1
|
Grewal S, Gonçalves de Andrade E, Kofoed RH, Matthews PM, Aubert I, Tremblay MÈ, Morse SV. Using focused ultrasound to modulate microglial structure and function. Front Cell Neurosci 2023; 17:1290628. [PMID: 38164436 PMCID: PMC10757935 DOI: 10.3389/fncel.2023.1290628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/31/2023] [Indexed: 01/03/2024] Open
Abstract
Transcranial focused ultrasound (FUS) has the unique ability to target regions of the brain with high spatial precision, in a minimally invasive manner. Neuromodulation studies have shown that FUS can excite or inhibit neuronal activity, demonstrating its tremendous potential to improve the outcome of neurological diseases. Recent evidence has also shed light on the emerging promise that FUS has, with and without the use of intravenously injected microbubbles, in modulating the blood-brain barrier and the immune cells of the brain. As the resident immune cells of the central nervous system, microglia are at the forefront of the brain's maintenance and immune defense. Notably, microglia are highly dynamic and continuously survey the brain parenchyma by extending and retracting their processes. This surveillance activity aids microglia in performing key physiological functions required for brain activity and plasticity. In response to stressors, microglia rapidly alter their cellular and molecular profile to help facilitate a return to homeostasis. While the underlying mechanisms by which both FUS and FUS + microbubbles modify microglial structure and function remain largely unknown, several studies in adult mice have reported changes in the expression of the microglia/macrophage marker ionized calcium binding adaptor molecule 1, and in their phagocytosis, notably of protein aggregates, such as amyloid beta. In this review, we discuss the demonstrated and putative biological effects of FUS and FUS + microbubbles in modulating microglial activities, with an emphasis on the key cellular and molecular changes observed in vitro and in vivo across models of brain health and disease. Understanding how this innovative technology can modulate microglia paves the way for future therapeutic strategies aimed to promote beneficial physiological microglial roles, and prevent or treat maladaptive responses.
Collapse
Affiliation(s)
- Sarina Grewal
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Elisa Gonçalves de Andrade
- Neuroscience Graduate Program, Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Rikke Hahn Kofoed
- Department of Neurosurgery, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Center for Experimental Neuroscience-CENSE, Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
- Hurvitz Brain Sciences Research Program, Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Paul M. Matthews
- Department of Brain Sciences, Imperial College London, London, United Kingdom
- UK Dementia Research Institute, Imperial College London, London, United Kingdom
| | - Isabelle Aubert
- Hurvitz Brain Sciences Research Program, Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec, QC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Sophie V. Morse
- Department of Bioengineering, Imperial College London, London, United Kingdom
- UK Dementia Research Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
2
|
Mehkri Y, Pierre K, Woodford SJ, Davidson CG, Urhie O, Sriram S, Hernandez J, Hanna C, Lucke-Wold B. Surgical Management of Brain Tumors with Focused Ultrasound. Curr Oncol 2023; 30:4990-5002. [PMID: 37232835 PMCID: PMC10217559 DOI: 10.3390/curroncol30050377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023] Open
Abstract
Focused ultrasound is a novel technique for the treatment of aggressive brain tumors that uses both mechanical and thermal mechanisms. This non-invasive technique can allow for both the thermal ablation of inoperable tumors and the delivery of chemotherapy and immunotherapy while minimizing the risk of infection and shortening the time to recovery. With recent advances, focused ultrasound has been increasingly effective for larger tumors without the need for a craniotomy and can be used with minimal surrounding soft tissue damage. Treatment efficacy is dependent on multiple variables, including blood-brain barrier permeability, patient anatomical features, and tumor-specific features. Currently, many clinical trials are currently underway for the treatment of non-neoplastic cranial pathologies and other non-cranial malignancies. In this article, we review the current state of surgical management of brain tumors using focused ultrasound.
Collapse
Affiliation(s)
- Yusuf Mehkri
- Department of Neurosurgery, College of Medicine, University of Florida, 1505 SW Archer Rd, Gainesville, FL 32608, USA
| | - Kevin Pierre
- Department of Radiology, College of Medicine, University of Florida, 1600 SW Archer Rd, Gainesville, FL 32608, USA
| | - Samuel Joel Woodford
- Department of Neurosurgery, College of Medicine, University of Florida, 1505 SW Archer Rd, Gainesville, FL 32608, USA
| | - Caroline Grace Davidson
- Department of Neurosurgery, College of Medicine, University of Florida, 1505 SW Archer Rd, Gainesville, FL 32608, USA
| | - Ogaga Urhie
- Department of Neurosurgery, College of Medicine, University of Florida, 1505 SW Archer Rd, Gainesville, FL 32608, USA
| | - Sai Sriram
- Department of Neurosurgery, College of Medicine, University of Florida, 1505 SW Archer Rd, Gainesville, FL 32608, USA
| | - Jairo Hernandez
- Department of Neurosurgery, College of Medicine, University of Florida, 1505 SW Archer Rd, Gainesville, FL 32608, USA
| | - Chadwin Hanna
- Department of Neurosurgery, College of Medicine, University of Florida, 1505 SW Archer Rd, Gainesville, FL 32608, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, College of Medicine, University of Florida, 1505 SW Archer Rd, Gainesville, FL 32608, USA
| |
Collapse
|
3
|
Banerjee K, Núñez FJ, Haase S, McClellan BL, Faisal SM, Carney SV, Yu J, Alghamri MS, Asad AS, Candia AJN, Varela ML, Candolfi M, Lowenstein PR, Castro MG. Current Approaches for Glioma Gene Therapy and Virotherapy. Front Mol Neurosci 2021; 14:621831. [PMID: 33790740 PMCID: PMC8006286 DOI: 10.3389/fnmol.2021.621831] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive primary brain tumor in the adult population and it carries a dismal prognosis. Inefficient drug delivery across the blood brain barrier (BBB), an immunosuppressive tumor microenvironment (TME) and development of drug resistance are key barriers to successful glioma treatment. Since gliomas occur through sequential acquisition of genetic alterations, gene therapy, which enables to modification of the genetic make-up of target cells, appears to be a promising approach to overcome the obstacles encountered by current therapeutic strategies. Gene therapy is a rapidly evolving field with the ultimate goal of achieving specific delivery of therapeutic molecules using either viral or non-viral delivery vehicles. Gene therapy can also be used to enhance immune responses to tumor antigens, reprogram the TME aiming at blocking glioma-mediated immunosuppression and normalize angiogenesis. Nano-particles-mediated gene therapy is currently being developed to overcome the BBB for glioma treatment. Another approach to enhance the anti-glioma efficacy is the implementation of viro-immunotherapy using oncolytic viruses, which are immunogenic. Oncolytic viruses kill tumor cells due to cancer cell-specific viral replication, and can also initiate an anti-tumor immunity. However, concerns still remain related to off target effects, and therapeutic and transduction efficiency. In this review, we describe the rationale and strategies as well as advantages and disadvantages of current gene therapy approaches against gliomas in clinical and preclinical studies. This includes different delivery systems comprising of viral, and non-viral delivery platforms along with suicide/prodrug, oncolytic, cytokine, and tumor suppressor-mediated gene therapy approaches. In addition, advances in glioma treatment through BBB-disruptive gene therapy and anti-EGFRvIII/VEGFR gene therapy are also discussed. Finally, we discuss the results of gene therapy-mediated human clinical trials for gliomas. In summary, we highlight the progress, prospects and remaining challenges of gene therapies aiming at broadening our understanding and highlighting the therapeutic arsenal for GBM.
Collapse
Affiliation(s)
- Kaushik Banerjee
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Felipe J. Núñez
- Laboratory of Molecular and Cellular Therapy, Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Santiago Haase
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Brandon L. McClellan
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Immunology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Syed M. Faisal
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Stephen V. Carney
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Cancer Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jin Yu
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Mahmoud S. Alghamri
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Antonela S. Asad
- Departamento de Biología e Histología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro J. Nicola Candia
- Departamento de Biología e Histología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maria Luisa Varela
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Marianela Candolfi
- Departamento de Biología e Histología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pedro R. Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria G. Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
4
|
Haddad AF, Young JS, Aghi MK. Using viral vectors to deliver local immunotherapy to glioblastoma. Neurosurg Focus 2021; 50:E4. [PMID: 33524947 DOI: 10.3171/2020.11.focus20859] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/16/2020] [Indexed: 01/10/2023]
Abstract
The treatment for glioblastoma (GBM) has not seen significant improvement in over a decade. Immunotherapies target the immune system against tumor cells and have seen success in various cancer types. However, the efficacy of immunotherapies in GBM thus far has been limited. Systemic immunotherapies also carry with them concerns surrounding systemic toxicities as well as penetration of the blood-brain barrier. These concerns may potentially limit their efficacy in GBM and preclude the use of combinatorial immunotherapy, which may be needed to overcome the severe multidimensional immune suppression seen in GBM patients. The use of viral vectors to deliver immunotherapies directly to tumor cells has the potential to improve immunotherapy delivery to the CNS, reduce systemic toxicities, and increase treatment efficacy. Indeed, preclinical studies investigating the delivery of immunomodulators to GBM using viral vectors have demonstrated significant promise. In this review, the authors discuss previous studies investigating the delivery of local immunotherapy using viral vectors. They also discuss the future of these treatments, including the reasoning behind immunomodulator and vector selection, patient safety, personalized therapies, and the need for combinatorial treatment.
