1
|
Fujii S, Sugino N, Miura Y. The Supportive Role of Lymph Node Mesenchymal Stromal Cells in Follicular Lymphoma Involves the PITX1-hTERT-Podoplanin Axis. Stem Cells Dev 2025; 34:201-213. [PMID: 40130551 DOI: 10.1089/scd.2025.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025] Open
Abstract
The microenvironment within lymph nodes plays a pivotal role in the pathogenesis of follicular lymphoma (FL), a malignancy characterized by the accumulation of neoplastic B cells. Here, we report that human FL lymph node mesenchymal stromal cells (FLSCs) display surface protein expression profiles consistent with the standard phenotypic criteria for human mesenchymal stromal/stem cells (MSCs), yet exhibit reduced mesenchymal differentiation capability. FLSCs did not show the typical immunomodulatory protein expression patterns observed in fibroblastic reticular cells, marginal reticular cells, or follicular dendritic cells, as they expressed chemokine (C-X-C motif) ligand 13 and podoplanin but lacked chemokine (C-C motif) ligand 19 and complement receptor 1/2. Functionally, FLSCs exhibited superior FL cell survival-supportive capability in cocultures compared with bone marrow MSCs. This supportive effect was reduced when the cell culture inserts were used. In addition, this supportive capability was accompanied by reduced levels of B-cell-supportive soluble factors such as interleukin-6, regardless of the presence of cell culture inserts. Thus, both cell-cell contact-dependent and -independent mechanisms are involved in this process. Comprehensive transcriptomic analysis revealed that transcription factor paired-like homeodomain 1 (PITX1) is downregulated in FLSCs. Given that PITX1 regulates human telomerase reverse transcriptase (hTERT) transcription, FLSCs exhibited longer telomeres and a higher population-doubling capacity than MSCs. Furthermore, FLSCs expressed elevated podoplanin, whereas MSCs did not. Notably, hTERT-transfected MSCs also showed increased podoplanin expression, suggesting a positive association between hTERT and podoplanin. In summary, our findings indicate that FLSCs deviate from classical MSCs in their differentiation potential and instead exhibit a protumorigenic phenotype. This phenotype supports FL cell survival and is potentially mediated by an aberrant PITX1-hTERT-podoplanin signaling axis. These results highlight the critical role of FLSCs in the FL lymph node microenvironment, with implications for understanding tumor-supportive niches in FL pathogenesis.
Collapse
Affiliation(s)
- Sumie Fujii
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto, Japan
- Department of Transfusion Medicine and Cell Therapy, Fujita Health University School of Medicine, Aichi, Japan
| | - Noriko Sugino
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto, Japan
- Department of Hematology, Osaka Red Cross Hospital, Osaka, Japan
| | - Yasuo Miura
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto, Japan
- Department of Transfusion Medicine and Cell Therapy, Fujita Health University School of Medicine, Aichi, Japan
| |
Collapse
|
2
|
Zhang J, Song Y, Wang X, Wang X, Li S, Song X, Zhao C, Qi J, Tian Y, Zhao B, Zheng X, Xing Y. The transcription factor PITX1 cooperates with super-enhancers to regulate the expression of DUSP4 and inhibit pyroptosis in pulmonary artery smooth muscle cells. Respir Res 2025; 26:149. [PMID: 40241046 PMCID: PMC12004679 DOI: 10.1186/s12931-025-03222-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 04/05/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is a highly fatal pathophysiological syndrome. The group 1 pulmonary arterial hypertension (PAH) is characterized by acute pulmonary vasoconstriction and chronic vascular remodeling caused by hyperplasia and hypertrophy of pulmonary artery smooth muscle cells (PASMCs) and chronic inflammation. Pyroptosis is an inflammatory mode of cell death that is regulated by super-enhancers (SEs) and occurs in the setting of tumors and cardiovascular diseases. However, whether SEs are involved in the pathological process of pyroptosis in PAH and the specific mechanism involved remain unclear. METHODS Here, we identified the SE target gene DUSP4 via ChIP-seq with an anti-H3K27ac antibody, and bioinformatics predictions revealed that the transcription factor PITX1 can bind to the promoter and SE sequences of DUSP4. The AAV5 vector was used to deliver shRNAs targeting PITX1 and DUSP4 to PASMCs. RESULTS PITX1 overexpression reversed the increase in right ventricular systolic pressure and pulmonary vascular remodeling, restored the PAAT/PAVTI ratio in hypoxic pulmonary hypertension (HPH, Group 3 PH) and SuHx PAH (Group 1 PAH) mice, and suppressed pyroptosis in pulmonary vascular cells. However, knockdown of DUSP4 counteracted the effects of PITX1 overexpression. Similar results were obtained in cultured PASMCs. In addition, treatment with the SE inhibitors JQ1 and iBET decreased the transcription of DUSP4 and increased the expression of hypoxia-induced pyroptosis proteins in PASMCs. CONCLUSION We confirmed that PITX1 can promote DUSP4 expression by binding to the DUSP4 promoter and SE to reduce pyroptosis in hypoxic PASMCs, providing new insights into the role of SEs and pyroptosis in pulmonary vascular remodeling and a theoretical basis for the treatment of PAH and related diseases.
Collapse
MESH Headings
- Animals
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Mice
- Pyroptosis/physiology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Dual-Specificity Phosphatases/genetics
- Dual-Specificity Phosphatases/biosynthesis
- Mitogen-Activated Protein Kinase Phosphatases/genetics
- Mitogen-Activated Protein Kinase Phosphatases/biosynthesis
- Cells, Cultured
- Male
- Mice, Inbred C57BL
- Humans
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/pathology
- Paired Box Transcription Factors
Collapse
Affiliation(s)
- Jingya Zhang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Yuyu Song
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Xinru Wang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Xu Wang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Songyue Li
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Xinyue Song
- College of Pharmacy, Harbin Medical University, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Chong Zhao
- Department of Literature Retrieval, Harbin Medical University, Daqing, 150081, Heilongjiang, People's Republic of China
| | - Jing Qi
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Yunyun Tian
- Department of Pathology, Gaozhou People's Hospital, Gaozhou, 525299, Guangdong, People's Republic of China
| | - Baoshan Zhao
- Department of Pathology, Harbin Medical University-Daqing, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Xiaodong Zheng
- Department of Medical Genetics, Harbin Medical University-Daqing, Daqing, 163319, Heilongjiang, People's Republic of China.
| | - Yan Xing
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, 163319, Heilongjiang, People's Republic of China.
| |
Collapse
|
3
|
Huang Z, Liu D, Zhang Y, Lu W, Hu L, Zhang J, Xie L, Chen S. PITX1 as a grading, prognostic and tumor-infiltrating immune cells marker for chondrosarcoma: a public database-based immunoassay and tissue sample analysis. Front Oncol 2025; 15:1477649. [PMID: 40342824 PMCID: PMC12060168 DOI: 10.3389/fonc.2025.1477649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 03/24/2025] [Indexed: 05/11/2025] Open
Abstract
Background Chondrosarcoma (CHS) is a rare bone cancer originating from chondrocytes, with high-grade cases associated with high mortality rates. However, the prognostic factors and therapeutic targets for CHS have not been studied. Methods Graded gene differential analysis was conducted on 97 CHS tissues to identify genes associated with CHS grading. Additionally, we performed GO and KEGG enrichment analyses of the differentially-expressed genes (DEGs), as well as GSEA analysis, differential expression analysis, survival analysis, and univariable and multifactorial COX analysis of paired-like homology structural domain transcription factor 1 (PITX1). Furthermore, our findings investigated the relationship between tumor-infiltrating immune cells (TICs) in CHS tumors using CIBERSORT to calculate proportions and differences. Our findings also explored the associations among gene expression patterns, survival prognosis, TICs, and immune checkpoints across various cancer types. Finally, immunohistochemical staining was carried out on self-collected clinical samples to assess PITX1 expression levels and correlate them with clinical information. Results Gene differential expression analysis revealed a strong correlation between PITX1 expression and tumor grade. GO, KEGG enrichment, and GSEA analysis demonstrated the association of PITX1 with cell proliferation-related processes, such as cell cycle regulation and mitosis, and differentiation-related processes, such as RNA processing. PITX1 expression was associated with tumor stage and survival outcomes. Immunoassay indicated a positive correlation between PITX1 levels and TICs, immune checkpoints, and graded TICs. Pan-cancer analysis confirmed the differential expression of the PITX1 gene across multiple cancers, impacting survival prognosis, TIC patterns, and immune checkpoint regulation. Lastly, our 75 collection of clinical patient tissue samples exhibited varying levels of PITX1 expression across different cancer grades while also demonstrating a significant association with tumor differentiation and metastasis. Conclusion PITX1 is a novel biomarker for distinguishing between high-grade and low-grade CHS, serving as a prognostic indicator for patients with this condition and presenting a promising target for immunotherapy. These findings offer innovative insights into the treatment of CHS.
Collapse
Affiliation(s)
- Zikun Huang
- Department of Orthopaedics, First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Dongchen Liu
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Clinical Research Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Ying Zhang
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Clinical Research Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Weiqing Lu
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Lan Hu
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jinghao Zhang
- Department of Orthopaedics, First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Lei Xie
- Department of Orthopaedics, First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Sport Medicine Centre, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Shubiao Chen
- Department of Orthopaedics, First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Sport Medicine Centre, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Department of General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
4
|
Bau DT, Liu TY, Yang JS, Chen WTL, Tsai CW, Chang WS, Ke TW, Liao CC, Chen YC, Chang YT, Tsai FJ. Characterizing Genetic Susceptibility to Colorectal Cancer in Taiwan Through Genome-Wide Association Study. Mol Carcinog 2025; 64:25-32. [PMID: 39392253 DOI: 10.1002/mc.23823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024]
Abstract
We conducted the first genome-wide association study (GWAS) of colorectal cancer (CRC) in Taiwan with 5342 cases and 61,015 controls. Ninety-two SNPs in three genomic regions reached genome-wide significance (p < 5 × 10-8). The lead SNPs in these three regions were: rs12778523 (OR = 1.18, 95% CI, 1.15-1.23, p = 4.51 × 10-13), an intergenic SNP between RNA5SP299 and LINC02676 at chromosome 10p14; rs647161 (OR = 1.14, 95% CI, 1.09-1.19, p = 2.21 × 10-9), an intronic SNP in PITX1 at 5q31.1, and rs10427139 (OR = 1.20, 95% CI, 1.14-1.28, p = 3.62 × 10-9), an intronic SNP in GPATCH1 at 19q13.1. We further validated CRC susceptibility SNPs previously identified through GWAS in other populations. A total of 61 CRC susceptibility SNPs were confirmed in Taiwanese. The top validated putative CRC susceptibility genes included: POU2AF2, HAO1, LAMC1, EIF3H, BMP2, ZMIZ1, BMP4, POLD3, CDKN1A, PREX1, CDKN2B, CDH1, and LRIG1. The top enriched pathways included TGF-β signaling, BMP signaling, extracellular matrix organization, DNA repair, and cell cycle control. We could not validate SNPs in HLA-G at 6p22.1 and in NOTCH4 at 6p21.32. We generated a weighted genetic risk score (GRS) using the 61 SNPs and constructed receiver operating characteristic (ROC) curves using the GRS to predict CRC. The area under the ROC curve (AUC) was 0.589 for GRS alone and 0.645 for GRS, sex, and age. These susceptibility SNPs and genes provide important insights into the molecular mechanisms of CRC development and help identify high-risk individuals for CRC in Taiwan.
Collapse
Affiliation(s)
- Da-Tian Bau
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Ting-Yuan Liu
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - William Tzu-Liang Chen
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chia-Wen Tsai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Shin Chang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Tao-Wei Ke
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chi-Chou Liao
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yu-Chia Chen
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yen-Ting Chang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- Department of Medical Research, Human Genetics Center, China Medical University Hospital, Taichung, Taiwan
- Department of Medical Genetics, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
5
|
Zhao J, Xu Y. PITX1 plays essential functions in cancer. Front Oncol 2023; 13:1253238. [PMID: 37841446 PMCID: PMC10570508 DOI: 10.3389/fonc.2023.1253238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
PITX1, also known as the pituitary homeobox 1 gene, has emerged as a key regulator in animal growth and development, attracting significant research attention. Recent investigations have revealed the implication of dysregulated PITX1 expression in tumorigenesis, highlighting its involvement in cancer development. Notably, PITX1 interacts with p53 and exerts control over crucial cellular processes including cell cycle progression, apoptosis, and chemotherapy resistance. Its influence extends to various tumors, such as esophageal, colorectal, gastric, and liver cancer, contributing to tumor progression and metastasis. Despite its significance, a comprehensive review examining PITX1's role in oncology remains lacking. This review aims to address this gap by providing a comprehensive overview of PITX1 in different cancer types, with a particular focus on its clinicopathological significance.
