely related to the p75 neurotrophin receptor (p75NTR); however, its function and role in neurotrophin signaling are unclear. NRH2 does not bind to nerve growth factor (NGF), however, is able to form a receptor complex with tropomyosin-related kinase receptor A (TrkA) and to generate high-affinity NGF binding sites. Despite this, the mechanisms underpinning the interaction between NRH2 and TrkA remain unknown. Here, we identify that the intracellular domain of NRH2 is required to form an association with TrkA. Our data suggest extensive intracellular interaction between NRH2 and TrkA, as either the juxtamembrane or death domain regions of NRH2 are sufficient for interaction with TrkA. In addition, we demonstrate that TrkA signaling is dramatically influenced by the co-expression of NRH2. Importantly, NRH2 did not influence all downstream TrkA signaling pathways, but rather exerted a specific effect, enhancing src homology 2 domain-containing transforming protein (Shc) activation. Moreover, downstream of Shc, the co-expression of NRH2 resulted in TrkA specifically modulating mitogen-activated protein kinase pathway activation, but not the phosphatidylinositol 3-kinase/Akt pathway. These results indicate that NRH2 utilizes intracellular mechanisms to not only regulate NGF binding to TrkA, but also specifically modulate TrkA receptor signaling, thus adding further layers of complexity and specificity to neurotrophin signaling.
Collapse
Affiliation(s)
- Agnes W Wong
- Neurotrophin Signaling Laboratory, The Centre for Neuroscience, The University of Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
14
|
Abstract
Over the last decade, it has become clear that the accumulation of misfolded proteins contributes to a number of neurodegenerative, immune, and endocrine pathologies, as well as other age-related illnesses. Recent interest has focused on the possibility that the accumulation of misfolded proteins can also contribute to vascular and cardiac diseases. In large part, the misfolding of proteins takes place during synthesis on free ribosomes in the cytoplasm or on endoplasmic reticulum ribosomes. In fact, even under optimal conditions, approximately 30% of all newly synthesized proteins are rapidly degraded, most likely because of improper folding. Accordingly, stresses that perturb the folding of proteins during or soon after synthesis can lead to the accumulation of misfolded proteins and to potential cellular dysfunction and pathological consequences. To avert such outcomes, cells have developed elaborate protein quality-control systems for detecting misfolded proteins and making appropriate adjustments to the machinery responsible for protein synthesis and/or degradation. Important contributors to protein quality control include cytosolic and organelle-targeted molecular chaperones, which help fold and stabilize proteins from unfolding, and the ubiquitin proteasome system, which degrades terminally misfolded proteins. Both of these systems play important roles in cardiovascular biology. The focus of this review is the endoplasmic reticulum stress response, a protein quality-control and signal-transduction system that has not been well studied in the context of cardiovascular biology but that could be important for vascular and cardiac health and disease.
Collapse
Affiliation(s)
- Christopher C Glembotski
- SDSU Heart Institute and the Department of Biology, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, USA.
| |
Collapse
|
15
|
Zhu J, Sanborn JZ, Diekhans M, Lowe CB, Pringle TH, Haussler D. Comparative genomics search for losses of long-established genes on the human lineage. PLoS Comput Biol 2007; 3:e247. [PMID: 18085818 PMCID: PMC2134963 DOI: 10.1371/journal.pcbi.0030247] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 10/30/2007] [Indexed: 02/01/2023] Open
Abstract
Taking advantage of the complete genome sequences of several mammals, we developed a novel method to detect losses of well-established genes in the human genome through syntenic mapping of gene structures between the human, mouse, and dog genomes. Unlike most previous genomic methods for pseudogene identification, this analysis is able to differentiate losses of well-established genes from pseudogenes formed shortly after segmental duplication or generated via retrotransposition. Therefore, it enables us to find genes that were inactivated long after their birth, which were likely to have evolved nonredundant biological functions before being inactivated. The method was used to look for gene losses along the human lineage during the approximately 75 million years (My) since the common ancestor of primates and rodents (the euarchontoglire crown group). We identified 26 losses of well-established genes in the human genome that were all lost at least 50 My after their birth. Many of them were previously characterized pseudogenes in the human genome, such as GULO and UOX. Our methodology is highly effective at identifying losses of single-copy genes of ancient origin, allowing us to find a few well-known pseudogenes in the human genome missed by previous high-throughput genome-wide studies. In addition to confirming previously known gene losses, we identified 16 previously uncharacterized human pseudogenes that are definitive losses of long-established genes. Among them is ACYL3, an ancient enzyme present in archaea, bacteria, and eukaryotes, but lost approximately 6 to 8 Mya in the ancestor of humans and chimps. Although losses of well-established genes do not equate to adaptive gene losses, they are a useful proxy to use when searching for such genetic changes. This is especially true for adaptive losses that occurred more than 250,000 years ago, since any genetic evidence of the selective sweep indicative of such an event has been erased.