Collapse
|
5
|
Targeted Delivery of IL-12 Adjuvants Immunotherapy by Oncolytic Viruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1290:67-80. [PMID: 33559855 DOI: 10.1007/978-3-030-55617-4_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The great hopes raised by the discovery of the immunoregulatory cytokine interleukin 12 (IL-12) as an anticancer agent were marred during early clinical experimentation because of severe adverse effects, which prompted a search for alternative formulations and routes of administration. Onco-immunotherapeutic viruses (OIVs) are wild-type or genetically engineered viruses that exert antitumor activity by causing death of the tumor cells they infect and by overcoming a variety of immunosuppressive mechanisms put in place by the tumors. OIVs have renewed the interest in IL-12, as they offer the opportunity to encode the cytokine transgenically from the viral genome and to produce it at high concentrations in the tumor bed. A large body of evidence indicates that IL-12 serves as a potent adjuvant for the immunotherapeutic response elicited by OIVs in murine tumor models. The list of OIVs includes onco-immunotherapeutic herpes simplex, adeno, measles, Newcastle disease, and Maraba viruses, among others. The large increase in IL-12-mediated adjuvanticity was invariably observed for all the OIVs analyzed. Indirect evidence suggests that locally delivered IL-12 may also increase tumor antigenicity. Importantly, the OIV/IL-12 treatment was not accompanied by adverse effects and elicited a long-lasting immune response capable of halting the growth of distant tumors. Thus, OIVs provide an avenue for reducing the clinical toxicity associated with systemic IL-12 therapy, by concentrating the cytokine at the site of disease. The changes to the tumor microenvironment induced by the IL-12-armed OIVs primed the tumors to an improved response to the checkpoint blockade therapy, suggesting that the triple combination is worth pursuing in the future. The highly encouraging results in preclinical models have prompted translation to the clinic. How well the IL-12-OIV-checkpoint inhibitors' combination will perform in humans remains to be fully investigated.
Collapse
|
6
|
Nguyen KG, Vrabel MR, Mantooth SM, Hopkins JJ, Wagner ES, Gabaldon TA, Zaharoff DA. Localized Interleukin-12 for Cancer Immunotherapy. Front Immunol 2020; 11:575597. [PMID: 33178203 PMCID: PMC7593768 DOI: 10.3389/fimmu.2020.575597] [Citation(s) in RCA: 268] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/08/2020] [Indexed: 12/30/2022] Open
Abstract
Interleukin-12 (IL-12) is a potent, pro-inflammatory type 1 cytokine that has long been studied as a potential immunotherapy for cancer. Unfortunately, IL-12's remarkable antitumor efficacy in preclinical models has yet to be replicated in humans. Early clinical trials in the mid-1990's showed that systemic delivery of IL-12 incurred dose-limiting toxicities. Nevertheless, IL-12's pleiotropic activity, i.e., its ability to engage multiple effector mechanisms and reverse tumor-induced immunosuppression, continues to entice cancer researchers. The development of strategies which maximize IL-12 delivery to the tumor microenvironment while minimizing systemic exposure are of increasing interest. Diverse IL-12 delivery systems, from immunocytokine fusions to polymeric nanoparticles, have demonstrated robust antitumor immunity with reduced adverse events in preclinical studies. Several localized IL-12 delivery approaches have recently reached the clinical stage with several more at the precipice of translation. Taken together, localized delivery systems are supporting an IL-12 renaissance which may finally allow this potent cytokine to fulfill its considerable clinical potential. This review begins with a brief historical account of cytokine monotherapies and describes how IL-12 went from promising new cure to ostracized black sheep following multiple on-study deaths. The bulk of this comprehensive review focuses on developments in diverse localized delivery strategies for IL-12-based cancer immunotherapies. Advantages and limitations of different delivery technologies are highlighted. Finally, perspectives on how IL-12-based immunotherapies may be utilized for widespread clinical application in the very near future are offered.
Collapse
Affiliation(s)
- Khue G Nguyen
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Maura R Vrabel
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Siena M Mantooth
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Jared J Hopkins
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Ethan S Wagner
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Taylor A Gabaldon
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - David A Zaharoff
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
7
|
Abstract
High-grade glioma is the most common primary brain tumor, with glioblastoma multiforme (GBM) accounting for 52% of all brain tumors. The current standard of care (SOC) of GBM involves surgery followed by adjuvant fractionated radiotherapy and chemotherapy. However, little progress has been made in extending overall survival, progression-free survival, and quality of life. Attempts to characterize and customize treatment of GBM have led to mitigating the deleterious effects of radiotherapy using hypofractionated radiotherapy, as well as various immunotherapies as a promising strategy for the incurable disease. A combination of radiotherapy and immunotherapy may prove to be even more effective than either alone, and preclinical evidence suggests that hypofractionated radiotherapy can actually prime the immune system to make immunotherapy more effective. This review addresses the complications of the current radiotherapy regimen, various methods of immunotherapy, and preclinical and clinical data from combined radioimmunotherapy trials.
Collapse
|
8
|
Barrett JA, Cai H, Miao J, Khare PD, Gonzalez P, Dalsing-Hernandez J, Sharma G, Chan T, Cooper LJN, Lebel F. Regulated intratumoral expression of IL-12 using a RheoSwitch Therapeutic System ® (RTS ®) gene switch as gene therapy for the treatment of glioma. Cancer Gene Ther 2018; 25:106-116. [PMID: 29755109 PMCID: PMC6021367 DOI: 10.1038/s41417-018-0019-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/07/2018] [Accepted: 03/02/2018] [Indexed: 12/19/2022]
Abstract
The purpose of this study was to determine if localized delivery of IL-12 encoded by a replication-incompetent adenoviral vector engineered to express IL-12 via a RheoSwitch Therapeutic System® (RTS®) gene switch (Ad-RTS-IL-12) administered intratumorally which is inducibly controlled by the oral activator veledimex is an effective approach for glioma therapy. Mice bearing 5–10-day-old intracranial GL-261 gliomas were intratumorally administered Ad-RTS-mIL-12 in which IL-12 protein expression is tightly controlled by the activator ligand, veledimex. Local tumor viral vector levels concomitant with veledimex levels, IL-12-mRNA expression, local and systemic cytokine expression, tumor and systemic flow cytometry and overall survival were studied. Ad-RTS-mIL-12+veledimex elicited a dose-related increase in tumor IL-12 mRNA and IL-12 protein and discontinuation of veledimex resulted in a return to baseline levels. These changes correlated with local immune and antitumor responses. Veledimex crossed the blood–brain barrier in both orthotopic GL-261 mice and cynomolgus monkeys. We have demonstrated that this therapy induced localized controlled production of IL-12 which correlates with an increase in tumor-infiltrating lymphocytes (TILs) leading to the desired biologic response of tumor growth inhibition and regression. At day 85 (study termination), 65% of the animals that received veledimex at 10 or 30 mg/m2/day were alive and tumor free. In contrast, the median survival for the other groups were: vehicle 23 days, bevacizumab 20 days, temozolomide 33 days and anti-PD-1 37 days. These findings suggest that the controlled intratumoral production of IL-12 induces local immune cell infiltration and improved survival in glioma, thereby demonstrating that this novel regulated immunotherapeutic approach may be an effective form of therapy for glioma.
Collapse
Affiliation(s)
| | | | - John Miao
- Ziopharm Oncology Inc., Boston, MA, USA, 02129
| | | | - Paul Gonzalez
- Translational Drug Development, Scottsdale, AZ, USA, 85259
| | | | - Geeta Sharma
- Charles River Laboratories, Worcester, MA, USA, 01605
| | - Tim Chan
- Intrexon Corporation, Germantown, MD, 20876, USA
| | | | | |
Collapse
|
9
|
Bongiorno EK, Garcia SA, Sauma S, Hooper DC. Type 1 Immune Mechanisms Driven by the Response to Infection with Attenuated Rabies Virus Result in Changes in the Immune Bias of the Tumor Microenvironment and Necrosis of Mouse GL261 Brain Tumors. THE JOURNAL OF IMMUNOLOGY 2017; 198:4513-4523. [PMID: 28461570 DOI: 10.4049/jimmunol.1601444] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 04/03/2017] [Indexed: 12/23/2022]
Abstract
Immunotherapeutic strategies for malignant glioma have to overcome the immunomodulatory activities of M2 monocytes that appear in the circulation and as tumor-associated macrophages (TAMs). M2 cell products contribute to the growth-promoting attributes of the tumor microenvironment (TME) and bias immunity toward type 2, away from the type 1 mechanisms with antitumor properties. To drive type 1 immunity in CNS tissues, we infected GL261 tumor-bearing mice with attenuated rabies virus (RABV). These neurotropic viruses spread to CNS tissues trans-axonally, where they induce a strong type 1 immune response that involves Th1, CD8, and B cell entry across the blood-brain barrier and virus clearance in the absence of overt sequelae. Intranasal infection with attenuated RABV prolonged the survival of mice bearing established GL261 brain tumors. Despite the failure of virus spread to the tumor, infection resulted in significantly enhanced tumor necrosis, extensive CD4 T cell accumulation, and high levels of the proinflammatory factors IFN-γ, TNF-α, and inducible NO synthase in the TME merely 4 d postinfection, before significant virus spread or the appearance of RABV-specific immune mechanisms in CNS tissues. Although the majority of infiltrating CD4 cells appeared functionally inactive, the proinflammatory changes in the TME later resulted in the loss of accumulating M2 and increased M1 TAMs. Mice deficient in the Th1 transcription factor T-bet did not gain any survival advantage from RABV infection, exhibiting only limited tumor necrosis and no change in TME cytokines or TAM phenotype and highlighting the importance of type 1 mechanisms in this process.