Collapse
Affiliation(s)
- Jingpu Zhao
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Yongfeng Xu
- Abdominal Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Ramasamy R, Baker DS, Lemtiri-Chlieh F, Rosenberg DA, Woon E, Al-Naggar IM, Hardy CC, Levine ES, Kuchel GA, Bartley JM, Smith PP. Loss of resilience contributes to detrusor underactivity in advanced age. Biogerontology 2023; 24:163-181. [PMID: 36626035 PMCID: PMC10006334 DOI: 10.1007/s10522-022-10005-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023]
Abstract
Volume hyposensitivity resulting from impaired sympathetic detrusor relaxation during bladder filling contributes to detrusor underactivity (DU) associated with aging. Detrusor tension regulation provides an adaptive sensory input of bladder volume to the brainstem and is challenged by physiological stressors superimposed upon biological aging. We recently showed that HCN channels have a stabilizing role in detrusor sympathetic relaxation. While mature mice maintain homeostasis in the face of stressors, old mice are not always capable. In old mice, there is a dichotomous phenotype, in which resilient mice adapt and maintain homeostasis, while non-resilient mice fail to maintain physiologic homeostasis. In this DU model, we used cystometry as a stressor to categorize mice as old-responders (old-R, develop a filling/voiding cycle) or old-non-responders (old-NR, fail to develop a filling/voiding cycle; fluctuating high pressures and continuous leaking), while also assessing functional and molecular differences. Lamotrigine (HCN activator)-induced bladder relaxation is diminished in old-NR mice following HCN-blockade. Relaxation responses to NS 1619 were reduced in old-NR mice, with the effect lost following HCN-blockade. However, RNA-sequencing revealed no differences in HCN gene expression and electrophysiology studies showed similar percentage of detrusor myocytes expressing HCN (Ih) current between old-R and old-NR mice. Our murine model of DU further defines a role for HCN, with failure of adaptive recalibration of HCN participation and intensity of HCN-mediated stabilization, while genomic studies show upregulated myofibroblast and fibrosis pathways and downregulated neurotransmitter-degradation pathways in old-NR mice. Thus, the DU phenotype is multifactorial and represents the accumulation of age-associated loss in homeostatic mechanisms.
Collapse
Affiliation(s)
- Ramalakshmi Ramasamy
- UConn Center on Aging, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-8073, USA
- Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, USA
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Dylan S Baker
- UConn Center on Aging, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-8073, USA
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut School of Medicine, Farmington, CT, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Fouad Lemtiri-Chlieh
- UConn Center on Aging, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-8073, USA
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Dawn A Rosenberg
- UConn Center on Aging, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-8073, USA
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Eric Woon
- UConn Center on Aging, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-8073, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Iman M Al-Naggar
- UConn Center on Aging, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-8073, USA
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Cara C Hardy
- UConn Center on Aging, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-8073, USA
- Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, USA
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Eric S Levine
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - George A Kuchel
- UConn Center on Aging, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-8073, USA
| | - Jenna M Bartley
- UConn Center on Aging, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-8073, USA.
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, USA.
| | - Phillip P Smith
- UConn Center on Aging, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-8073, USA
- Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, USA
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT, USA
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
7
|
Well-TEMP-seq as a microwell-based strategy for massively parallel profiling of single-cell temporal RNA dynamics. Nat Commun 2023; 14:1272. [PMID: 36882403 PMCID: PMC9992361 DOI: 10.1038/s41467-023-36902-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) reveals the transcriptional heterogeneity of cells, but the static snapshots fail to reveal the time-resolved dynamics of transcription. Herein, we develop Well-TEMP-seq, a high-throughput, cost-effective, accurate, and efficient method for massively parallel profiling the temporal dynamics of single-cell gene expression. Well-TEMP-seq combines metabolic RNA labeling with scRNA-seq method Well-paired-seq to distinguish newly transcribed RNAs marked by T-to-C substitutions from pre-existing RNAs in each of thousands of single cells. The Well-paired-seq chip ensures a high single cell/barcoded bead pairing rate (~80%) and the improved alkylation chemistry on beads greatly alleviates chemical conversion-induced cell loss (~67.5% recovery). We further apply Well-TEMP-seq to profile the transcriptional dynamics of colorectal cancer cells exposed to 5-AZA-CdR, a DNA-demethylating drug. Well-TEMP-seq unbiasedly captures the RNA dynamics and outperforms the splicing-based RNA velocity method. We anticipate that Well-TEMP-seq will be broadly applicable to unveil the dynamics of single-cell gene expression in diverse biological processes.
Collapse
|
8
|
Smith CJ, Parkinson EK, Yang J, Pratten J, O'Toole EA, Caley MP, Braun KM. Investigating wound healing characteristics of gingival and skin keratinocytes in organotypic cultures. J Dent 2022; 125:104251. [PMID: 35961474 DOI: 10.1016/j.jdent.2022.104251] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022] Open
Abstract
OBJECTIVES The gingiva heals at an accelerated rate with reduced scarring when compared to skin. Potential well-studied factors include immune cell number, angiogenesis disparities and fibroblast gene expression. Differential keratinocyte gene expression, however, remains relatively understudied. This study explored the contrasting healing efficiencies of gingival and skin keratinocytes, alongside their differential gene expression patterns. METHODS 3D organotypic culture models of human gingiva and skin were developed using temporarily immortalised primary keratinocytes. Models were wounded for visualisation of re-epithelialisation and analysis of keratinocyte migration to close the wound gap. Concurrently, differentially expressed genes between primary gingival and skin keratinocytes were identified, validated, and functionally assessed. RESULTS Characterisation of the 3D cultures of gingiva and skin showed differentiation markers that recapitulated organisation of the corresponding in vivo tissue. Upon wounding, gingival models displayed a significantly higher efficiency in re-epithelialisation and stratification versus skin, repopulating the wound gap within 24 hours. This difference was likely due to distinct patterns of migration, with gingival cells demonstrating a form of sheet migration, in contrast to skin, where the leading edge was typically 1-2 cells thick. A candidate approach was used to identify several genes that were differentially expressed between gingival and skin keratinocytes. Knockdown of PITX1 resulted in reduced migration capacity of gingival cells. CONCLUSION Gingival keratinocytes retain in vivo superior wound healing capabilities in in vitro 2D and 3D environments. Intrinsic gene expression differences could result in gingival cells being 'primed' for healing and play a role in faster wound resolution. CLINICAL SIGNIFICANCE STATEMENT The successful development of organotypic models, that recapitulate re-epithelialisation, will underpin further studies to analyse the oral response to wound stimuli, and potential therapeutic interventions, in an in vitro environment.
Collapse
Affiliation(s)
- Chris J Smith
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, E1 2AT UK
| | - Eric K Parkinson
- Institute of Dentistry, Blizard Institute, Queen Mary University of London, London, E1 2AT
| | | | | | - Edel A O'Toole
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, E1 2AT UK
| | - Matthew P Caley
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, E1 2AT UK
| | - Kristin M Braun
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, E1 2AT UK.
| |
Collapse
|
9
|
PITX1 Is a Regulator of TERT Expression in Prostate Cancer with Prognostic Power. Cancers (Basel) 2022; 14:cancers14051267. [PMID: 35267575 PMCID: PMC8909694 DOI: 10.3390/cancers14051267] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Most prostate cancer is of an indolent form and is curable. However, some prostate cancer belongs to rather aggressive subtypes leading to metastasis and death, and immediate therapy is mandatory. However, for these, the therapeutic options are highly invasive, such as radical prostatectomy, radiation or brachytherapy. Hence, a precise diagnosis of these tumor subtypes is needed, and the thus far applied diagnostic means are insufficient for this. Besides this, for their endless cell divisions, prostate cancer cells need the enzyme telomerase to elongate their telomeres (chromatin endings). In this study, we developed a gene regulatory model based on large data from transcription profiles from prostate cancer and chromatin-immuno-precipitation studies. We identified the developmental regulator PITX1 regulating telomerase. Besides observing experimental evidence of PITX1′s functional role in telomerase regulation, we also found PITX1 serving as a prognostic marker, as concluded from an analysis of more than 15,000 prostate cancer samples. Abstract The current risk stratification in prostate cancer (PCa) is frequently insufficient to adequately predict disease development and outcome. One hallmark of cancer is telomere maintenance. For telomere maintenance, PCa cells exclusively employ telomerase, making it essential for this cancer entity. However, TERT, the catalytic protein component of the reverse transcriptase telomerase, itself does not suit as a prognostic marker for prostate cancer as it is rather low expressed. We investigated if, instead of TERT, transcription factors regulating TERT may suit as prognostic markers. To identify transcription factors regulating TERT, we developed and applied a new gene regulatory modeling strategy to a comprehensive transcriptome dataset of 445 primary PCa. Six transcription factors were predicted as TERT regulators, and most prominently, the developmental morphogenic factor PITX1. PITX1 expression positively correlated with telomere staining intensity in PCa tumor samples. Functional assays and chromatin immune-precipitation showed that PITX1 activates TERT expression in PCa cells. Clinically, we observed that PITX1 is an excellent prognostic marker, as concluded from an analysis of more than 15,000 PCa samples. PITX1 expression in tumor samples associated with (i) increased Ki67 expression indicating increased tumor growth, (ii) a worse prognosis, and (iii) correlated with telomere length.
Collapse
|
10
|
PITX1 inhibits the growth and proliferation of melanoma cells through regulation of SOX family genes. Sci Rep 2021; 11:18405. [PMID: 34526609 PMCID: PMC8443576 DOI: 10.1038/s41598-021-97791-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/30/2021] [Indexed: 01/04/2023] Open
Abstract
Melanoma is one of the most aggressive types of cancer wherein resistance to treatment prevails. Therefore, it is important to discover novel molecular targets of melanoma progression as potential treatments. Here we show that paired-like homeodomain transcription factor 1 (PITX1) plays a crucial role in the inhibition of melanoma progression through regulation of SRY-box transcription factors (SOX) gene family mRNA transcription. Overexpression of PITX1 in melanoma cell lines resulted in a reduction in cell proliferation and an increase in apoptosis. Additionally, analysis of protein levels revealed an antagonistic cross-regulation between SOX9 and SOX10. Interestingly, PITX1 binds to the SOX9 promoter region as a positive regulatory transcription factor; PITX1 mRNA expression levels were positively correlated with SOX9 expression, and negatively correlated with SOX10 expression in melanoma tissues. Furthermore, transcription of the long noncoding RNA (lncRNA), survival-associated mitochondrial melanoma-specific oncogenic noncoding RNA (SAMMSON), was decreased in PITX1-overexpressing cells. Taken together, the findings in this study indicate that PITX1 may act as a negative regulatory factor in the development and progression of melanoma via direct targeting of the SOX signaling.
Collapse
|
11
|
Kwon ATJ, Mohri K, Takizawa S, Arakawa T, Takahashi M, Kaczkowski B, Furuno M, Suzuki H, Tagami S, Mukai H, Arner E. Development of p53 knockout U87MG cell line for unbiased drug delivery testing system using CRISPR-Cas9 and transcriptomic analysis. J Biotechnol 2021; 332:72-82. [PMID: 33836165 DOI: 10.1016/j.jbiotec.2021.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
Antibody-drug conjugates offers many advantages as a drug delivery platform that allows for highly specific targeting of cell types and genes. Ideally, testing the efficacy of these systems requires two cell types to be different only in the gene targeted by the drug, with the rest of the cellular machinery unchanged, in order to minimize other potential differences from obscuring the effects of the drug. In this study, we created multiple variants of U87MG cells with targeted mutation in the TP53 gene using the CRISPR-Cas9 system, and determined that their major transcriptional differences stem from the loss of p53 function. Using the transcriptome data, we predicted which mutant clones would have less divergent phenotypes from the wild type and thereby serve as the best candidates to be used as drug delivery testing platforms. Further in vitro and in vivo assays of cell morphology, proliferation rate and target antigen-mediated uptake supported our predictions. Based on the combined analysis results, we successfully selected the best qualifying mutant clone. This study serves as proof-of-principle of the approach and paves the way for extending to additional cell types and target genes.