Collapse
Affiliation(s)
- Jingchun Zhu
- Center for Biomolecular Science and Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - J. Zachary Sanborn
- Center for Biomolecular Science and Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Mark Diekhans
- Center for Biomolecular Science and Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Craig B Lowe
- Center for Biomolecular Science and Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Tom H Pringle
- Center for Biomolecular Science and Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - David Haussler
- Center for Biomolecular Science and Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
16
|
Abstract
Proteins synthesized in the endoplasmic reticulum (ER) are properly folded with the assistance of ER chaperones. Malfolded proteins are disposed of by ER-associated protein degradation (ERAD). When the amount of unfolded protein exceeds the folding capacity of the ER, human cells activate a defense mechanism called the ER stress response, which induces expression of ER chaperones and ERAD components and transiently attenuates protein synthesis to decrease the burden on the ER. It has been revealed that three independent response pathways separately regulate induction of the expression of chaperones, ERAD components, and translational attenuation. A malfunction of the ER stress response caused by aging, genetic mutations, or environmental factors can result in various diseases such as diabetes, inflammation, and neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, and bipolar disorder, which are collectively known as 'conformational diseases'. In this review, I will summarize recent progress in this field. Molecules that regulate the ER stress response would be potential candidates for drug targets in various conformational diseases.
Collapse
Affiliation(s)
- Hiderou Yoshida
- Department of Biophysics, Graduate School of Science, Kyoto University, Japan.
| |
Collapse
|
17
|
Nguyen V, Hawkins C, Bergeron C, Supala A, Huang J, Westaway D, St George-Hyslop P, Rozmahel R. Loss of nicastrin elicits an apoptotic phenotype in mouse embryos. Brain Res 2006; 1086:76-84. [PMID: 16626651 DOI: 10.1016/j.brainres.2006.02.122] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 02/21/2006] [Accepted: 02/25/2006] [Indexed: 12/21/2022]
Abstract
Nicastrin is a member of the high molecular weight presenilin complex that plays a central role in gamma-secretase cleavage of numerous type-1 membrane-associated proteins required for cell signaling, proliferation and lineage development. We have generated a nicastrin-null mouse line by disruption of exon 3. Similar to previously described nicastrin-null mice, these animals demonstrate severe growth retardation, mortality beginning at embryonic age 10.5 days, and marked developmental abnormalities indicative of a severe Notch phenotype. Preceding their mortality, 10.5-day-old nicastrin-null embryos were found to also exhibit specific apoptosis within regions showing profound deformities, particularly in the developing heart and brain. This result suggests that complete disruption of presenilin complexes elicits programmed cell death, in addition to a Notch phenotype, which may contribute to the developmental abnormalities and embryonic mortality of nicastrin-null mice and possibly neurodegeneration in Alzheimer's disease.
Collapse
Affiliation(s)
- Van Nguyen
- Dept. of Pharmacology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Yan C, Mirnics ZK, Portugal CF, Liang Y, Nylander KD, Rudzinski M, Zaccaro C, Saragovi HU, Schor NF. Cholesterol biosynthesis and the pro-apoptotic effects of the p75 nerve growth factor receptor in PC12 pheochromocytoma cells. ACTA ACUST UNITED AC 2006; 139:225-34. [PMID: 15967538 DOI: 10.1016/j.molbrainres.2005.05.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 04/22/2005] [Accepted: 05/12/2005] [Indexed: 11/15/2022]
Abstract
Neocarzinostatin (NCS), an enediyne antimitotic agent, induces cell death in both p75NTR neurotrophin receptor (NTR)-positive and p75NTR-negative PC12 cells in a concentration-dependent fashion. However, p75NTR-positive cells demonstrate a higher susceptibility to NCS-induced cell damage. Furthermore, treatment of p75NTR-positive cells with the p75NTR-specific ligand, MC192, resulted in apoptosis, while treatment of these cells with the TrkA-specific ligand, NGF-mAbNGF30, protected them from NCS-induced death, implying that both the naked and liganded p75NTR receptors have a pro-apoptotic effect on PC12 cells. Microarray studies aimed at examining differential gene expression between p75NTR-positive and p75NTR-negative cells suggested that enzymes of the cholesterol biosynthetic pathway are differentially expressed. We therefore tested the hypothesis that altered cholesterol biosynthesis contributes directly to the pro-apoptotic effects of p75NTR in this PC12 cell-NCS model. Subsequent Northern blotting studies confirmed that the expression of p75NTR is associated with the upregulation of cholesterol biosynthetic enzymes including 3-hydroxy-3-methylglutaryl CoA reductase (HMG CoA reductase), farnesyl-diphosphate synthase, and 7-dehydro-cholesterol reductase. Mevastatin, an HMG CoA reductase inhibitor, converts the apoptosis susceptibility of p75NTR-positive cells to that of p75NTR-negative cells. It does so at concentrations that do not themselves alter cell survival. These studies provide evidence that the pro-apoptotic effects of p75NTR in PC12 cells are related to the upregulation of cholesterol biosynthetic enzymes and consequent increased cholesterol biosynthesis.