Collapse
Affiliation(s)
- Emily K Bongiorno
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107; and
| | - Samantha A Garcia
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107; and
| | - Sami Sauma
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA 19107
| | - D Craig Hooper
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107; and .,Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
10
|
Chen PY, Hsieh HY, Huang CY, Lin CY, Wei KC, Liu HL. Focused ultrasound-induced blood-brain barrier opening to enhance interleukin-12 delivery for brain tumor immunotherapy: a preclinical feasibility study. J Transl Med 2015; 13:93. [PMID: 25784614 PMCID: PMC4369363 DOI: 10.1186/s12967-015-0451-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 03/03/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Interleukin-12 (IL-12) has long been considered to be effective in triggering an anticancer immune response, however, the dosage has been limited by potential systemic immunotoxicity. Since focused ultrasound (FUS) has been confirmed to temporally and locally open the blood-brain barrier (BBB), the purpose of this study was to elucidate the possibility of combining FUS-induced BBB opening with IL-12 delivery to enhance the anticancer immunological response for glioma treatment. METHODS FUS energy combined with microbubble administration was delivered transcranially to open BBB, and C-6 glioma rats were used in this study. The efficacy in inducing BBB opening and the corresponding immunological response were primarily evaluated in normal animals. The anticancer immune-triggering chemokine, IL-12, was intraperitoneally administered during the treatment phase to evaluate the effect of immunological response on tumor progression. Glioma animals were sub-grouped to evaluate the effect of the immune response in suppressing glioma when IL-12 was combined with FUS-induced BBB opening. We performed flow cytometry to verify consequent immune cell population changes of peripheral/ tissue lymphocytes as well as macrophages from the animals. Brain sections of sacrificed animals were also used for histological and immunohistochemical analysis. IL-12 level among experimental groups were measured via ELISA analysis. We also analyzed survival and followed tumor progression in vivo via T2-weighted magnetic resonance imaging. RESULTS FUS-induced BBB opening had no obvious effect on the T lymphocytes population in normal animals, either in the brain or systemically. Yet, it triggered mild changes in the tumor-infiltrating lymphocyte (TIL) population, particularly in numbers of CD3+CD8+ cytotoxic T lymphocytes (CTLs) in the tumor region. IL-12 administration triggered a profound increase in all TIL populations, including CD3+CD4+ T helper cells (Th), CTL, and CD4+CD25+ regulatory T cells (Treg), but combined FUS-BBB opening with IL-12 administration produced the most significant IL-12 increase, CTL increase and CTL/Treg ratio increase, thus contributing to the most significant suppression of tumor progression and increased animal survival. CONCLUSION This study provides evidence that FUS-BBB opening can enhance immune-modulating agent delivery to the brain, which improve the anticancer immune response in brain tumor treatment.
Collapse
Affiliation(s)
- Pin-Yuan Chen
- Department of Neurosurgery, Chang-Gung Memorial Hospital, Taoyuan, Linkou, Taiwan,
| | | | | | | | | | | |
Collapse
|
11
|
Castro MG, Candolfi M, Wilson TJ, Calinescu A, Paran C, Kamran N, Koschmann C, Moreno-Ayala MA, Assi H, Lowenstein PR. Adenoviral vector-mediated gene therapy for gliomas: coming of age. Expert Opin Biol Ther 2014; 14:1241-57. [PMID: 24773178 DOI: 10.1517/14712598.2014.915307] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults and it carries a dismal prognosis. Adenoviral vector (Ad)-mediated gene transfer is being developed as a promising therapeutic strategy for GBM. Preclinical studies have demonstrated safety and efficacy of adenovirus administration into the brain and tumor mass in rodents and into the non-human primates' brain. Importantly, Ads have been safely administered within the tumor resection cavity in humans. AREAS COVERED This review gives background on GBM and Ads; we describe gene therapy strategies for GBM and discuss the value of combination approaches. Finally, we discuss the results of the human clinical trials for GBM that have used Ads. EXPERT OPINION The transduction characteristics of Ads, and their safety profile, added to their capacity to achieve high levels of transgene expression have made them powerful vectors for the treatment of GBM. Recent gene therapy successes in the treatment of retinal diseases and systemic brain metabolic diseases encourage the development of gene therapy for malignant glioma. Exciting clinical trials are currently recruiting patients; although, it is the large randomized Phase III controlled clinical trials that will provide the final decision on the success of gene therapy for the treatment of GBM.
Collapse
Affiliation(s)
- Maria G Castro
- University of Michigan Medical School, Department of Neurosurgery , 4570 MSRB II, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689 , USA +734 764 0850 ; +734 764 7051 ;
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Castro MG, Candolfi M, Wilson TJ, Calinescu A, Paran C, Kamran N, Koschmann C, Moreno-Ayala MA, Assi H, Lowenstein PR. Adenoviral vector-mediated gene therapy for gliomas: coming of age. Expert Opin Biol Ther 2014. [PMID: 24773178 DOI: 10.1517/14712598.2014.91530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults and it carries a dismal prognosis. Adenoviral vector (Ad)-mediated gene transfer is being developed as a promising therapeutic strategy for GBM. Preclinical studies have demonstrated safety and efficacy of adenovirus administration into the brain and tumor mass in rodents and into the non-human primates' brain. Importantly, Ads have been safely administered within the tumor resection cavity in humans. AREAS COVERED This review gives background on GBM and Ads; we describe gene therapy strategies for GBM and discuss the value of combination approaches. Finally, we discuss the results of the human clinical trials for GBM that have used Ads. EXPERT OPINION The transduction characteristics of Ads, and their safety profile, added to their capacity to achieve high levels of transgene expression have made them powerful vectors for the treatment of GBM. Recent gene therapy successes in the treatment of retinal diseases and systemic brain metabolic diseases encourage the development of gene therapy for malignant glioma. Exciting clinical trials are currently recruiting patients; although, it is the large randomized Phase III controlled clinical trials that will provide the final decision on the success of gene therapy for the treatment of GBM.
Collapse
Affiliation(s)
- Maria G Castro
- University of Michigan Medical School, Department of Neurosurgery , 4570 MSRB II, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689 , USA +734 764 0850 ; +734 764 7051 ;
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Thaci B, Ahmed AU, Ulasov IV, Wainwright DA, Nigam P, Auffinger B, Tobias AL, Han Y, Zhang L, Moon KS, Lesniak MS. Depletion of myeloid-derived suppressor cells during interleukin-12 immunogene therapy does not confer a survival advantage in experimental malignant glioma. Cancer Gene Ther 2014; 21:38-44. [PMID: 24434573 DOI: 10.1038/cgt.2013.81] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/08/2013] [Accepted: 12/09/2013] [Indexed: 11/09/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) accumulate in the glioma microenvironment during tumor progression and promote immunosuppression. Interleukin-12 (IL-12) immunogene therapy can alter MDSCs toward an antigen-presenting cell phenotype and these mature cells can have a central role in antigen presentation. It remains unclear, however, how MDSC depletion can affect glioma immunotherapy. In this study, we generated a replication-deficient adenoviral vector, Ad.5/3.cRGD-mIL12p70, that transduces the GL261-based murine glioma cell line, resulting in the induction of biologically active, murine IL12p70 expression. Ex vivo, IL-12 expressed by GL261 cells induced interferon-γ synthesis in CD8(+) T cells (P<0.001), CD4(+) T cells (P=0.009) and natural killer cells (P=0.036). When injected 1 week after tumor implantation, Ad.5/3.cRGD-mIL12p70 successfully prolonged the survival of glioma-bearing mice. Sixty percent of animals treated with IL-12 immunotherapy were long-term survivors over 175 days, whereas all the control group animals expired by 40 days after tumor implantation (P=0.026). Mice receiving Ad.5/3.cRGD-mIL12p70 also accumulated 50% less MDSCs in the brain than the control group (P=0.007). Moreover, in the IL-12 group, MDSCs significantly overexpressed CD80 and major histocompatibility complex class II molecules (P=0.041). Depletion of MDSCs with Gr1(+) antibody had no survival benefit induced by IL-12-mediated immunotherapy. Of note, IL-12 therapy increased the presence of myeloid dendritic cells (mDCs) in the glioma microenvironment (P=0.0069). Ultimately, the data show that in the context of IL-12 immunogene therapy, MDSCs are dispensable and mDCs may provide the majority of antigen presentation in the brain.