Collapse
Affiliation(s)
| | - Kohta Mohri
- RIKEN Center for Biosystems Dynamic Research, Japan
| | | | | | | | | | | | | | | | | | - Erik Arner
- RIKEN Center for Integrative Medical Sciences, Japan.
| |
Collapse
|
12
|
Jiang W, Xu J, Liao Z, Li G, Zhang C, Feng Y. Prognostic Signature for Lung Adenocarcinoma Patients Based on Cell-Cycle-Related Genes. Front Cell Dev Biol 2021; 9:655950. [PMID: 33869220 PMCID: PMC8044954 DOI: 10.3389/fcell.2021.655950] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/02/2021] [Indexed: 12/24/2022] Open
Abstract
Objective To screen lung adenocarcinoma (LUAC)-specific cell-cycle-related genes (CCRGs) and develop a prognostic signature for patients with LUAC. Methods The GSE68465, GSE42127, and GSE30219 data sets were downloaded from the GEO database. Single-sample gene set enrichment analysis was used to calculate the cell cycle enrichment of each sample in GSE68465 to identify CCRGs in LUAC. The differential CCRGs compared with LUAC data from The Cancer Genome Atlas were determined. The genetic data from GSE68465 were divided into an internal training group and a test group at a ratio of 1:1, and GSE42127 and GSE30219 were defined as external test groups. In addition, we combined LASSO (least absolute shrinkage and selection operator) and Cox regression analysis with the clinical information of the internal training group to construct a CCRG risk scoring model. Samples were divided into high- and low-risk groups according to the resulting risk values, and internal and external test sets were used to prove the validity of the signature. A nomogram evaluation model was used to predict prognosis. The CPTAC and HPA databases were chosen to verify the protein expression of CCRGs. Results We identified 10 LUAC-specific CCRGs (PKMYT1, ETF1, ECT2, BUB1B, RECQL4, TFRC, COCH, TUBB2B, PITX1, and CDC6) and constructed a model using the internal training group. Based on this model, LUAC patients were divided into high- and low-risk groups for further validation. Time-dependent receiver operating characteristic and Cox regression analyses suggested that the signature could precisely predict the prognosis of LUAC patients. Results obtained with CPTAC, HPA, and IHC supported significant dysregulation of these CCRGs in LUAC tissues. Conclusion This prognostic prediction signature based on CCRGs could help to evaluate the prognosis of LUAC patients. The 10 LUAC-specific CCRGs could be used as prognostic markers of LUAC.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiameng Xu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zirui Liao
- Medical College, Orthopedic Institute, Soochow University, Suzhou, China
| | - Guangbin Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chengpeng Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu Feng
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
13
|
Zhang C, Chen X, Chen Y, Cao M, Tang J, Zhong B, He M. The PITX gene family as potential biomarkers and therapeutic targets in lung adenocarcinoma. Medicine (Baltimore) 2021; 100:e23936. [PMID: 33530195 PMCID: PMC7850728 DOI: 10.1097/md.0000000000023936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 07/06/2020] [Accepted: 11/25/2020] [Indexed: 01/05/2023] Open
Abstract
ABSTRACT The PITX gene family of transcription factors have been reported to regulate the development of multiple organs. This study was designed to investigate the role of PITXs in lung adenocarcinoma (LUAD).In this study, the transcriptional levels of the 3 identified PITXs in patients with LUAD were examined using the gene expression profiling interactive analysis interactive web server. Meanwhile, the immunohistochemical data of the 3 PITXs were obtained in the Human Protein Atlas website, and western blotting was additionally conducted for further verification. Moreover, the association between the levels of PITXs and the stage plot as well as overall survival of patients with LUAD was analyzed.We found that the mRNA and protein levels of PITX1 and PITX2 were higher in LUAD tissues than those in normal lung tissues, while those of PITX3 displayed no significant differences. Additionally, PITX1 and PITX3 were found to be significantly associated with the stage of LUAD. The Kaplan-Meier Plot showed that the high level of PITX1 conferred a better overall survival of patients with LUAD while the high level of PITX3 was associated with poor prognosis.Our study implied that PITX1 and PITX3 are potential targets of precision therapy for patients with LUAD while PITX1 and PITX2 are regarded as novel biomarkers for the diagnosis of LUAD.
Collapse
|
14
|
Paired like homeodomain 1 and SAM and SH3 domain-containing 1 in the progression and prognosis of head and neck squamous cell carcinoma. Int J Biochem Cell Biol 2020; 127:105846. [PMID: 32905855 DOI: 10.1016/j.biocel.2020.105846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 12/14/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is an aggressive malignancy with high morbidity and mortality rates. In spite of numerous advancements have been made in therapeutic methods, the prognosis of HNSCC patients remains poor. Therefore, investigation of crucial genes during HNSCC tumorigenesis which could be exploited as biomarkers and therapeutic targets is greatly needed. In this study, original data of four independent datasets was downloaded from the Gene Expression Omnibus database and analyzed through R language to screen out differentially expressed genes. Paired like homeodomain 1 and SAM and SH3 domain-containing 1 were selected to be further explored through multiple online databases. Quantitative real-time polymerase chain reaction analysis and immunohistochemistry assay were adopted to validate the downregulation of paired like homeodomain 1 and SAM and SH3 domain-containing 1 in HNSCC and statistical analysis indicated their close associations with patient prognosis. In vitro experiments demonstrated the inhibitory effect of paired like homeodomain 1 and SAM and SH3 domain-containing 1 on HNSCC progression. Overall, we identified the aberrant downregulation of paired like homeodomain 1 and SAM and SH3 domain-containing 1 in HNSCC and suggested the potential of utilizing them as therapeutic targets or efficient biomarkers for diagnosis and prognosis evaluation. Our findings may provide novel evidences for the development of new strategies for HNSCC treatment.
Collapse
|
15
|
Greco A, Goossens R, van Engelen B, van der Maarel SM. Consequences of epigenetic derepression in facioscapulohumeral muscular dystrophy. Clin Genet 2020; 97:799-814. [PMID: 32086799 PMCID: PMC7318180 DOI: 10.1111/cge.13726] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD), a common hereditary myopathy, is caused either by the contraction of the D4Z4 macrosatellite repeat at the distal end of chromosome 4q to a size of 1 to 10 repeat units (FSHD1) or by mutations in D4Z4 chromatin modifiers such as Structural Maintenance of Chromosomes Hinge Domain Containing 1 (FSHD2). These two genotypes share a phenotype characterized by progressive and often asymmetric muscle weakening and atrophy, and common epigenetic alterations of the D4Z4 repeat. All together, these epigenetic changes converge the two genetic forms into one disease and explain the derepression of the DUX4 gene, which is otherwise kept epigenetically silent in skeletal muscle. DUX4 is consistently transcriptionally upregulated in FSHD1 and FSHD2 skeletal muscle cells where it is believed to exercise a toxic effect. Here we provide a review of the recent literature describing the progress in understanding the complex genetic and epigenetic architecture of FSHD, with a focus on one of the consequences that these epigenetic changes inflict, the DUX4-induced immune deregulation cascade. Moreover, we review the latest therapeutic strategies, with particular attention to the potential of epigenetic correction of the FSHD locus.
Collapse
Affiliation(s)
- Anna Greco
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
- Department of Experimental Internal MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Remko Goossens
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Baziel van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | | |
Collapse
|
16
|
Ohira T, Kojima H, Kuroda Y, Aoki S, Inaoka D, Osaki M, Wanibuchi H, Okada F, Oshimura M, Kugoh H. PITX1 protein interacts with ZCCHC10 to regulate hTERT mRNA transcription. PLoS One 2019; 14:e0217605. [PMID: 31404068 PMCID: PMC6690549 DOI: 10.1371/journal.pone.0217605] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/29/2019] [Indexed: 01/21/2023] Open
Abstract
Telomerase is a ribonucleoprotein ribonucleic enzyme that is essential for cellular immortalization via elongation of telomere repeat sequences at the end of chromosomes. Human telomerase reverse transcriptase (hTERT), the catalytic subunit of telomerase holoenzyme, is a key regulator of telomerase activity. Telomerase activity, which has been detected in the majority of cancer cells, is accompanied by hTERT expression, suggesting that this enzyme activity contributes to an unlimited replication potential of cancer cells via regulation of telomere length. Thus, hTERT is an attractive target for cancer-specific treatments. We previously reported that pared-like homeodomain 1 (PITX1) is a negative regulator of hTERT through direct binding to the hTERT promoter. However, the mechanism by which the function of PITX1 contributes to transcriptional silencing of the hTERT gene remains to be clarified. Here, we show that PITX1 and zinc finger CCHC-type containing 10 (ZCCHC10) proteins cooperate to facilitate the transcriptional regulation of the hTERT gene by functional studies via FLAG pull-down assay. Co-expression of PITX1 and ZCCHC10 resulted in inhibition of hTERT transcription, in melanoma cell lines, whereas mutate-deletion of homeodomain in PITX1 that interact with ZCCHC10 did not induce similar phenotypes. In addition, ZCCHC10 expression levels showed marked decrease in the majority of melanoma cell lines and tissues. Taken together, these results suggest that ZCCHC10-PITX1 complex is the functional unit that suppresses hTERT transcription, and may play a crucial role as a novel tumor suppressor complex.
Collapse
Affiliation(s)
- Takahito Ohira
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Tottori, Japan
- Chromosome Engineering Research Center, Tottori University, Yonago, Tottori, Japan
| | - Hirotada Kojima
- Department of Immunology, Graduate School of Medicine, Osaka City University, Asahi-machi, Abeno-ku, Osaka, Japan
| | - Yuko Kuroda
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Tottori, Japan
| | - Sayaka Aoki
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Tottori, Japan
| | - Daigo Inaoka
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Tottori, Japan
| | - Mitsuhiko Osaki
- Chromosome Engineering Research Center, Tottori University, Yonago, Tottori, Japan
- Division of Pathological Biochemistry, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Hideki Wanibuchi
- Department of Molecular Pathology, Graduate School of Medicine, Osaka City University, Asahi-machi, Abeno-ku, Osaka, Japan
| | - Futoshi Okada
- Chromosome Engineering Research Center, Tottori University, Yonago, Tottori, Japan
- Division of Pathological Biochemistry, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Mitsuo Oshimura
- Chromosome Engineering Research Center, Tottori University, Yonago, Tottori, Japan
| | - Hiroyuki Kugoh
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Tottori, Japan
- Chromosome Engineering Research Center, Tottori University, Yonago, Tottori, Japan
- * E-mail:
| |
Collapse
|
17
|
Song X, Zhao C, Jiang L, Lin S, Bi J, Wei Q, Yu L, Zhao L, Wei M. High PITX1 expression in lung adenocarcinoma patients is associated with DNA methylation and poor prognosis. Pathol Res Pract 2018; 214:2046-2053. [DOI: 10.1016/j.prp.2018.09.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/07/2018] [Accepted: 09/28/2018] [Indexed: 11/29/2022]
|
18
|
Ezh1 Targets Bivalent Genes to Maintain Self-Renewing Stem Cells in Ezh2-Insufficient Myelodysplastic Syndrome. iScience 2018; 9:161-174. [PMID: 30396150 PMCID: PMC6223231 DOI: 10.1016/j.isci.2018.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 11/25/2022] Open
Abstract
Polycomb repressive complex (PRC) 2 represses transcription through histone H3K27 trimethylation (H3K27me3). We previously reported that the hematopoietic-cell-specific deletion of Ezh2, encoding a PRC2 enzyme, induced myelodysplastic syndrome (MDS) in mice, whereas the concurrent Ezh1 deletion depleted hematopoietic stem and progenitor cells (HSPCs). We herein demonstrated that mice with only one Ezh1 allele (Ezh1+/-Ezh2Δ/Δ) maintained HSPCs. A chromatin immunopreciptation sequence analysis revealed that residual PRC2 preferentially targeted genes with high levels of H3K27me3 and H2AK119 monoubiquitination (H2AK119ub1) in HSPCs (designated as Ezh1 core target genes), which were mostly developmental regulators, and maintained H3K27me3 levels in Ezh1+/-Ezh2Δ/Δ HSPCs. Even upon the complete depletion of Ezh1 and Ezh2, H2AK119ub1 levels were largely retained, and only a minimal number of Ezh1 core targets were de-repressed. These results indicate that genes marked with high levels of H3K27me3 and H2AK119ub1 are the core targets of polycomb complexes in HSPCs as well as MDS stem cells. One allele of Ezh1 is enough to maintain self-renewing HSCs and MDS stem cells Ezh1 core targets are marked with high levels of H3K27me3 and H2AK119ub1 in HSPCs Ezh1 core targets are mostly bivalent developmental regulators and critical for HSCs
Collapse
|
19
|
Intragenic DNA methylation of PITX1 and the adjacent long non-coding RNA C5orf66-AS1 are prognostic biomarkers in patients with head and neck squamous cell carcinomas. PLoS One 2018; 13:e0192742. [PMID: 29425237 PMCID: PMC5806891 DOI: 10.1371/journal.pone.0192742] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/30/2018] [Indexed: 01/30/2023] Open
Abstract
Background Patients with squamous cell cancer of the head and neck region (HNSCC) are at risk for disease recurrence and metastases, even after initial successful therapy. A tissue-based biomarker could be beneficial to guide treatment as well as post-treatment surveillance. Gene methylation status has been recently identified as powerful prognostic biomarker in HNSCC. We therefore evaluated the methylation status of the homeobox gene PITX1 and the adjacent long intergenic non-coding RNA (lincRNA) C5orf66-AS1 in publicly available datasets. Methods Gene methylation and expression data from 528 patients with HNSCC included in The Cancer Genome Atlas (TCGA, there obtained by using the Infinium HumanMethylation450 BeadChip Kit) were evaluated and methylation and expression levels of PITX1 and lincRNA C5orf66-AS1 was correlated with overall survival and other parameters. Thus, ten beads targeting PITX1 exon 3 and three beads targeting lincRNA C5orf66-AS1 were identified as significant candidates. The mean methylation of these beads was used for further correlation and the median was employed for dichotomization. Results Both PITX1 exon 3 and lincRNA C5orf66-AS1 were significantly higher methylated in tumor tissue than in normal adjacent tissue (NAT) (PITX1 exon 3: tumor tissue 58.1%, NAT: 31.7%, p<0.001; lincRNA C5orf66-AS1: tumor tissue: 27.4%, NAT: 18.9%, p<0.001). In a univariate analysis, hypermethylation of both loci was significantly associated with the risk of death (univariate: exon 3: Hazard ratio (HR): 4.97 [1.78–16.71], p = 0.010, lincRNA C5orf66-AS1: Hazard ratio (HR): 12.23 [3.01–49.74], p<0.001). PITX1 exon 3 and lincRNA C5orf66-AS1 methylation was also significantly correlated with tumor localization, T category, human papilloma virus (HPV)-negative and p16-negative tumors and tumor grade. Kaplan-Meier analysis showed, that lincRNA C5orf66-AS1 hypomethylation was significantly associated with overall survival (p = 0.001) in the entire cohort as well in a subgroup of HPV-negative tumors (p = 0.003) and in patients with laryngeal tumors (p = 0.022). Conclusion Methylation status of PITX1 and even more so of lincRNA C5orf66-AS1 is a promising prognostic biomarker in HNSCC, in particular for HPV-negative patients. Further prospective evaluation is warranted.