Collapse
Affiliation(s)
- Chaohua Yan
- Division of Child Neurology, The Pediatric Center for Neuroscience, Children's Hospital of Pittsburgh, 3705 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gaddy DF, Lyles DS. Vesicular stomatitis viruses expressing wild-type or mutant M proteins activate apoptosis through distinct pathways. J Virol 2005; 79:4170-9. [PMID: 15767418 PMCID: PMC1061557 DOI: 10.1128/jvi.79.7.4170-4179.2005] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vesicular stomatitis virus (VSV) induces apoptosis by at least two mechanisms. The viral matrix (M) protein induces apoptosis via the mitochondrial pathway due to the inhibition of host gene expression. However, in some cell types, the inhibition of host gene expression by VSV expressing wild-type (wt) M protein delays VSV-induced apoptosis, indicating that another mechanism is involved. In support of this, the recombinant M51R-M (rM51R-M) virus, expressing a mutant M protein that is defective in its ability to inhibit host gene expression, induces apoptosis much more rapidly in L929 cells than do viruses expressing wt M protein. Here, we determine the caspase pathways by which the rM51R-M virus induces apoptosis. An analysis of caspase activity, using fluorometric caspase assays and Western blots, indicated that each of the main initiator caspases, caspase-8, caspase-9, and caspase-12, were activated during infection with the rM51R-M virus. The overexpression of Bcl-2, an inhibitor of the mitochondrial pathway, or MAGE-3, an inhibitor of caspase-12 activation, did not delay apoptosis induction in rM51R-M virus-infected L929 cells. However, an inhibitor of caspase-8 activity significantly delayed apoptosis induction. Furthermore, the inhibition of caspase-8 activity prevented the activation of caspase-9, suggesting that caspase-9 is activated by cross talk with caspase-8. These data indicate that VSV expressing the mutant M protein induces apoptosis via the death receptor apoptotic pathway, a mechanism distinct from that induced by VSV expressing the wt M protein.
Collapse
Affiliation(s)
- Daniel F Gaddy
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | | |
Collapse
|
20
|
Kalb R. The protean actions of neurotrophins and their receptors on the life and death of neurons. Trends Neurosci 2005; 28:5-11. [PMID: 15626491 DOI: 10.1016/j.tins.2004.11.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
At vanishingly low concentrations, factors of the neurotrophin family (NGF, BDNF, NT3 and NT4/5) can promote neuronal survival or death. Many investigations indicate that the survival-promoting signals of neurotrophins are generated by activation of Trk tyrosine kinase receptors and that their death-promoting signals are generated by activation of p75 neurotrophin receptors (p75(NTR)). Despite this, a body of work indicates that p75(NTR) can promote cell survival and Trk receptors can adversely affect neuron health. The potential mechanisms by which these receptors could have such diverse and antipodal effects are considered here.