Collapse
Affiliation(s)
- B Thaci
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - A U Ahmed
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - I V Ulasov
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - D A Wainwright
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - P Nigam
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - B Auffinger
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - A L Tobias
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - Y Han
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - L Zhang
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - K-S Moon
- 1] The Brain Tumor Center, The University of Chicago Pritzker School of Medicine, Chicago, IL, USA [2] Department of Neurosurgery, Chonnam National University Hwasun Hospital and Medical School, Jeollanam-do, Korea
| | - M S Lesniak
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| |
Collapse
|
14
|
Abstract
Despite dramatic advances in surgical techniques, imaging and adjuvant radiotherapy or chemotherapy, the prognosis for patients with malignant glial tumors remains dismal. Based on the current knowledge regarding immune responses in the healthy CNS and glioma-bearing hosts, this review discusses dendritic cell-based immunotherapeutic approaches for malignant gliomas and the relevance of recent clinical trials and their outcomes. It is now recognized that the CNS is not an immunologically tolerated site and clearance of arising glioma cells is a routine physiologic function of the normal, noncompromised immune system. To escape from immune surveillance, however, clinically apparent gliomas develop complex mechanisms that suppress tumoricidal immune responses. Although the use of dendritic cells for the treatment of glioma patients may be the most appropriate approach, an effective treatment paradigm for these tumors may eventually require the use of several types of treatment. Additionally, given the heterogeneity of this disease process and an immune-refractory tumor cell population, the series use of rational multiple modalities that target disparate tumor characteristics may be the most effective therapeutic strategy to treat malignant gliomas.
Collapse
Affiliation(s)
- Yasuharu Akasaki
- Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Suite 800 East, 8631 West 3 Street, Los Angeles, CA 90048, USA
| | | | | |
Collapse
|
15
|
Abstract
Glioblastoma multiforme represents the most common primary malignant tumor of the adult CNS. Unfortunately, the median survival after surgical intervention alone is less than 6 months and the addition of radiotherapy can extend this time to only 9 months. Consequently, efforts aimed at developing new therapies have focused on new treatment strategies that specifically target tumor cells and spare normal cells. One such modality, gene therapy, has shown promise in the spectrum of agents utilized against brain tumors. This review highlights the principles of gene therapy and discusses the results of recent clinical trials in which gene therapy has been employed against malignant brain tumors.
Collapse
Affiliation(s)
- Maciej S Lesniak
- Division of Neurological Surgery, The University of Chicago, Pritzker School of Medicine, 5841 S. Maryland Avenue, MC3026, Chicago, IL 60637, USA.
| |
Collapse
|
16
|
Vom Berg J, Vrohlings M, Haller S, Haimovici A, Kulig P, Sledzinska A, Weller M, Becher B. Intratumoral IL-12 combined with CTLA-4 blockade elicits T cell-mediated glioma rejection. ACTA ACUST UNITED AC 2013; 210:2803-11. [PMID: 24277150 PMCID: PMC3865478 DOI: 10.1084/jem.20130678] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
T cells are crucial effectors of glioma rejection induced by local IL-12 application and CTLA-4 blockade. Glioblastomas (GBs) are the most aggressive form of primary brain cancer and virtually incurable. Accumulation of regulatory T (T reg) cells in GBs is thought to contribute to the dampening of antitumor immunity. Using a syngeneic mouse model for GB, we tested whether local delivery of cytokines could render the immunosuppressive GB microenvironment conducive to an antitumor immune response. IL-12 but not IL-23 reversed GB-induced immunosuppression and led to tumor clearance. In contrast to models of skin or lung cancer, IL-12–mediated glioma rejection was T cell dependent and elicited potent immunological memory. To translate these findings into a clinically relevant setting, we allowed for GB progression before initiating therapy. Combined intratumoral IL-12 application with systemic blockade of the co-inhibitory receptor CTLA-4 on T cells led to tumor eradication even at advanced disease stages where monotherapy with either IL-12 or CTLA-4 blockade failed. The combination of IL-12 and CTLA-4 blockade acts predominantly on CD4+ cells, causing a drastic decrease in FoxP3+ T reg cells and an increase in effector T (T eff) cells. Our data provide compelling preclinical findings warranting swift translation into clinical trials in GB and represent a promising approach to increase response rates of CTLA-4 blockade in solid tumors.
Collapse
Affiliation(s)
- Johannes Vom Berg
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Varma NRS, Barton KN, Janic B, Shankar A, Iskander ASM, Ali MM, Arbab AS. Monitoring adenoviral based gene delivery in rat glioma by molecular imaging. World J Clin Oncol 2013; 4:91-101. [PMID: 24926429 PMCID: PMC4053711 DOI: 10.5306/wjco.v4.i4.91] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/21/2013] [Accepted: 07/11/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine whether endothelial progenitor cells (EPCs) can be used as delivery vehicle for adenoviral vectors and imaging probes for gene therapy in glioblastoma.
METHODS: To use cord blood derived EPCs as delivery vehicle for adenoviral vectors and imaging probes for glioma gene therapy, a rat model of human glioma was made by implanting U251 cells orthotopically. EPCs were transfected with an adenovirus (AD5/carrying hNIS gene) and labeled with iron oxide and inoculated them directly into the tumor 14 d following implantation of U251 cells. Magnetic resonance imaging (MRI) was used to in vivo track the migration of EPCs in the tumor. The expression of gene products was determined by in vivo Tc-99m single photon emission computed tomography (SPECT). The findings were validated with immunohistochemistry (IHC).
RESULTS: EPCs were successfully transfected with the adenoviral vectors carrying hNIS which was proved by significantly (P < 0.05) higher uptake of Tc-99m in transfected cells. Viability of EPCs following transfection and iron labeling was not altered. In vivo imaging showed the presence of iron positive cells and the expression of transgene (hNIS) product on MRI and SPECT, respectively, all over the tumors following administration of transfected and iron labeled EPCs in the tumors. IHC confirmed the distribution of EPC around the tumor away from the injection site and also showed transgene expression in the tumor. The results indicated the EPCs’ ability to deliver adenoviral vectors into the glioma upon intratumor injection.
CONCLUSION: EPCs can be used as vehicle to deliver adenoviral vector to glioma and also act as imaging probe at the same time.
Collapse
|
18
|
Abstract
Gene therapy as a treatment for cancer is regarded as high in promise, but low in delivery, a deficiency that has become more obvious with ever-increasing reports of the successful correction of monogenic disorders by this approach. We review the commercial and scientific obstacles that have led to these delays and describe how they are progressively being overcome. Recent and striking successes and correspondingly increased commercial involvement suggest that gene transfer could finally become a powerful method for development of safe and effective cancer therapeutic drugs.
Collapse
Affiliation(s)
- Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, The Methodist Hospital and Texas Children's Hospital, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - Stephen Gottschalk
- Center for Cell and Gene Therapy, Baylor College of Medicine, The Methodist Hospital and Texas Children's Hospital, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Ann M Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, The Methodist Hospital and Texas Children's Hospital, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Juan F Vera
- Center for Cell and Gene Therapy, Baylor College of Medicine, The Methodist Hospital and Texas Children's Hospital, Houston, TX, USA; Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
19
|
Cerullo V, Koski A, Vähä-Koskela M, Hemminki A. Chapter eight--Oncolytic adenoviruses for cancer immunotherapy: data from mice, hamsters, and humans. Adv Cancer Res 2013; 115:265-318. [PMID: 23021247 DOI: 10.1016/b978-0-12-398342-8.00008-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adenovirus is one of the most commonly used vectors for gene therapy and two products have already been approved for treatment of cancer in China (Gendicine(R) and Oncorine(R)). An intriguing aspect of oncolytic adenoviruses is that by their very nature they potently stimulate multiple arms of the immune system. Thus, combined tumor killing via oncolysis and inherent immunostimulatory properties in fact make these viruses in situ tumor vaccines. When further engineered to express cytokines, chemokines, tumor-associated antigens, or other immunomodulatory elements, they have been shown in various preclinical models to induce antigen-specific effector and memory responses, resulting both in full therapeutic cures and even induction of life-long tumor immunity. Here, we review the state of the art of oncolytic adenovirus, in the context of their capability to stimulate innate and adaptive arms of the immune system and finally how we can modify these viruses to direct the immune response toward cancer.