Collapse
|
20
|
Gunathilake MN, Lee J, Cho YA, Oh JH, Chang HJ, Sohn DK, Shin A, Kim J. Interaction between physical activity, PITX1 rs647161 genetic polymorphism and colorectal cancer risk in a Korean population: a case-control study. Oncotarget 2018; 9:7590-7603. [PMID: 29484135 PMCID: PMC5800927 DOI: 10.18632/oncotarget.24136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 12/26/2017] [Indexed: 12/31/2022] Open
Abstract
This study assessed the interaction between physical activity and colorectal cancer (CRC) risk based on a polymorphism in the paired-like homeodomain 1 (PITX1) gene in Koreans. In total, 923 cases and 1,846 controls were enrolled at the National Cancer Center, Korea. Subjects who did regular exercise showed a significantly reduced risk of CRC than those did not exercise regularly (OR = 0.37, 95% CI = 0.30-0.45). Subjects in the highest tertile of metabolic equivalents of task (MET)-minutes per week showed a significantly lower risk of CRC (OR = 0.62, 95% CI = 0.48-0.79, p-trend < 0.001). In the dominant model, minor allele carriers showed a significantly higher risk of CRC than subjects homozygous for the major allele (OR = 1.46, 95% CI = 1.18-1.80). The PITX1 genetic variant showed significant interactions with regular exercise and CRC risk (p-interaction = 0.018) and colon cancer risk (p-interaction = 0.029) among all subjects. Subjects who carried at least one minor allele and did not regularly exercise showed a greater risk of CRC (OR = 1.81, 95% CI = 1.37-2.41). Subjects who were homozygous for the major allele with high physical activity showed a significantly reduced risk of CRC (OR = 0.56, 95% CI = 0.38-0.82). Thus, individuals with PITX1 genetic variants can have benefit from physical activity regarding prevention of CRC risk in a Korean population.
Collapse
Affiliation(s)
- Madhawa Neranjan Gunathilake
- Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, Goyang-si, Gyeonggi-do 10408, South Korea
| | - Jeonghee Lee
- Department of Biomedical Science, Graduate School of Cancer Science and Policy, Goyang-si, Gyeonggi-do 10408, South Korea
| | - Young Ae Cho
- Department of Biomedical Science, Graduate School of Cancer Science and Policy, Goyang-si, Gyeonggi-do 10408, South Korea
| | - Jae Hwan Oh
- Center for Colorectal Cancer, National Cancer Center Hospital, National Cancer Center, Goyang-si, Gyeonggi-do 10408, South Korea
| | - Hee Jin Chang
- Center for Colorectal Cancer, National Cancer Center Hospital, National Cancer Center, Goyang-si, Gyeonggi-do 10408, South Korea
| | - Dae Kyung Sohn
- Center for Colorectal Cancer, National Cancer Center Hospital, National Cancer Center, Goyang-si, Gyeonggi-do 10408, South Korea
| | - Aesun Shin
- Department of Preventive Medicine, Seoul National University College of Medicine, Jongno-gu, Seoul 03080, South Korea
| | - Jeongseon Kim
- Department of Biomedical Science, Graduate School of Cancer Science and Policy, Goyang-si, Gyeonggi-do 10408, South Korea
| |
Collapse
|
21
|
Vanderplanck C, Tassin A, Ansseau E, Charron S, Wauters A, Lancelot C, Vancutsem K, Laoudj-Chenivesse D, Belayew A, Coppée F. Overexpression of the double homeodomain protein DUX4c interferes with myofibrillogenesis and induces clustering of myonuclei. Skelet Muscle 2018; 8:2. [PMID: 29329560 PMCID: PMC5767009 DOI: 10.1186/s13395-017-0148-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 12/27/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Facioscapulohumeral muscular dystrophy (FSHD) is associated with DNA hypomethylation at the 4q35 D4Z4 repeat array. Both the causal gene DUX4 and its homolog DUX4c are induced. DUX4c is immunodetected in every myonucleus of proliferative cells, while DUX4 is present in only 1/1000 of myonuclei where it initiates a gene deregulation cascade. FSHD primary myoblasts differentiate into either atrophic or disorganized myotubes. DUX4 expression induces atrophic myotubes and associated FSHD markers. Although DUX4 silencing normalizes the FSHD atrophic myotube phenotype, this is not the case for the disorganized phenotype. DUX4c overexpression increases the proliferation rate of human TE671 rhabdomyosarcoma cells and inhibits their differentiation, suggesting a normal role during muscle differentiation. METHODS By gain- and loss-of-function experiments in primary human muscle cells, we studied the DUX4c impact on proliferation, differentiation, myotube morphology, and FSHD markers. RESULTS In primary myoblasts, DUX4c overexpression increased the staining intensity of KI67 (a proliferation marker) in adjacent cells and delayed differentiation. In differentiating cells, DUX4c overexpression led to the expression of some FSHD markers including β-catenin and to the formation of disorganized myotubes presenting large clusters of nuclei and cytoskeletal defects. These were more severe when DUX4c was expressed before the cytoskeleton reorganized and myofibrils assembled. In addition, endogenous DUX4c was detected at a higher level in FSHD myotubes presenting abnormal clusters of nuclei and cytoskeletal disorganization. We found that the disorganized FSHD myotube phenotype could be rescued by silencing of DUX4c, not DUX4. CONCLUSION Excess DUX4c could disturb cytoskeletal organization and nuclear distribution in FSHD myotubes. We suggest that DUX4c up-regulation could contribute to DUX4 toxicity in the muscle fibers by favoring the clustering of myonuclei and therefore facilitating DUX4 diffusion among them. Defining DUX4c functions in the healthy skeletal muscle should help to design new targeted FSHD therapy by DUX4 or DUX4c inhibition without suppressing DUX4c normal function.
Collapse
Affiliation(s)
- Céline Vanderplanck
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000 Mons, Belgium
| | - Alexandra Tassin
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000 Mons, Belgium
| | - Eugénie Ansseau
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000 Mons, Belgium
| | - Sébastien Charron
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000 Mons, Belgium
| | - Armelle Wauters
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000 Mons, Belgium
| | - Céline Lancelot
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000 Mons, Belgium
| | - Kelly Vancutsem
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000 Mons, Belgium
| | | | - Alexandra Belayew
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000 Mons, Belgium
| | - Frédérique Coppée
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000 Mons, Belgium
| |
Collapse
|
22
|
Liu Y, Nan F, Lu K, Wang Y, Liu Y, Wei S, Wu R, Wang Y. Identification of key genes in endometrioid endometrial adenocarcinoma via TCGA database. Cancer Biomark 2017; 21:11-21. [PMID: 29060924 DOI: 10.3233/cbm-170164] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Yanni Liu
- Department of Obstetrics and Gynecology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Fangfang Nan
- Department of Obstetrics and Gynecology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Kexin Lu
- Department of Obstetrics and Gynecology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Yunfang Wang
- Department of Obstetrics and Gynecology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Yu Liu
- Department of Obstetrics and Gynecology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Shuangyan Wei
- Department of Obstetrics and Gynecology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Ruixue Wu
- Department of Obstetrics and Gynecology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| |
Collapse
|
23
|
Profilin potentiates chemotherapeutic agents mediated cell death via suppression of NF-κB and upregulation of p53. Apoptosis 2016; 21:502-13. [PMID: 26842845 DOI: 10.1007/s10495-016-1222-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The molecular mechanism by which Profilin acts as a tumor suppressor is still unclear. Several chemotherapeutic agents, used till date either have unfavorable side effects or acquired resistance in tumor cells. Our findings show that Profilin enhances cell death mediated by several chemotherapeutic-agents. The activation of NF-κB and its dependent genes, mediated by paclitaxel and vinblastine, was completely inhibited in Profilin overexpressing cells. This inhibition was due to the Profilin mediated attenuation of IκBα degradation, thereby preventing p65 nuclear translocation and low NF-κB DNA binding activity.Moreover, Profilin increases level of p53 in the presence of known inducers, such as doxorubicin, vinblastine, and benzofuran. This increased p53 level leads to enhanced cell death as indicated by activation of caspases 3, 8, 9, which results in cleavage of PARP.Furthermore, knocking down of p53 in Profilin overexpressing cells leads to decreased cell death. Ectopic expression of Profilin in HCT116 p53 knock out cells showed lesser cell death as compared to the HCT116 p53 wild type cells. For the first time, we provide evidences, which suggest that Profilin synergizes with chemotherapeutic drugs to induce tumor cell death by regulating NF-κB and p53. Thus, modulation of Profilin may be a useful strategy for effective combination therapy.
Collapse
|
24
|
Pellicelli M, Picard C, Wang D, Lavigne P, Moreau A. E2F1 and TFDP1 Regulate PITX1 Expression in Normal and Osteoarthritic Articular Chondrocytes. PLoS One 2016; 11:e0165951. [PMID: 27802335 PMCID: PMC5089553 DOI: 10.1371/journal.pone.0165951] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/20/2016] [Indexed: 12/19/2022] Open
Abstract
We previously reported a loss-of-PITX1 expression in patients suffering of knee/hip osteoarthritis (OA). Search for the mechanism underlying this event led us to discover that PITX1 repression was triggered by the aberrant nuclear accumulation of Prohibitin (PHB1), an E2F1 co-repressor, in OA articular chondrocytes. In the current study, we assessed in details the involvement of E2F transcription factors in regulating PITX1 expression. We also analyzed other genes that are similarly regulated by E2F in regard to osteoarthritis. The transcriptional regulation of the PITX1 promoter by E2F1 was analyzed with the luciferase reporter assay, and chromatin immunoprecipitation assays, which confirmed direct E2F1-PITX1 interactions. The probable binding sites for E2F1 in the PITX1 promoter were identified by DNA pulldown experiments. In silico and in vitro analyses show that the PITX1 proximal promoter region contains 2 specific sequences that are bound by E2F1. Overexpression of E2F1 enhances PITX1 promoter activity and mRNA transcription. In primary control and osteoarthritis chondrocytes, real time RT-PCR was used to measure the mRNA expression levels of candidate genes under E2F1 transcriptional control. Transcription Factor Dp-1 (TFDP1) knockdown experiments confirmed that the E2F1-TFDP1 complex regulates PITX1. Knockdown of TFDP1, an E2F1 dimerization partner, inhibits the activating effect of E2F1 and reduces both PITX1 promoter activity and mRNA transcription. Real time RT-PCR results reveal reduced expression of TFDP1 and a similar downregulation of their targets PITX1, BRCA1, CDKN1A, and RAD51 in mid-stage OA chondrocytes. Collectively, our data define a previously uncharacterized role for E2F1 and TFDP1 in the transcriptional regulation of PITX1 in articular chondrocytes. Additional E2F1 targets may be affected in OA pathogenesis.