Collapse
Affiliation(s)
- Robert Kalb
- Joseph Stokes, Jr Research Institute, Children's Hospital of Philadelphia, and Department of Neurology, University of Pennsylvania School of Medicine, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
21
|
Gowrishankar K, Zeidler MG, Vincenz C. Release of a membrane-bound death domain by gamma-secretase processing of the p75NTR homolog NRADD. J Cell Sci 2004; 117:4099-111. [PMID: 15280425 DOI: 10.1242/jcs.01263] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Neurotrophin receptor alike death domain protein (NRADD) is a death-receptor-like protein with a unique ectodomain and an intracellular domain homologous to p75(NTR). Expression of NRADD results in apoptosis, but only in certain cell types. This paper characterizes the expression and proteolytic processing of the mature 55 kDa glycoprotein. N-terminally truncated NRADD is processed by a gamma-secretase activity that requires presenilins and has the same susceptibility to gamma-secretase inhibitors as the secretion of amyloid beta (A beta). The ectodomain of endogenous NRADD is shed by activation of metalloproteinases. Inhibitor studies provide evidence that NRADD is cleaved in two steps typical of regulated intramembrane proteolysis (RIP). Inhibition of gamma-secretase abrogates both the production of the soluble intracellular domain of NRADD and the appearance of NRADD in subnuclear structures. Thus, solubilized death domains with close homology to p75(NTR) might have a nuclear function. Furthermore, presenilin deficiency leads to abnormally glycosylated NRADD and overexpression of presenilin 2 inhibits NRADD maturation, which is dependent on the putative active site residue D366 but not on gamma-secretase activity. Our results demonstrate that NRADD is an additional gamma-secretase substrate and suggest that drugs against Alzheimer's disease will need to target gamma-secretase in a substrate-specific manner.
Collapse
Affiliation(s)
- Kavitha Gowrishankar
- Department of Pathology, University of Michigan Medical School, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
22
|
Murray SS, Perez P, Lee R, Hempstead BL, Chao MV. A novel p75 neurotrophin receptor-related protein, NRH2, regulates nerve growth factor binding to the TrkA receptor. J Neurosci 2004; 24:2742-9. [PMID: 15028767 PMCID: PMC6729530 DOI: 10.1523/jneurosci.3960-03.2004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Nerve growth factor (NGF) functions as a ligand for two receptors, the TrkA tyrosine kinase receptor and the p75 neurotrophin receptor (p75NTR). The Ig-like domains of Trk receptors and the cysteine-rich repeats of p75NTR are involved in binding to the neurotrophins. Recently, a closely related gene to p75NTR called neurotrophin receptor homolog-2 (NRH2) was identified; however, the function of NRH2 and its relevance to neurotrophin signaling are unclear. NRH2 contains a similar transmembrane and intracellular domain as p75NTR but lacks the characteristic cysteine-rich repeats in the extracellular domain. Here we show that NRH2 is expressed in several neuronal populations that also express p75NTR and Trk receptors. NRH2 does not bind to NGF; however, coimmunoprecipitation experiments demonstrate that NRH2 is capable of interacting with TrkA receptors. Coexpression of NRH2 with TrkA receptors resulted in the formation of high-affinity binding sites for NGF. These results indicate that a transmembrane protein related to p75NTR is capable of modulating Trk receptor binding properties.
Collapse
Affiliation(s)
- Simon S Murray
- Skirball Institute of Bimolecular Medicine, New York University School of Medicine, New York, New York 10016, USA.
| | | | | | | | | |
Collapse
|
23
|
Paul CE, Vereker E, Dickson KM, Barker PA. A pro-apoptotic fragment of the p75 neurotrophin receptor is expressed in p75NTRExonIV null mice. J Neurosci 2004; 24:1917-23. [PMID: 14985432 PMCID: PMC6730398 DOI: 10.1523/jneurosci.5397-03.2004] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The p75 neurotrophin receptor (p75NTR) regulates neuronal survival, apoptosis, and growth. Recent studies have reported that disruption of Exon IV produces a null mouse lacking all p75NTR gene products (p75NTRExonIV-/-), whereas mice lacking p75NTR Exon III (p75NTRExonIII-/-) maintain expression of an alternatively spliced form of p75NTR (s-p75NTR). Here, we report that p75NTRExonIV-/- mice express a p75NTR gene product that encodes a truncated protein containing the extracellular stalk region together with the entire transmembrane and intracellular domains. The gene product is initiated from a cryptic Kozak consensus/initiator ATG sequence within a region of Exon IV located 3' to the pGK-Neo insertion site. Overexpression of this fragment in heterologous cells results in activation of Jun kinase and induces Pro-caspase-3 cleavage, indicating that it activates p75NTR signaling cascades. These results indicate that aspects of the p75NTRExonIV-/- phenotype may reflect a gain-of-function mutation rather than loss of p75NTR function.
Collapse
Affiliation(s)
- Christine E Paul
- Centre for Neuronal Survival, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| | | | | | | |
Collapse
|
24
|
Affiliation(s)
- M Lamkanfi
- Unit of Molecular Signalling and Cell Death, Department for Molecular Biomedical Research, VIB, Ghent University, Technologiepark 927, Zwijnaarde B-9052, Belgium
| | | | | |
Collapse
|