Collapse
Affiliation(s)
- Vincenzo Cerullo
- Laboratory of Immunovirotherapy, Division of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| | | | | | | |
Collapse
|
20
|
Zolotukhin I, Luo D, Gorbatyuk O, Hoffman B, Warrington K, Herzog R, Harrison J, Cao O. Improved Adeno-associated Viral Gene Transfer to Murine Glioma. ACTA ACUST UNITED AC 2013; 4. [PMID: 24319629 DOI: 10.4172/2157-7412.1000133] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Glioblastoma (GBM) is a deadly primary brain tumor. Current treatment, consisting of surgical removal of the tumor mass followed by chemotherapy and/or radiotherapy, does not significantly prolong survival. Gene therapies for GBM are being developed in clinical trials, for example using adenoviral vectors. While adeno-associated virus (AAV) represents an alternative vector system, limited gene transfer to glioma cells has hampered its use. Here, we evaluated newly emerged variants of AAV capsid for gene delivery to murine glioma. We tested a mutant AAV2 capsid devoid of 3 surface-exposed tyrosine residues, AAV2 (Y444-500-730F), and a "shuffed" capsid (ShH19, containing sequences from several serotypes) that had previously been selected for enhanced glial gene delivery. AAV2 (Y-F) and ShH19 showed improved transduction of murine glioma GL261 cells in vitro by 2- to 6-fold, respectively, over AAV2. While AAV2 gene transfer to GL261 cells in established tumors in brains of syngeneic mice was undetectable, intratumoral injection of AAV2 (Y-F) or ShH19 resulted in local transduction of approximately 10% of tumor cells. In addition, gene transfer to neurons adjacent to the tumor was observed, while microglia were rarely transduced. Use of self-complementary vectors further increased transduction of glioma cells. Together, the data demonstrate the potential for improved AAV-based gene therapy for glioma using recently developed capsid variants.
Collapse
Affiliation(s)
- I Zolotukhin
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Lichtor T, Glick RP. Immunogene therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 746:151-65. [PMID: 22639166 DOI: 10.1007/978-1-4614-3146-6_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Antigenic differences between normal and malignant cells of the cancer patient form the rationale for clinical immunotherapeutic strategies. Because the antigenic phenotype of neoplastic cells varies widely among different cells within the same malignant cell-population, immunization with a vaccine that stimulates immunity to the broad array of tumor antigens expressed by the cancer cells is likely to be more efficacious than immunization with a vaccine for a single antigen. A vaccine prepared by transfer of DNA from the tumor into a highly immunogenic cell line can encompass the array of tumor antigens that characterize the patient's neoplasm. Poorly immunogenic tumor antigens, characteristic of malignant cells, can become strongly antigenic if they are expressed by highly immunogenic cells. A DNA-based vaccine was prepared by transfer of genomic DNA from a breast cancer that arose spontaneously in a C3H/He mouse into a highly immunogenic mouse fibroblast cell line, where genes specifying tumor-antigens were expressed. The fibroblasts were modified in advance of DNA-transfer to secrete an immune augmenting cytokine and to express allogeneic MHC Class I-determinants. In an animal model of breast cancer metastatic to the brain, introduction of the vaccine directly into the tumor bed stimulated a systemic cellular antitumor immune response measured by two independent in vitro assays and prolonged the lives of the tumor-bearing mice. Furthermore, using antibodies against the various T-cell subsets, it was determined that the systemic cellular antitumor immunity was mediated by CD8+, CD4+ and NK/LAK cells. In addition an enrichment strategy has also been developed to increase the proportion of immunotherapeutic cells in the vaccine which has resulted in the development of enhanced antitumor immunity. Finally regulatory T cells (CD4+CD25+Fox p3+-positive) were found to be relatively deficient in the spleen cells from the tumor-bearing mice injected intracerebrally with the enriched vaccine. The application of DNA-based genomic vaccines for the treatment of a variety of brain tumors is being explored.
Collapse
Affiliation(s)
- Terry Lichtor
- Department of Neurological Surgery, Rush University Medical Center, Chicago, IL, USA.
| | | |
Collapse
|
22
|
|
23
|
Challenges in immunotherapy presented by the glioblastoma multiforme microenvironment. Clin Dev Immunol 2011; 2011:732413. [PMID: 22190972 PMCID: PMC3235820 DOI: 10.1155/2011/732413] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 10/24/2011] [Indexed: 12/13/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults. Despite intensive treatment, the prognosis for patients with GBM remains grim with a median survival of only 14.6 months. Immunotherapy has emerged as a promising approach for treating many cancers and affords the advantages of cellular-level specificity and the potential to generate durable immune surveillance. The complexity of the tumor microenvironment poses a significant challenge to the development of immunotherapy for GBM, as multiple signaling pathways, cytokines, and cell types are intricately coordinated to generate an immunosuppressive milieu. The development of new immunotherapy approaches frequently uncovers new mechanisms of tumor-mediated immunosuppression. In this review, we discuss many of the current approaches to immunotherapy and focus on the challenges presented by the tumor microenvironment.
Collapse
|
24
|
Castro MG, Candolfi M, Kroeger K, King GD, Curtin JF, Yagiz K, Mineharu Y, Assi H, Wibowo M, Ghulam Muhammad AKM, Foulad D, Puntel M, Lowenstein PR. Gene therapy and targeted toxins for glioma. Curr Gene Ther 2011; 11:155-80. [PMID: 21453286 DOI: 10.2174/156652311795684722] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 03/08/2011] [Indexed: 12/12/2022]
Abstract
The most common primary brain tumor in adults is glioblastoma. These tumors are highly invasive and aggressive with a mean survival time of 15-18 months from diagnosis to death. Current treatment modalities are unable to significantly prolong survival in patients diagnosed with glioblastoma. As such, glioma is an attractive target for developing novel therapeutic approaches utilizing gene therapy. This review will examine the available preclinical models for glioma including xenographs, syngeneic and genetic models. Several promising therapeutic targets are currently being pursued in pre-clinical investigations. These targets will be reviewed by mechanism of action, i.e., conditional cytotoxic, targeted toxins, oncolytic viruses, tumor suppressors/oncogenes, and immune stimulatory approaches. Preclinical gene therapy paradigms aim to determine which strategies will provide rapid tumor regression and long-term protection from recurrence. While a wide range of potential targets are being investigated preclinically, only the most efficacious are further transitioned into clinical trial paradigms. Clinical trials reported to date are summarized including results from conditionally cytotoxic, targeted toxins, oncolytic viruses and oncogene targeting approaches. Clinical trial results have not been as robust as preclinical models predicted; this could be due to the limitations of the GBM models employed. Once this is addressed, and we develop effective gene therapies in models that better replicate the clinical scenario, gene therapy will provide a powerful approach to treat and manage brain tumors.
Collapse
Affiliation(s)
- Maria G Castro
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Cancers are still difficult targets despite recent advances in cancer therapy. Due to the heterogeneity of cancer, a single-treatment modality is insufficient for the complete elimination of cancer cells. Therapeutic strategies from various aspects are needed. Gene therapy has been expected to bring a breakthrough to cancer therapy, but it has not yet been successful. Gene therapy also should be combined with other treatments to enhance multiple therapeutic pathways. In this view, gene delivery vector itself should be equipped with intrinsic anti-cancer activities. HVJ (hemagglutinating virus of Japan; Sendai virus) envelope vector (HVJ-E) was developed to deliver therapeutic molecules. HVJ-E itself possessed anti-tumor activities such as the generation of anti-tumor immunities and the induction of cancer-selective apoptosis. In addition to the intrinsic anti-tumor activities, therapeutic molecules incorporated into HVJ-E enabled to achieve multi-modal therapeutic strategies in cancer treatment. Tumor-targeting HVJ-E was also developed. Thus, HVJ-E will be a novel promising tool for cancer treatment.
Collapse
Affiliation(s)
- Yasufumi Kaneda
- Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, Japan.
| |
Collapse
|
26
|
van Putten EH, Dirven CM, van den Bent MJ, Lamfers ML. Sitimagene ceradenovec: a gene-based drug for the treatment of operable high-grade glioma. Future Oncol 2011; 6:1691-710. [PMID: 21142657 DOI: 10.2217/fon.10.134] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The field of gene therapy for malignant glioma has made important advances since the first gene transfer studies were performed 20 years ago. Multiple Phase I/II trials and two Phase III trials have been performed and have demonstrated the feasibility and safety of intratumoral vector delivery in the brain. Sitimagene ceradenovec is an adenoviral vector encoding the herpes simplex thymidine kinase gene, developed by Ark Therapeutics Group plc (UK and Finland) for the treatment of patients with operable high-grade glioma. In preclinical and Phase I/II clinical studies, sitimagene ceradenovec exhibited a significant increase in survival. Although the preliminary results of a Phase III clinical study demonstrated a significant positive effect of sitimagene ceradenovec treatment on time to reintervention or death when compared with standard care treatment (hazard ratio: 1.43; 95% CI: 1.06-1.93; p < 0.05), the European Committee for Medicinal Products for Human Use did not consider the data to provide sufficient evidence of clinical benefit. Further clinical evaluation, powered to demonstrate a benefit on a robust end point, is required. This article focuses on sitimagene ceradenovec and provides an overview of the developments in the field of gene therapy for malignant glioma.