Collapse
Affiliation(s)
- Martin Pellicelli
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Sainte-Justine University Hospital Research Center, Montréal, Québec, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Cynthia Picard
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Sainte-Justine University Hospital Research Center, Montréal, Québec, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - DaShen Wang
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Sainte-Justine University Hospital Research Center, Montréal, Québec, Canada
| | - Patrick Lavigne
- Orthopedic Division, Maisonneuve-Rosemont Hospital, Montréal, Québec, Canada and Department of Surgery, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Alain Moreau
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Sainte-Justine University Hospital Research Center, Montréal, Québec, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
25
|
Tai WT, Chen YL, Chu PY, Chen LJ, Hung MH, Shiau CW, Huang JW, Tsai MH, Chen KF. Protein tyrosine phosphatase 1B dephosphorylates PITX1 and regulates p120RasGAP in hepatocellular carcinoma. Hepatology 2016; 63:1528-43. [PMID: 26840794 DOI: 10.1002/hep.28478] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 01/29/2016] [Indexed: 01/07/2023]
Abstract
UNLABELLED The effective therapeutic targets for hepatocellular carcinoma remain limited. Pituitary homeobox 1 (PITX1) functions as a tumor suppressor in hepatocarcinogenesis by regulating the expression level of Ras guanosine triphosphatase-activating protein. Here, we report that protein tyrosine phosphatases 1B (PTP1B) directly dephosphorylated PITX1 at Y160, Y175, and Y179 to further weaken the protein stability of PITX. The PTP1B-dependent decline of PITX1 reduced its transcriptional activity for p120RasGAP (RASA1), a Ras guanosine triphosphatase-activating protein. Both silencing of PTP1B and PTP1B inhibitor up-regulated the PITX1-p120RasGAP axis through hyperphosphorylation of PITX1. Sorafenib, the first and only targeted drug approved for hepatocellular carcinoma, directly decreased PTP1B activity and promoted the expression of PITX1 and p120RasGAP by PITX1 hyperphosphorylation. Molecular docking also supported the potential interaction between PTP1B and sorafenib. PTP1B overexpression impaired the sensitivity of sorafenib in vitro and in vivo, implying that PTP1B has a significant effect on sorafenib-induced apoptosis. In sorafenib-treated tumor samples, we further found inhibition of PTP1B activity and up-regulation of the PITX1-p120RasGAP axis, suggesting that PTP1B inhibitor may be effective for the treatment of hepatocellular carcinoma. By immunohistochemical staining of hepatic tumor tissue from 155 patients, the expression of PTP1B was significantly in tumor parts higher than nontumor parts (P = 0.02). Furthermore, high expression of PTP1B was significantly associated with poor tumor differentiation (P = 0.031). CONCLUSION PTP1B dephosphorylates PITX1 to weaken its protein stability and the transcriptional activity for p120RasGAP gene expression and acts as a determinant of the sorafenib-mediated drug effect; targeting the PITX1-p120RasGAP axis with a PTP1B inhibitor may provide a new therapy for patients with hepatocellular carcinoma.
Collapse
Affiliation(s)
- Wei-Tien Tai
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Yao-Li Chen
- Department of Surgery, Changhua Christian Hospital, Changhua, Taiwan.,School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, Changhua City, Taiwan.,School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Li-Ju Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Man-Hsin Hung
- Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Program in Molecular Medicine, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Wai Shiau
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Jui-Wen Huang
- Industrial Technology Research Institute, Hsin-Chu, Taiwan
| | - Ming-Hsien Tsai
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Kuen-Feng Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
26
|
Akt phosphorylates myc-associated zinc finger protein (MAZ), releases P-MAZ from the p53 promoter, and activates p53 transcription. Cancer Lett 2016; 375:9-19. [DOI: 10.1016/j.canlet.2016.02.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/12/2016] [Accepted: 02/12/2016] [Indexed: 11/21/2022]
|
27
|
Studies of Tumor Suppressor Genes via Chromosome Engineering. Cancers (Basel) 2015; 8:cancers8010004. [PMID: 26729168 PMCID: PMC4728451 DOI: 10.3390/cancers8010004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/19/2015] [Accepted: 12/21/2015] [Indexed: 12/01/2022] Open
Abstract
The development and progression of malignant tumors likely result from consecutive accumulation of genetic alterations, including dysfunctional tumor suppressor genes. However, the signaling mechanisms that underlie the development of tumors have not yet been completely elucidated. Discovery of novel tumor-related genes plays a crucial role in our understanding of the development and progression of malignant tumors. Chromosome engineering technology based on microcell-mediated chromosome transfer (MMCT) is an effective approach for identification of tumor suppressor genes. The studies have revealed at least five tumor suppression effects. The discovery of novel tumor suppressor genes provide greater understanding of the complex signaling pathways that underlie the development and progression of malignant tumors. These advances are being exploited to develop targeted drugs and new biological therapies for cancer.
Collapse
|
28
|
Ke J, Lou J, Chen X, Li J, Liu C, Gong Y, Yang Y, Zhu Y, Zhang Y, Gong J. Identification of a Potential Regulatory Variant for Colorectal Cancer Risk Mapping to Chromosome 5q31.1: A Post-GWAS Study. PLoS One 2015; 10:e0138478. [PMID: 26381143 PMCID: PMC4575091 DOI: 10.1371/journal.pone.0138478] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/29/2015] [Indexed: 02/07/2023] Open
Abstract
Large-scale genome-wide association studies (GWAS) have established chromosome 5q31.1 as a susceptibility locus for colorectal cancer (CRC), which was still lack of causal genetic variants. We searched potentially regulatory single nucleotide polymorphisms (SNPs) in the overlap region between linkage disequilibrium (LD) block of 5q31.1 and regulatory elements predicted by histone modifications, then tested their association with CRC via a case-control study. Among three candidate common variants, we found rs17716310 conferred significantly (heterozygous model: OR = 1.273, 95% confidence interval (95%CI) = 1.016–1.595, P = 0.036) and marginally (dominant model: OR = 1.238, 95%CI = 1.000–1.532, P = 0.050) increase risk for CRC in a Chinese population including 695 cases and 709 controls. This variation was suggested to be regulatory altering the activity of enhancer that control PITX1 expression. Using epigenetic information such as chromatin immunoprecipitation-sequencing (ChIP-seq) data might help researchers to interpret the results of GWAS and locate causal variants for diseases in post-GWAS era.
Collapse
Affiliation(s)
- Juntao Ke
- State Key Laboratory of Environment Health (Incubation), MOE (Ministry of Education) Key Laboratory of Environment & Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), and Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiao Lou
- State Key Laboratory of Environment Health (Incubation), MOE (Ministry of Education) Key Laboratory of Environment & Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), and Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xueqin Chen
- State Key Laboratory of Environment Health (Incubation), MOE (Ministry of Education) Key Laboratory of Environment & Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), and Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaoyuan Li
- State Key Laboratory of Environment Health (Incubation), MOE (Ministry of Education) Key Laboratory of Environment & Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), and Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Liu
- State Key Laboratory of Environment Health (Incubation), MOE (Ministry of Education) Key Laboratory of Environment & Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), and Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yajie Gong
- State Key Laboratory of Environment Health (Incubation), MOE (Ministry of Education) Key Laboratory of Environment & Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), and Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Yang
- State Key Laboratory of Environment Health (Incubation), MOE (Ministry of Education) Key Laboratory of Environment & Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), and Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhu
- State Key Laboratory of Environment Health (Incubation), MOE (Ministry of Education) Key Laboratory of Environment & Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), and Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Zhang
- State Key Laboratory of Environment Health (Incubation), MOE (Ministry of Education) Key Laboratory of Environment & Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), and Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Gong
- State Key Laboratory of Environment Health (Incubation), MOE (Ministry of Education) Key Laboratory of Environment & Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), and Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail:
| |
Collapse
|
29
|
Fox DK, Ebert SM, Bongers KS, Dyle MC, Bullard SA, Dierdorff JM, Kunkel SD, Adams CM. p53 and ATF4 mediate distinct and additive pathways to skeletal muscle atrophy during limb immobilization. Am J Physiol Endocrinol Metab 2014; 307:E245-61. [PMID: 24895282 PMCID: PMC4121573 DOI: 10.1152/ajpendo.00010.2014] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Immobilization causes skeletal muscle atrophy via complex signaling pathways that are not well understood. To better understand these pathways, we investigated the roles of p53 and ATF4, two transcription factors that mediate adaptations to a variety of cellular stresses. Using mouse models, we demonstrate that 3 days of muscle immobilization induces muscle atrophy and increases expression of p53 and ATF4. Furthermore, muscle fibers lacking p53 or ATF4 are partially resistant to immobilization-induced muscle atrophy, and forced expression of p53 or ATF4 induces muscle fiber atrophy in the absence of immobilization. Importantly, however, p53 and ATF4 do not require each other to promote atrophy, and coexpression of p53 and ATF4 induces more atrophy than either transcription factor alone. Moreover, muscle fibers lacking both p53 and ATF4 are more resistant to immobilization-induced atrophy than fibers lacking only p53 or ATF4. Interestingly, the independent and additive nature of the p53 and ATF4 pathways allows for combinatorial control of at least one downstream effector, p21. Using genome-wide mRNA expression arrays, we identified p21 mRNA as a skeletal muscle transcript that is highly induced in immobilized muscle via the combined actions of p53 and ATF4. Additionally, in mouse muscle, p21 induces atrophy in a manner that does not require immobilization, p53 or ATF4, and p21 is required for atrophy induced by immobilization, p53, and ATF4. Collectively, these results identify p53 and ATF4 as essential and complementary mediators of immobilization-induced muscle atrophy and discover p21 as a critical downstream effector of the p53 and ATF4 pathways.
Collapse
Affiliation(s)
- Daniel K Fox
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Scott M Ebert
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Kale S Bongers
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Michael C Dyle
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Steven A Bullard
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and Iowa City Veterans Affairs Medical Center, Iowa City, Iowa
| | - Jason M Dierdorff
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Steven D Kunkel
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Christopher M Adams
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and Iowa City Veterans Affairs Medical Center, Iowa City, Iowa
| |
Collapse
|
30
|
Single nucleotide polymorphisms associated with colorectal cancer susceptibility and loss of heterozygosity in a Taiwanese population. PLoS One 2014; 9:e100060. [PMID: 24968322 PMCID: PMC4072675 DOI: 10.1371/journal.pone.0100060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 05/22/2014] [Indexed: 01/01/2023] Open
Abstract
Given the significant racial and ethnic diversity in genetic variation, we are intrigued to find out whether the single nucleotide polymorphisms (SNPs) identified in genome-wide association studies of colorectal cancer (CRC) susceptibility in East Asian populations are also relevant to the population of Taiwan. Moreover, loss of heterozygosity (LOH) may provide insight into how variants alter CRC risk and how regulatory elements control gene expression. To investigate the racial and ethnic diversity of CRC-susceptibility genetic variants and their relevance to the Taiwanese population, we genotyped 705 CRC cases and 1,802 healthy controls (Taiwan Biobank) for fifteen previously reported East Asian CRC-susceptibility SNPs and four novel genetic variants identified by whole-exome sequencing. We found that rs10795668 in FLJ3802842 and rs4631962 in CCND2 were significantly associated with CRC risk in the Taiwanese population. The previously unreported rs1338565 was associated with a significant increased risk of CRC. In addition, we also genotyped tumor tissue and paired adjacent normal tissues of these 705 CRC cases to search for LOH, as well as risk-associated and protective alleles. LOH analysis revealed preferential retention of three SNPs, rs12657484, rs3802842, and rs4444235, in tumor tissues. rs4444235 has been recently reported to be a cis-acting regulator of BMP4 gene; in this study, the C allele was preferentially retained in tumor tissues (p = 0.0023). rs4631962 and rs10795668 contribute to CRC risk in the Taiwanese and East Asian populations, and the newly identified rs1338565 was specifically associated with CRC, supporting the ethnic diversity of CRC-susceptibility SNPs. LOH analysis suggested that the three CRC risk variants, rs12657484, rs3802842, and rs4444235, exhibited somatic allele-specific imbalance and might be critical during neoplastic progression.