Collapse
Affiliation(s)
- Erik Hp van Putten
- Department of Neurosurgery, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
27
|
Roche FP, Sheahan BJ, O'Mara SM, Atkins GJ. Semliki Forest virus-mediated gene therapy of the RG2 rat glioma. Neuropathol Appl Neurobiol 2011; 36:648-60. [PMID: 20649937 DOI: 10.1111/j.1365-2990.2010.01110.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
AIMS Glioblastoma multiforme is the most common and most malignant adult brain tumour. Despite numerous advances in cancer therapy there has been little change in the prognosis of glioblastoma multiforme, which remains invariably fatal. We examined the Semliki Forest virus virus-like particle (SFV VLP) expression system encoding interleukin-12 (IL-12) as a therapeutic intervention against the syngeneic RG2 rat glioma model. METHODS Glioma-bearing rats were treated with IL-12-encoding SFV VLPs via an implanted cannula. Animals were treated with 5 × 10⁷ (low-dose) or 5 × 10⁸ (high-dose) VLPs per treatment and the effect on glioma growth and survival was assessed. RESULTS Low-dose treatment produced a 70% reduction in tumour volume, associated with a significant extension (20.45%) in survival that was dependent upon IL-12 expression. High-dose treatment resulted in an 87% reduction in tumour volume, related to the oncolytic capacity of the SFV VLP system. VLP delivery to the central nervous system (CNS) demonstrated the potential of the vector system to induce lethal pathology that was unrelated to replication-competent virus or high-level IL-12 expression. Treatment-related death was pronounced in high dose-treated animals and appeared to be the result of inflammation, necrosis and oedema at the inoculation site. CONCLUSION The efficacy of an IL-12 gene therapy approach for the treatment of the RG2 glioma model has been demonstrated in addition to the oncolytic capacity of the VLP vector system. Despite this, the broad tropism of the SFV-based expression vector may limit use as a CNS gene therapy vector unless this inherent limitation can be overcome.
Collapse
Affiliation(s)
- F P Roche
- Microbiology Department, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| | | | | | | |
Collapse
|
28
|
Yin X, Yan X, Yang Q, Cao H, Liang H. Antitumor mechanism of recombinant murine interleukin-12 vaccine. Cancer Biother Radiopharm 2011; 25:263-8. [PMID: 20578831 DOI: 10.1089/cbr.2010.0771] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study was designed to establish an interleukin-12 (IL-12)-expressing murine Lewis lung carcinoma (LLC) cell vaccine (LLC/murine IL-12 [mIL-12]) and assess its antitumor efficacy and mechanism in vivo. The recombinant IL-12 plasmid was transfected into LLC cells and screened by G418, and positive clones were obtained. C57BL/6 tumor-bearing mouse model was established and tumor-bearing mice were randomly divided into three groups (n = 20), that is, treated with an intratumoral injection of phosphate-buffered solution, blank plasmid, or LLC/mIL-12 vaccine, respectively, at days 0, 7, and 14. Tumor size was measured before and after treatment. Tumor growth curve was plotted, cytolytic T lymphocyte (CTL) activity assay and natural killer (NK) cell activity assay were performed, CD4(+) and CD8(+) T lymphocyte were quantitated using flow cytometry, and the expression of interferon-gamma (IFN-gamma), IL-12, and interferon-inducible protein-10 (IP-10) in serum was detected by ELISA. Microvessel density was determined by immunohistochemistry after all mice were euthanized at day 21. The study revealed suppressed tumor growth, elevated levels of IFN-gamma, IP-10, and IL-12, augmented NK and CTL cell activities, and decreased microvessel density of tumor tissues. There were abundant CD4(+) and CD8(+) T lymphocyte infiltration in the vaccine group. This study demonstrated that the antitumor mechanism of LLC/mIL-12 vaccine was to promote IFN-gamma and IL-12 secretion, augment the NK and CTL cell activities, and decrease the microvessel density of tumors.
Collapse
Affiliation(s)
- Xiaoling Yin
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | | | | | | | | |
Collapse
|
29
|
Immunogene therapy using immunomodulating HVJ-E vector augments anti-tumor effects in murine malignant glioma. J Neurooncol 2010; 103:19-31. [PMID: 20730616 DOI: 10.1007/s11060-010-0355-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 08/09/2010] [Indexed: 01/14/2023]
Abstract
The hemagglutinating virus of Japan envelope (HVJ-E) vector derived from inactivated replication-defective Sendai virus enhances anti-tumor immunity through activation of effector T cells and natural killer (NK) cells and inhibition of regulatory T cells (Tregs). Interleukin (IL)-2 enhances T cell proliferation and activates T cells and NK cells. However, recent studies have revealed that the application of IL-2 also has immune suppressive effects through expansion of Tregs. Here, we investigated the efficacy of IL-2 gene therapy using immunomodulating HVJ-E vector in murine malignant glioma models. A single intratumoral injection of HVJ-E containing pVAX-mIL-2 significantly suppressed tumor growth of intracranial gliomas, resulting in prolonged survival. Furthermore, HVJ-E, following intracavitary administration, delivered genes into post-operative residual tumor cells. Consequently, prolonged survival resulted from a single intracavitary administration of HVJ-E containing pVAX-mIL-2 following tumor removal. IL-2 gene therapy delivered via the HVJ-E vector significantly inhibited the expansion of Tregs in tumors compared to IL-2 gene transfer using retroviral vector and resulted in marked infiltration of CD4(+) and CD8(+) T cells into tumors. Through inhibition of Treg-mediated immunosuppression, HVJ-E enhanced effector T cell-mediated anti-tumor immunity induced by IL-2. This combination of an immunomodulating vector and immunostimulating cytokine gene shows promise as an attractive, novel immunogene therapy for malignant glioma.
Collapse
|
30
|
|
31
|
Han SJ, Kaur G, Yang I, Lim M. Biologic Principles of Immunotherapy for Malignant Gliomas. Neurosurg Clin N Am 2010; 21:1-16. [DOI: 10.1016/j.nec.2009.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
32
|
Abstract
Several immunostimulant approaches have been studied in the treatment of gliomas. The advent of recombinant DNA technology led to a nonspecific immunostimulation via systemic administration of cytokines. Recently, in attempts to more closely mimic their natural activity, cytokines have been delivered by implanting genetically transduced cells or by using in vivo gene transfer techniques. The latest efforts have focused on immunostimulatory agents that act directly on antigen-presenting cells and effector cells of the immune system via pattern recognition receptors. Combining these strategies with more than one mode of immunotherapy may provide better clinical results.
Collapse
Affiliation(s)
- Nicholas Butowski
- Department of Neurological Surgery, University of California San Francisco, 400 Parnassus Avenue, A808, San Francisco, CA 94143, USA.
| |
Collapse
|
33
|
Kim YS. Tumor Therapy Applying Membrane-bound Form of Cytokines. Immune Netw 2009; 9:158-68. [PMID: 20157604 PMCID: PMC2816950 DOI: 10.4110/in.2009.9.5.158] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 10/11/2009] [Indexed: 12/18/2022] Open
Abstract
Tumor therapy using cytokines has been developed for last two decades. Several recombinant cytokines and tumor cell vaccines produced by cytokine gene transfer have been in clinical trials, but several side effects hamper routine clinical applications. Many cytokines are originally expressed as membrane-bound form and then processed to secretory form exerting paracrine effects. Though functional differences of these two types of cytokines are elusive yet, the membrane-bound form of cytokine may exert its effects on restricted target cells as a juxtacrine, which are in physical contacts. With the efforts to improve antitumor activities of cytokines in cancer patients, developing new strategies to alleviate life-threatening side effects became an inevitable goal of tumor immunologists. Among these, tumor cell vaccines expressing cytokines as membrane-bound form on tumor cell surface have been developed by genetic engineering techniques with the hope of selective stimulation of the target cells that are in cell-to-cell contacts. In this review, recent progress of tumor cell vaccines expressing membrane-bound form of cytokines will be discussed.
Collapse
Affiliation(s)
- Young Sang Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 305-764, Korea
| |
Collapse
|
34
|
Sabel MS, Su G, Griffith KA, Chang AE. Intratumoral delivery of encapsulated IL-12, IL-18 and TNF-alpha in a model of metastatic breast cancer. Breast Cancer Res Treat 2009; 122:325-36. [PMID: 19802695 DOI: 10.1007/s10549-009-0570-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 09/21/2009] [Indexed: 11/30/2022]
Abstract
Intratumoral (i.t.) cytokine release through the use of poly-lactic acid microspheres (PLAM) holds tremendous potential for the immunotherapy of breast cancer as it harnesses the immunologic potential of autologous tumor in a clinically feasible and minimally toxic manner. We examined the potential of combinations of i.t. IL-12, IL-18 and TNF-alpha PLAM to generate a tumor-specific immune response and improve outcome in a model of metastatic breast cancer. Balb/c mice with established 4T1 mammary carcinomas were treated with a single injection of BSA, IL-12, IL-18 or TNF-alpha-loaded PLAM alone or in combination after spontaneous metastases occurred. Combined treatment with IL-12 and TNF-alpha PLAM was superior to all other treatments, including the triple combination of IL-12, IL-18 and TNF-alpha in ablation of the primary tumor, eradicating distant disease and enhancing survival. Simultaneous delivery of IL-12 and TNF-alpha was superior to sequential delivery of IL-12 followed by TNF-alpha, but not TNF-alpha followed by IL-12. In vivo lymphocyte depletion studies established that the effects of IL-12 alone are mediated primarily by NK cells, while the combination of IL-12 and TNF-alpha is dependent upon CD8+ T-cells. Only the combination of IL-12 and TNF-alpha results in an increase in both CD4+ and CD8+ T-cells and a reduction in CD4+CD25+ cells. While there was no change in the dendritic cell population, IL-12 and TNF-alpha resulted in a dramatic increase in DC maturation and antigen presentation. Neoadjuvant immunotherapy with simultaneous intratumoral delivery of IL-12 and TNF-alpha PLAM augments DC antigen presentation and increases cytotoxic T-cells without increasing regulatory T-cells, resulting in a T-cell based anti-tumor immune response capable of eradicating disseminated disease. The addition of IL-18 did not improve the efficacy.
Collapse
Affiliation(s)
- Michael S Sabel
- Division of Surgical Oncology, University of Michigan, Ann Arbor, MI, USA.
| | | | | | | |
Collapse
|
35
|
Siddiqui F, Li CY, Zhang X, Larue SM, Dewhirst MW, Ullrich RL, Avery PR. Characterization of a recombinant adenovirus vector encoding heat-inducible feline interleukin-12 for use in hyperthermia-induced gene-therapy. Int J Hyperthermia 2009; 22:117-34. [PMID: 16754596 DOI: 10.1080/02656730500462309] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Interleukin-12 (IL-12) is a pro-inflammatory cytokine that has shown great promise as a therapeutic agent in experimental models of infectious disease and cancer. However, it is also a highly toxic molecule and for that reason has not been accepted readily into the clinic. A replication-deficient adenoviral vector was designed to deliver the feline interleukin-12 gene into tumour cells. The interleukin-12 gene has been placed under control of a heat inducible promoter, human heat shock promoter 70b, with the intent of spatially and temporally controlling the expression of IL-12, thus limiting its toxicity. In vitro, the transfection efficiency of the adenoviral vector, the effect of multiplicity of infection and the production of biologically active feline IL-12 were studied in the infected cells in response to a range of temperatures. This adenoviral vector will be a useful tool to examine the effects of intra-tumoural IL-12 delivery in a spontaneously occurring feline soft tissue sarcoma model.
Collapse
Affiliation(s)
- Farzan Siddiqui
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Germano IM, Binello E. Gene therapy as an adjuvant treatment for malignant gliomas: from bench to bedside. J Neurooncol 2009; 93:79-87. [PMID: 19430884 PMCID: PMC11766529 DOI: 10.1007/s11060-009-9869-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 03/16/2009] [Indexed: 01/02/2023]
Abstract
Malignant brain tumors, including high-grade gliomas, are among the most lethal of all cancers. Despite considerable advances, including multi-modality treatments with surgery, radiotherapy, and chemotherapy, the overall prognosis for patients with this disease remains dismal. Currently available treatments necessitate the development of more effective tumor-selective therapies. The use of gene therapy for brain tumor therapy is promising as it can be delivered in situ and selectively targets brain tumor cells while sparing the adjacent normal brain tissue. In this article, we summarize the laboratory and clinical work using viral, cell-based, and synthetic vectors, as well as other strategies focused on potentiate gene delivery. Although tangible results on patients' survival remains to be further documented, significant advances in therapeutic gene transfer strategies have been made. The enthusiasm of this progress needs to be tempered by the realistic assessment of the challenges needed to be overcome. Finally, as the field of gene delivery progresses, advances must be made in identifying genes and proteins key to the treatment of malignant gliomas. Due to the great heterogeneity of malignant glioma cells, only approaches combining different strategies may be ultimately successful in defeating this disease.
Collapse
Affiliation(s)
- Isabelle M Germano
- Department of Neurosurgery, Mt. Sinai School of Medicine, New York, NY 10029, USA.
| | | |
Collapse
|
37
|
Siddiqui F, Avery PR, Li CY, Zhang X, LaRue SM, Dewhirst MW, Ullrich RL. Induction of the human heat shock promoter HSP70B by nutritional stress: implications for cancer gene therapy. Cancer Invest 2008; 26:553-61. [PMID: 18584345 DOI: 10.1080/07357900701788015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND We designed and tested, in vitro, an adenoviral construct containing the feline interleukin-12 (IL-12) gene under control of the heat-inducible promoter HSP70B. This construct, AdhspfIL12, was used in a phase I trial in feline soft tissue sarcomas. During the course of our experiments, we noted that IL-12 was being produced in the transfected Crandell Feline Kidney (CrFK) cells under certain conditions even in the absence of hyperthermia. This observation was further explored to identify the cause of this unintended HSP70B induction. MATERIALS AND METHODS We used real-time PCR as a sensitive method to quantitatively detect the presence of even small amounts of IL-12 mRNA. This served as a surrogate indicator of HSP70B induction. Various conditions were tested to induce the heat shock promoter, including nutritional deprivation, radiation and changes in pH. RESULTS Nutritional stresses, specifically the absence of glucose and glutamine, could induce the heat shock promoter, thus, resulting in production of the downstream gene product. Other factors known to trigger the heat shock response, pH change, and reactive oxygen species production were also studied but were not found to contribute to heat shock promoter induction in our setting. CONCLUSIONS The human heat shock promoter (HSP70B) is reported to be an efficient and tightly regulated promoter. We discovered, using sensitive real-time PCR techniques, that it can also be induced in response to cellular nutrient stresses. The pros and cons of this phenomenon and its implications for cancer gene therapy are discussed.
Collapse
Affiliation(s)
- Farzan Siddiqui
- Department of Environmental, Colorado State University, Fort Collins, Colorado, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
A safety and efficacy study of local delivery of interleukin-12 transgene by PPC polymer in a model of experimental glioma. Anticancer Drugs 2008; 19:133-42. [PMID: 18176109 DOI: 10.1097/cad.0b013e3282f24017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Interleukin-12 (IL-12) triggers an antitumoral immune response and an antiangiogenic effect against cancer. In this study, we tested a novel polymeric vehicle for IL-12 gene therapy along with adjuvant local biodegradable carmustine (BCNU) chemotherapy for the treatment of malignant glioma. Highly concentrated DNA/PPC (polyethylenimine covalently modified with methoxypolyethyleneglycol and cholesterol) complexes were used to deliver a murine plasmid encoding IL-12 (pmIL-12). For toxicity assessment, mice received intracranial injections with different volumes of pmIL-12/PPC. For efficacy, mice with intracranial GL261 glioma were treated with local delivery of pmIL-12/PPC and/or BCNU-containing polymers. Intracranial injections of 5-10 microl of pmIL-12/PPC were well tolerated and led to IL-12 expression in the brains of treated animals. Treatment with pmIL-12/PPC led to a significant increase in survival compared with untreated mice (median survival 57 days; 25% long-term survival >95 vs. 45 days for control; P<0.05). Treatment with BCNU led to a significant increase in survival compared with untreated mice, with 75% of treated mice having a long-term survival >95 days, (P<0.05). Most importantly, the combination of BCNU and pmIL-12/PPC led to a survival of 100% of the mice for 95 days after treatment (P<0.0001). This novel strategy is safe and effective for the treatment of malignant glioma. The synergy resultant from the combination of locally administered pmIL-12/PPC and BCNU suggests a role for this approach in the treatment of malignant brain tumors.
Collapse
|
39
|
Kushen MC, Sonabend AM, Lesniak MS. Current immunotherapeutic strategies for central nervous system tumors. Surg Oncol Clin N Am 2008; 16:987-1004, xii. [PMID: 18022555 DOI: 10.1016/j.soc.2007.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Immunotherapy has emerged as a promising tool in the management of malignant central nervous system tumors. Despite improvement in patient survival, traditional approaches, which consist mostly of surgery, radiotherapy, and chemotherapy, have been largely unsuccessful in permanently controlling these aggressive tumors. Immunotherapeutic strategies offer not only a novel approach but also an advantage in a way other modalities have been failing. Specifically, the capabilities of the immune system to recognize altered cells while leaving normal cells intact offer tremendous advantage over the conventional therapeutic approaches. This article summarizes our current understanding of immunotherapeutic treatment modalities used in clinical trials for management of malignant central nervous system tumors.