Collapse
|
31
|
Zhang K, Civan J, Mukherjee S, Patel F, Yang H. Genetic variations in colorectal cancer risk and clinical outcome. World J Gastroenterol 2014; 20:4167-4177. [PMID: 24764655 PMCID: PMC3989953 DOI: 10.3748/wjg.v20.i15.4167] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 01/08/2014] [Accepted: 03/06/2014] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) has an apparent hereditary component, as evidenced by the well-characterized genetic syndromes and family history associated with the increased risk of this disease. However, in a large fraction of CRC cases, no known genetic syndrome or family history can be identified, suggesting the presence of “missing heritability” in CRC etiology. The genome-wide association study (GWAS) platform has led to the identification of multiple replicable common genetic variants associated with CRC risk. These newly discovered genetic variations might account for a portion of the missing heritability. Here, we summarize the recent GWASs related to newly identified genetic variants associated with CRC risk and clinical outcome. The findings from these studies suggest that there is a lack of understanding of the mechanism of many single nucleotide polymorphisms (SNPs) that are associated with CRC. In addition, the utility of SNPs as prognostic markers of CRC in clinical settings remains to be further assessed. Finally, the currently validated SNPs explain only a small fraction of total heritability in complex-trait diseases like CRC. Thus, the “missing heritability” still needs to be explored further. Future epidemiological and functional investigations of these variants will add to our understanding of CRC pathogenesis, and may ultimately lead to individualized strategies for prevention and treatment of CRC.
Collapse
|
32
|
Ding K, Banerjee A, Tan S, Zhao J, Zhuang Q, Li R, Qian P, Liu S, Wu ZS, Lobie PE, Zhu T. Artemin, a member of the glial cell line-derived neurotrophic factor family of ligands, is HER2-regulated and mediates acquired trastuzumab resistance by promoting cancer stem cell-like behavior in mammary carcinoma cells. J Biol Chem 2014; 289:16057-71. [PMID: 24737320 DOI: 10.1074/jbc.m113.529552] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Previous studies have demonstrated that Artemin (ARTN) functions as a cancer stem cell (CSC) and metastatic factor in mammary carcinoma. Herein, we report that ARTN mediates acquired resistance to trastuzumab in HER2-positive mammary carcinoma cells. Ligands that increase HER2 activity increased ARTN expression in HER2-positive mammary carcinoma cells, whereas trastuzumab inhibited ARTN expression. Forced expression of ARTN decreased the sensitivity of HER2-positive mammary carcinoma cells to trastuzumab both in vitro and in vivo. Conversely, siRNA-mediated depletion of ARTN enhanced trastuzumab efficacy. Cells with acquired resistance to trastuzumab exhibited increased ARTN expression, the depletion of which restored trastuzumab sensitivity. Trastuzumab resistance produced an increased CSC population concomitant with enhanced mammospheric growth. ARTN mediated the enhancement of the CSC population by increased BCL-2 expression, and the CSC population in trastuzumab-resistant cells was abrogated upon inhibition of BCL-2. Hence, we conclude that ARTN is one mediator of acquired resistance to trastuzumab in HER2-positive mammary carcinoma cells.
Collapse
Affiliation(s)
- Keshuo Ding
- From the Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Arindam Banerjee
- the Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore 117599, and
| | - Sheng Tan
- From the Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - JunSong Zhao
- From the Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Qian Zhuang
- From the Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Rui Li
- From the Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Pengxu Qian
- From the Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Suling Liu
- From the Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Zheng-Sheng Wu
- From the Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China, the Department of Pathology, Anhui Medical University, Hefei, Anhui 230032, People's Republic of China, the Department of Pathology, Shanghai Medical College, Fudan University, Yangpu, Shanghai, China
| | - Peter E Lobie
- the Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore 117599, and the National Cancer Institute of Singapore, National University Health System, Singapore 119074
| | - Tao Zhu
- From the Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China,
| |
Collapse
|
33
|
Guan J, Gluckman P, Yang P, Krissansen G, Sun X, Zhou Y, Wen J, Phillips G, Shorten PR, McMahon CD, Wake GC, Chan WHK, Thomas MF, Ren A, Moon S, Liu DX. Cyclic glycine-proline regulates IGF-1 homeostasis by altering the binding of IGFBP-3 to IGF-1. Sci Rep 2014; 4:4388. [PMID: 24633053 PMCID: PMC3955921 DOI: 10.1038/srep04388] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/28/2014] [Indexed: 02/02/2023] Open
Abstract
The homeostasis of insulin-like growth factor-1 (IGF-1) is essential for metabolism, development and survival. Insufficient IGF-1 is associated with poor recovery from wounds whereas excessive IGF-1 contributes to growth of tumours. We have shown that cyclic glycine-proline (cGP), a metabolite of IGF-1, can normalise IGF-1 function by showing its efficacy in improving the recovery from ischemic brain injury in rats and inhibiting the growth of lymphomic tumours in mice. Further investigation in cell culture suggested that cGP promoted the activity of IGF-1 when it was insufficient, but inhibited the activity of IGF-1 when it was excessive. Mathematical modelling revealed that the efficacy of cGP was a modulated IGF-1 effect via changing the binding of IGF-1 to its binding proteins, which dynamically regulates the balance between bioavailable and non-bioavailable IGF-1. Our data reveal a novel mechanism of auto-regulation of IGF-1, which has physiological and pathophysiological consequences and potential pharmacological utility.
Collapse
Affiliation(s)
- Jian Guan
- Liggins Institute, University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand
- Centre for Brain Research, Faculty of Medicine and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand
- Gravida National Centre for Growth and Development, University of Auckland, Auckland, New Zealand
| | - Peter Gluckman
- Liggins Institute, University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand
- Gravida National Centre for Growth and Development, University of Auckland, Auckland, New Zealand
| | - Panzao Yang
- Liggins Institute, University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand
- Centre for Brain Research, Faculty of Medicine and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand
| | - Geoff Krissansen
- Department of Molecular Medicine and Pathology, Faculty of Medicine and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand
| | - Xueying Sun
- Department of Molecular Medicine and Pathology, Faculty of Medicine and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand
| | - Yongzhi Zhou
- Liggins Institute, University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand
- School of Pharmacy, Faculty of Medicine and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand
| | - Jingyuan Wen
- School of Pharmacy, Faculty of Medicine and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand
| | - Gemma Phillips
- Institute of Natural and Mathematical Sciences, Massey University, Private Bag 102904, Auckland, New Zealand
- AgResearch Ltd, Ruakura Research Centre, Private Bag 3123, Hamilton 3240, New Zealand
| | - Paul R. Shorten
- Gravida National Centre for Growth and Development, University of Auckland, Auckland, New Zealand
- AgResearch Ltd, Ruakura Research Centre, Private Bag 3123, Hamilton 3240, New Zealand
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Chris D. McMahon
- Gravida National Centre for Growth and Development, University of Auckland, Auckland, New Zealand
- AgResearch Ltd, Ruakura Research Centre, Private Bag 3123, Hamilton 3240, New Zealand
| | - Graeme C. Wake
- Gravida National Centre for Growth and Development, University of Auckland, Auckland, New Zealand
- Institute of Natural and Mathematical Sciences, Massey University, Private Bag 102904, Auckland, New Zealand
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Wendy H. K. Chan
- Liggins Institute, University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand
| | - Mark F. Thomas
- AgResearch Ltd, Ruakura Research Centre, Private Bag 3123, Hamilton 3240, New Zealand
| | - April Ren
- Liggins Institute, University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand
| | - Steve Moon
- Liggins Institute, University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand
| | - Dong-Xu Liu
- Liggins Institute, University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand
| |
Collapse
|
34
|
Booy EP, Howard R, Marushchak O, Ariyo EO, Meier M, Novakowski SK, Deo SR, Dzananovic E, Stetefeld J, McKenna SA. The RNA helicase RHAU (DHX36) suppresses expression of the transcription factor PITX1. Nucleic Acids Res 2013; 42:3346-61. [PMID: 24369427 PMCID: PMC3950718 DOI: 10.1093/nar/gkt1340] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
RNA Helicase associated with AU-rich element (RHAU) (DHX36) is a DEAH (Aspartic acid, Glumatic Acid, Alanine, Histidine)-box RNA helicase that can bind and unwind G4-quadruplexes in DNA and RNA. To detect novel RNA targets of RHAU, we performed an RNA co-immunoprecipitation screen and identified the PITX1 messenger RNA (mRNA) as specifically and highly enriched. PITX1 is a homeobox transcription factor with roles in both development and cancer. Primary sequence analysis identified three probable quadruplexes within the 3′-untranslated region of the PITX1 mRNA. Each of these sequences, when isolated, forms stable quadruplex structures that interact with RHAU. We provide evidence that these quadruplexes exist in the endogenous mRNA; however, we discovered that RHAU is tethered to the mRNA via an alternative non–quadruplex-forming region. RHAU knockdown by small interfering RNA results in significant increases in PITX1 protein levels with only marginal changes in mRNA, suggesting a role for RHAU in translational regulation. Involvement of components of the microRNA machinery is supported by similar and non-additive increases in PITX1 protein expression on Dicer and combined RHAU/Dicer knockdown. We also demonstrate a requirement of argonaute-2, a key RNA-induced silencing complex component, to mediate RHAU-dependent changes in PITX1 protein levels. These results demonstrate a novel role for RHAU in microRNA-mediated translational regulation at a quadruplex-containing 3′-untranslated region.
Collapse
Affiliation(s)
- Evan P Booy
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada, University of Manitoba, Winnipeg, Manitoba, Canada, Department of Biochemistry and Molecular Biology, University of British Columbia, V6T 1Z4 Vancouver, British Columbia, Canada and Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Jung Y, Abdel-Fatah TM, Chan SY, Nolan CC, Green AR, Ellis IO, Li L, Huang B, Lu J, Xu B, Chen L, Ma RZ, Zhang M, Wang J, Wu Z, Zhu T, Perry JK, Lobie PE, Liu DX. SHON Is a Novel Estrogen-Regulated Oncogene in Mammary Carcinoma That Predicts Patient Response to Endocrine Therapy. Cancer Res 2013; 73:6951-62. [DOI: 10.1158/0008-5472.can-13-0982] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Jia WH, Zhang B, Matsuo K, Shin A, Xiang YB, Jee SH, Kim DH, Ren Z, Cai Q, Long J, Shi J, Wen W, Yang G, Delahanty RJ, Ji BT, Pan ZZ, Matsuda F, Gao YT, Oh JH, Ahn YO, Park EJ, Li HL, Park JW, Jo J, Jeong JY, Hosono S, Casey G, Peters U, Shu XO, Zeng YX, Zheng W. Genome-wide association analyses in East Asians identify new susceptibility loci for colorectal cancer. Nat Genet 2012; 45:191-6. [PMID: 23263487 PMCID: PMC3679924 DOI: 10.1038/ng.2505] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 11/29/2012] [Indexed: 12/12/2022]
Abstract
To identify novel genetic factors for colorectal cancer (CRC), we conducted a genome-wide association study in East Asians. By analyzing genome-wide data in 2,098 cases and 5,749 controls, we selected 64 promising SNPs for replication in an independent set of samples including up to 5,358 cases and 5,922 controls. We identified four SNPs with a P-value of 8.58 × 10−7 to 3.77 × 10−10 in the combined analysis of all East Asian samples. Three of the four SNPs were replicated in a study conducted among 26,060 European descendants with a combined P-value of 1.22 × 10−10 for rs647161 (5q31.1), 6.64 × 10−9 for rs2423279 (20p12.3), and 3.06 × 10−8 for rs10774214 (12p13.32 near the CCND2 gene), respectively, derived from the meta-analysis of data from both East Asian and European populations. This study identified three new CRC susceptibility loci and provides additional insight into the genetics and biology of CRC.
Collapse
Affiliation(s)
- Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bougen NM, Amiry N, Yuan Y, Kong XJ, Pandey V, Vidal LJP, Perry JK, Zhu T, Lobie PE. Trefoil factor 1 suppression of E-CADHERIN enhances prostate carcinoma cell invasiveness and metastasis. Cancer Lett 2012; 332:19-29. [PMID: 23266572 DOI: 10.1016/j.canlet.2012.12.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 11/22/2012] [Accepted: 12/16/2012] [Indexed: 11/17/2022]
Abstract
Metastasis is the primary mediator of prostate cancer (PCA) lethality and poses a significant clinical obstacle. The identification of factors involved in the metastasis of PCA is imperative. We demonstrate herein that trefoil factor 1 (TFF1) promotes PCA cell migration and invasion in vitro and metastasis in vivo. The capacity of TFF1 to enhance cell migration/invasion is mediated by transcriptional repression of E-CADHERIN. Consideration of targeted inhibition of TFF1 to prevent metastasis of prostate carcinoma is warranted.
Collapse
Affiliation(s)
- N M Bougen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Tassin A, Laoudj-Chenivesse D, Vanderplanck C, Barro M, Charron S, Ansseau E, Chen YW, Mercier J, Coppée F, Belayew A. DUX4 expression in FSHD muscle cells: how could such a rare protein cause a myopathy? J Cell Mol Med 2012. [PMID: 23206257 PMCID: PMC3823138 DOI: 10.1111/j.1582-4934.2012.01647.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is one of the most frequent hereditary muscle disorders. It is linked to contractions of the D4Z4 repeat array in 4q35. We have characterized the double homeobox 4 (DUX4) gene in D4Z4 and its mRNA transcribed from the distal D4Z4 unit to a polyadenylation signal in the flanking pLAM region. It encodes a transcription factor expressed in FSHD but not healthy muscle cells which initiates a gene deregulation cascade causing differentiation defects, muscle atrophy and oxidative stress. PITX1 was the first identified DUX4 target and encodes a transcription factor involved in muscle atrophy. DUX4 was found expressed in only 1/1000 FSHD myoblasts. We have now shown it was induced upon differentiation and detected in about 1/200 myotube nuclei. The DUX4 and PITX1 proteins presented staining gradients in consecutive myonuclei which suggested a diffusion as known for other muscle nuclear proteins. Both protein half-lifes were regulated by the ubiquitin-proteasome pathway. In addition, we could immunodetect the DUX4 protein in FSHD muscle extracts. As a model, we propose the DUX4 gene is stochastically activated in a small number of FSHD myonuclei. The resulting mRNAs are translated in the cytoplasm around an activated nucleus and the DUX4 proteins diffuse to adjacent nuclei where they activate target genes such as PITX1. The PITX1 protein can further diffuse to additional myonuclei and expand the transcriptional deregulation cascade initiated by DUX4. Together the diffusion and the deregulation cascade would explain how a rare protein could cause the muscle defects observed in FSHD.
Collapse
Affiliation(s)
- Alexandra Tassin
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Banerjee A, Qian P, Wu ZS, Ren X, Steiner M, Bougen NM, Liu S, Liu DX, Zhu T, Lobie PE. Artemin stimulates radio- and chemo-resistance by promoting TWIST1-BCL-2-dependent cancer stem cell-like behavior in mammary carcinoma cells. J Biol Chem 2012; 287:42502-15. [PMID: 23095743 DOI: 10.1074/jbc.m112.365163] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Artemin (ARTN) has been reported to promote a TWIST1-dependent epithelial to mesenchymal transition of estrogen receptor negative mammary carcinoma (ER-MC) cells associated with metastasis and poor survival outcome. We therefore examined a potential role of ARTN in the promotion of the cancer stem cell (CSC)-like phenotype in mammary carcinoma cells. Acquired resistance of ER-MC cells to either ionizing radiation (IR) or paclitaxel was accompanied by increased ARTN expression. Small interfering RNA (siRNA)-mediated depletion of ARTN in either IR- or paclitaxel-resistant ER-MC cells restored cell sensitivity to IR or paclitaxel. Expression of ARTN was enriched in ER-MC cells grown in mammospheric compared with monolayer culture and was also enriched along with BMI1, TWIST1, and DVL1 in mammospheric and ALDH1+ populations. ARTN promoted mammospheric growth and self-renewal of ER-MC cells and increased the ALDH1+ population, whereas siRNA-mediated depletion of ARTN diminished these CSC-like cell behaviors. Furthermore, increased ARTN expression was significantly correlated with ALDH1 expression in a cohort of ER-MC patients. Forced expression of ARTN also dramatically enhanced tumor initiating capacity of ER-MC cells in xenograft models at low inoculum. ARTN promotion of the CSC-like cell phenotype was mediated by TWIST1 regulation of BCL-2 expression. ARTN also enhanced mammosphere formation and the ALDH1+ population in estrogen receptor-positive mammary carcinoma (ER+MC) cells. Increased expression of ARTN and the functional consequences thereof may be one common adaptive mechanism used by mammary carcinoma cells to promote cell survival and renewal in hostile tumor microenvironments.
Collapse
Affiliation(s)
- Arindam Banerjee
- Liggins Institute, University of Auckland, Auckland 1023, New Zealand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hou L, Xu B, Mohankumar KM, Goffin V, Perry JK, Lobie PE, Liu DX. The prolactin receptor mediates HOXA1-stimulated oncogenicity in mammary carcinoma cells. Int J Oncol 2012; 41:2285-95. [PMID: 23064471 DOI: 10.3892/ijo.2012.1660] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 09/24/2012] [Indexed: 11/06/2022] Open
Abstract
The HOX genes are a highly conserved subgroup of homeodomain-containing transcription factors that are crucial to normal development. Forced expression of HOXA1 results in oncogenic transformation of immortalized human mammary cells with aggressive tumour formation in vivo. Microarray analysis identified that the prolactin receptor (PRLR) was significantly upregulated by forced expression of HOXA1 in mammary carcinoma cells. To determine prolactin (PRL) involvement in HOXA1‑induced oncogenicity in mammary carcinoma cells (MCF-7), we examined the effect of human prolactin (hPRL)-initiated PRLR signal transduction on changes in cellular behaviour mediated by HOXA1. Forced expression of HOXA1 in MCF-7 cells increased PRLR mRNA and protein expression. Forced expression of HOXA1 also enhanced hPRL-stimulated phosphorylation of both STAT5A/B and p44/42 MAPK, and increased subsequent transcriptional activity of STAT5A and STAT5B, and Elk-1 and Sap1a, respectively. Moreover, forced expression of HOXA1 in MCF-7 cells enhanced the hPRL‑stimulated increase in total cell number as a consequence of enhanced cell proliferation and cell survival, and also enhanced hPRL-stimulated anchorage-independent growth in soft agar. Increased anchorage-independent growth was attenuated by the PRLR antagonist ∆1-9-G129R‑hPRL. In conclusion, we have demonstrated that HOXA1 increases expression of the cell surface receptor PRLR and enhances PRLR-mediated signal transduction. Thus, the PRLR is one mediator of HOXA1‑stimulated oncogenicity in mammary carcinoma cells.
Collapse
Affiliation(s)
- Lin Hou
- Liggins Institute, University of Auckland, Auckland 1023, New Zealand
| | | | | | | | | | | | | |
Collapse
|
41
|
Pandey SN, Cabotage J, Shi R, Dixit M, Sutherland M, Liu J, Muger S, Harper SQ, Nagaraju K, Chen YW. Conditional over-expression of PITX1 causes skeletal muscle dystrophy in mice. Biol Open 2012; 1:629-639. [PMID: 23125914 PMCID: PMC3486706 DOI: 10.1242/bio.20121305] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Paired-like homeodomain transcription factor 1 (PITX1) was specifically up-regulated in patients with facioscapulohumeral muscular dystrophy (FSHD) by comparing the genome-wide mRNA expression profiles of 12 neuromuscular disorders. In addition, it is the only known direct transcriptional target of the double homeobox protein 4 (DUX4) of which aberrant expression has been shown to be the cause of FSHD. To test the hypothesis that up-regulation of PITX1 contributes to the skeletal muscle atrophy seen in patients with FSHD, we generated a tet-repressible muscle-specific Pitx1 transgenic mouse model in which expression of PITX1 in skeletal muscle can be controlled by oral administration of doxycycline. After PITX1 was over-expressed in the skeletal muscle for 5 weeks, the mice exhibited significant loss of body weight and muscle mass, decreased muscle strength, and reduction of muscle fiber diameters. Among the muscles examined, the tibialis anterior, gastrocnemius, quadricep, bicep, tricep and deltoid showed significant reduction of muscle mass, while the soleus, masseter and diaphragm muscles were not affected. The most prominent pathological change was the development of atrophic muscle fibers with mild necrosis and inflammatory infiltration. The affected myofibers stained heavily with NADH-TR with the strongest staining in angular-shaped atrophic fibers. Some of the atrophic fibers were also positive for embryonic myosin heavy chain using immunohistochemistry. Immunoblotting showed that the p53 was up-regulated in the muscles over-expressing PITX1. The results suggest that the up-regulation of PITX1 followed by activation of p53-dependent pathways may play a major role in the muscle atrophy developed in the mouse model.
Collapse
Affiliation(s)
- Sachchida N. Pandey
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Jennifer Cabotage
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Rongye Shi
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Manjusha Dixit
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Margret Sutherland
- Department of Integrative Systems Biology, George Washington University, Washington, DC 48109, USA
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Jian Liu
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Stephanie Muger
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Scott Q. Harper
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Kanneboyina Nagaraju
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
- Department of Integrative Systems Biology, George Washington University, Washington, DC 48109, USA
| | - Yi-Wen Chen
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
- Department of Integrative Systems Biology, George Washington University, Washington, DC 48109, USA
| |
Collapse
|
42
|
Abstract
DUX4, a homeobox-containing gene present in a tandem array, is implicated in facioscapulohumeral muscular dystrophy (FSHD), a dominant autosomal disease. New findings about DUX4 have raised as many fundamental questions about the molecular pathology of this unique disease as they have answered. This review discusses recent studies addressing the question of whether there is extensive FSHD-related transcription dysregulation in adult-derived myoblasts and myotubes, the precursors for muscle repair. Two models for the role of DUX4 in FSHD are presented. One involves transient pathogenic expression of DUX4 in many cells in the muscle lineage before the myoblast stage resulting in a persistent, disease-related transcription profile ('Majority Rules'), which might be enhanced by subsequent oscillatory expression of DUX4. The other model emphasizes the toxic effects of inappropriate expression of DUX4 in only an extremely small percentage of FSHD myoblasts or myotube nuclei ('Minority Rules'). The currently favored Minority Rules model is not supported by recent studies of transcription dysregulation in FSHD myoblasts and myotubes. It also presents other difficulties, for example, explaining the expression of full-length DUX4 transcripts in FSHD fibroblasts. The Majority Rules model is the simpler explanation of findings about FSHD-associated gene expression and the DUX4-encoded homeodomain-type protein.
Collapse
|
43
|
Vanderplanck C, Ansseau E, Charron S, Stricwant N, Tassin A, Laoudj-Chenivesse D, Wilton SD, Coppée F, Belayew A. The FSHD atrophic myotube phenotype is caused by DUX4 expression. PLoS One 2011; 6:e26820. [PMID: 22053214 PMCID: PMC3203905 DOI: 10.1371/journal.pone.0026820] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 10/03/2011] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Facioscapulohumeral muscular dystrophy (FSHD) is linked to deletions in 4q35 within the D4Z4 repeat array in which we identified the double homeobox 4 (DUX4) gene. We found stable DUX4 mRNAs only derived from the most distal D4Z4 unit and unexpectedly extended to the flanking pLAM region that provided an intron and a polyadenylation signal. DUX4 encodes a transcription factor expressed in FSHD but not control primary myoblasts or muscle biopsies. The DUX4 protein initiates a large transcription deregulation cascade leading to muscle atrophy and oxidative stress, which are FSHD key features. METHODOLOGY/PRINCIPAL FINDINGS We now show that transfection of myoblasts with a DUX4 expression vector leads to atrophic myotube formation associated with the induction of E3 ubiquitin ligases (MuRF1 and Atrogin1/MAFbx) typical of muscle atrophy. DUX4 induces expression of downstream targets deregulated in FSHD such as mu-crystallin and TP53. We developed specific siRNAs and antisense oligonucleotides (AOs) targeting the DUX4 mRNA. Addition of these antisense agents to primary FSHD myoblast cultures suppressed DUX4 protein expression and affected expression of the above-mentioned markers. CONCLUSIONS/SIGNIFICANCE These results constitute a proof of concept for the development of therapeutic approaches for FSHD targeting DUX4 expression.
Collapse
MESH Headings
- Animals
- Biomarkers/metabolism
- Cells, Cultured
- Down-Regulation/drug effects
- Gene Expression Regulation/drug effects
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Mice
- Models, Biological
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle Proteins/metabolism
- Muscular Atrophy/metabolism
- Muscular Atrophy/pathology
- Muscular Dystrophy, Facioscapulohumeral/metabolism
- Muscular Dystrophy, Facioscapulohumeral/pathology
- Oligonucleotides, Antisense/pharmacology
- Phenotype
- RNA Interference/drug effects
- RNA Splicing/drug effects
- RNA Splicing/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- SKP Cullin F-Box Protein Ligases/metabolism
- Transfection
- Tripartite Motif Proteins
- Ubiquitin-Protein Ligases/metabolism
Collapse
Affiliation(s)
| | - Eugénie Ansseau
- Laboratory of Molecular Biology, University of Mons, Mons, Belgium
| | | | - Nadia Stricwant
- Laboratory of Molecular Biology, University of Mons, Mons, Belgium
| | - Alexandra Tassin
- Laboratory of Molecular Biology, University of Mons, Mons, Belgium
| | | | - Steve D. Wilton
- Molecular Genetic Therapy Group, University of Western Australia, Nedlands, Australia
| | | | | |
Collapse
|
44
|
Richards M, Coppée F, Thomas N, Belayew A, Upadhyaya M. Facioscapulohumeral muscular dystrophy (FSHD): an enigma unravelled? Hum Genet 2011; 131:325-40. [PMID: 21984394 DOI: 10.1007/s00439-011-1100-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 09/26/2011] [Indexed: 01/02/2023]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is the third most common muscular dystrophy after the dystrophinopathies and myotonic dystrophy and is associated with a typical pattern of muscle weakness. Most patients with FSHD carry a large deletion in the polymorphic D4Z4 macrosatellite repeat array at 4q35 and present with 1-10 repeats whereas non-affected individuals possess 11-150 repeats. An almost identical repeat array is present at 10q26 and the high sequence identity between these two arrays can cause difficulties in molecular diagnosis. Each 3.3-kb D4Z4 unit contains a DUX4 (double homeobox 4) gene that, among others, is activated upon contraction of the 4q35 repeat array due to the induction of chromatin remodelling of the 4qter region. A number of 4q subtelomeric sequence variants are now recognised, although FSHD only occurs in association with three 'permissive' haplotypes, each of which is associated with a polyadenylation signal located immediately distal of the last D4Z4 unit. The resulting poly-A tail appears to stabilise DUX4 mRNAs transcribed from this most distal D4Z4 unit in FSHD muscle cells. Synthesis of both the DUX4 transcripts and protein in FSHD muscle cells induces significant cell toxicity. DUX4 is a transcription factor that may target several genes which results in a deregulation cascade which inhibits myogenesis, sensitises cells to oxidative stress and induces muscle atrophy, thus recapitulating many of the key molecular features of FSHD.
Collapse
Affiliation(s)
- Mark Richards
- School of Medicine, Institute of Medical Genetics, Cardiff University, Cardiff, CF14 4XN, UK
| | | | | | | | | |
Collapse
|
45
|
Trefoil factor 3 is oncogenic and mediates anti-estrogen resistance in human mammary carcinoma. Neoplasia 2011; 12:1041-53. [PMID: 21170268 DOI: 10.1593/neo.10916] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 08/12/2010] [Accepted: 08/24/2010] [Indexed: 01/05/2023] Open
Abstract
We report herein that trefoil factor 3 (TFF3) is oncogenic and mediates anti-estrogen resistance in human mammary carcinoma. Forced expression of TFF3 in mammary carcinoma cells increased cell proliferation and survival, enhanced anchorage-independent growth, and promoted migration and invasion. Moreover, forced expression of TFF3 increased tumor size in xenograft models. Conversely, depletion of endogenous TFF3 with small interfering RNA (siRNA) decreased the oncogenicity and invasiveness of mammary carcinoma cells. Neutralization of secreted TFF3 by antibody promoted apoptosis, decreased cell growth in vitro, and arrested mammary carcinoma xenograft growth. TFF3 expression was significantly correlated to decreased survival of estrogen receptor (ER)-positive breast cancer patients treated with tamoxifen. Forced expression of TFF3 in mammary carcinoma cells increased ER transcriptional activity, promoted estrogen-independent growth, and produced resistance to tamoxifen and fulvestrant in vitro and to tamoxifen in xenograft models. siRNA-mediated depletion or antibody inhibition of TFF3 significantly enhanced the efficacy of antiestrogens. Increased TFF3 expression was observed in tamoxifen-resistant (TAMR) cells and antibody inhibition of TFF3 in TAMR cells improved tamoxifen sensitivity. Functional antagonism of TFF3 therefore warrants consideration as a novel therapeutic strategy for mammary carcinoma.
Collapse
|
46
|
Identification of PITX1 as a TERT suppressor gene located on human chromosome 5. Mol Cell Biol 2011; 31:1624-36. [PMID: 21300782 DOI: 10.1128/mcb.00470-10] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Telomerase, a ribonucleoprotein enzyme that maintains telomere length, is crucial for cellular immortalization and cancer progression. Telomerase activity is attributed primarily to the expression of telomerase reverse transcriptase (TERT). Using microcell-mediated chromosome transfer (MMCT) into the mouse melanoma cell line B16F10, we previously found that human chromosome 5 carries a gene, or genes, that can negatively regulate TERT expression (H. Kugoh, K. Shigenami, K. Funaki, J. Barrett, and M. Oshimura, Genes Chromosome Cancer 36:37-47, 2003). To identify the gene responsible for the regulation of TERT transcription, we performed cDNA microarray analysis using parental B16F10 cells, telomerase-negative B16F10 microcell hybrids with a human chromosome 5 (B16F10MH5), and its revertant clones (MH5R) with reactivated telomerase. Here, we report the identification of PITX1, whose expression leads to the downregulation of mouse tert (mtert) transcription, as a TERT suppressor gene. Additionally, both human TERT (hTERT) and mouse TERT (mtert) promoter activity can be suppressed by PITX1. We show that three and one binding site within the hTERT and mtert promoters, respectively, that express a unique conserved region are responsible for the transcriptional activation of TERT. Furthermore, we showed that PITX1 binds to the TERT promoter both in vitro and in vivo. Thus, PITX1 suppresses TERT transcription through direct binding to the TERT promoter, which ultimately regulates telomerase activity.
Collapse
|
47
|
Hsu SP, Lee WS. Progesterone receptor activation of extranuclear signaling pathways in regulating p53 expression in vascular endothelial cells. Mol Endocrinol 2011; 25:421-32. [PMID: 21239614 DOI: 10.1210/me.2010-0424] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We previously showed that progesterone (P4) inhibited the proliferation of human umbilical vein endothelial cells (HUVECs) through a p53-dependent pathway. Now we investigated further the molecular mechanism underlying the hormone activity. In cultured HUVECs, P4 increased the protein levels of phosphorylated Src (p-Src), Raf-1, and ERK. The levels of p-Src and p-Src-progesterone receptor complex in HUVECs were increased by P4 treatment. These effects were blocked by pretreatment with a progesterone receptor antagonist, RU486. The P4-induced increase in p53 transactivity was abolished by pretreatment with Src kinase inhibitors. Moreover, administration with cSrc antisense oligonucleotide prevented the P4-induced increases of the levels of p53 mRNA and protein. These data suggest that P4-induced up-regulation of p53 might be mediated through activation of cSrc. Pretreatment with Src kinase inhibitors also prevented P4-induced membrane translocation of Kras and increases of the protein levels of phosphorylated Raf and phosphorylated ERK. Transfection with dominant-negative ERK2 prevented the P4-induced increases of protein level and promoter activity of p53 and a decrease of thymidine incorporation. P4 also increased nuclear factor-κB (NF-κB) nuclear translocation and NF-κB binding onto the p53 promoter. These effects were abolished by pretreatment with ERK inhibitors. The P4-induced up-regulation of the p53 promoter activity was prevented by preadministration with dominant-negative ERK2 or NF-κB inhibitors. Taken together, our data suggest that the cSrc/Kras/Raf-1/ERK2/NF-κB signaling pathway contributes to the P4-induced up-regulation of p53 in HUVECs. These findings highlight progesterone receptor activation of extranuclear signaling pathways in regulating p53 and cell cycle progression in HUVECs.
Collapse
Affiliation(s)
- Sung-Po Hsu
- Department of Physiology and Graduate Institute of Medical Sciences, School of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan
| | | |
Collapse
|
48
|
Bell A, Bell D, Weber RS, El-Naggar AK. CpG island methylation profiling in human salivary gland adenoid cystic carcinoma. Cancer 2011; 117:2898-909. [PMID: 21692051 DOI: 10.1002/cncr.25818] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 10/27/2010] [Accepted: 10/28/2010] [Indexed: 12/20/2022]
Abstract
BACKGROUND DNA methylation is a fundamental epigenetic event associated with physiologic and pathologic conditions, including cancer. Hypermethylation of CpG islands at active gene promoters leads to transcriptional repression, whereas hypomethylation is associated with gene overexpression. The aim of this study was to identify genes in adenoid cystic carcinoma (ACC) of salivary gland strongly deregulated by epigenetic CpG island methylation, to validate selected genes by conventional techniques, and to correlate the findings with clinicopathologic factors. METHODS The authors analyzed 16 matched normal and tumor tissues for aberrant DNA methylation using the methylated CpG island amplification and microarray method and the pyrosequencing technique. RESULTS Microarray analysis showed hypomethylation in 7 and hypermethylation in 32 CpG islands. Hypomethylation was identified in CpG islands near FBXO17, PHKG1, LOXL1, DOCK1, and PARVG. Hypermethylation was identified near genes encoding predominantly transcription factors (EN1, FOXE1, GBX2, FOXL1, TBX4, MEIS1, LBX2, NR2F2, POU3F3, IRX3, TFAP2C, NKX2-4, PITX1, NKX2-5), and 13 genes with different functions (MT1H, EPHX3, AQPEP, BCL2L11, SLC35D3, S1PR5, PNLIPRP1, CLIC6, RASAL, XRN2, GSTM5, FNDC1, INSRR). Four CpG islands by EN1, FOXE1, TBX4, and PITX1 were validated by pyrosequencing. CONCLUSIONS The highly methylated genes in tumor versus normal tissue are linked to developmental, apoptotic, and other fundamental cellular pathways, suggesting that down-regulation of these genes is associated with ACC development and progression. With EN1 hypermethylation showing potential as a possible biomarker for ACC in salivary gland, the biological and therapeutic implications of these findings require further preclinical investigations.
Collapse
Affiliation(s)
- Achim Bell
- Department of Pathology and Cancer Institute, The University of Mississippi Medical Center, Jackson, Mississippi, USA.
| | | | | | | |
Collapse
|
49
|
Wallace LM, Garwick SE, Mei W, Belayew A, Coppee F, Ladner KJ, Guttridge D, Yang J, Harper SQ. DUX4, a candidate gene for facioscapulohumeral muscular dystrophy, causes p53-dependent myopathy in vivo. Ann Neurol 2010; 69:540-52. [PMID: 21446026 DOI: 10.1002/ana.22275] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 08/31/2010] [Accepted: 09/17/2010] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Facioscapulohumeral muscular dystrophy (FSHD) is associated with D4Z4 repeat contraction on human chromosome 4q35. This genetic lesion does not result in complete loss or mutation of any gene. Consequently, the pathogenic mechanisms underlying FSHD have been difficult to discern. In leading FSHD pathogenesis models, D4Z4 contractions are proposed to cause epigenetic changes, which ultimately increase expression of genes with myopathic potential. Although no gene has been conclusively linked to FSHD development, recent evidence supports a role for the D4Z4-encoded DUX4 gene in FSHD. In this study, our objective was to test the in vivo myopathic potential of DUX4. METHODS We delivered DUX4 to zebrafish and mouse muscle by transposon-mediated transgenesis and adeno-associated viral vectors, respectively. RESULTS Overexpression of DUX4, which encodes a transcription factor, caused abnormalities associated with muscular dystrophy in zebrafish and mice. This toxicity required DNA binding, because a DUX4 DNA binding domain mutant produced no abnormalities. Importantly, we found the myopathic effects of DUX4 were p53 dependent, as p53 inhibition mitigated DUX4 toxicity in vitro, and muscles from p53 null mice were resistant to DUX4-induced damage. INTERPRETATION Our work demonstrates the myopathic potential of DUX4 in animal muscle. Considering previous studies showed DUX4 was elevated in FSHD patient muscles, our data support the hypothesis that DUX4 overexpression contributes to FSHD development. Moreover, we provide a p53-dependent mechanism for DUX4 toxicity that is consistent with previous studies showing p53 pathway activation in FSHD muscles. Our work justifies further investigation of DUX4 and the p53 pathway in FSHD pathogenesis.
Collapse
Affiliation(s)
- Lindsay M Wallace
- Molecular, Cellular, and Developmental Biology Graduate Program, Ohio State University, Columbus, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Yamaguchi T, Miki Y, Yoshida K. The c-Abl tyrosine kinase stabilizes Pitx1 in the apoptotic response to DNA damage. Apoptosis 2010; 15:927-35. [PMID: 20563669 DOI: 10.1007/s10495-010-0488-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the DNA damage response, c-Abl tyrosine kinase is transiently accumulated in the nucleus and induces apoptosis; however, little is known about the mechanism underlying apoptosis induction via nuclear c-Abl. Here we demonstrate that the expression of human pituitary homeobox 1 (Pitx1) transcription factor is increased after DNA damage. Notably, c-Abl controls augmentation of Pitx1 at the post-transcriptional level. Overexpression of c-Abl induces tyrosine phosphorylation of Pitx1, either directly or indirectly. We also show that, upon exposure to genotoxic stress, overexpression of Pitx1 is associated with marked induction of apoptosis that is independent of p53 status. Importantly, inhibition of c-Abl kinase activity substantially attenuates Pitx1-mediated apoptosis. These findings provide evidence that c-Abl participates in modulating Pitx1 expression in the apoptotic response to DNA damage.
Collapse
Affiliation(s)
- Tomoko Yamaguchi
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | | | | |
Collapse
|