Collapse
Affiliation(s)
- Medina C Kushen
- Neurosurgical Oncology and The University of Chicago Brain Tumor Center, Section of Neurosurgery, The University of Chicago Hospital, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| | | | | |
Collapse
|
40
|
Lichtor T, Glick RP, Feldman LA, Osawa G, Hardman J, Sullivan IO, Cohen EP. Enhanced Immunity to Intracerebral Breast Cancer in Mice Immunized With a cDNA-based Vaccine Enriched for Immunotherapeutic Cells. J Immunother 2008; 31:18-27. [DOI: 10.1097/cji.0b013e318157c64e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Generation of a Tumor-specific Systemic Response After Intratumoral Injection of IL-12 and IL-18–loaded Polylactic Acid Microspheres. J Immunother 2007; 30:808-16. [DOI: 10.1097/cji.0b013e318156e6a7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Ehtesham M, Black KL, Yu JS. Recent progress in immunotherapy for malignant glioma: treatment strategies and results from clinical trials. Cancer Control 2007; 11:192-207. [PMID: 15153843 DOI: 10.1177/107327480401100307] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Despite advances in surgical and adjuvant radiation therapy and chemotherapy strategies, malignant gliomas continue to be associated with poor prognoses. METHODS We review immune-mediated treatment approaches for malignant glioma and the relevance of recent clinical trials and their outcomes. We specifically address the increasing evidence implicating the role of cytotoxic T cells in ensuring adequate immune-mediated clearance of neoplastic cells and the need for the optimization of therapies that can elicit and support such antitumor T-cell activity. RESULTS The poor outcome of this disease has spurred the search for novel experimental therapies that can address and overcome the root biological phenomena associated with the lethality of this disease. The use of immunotherapy to bolster the otherwise impaired antitumor immune responses in glioma patients has received increasing attention. CONCLUSIONS An effective treatment paradigm for malignant gliomas may eventually require a multifaceted approach combining two or more different immunotherapeutic strategies. Such scenarios may involve the use of local cytokine gene therapy to enhance glioma-cell immunogenicity in conjunction with dendritic cell-based active vaccination to stimulate systemic tumoricidal T-cell immunity. Given the heterogeneity of this disease process and the potential risk of immunoediting out a selected, treatment-refractory tumor cell population, the concurrent use of multiple modalities that target disparate tumor characteristics may be of greatest therapeutic relevance.
Collapse
Affiliation(s)
- Moneeb Ehtesham
- Maxine Dunitz Neurosurgical, Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | |
Collapse
|
43
|
Musani SK, Zhang HG, Hsu HC, Yi N, Gorman BS, Allison DB, Mountz JD. Principal component analysis of quantitative trait loci for immune response to adenovirus in mice. Hereditas 2007; 143:189-97. [PMID: 17362354 DOI: 10.1111/j.2006.0018-0661.01925.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Data on the duration of transgene expression in the liver, the presence of cytotoxic T lymphocytes (CTLs) against adenovirus, and serum cytokines from 18 strains of C57BL/6 x DBA/2 (B x D) recombinant inbred mice were analyzed. Our aim was to detect quantitative trait loci (QTLs) that may have causal relationship with the duration of adenovirus-mediated transgene expression in the liver. Information from beta-galactosidase (LacZ) expression; CTL production; and serum levels of gamma interferon, tumor necrosis factor-alpha, and interleukin-6 30 days after intravenous injection of liver LacZ were summarized by principal component analysis and analyzed using maximum likelihood interval mapping implemented in the QTL cartographer software. Two principal component (PC) scores explained 82.5% of the phenotypic variance in the original variables and identified QTLs not identified by analysis of individual traits. The distribution of original variables among PCs was such that variables in PC1 were predominantly cytokines with little CTL response whereas LacZ and CTL were the predominant contributors to PC2 with practically no contribution from cytokines. PC1 was significantly associated with two QTLs on chromosomes 7 and 9 located at 57.5 cM and 41.01 cM, respectively. Five QTLs were significantly associated with PC2 on chromosomes 12 (23.01 and 31.01 cM) and 15 (29.21, 36.01, and 56.31 cM). These results illustrate the use of principal component analysis in mapping QTLs using multiple correlated traits.
Collapse
Affiliation(s)
- Solomon K Musani
- Section on Statistical Genetics, Department of Biostatistics, University of Alabama at Birmingham, AL 35294-0007, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Yu JJ, Sun X, Yuan X, Lee JW, Snyder EY, Yu JS. Immunomodulatory neural stem cells for brain tumour therapy. Expert Opin Biol Ther 2006; 6:1255-62. [PMID: 17223735 DOI: 10.1517/14712598.6.12.1255] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Advances in the understanding of stem cells have enabled the development of novel therapies for brain tumours. Neural stem cells (NSCs) possess the ability to migrate throughout the CNS. By exploiting the tropism of NSCs to various neural pathologies (e.g., glioma, degeneration, stroke and so on) and the delivery of various immunomodulatory cytokines, new treatments for brain tumours have been investigated. These new strategies offer significantly more specificity than existing treatment regimens, such as surgery, radiation and chemotherapy. As methods in isolating and culturing NSCs are better understood, clinical applications of this therapeutic strategy may inevitably emerge. Here, the preclinical advances and the results supporting the effectiveness of stem cell therapies are reviewed. In addition, the obstacles to clinical development and methods to circumvent these caveats are discussed.
Collapse
Affiliation(s)
- Jeffrey J Yu
- Cedars Sinai Medical Center, Department of Neurosurgery, Los Angeles, CA, USA.
| | | | | | | | | | | |
Collapse
|
45
|
King GD, Curtin JF, Candolfi M, Kroeger K, Lowenstein PR, Castro MG. Gene therapy and targeted toxins for glioma. Curr Gene Ther 2006; 5:535-57. [PMID: 16457645 PMCID: PMC1629033 DOI: 10.2174/156652305774964631] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The most common primary brain tumor in adults is glioblastoma. These tumors are highly invasive and aggressive with a mean survival time of nine to twelve months from diagnosis to death. Current treatment modalities are unable to significantly prolong survival in patients diagnosed with glioblastoma. As such, glioma is an attractive target for developing novel therapeutic approaches utilizing gene therapy. This review will examine the available preclinical models for glioma including xenographs, syngeneic and genetic models. Several promising therapeutic targets are currently being pursued in pre-clinical investigations. These targets will be reviewed by mechanism of action, i.e., conditional cytotoxic, targeted toxins, oncolytic viruses, tumor suppressors/oncogenes, and immune stimulatory approaches. Preclinical gene therapy paradigms aim to determine which strategies will provide rapid tumor regression and long-term protection from recurrence. While a wide range of potential targets are being investigated preclinically, only the most efficacious are further transitioned into clinical trial paradigms. Clinical trials reported to date are summarized including results from conditionally cytotoxic, targeted toxins, oncolytic viruses and oncogene targeting approaches. Clinical trial results have not been as robust as preclinical models predicted, this could be due to the limitations of the GBM models employed. Once this is addressed, and we develop effective gene therapies in models that better replicate the clinical scenario, gene therapy will provide a powerful approach to treat and manage brain tumors.
Collapse
Affiliation(s)
- Gwendalyn D King
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Gene therapy offers a new approach for treatment of cancer. Transfer of genes encoding immunostimulatory cytokines has been used with remarkable success to eliminate cancer in animals. However, clinical trials in patients with this strategy had limited efficacy. Therefore, improvement of gene transfer vector system is necessary. A hybrid viral vector, consisting of SFV replicon with either murine IL-12 or reporter LacZ gene, was constructed. This hybrid vector showed specificity and high level of expression in HCC both in vitro and in vivo. In a rat orthotropic liver tumor model, treatment of established tumors by the hybrid vector with mIL-12 gene resulted in a strong anti-tumor activity without accompanying toxicity. Subsequently, a helper-dependent adenovirus vectors containing a mifepristone (RU486) inducible system was constructed for controlled and liver-specific expression of human interleukin 12 (hIL-12) (HD-Ad/RUhIL-12) and mouse IL-12 (mIL-12) (HD-Ad/RUmIL-12). Data showed that high and sustained serum levels of hIL-12 could be attained by continuing administration of RU486 every 12 or 24 h. Repetitive induction of hIL-12 could be obtained over, at least, a period of 48 weeks after a single injection of HD-Ad/RUhIL-12. Treatment of liver metastases with of HD-Ad/RUmIL-12 plus RU846 resulted in complete tumor regression in all animals. Then, different cytokine genes were inserted into conditional replicative adenoviruses vectors (also called oncolytic adenovirus). Replication of adenovirus in tumor cells would kill tumor cells and release viruses, which infect surrounding tumor cells. The combination of cytopathic effect by oncolytic adenovirus and biological effect of transgene would exert strong antitumor activity. These new types of vectors may provide a potent and safe tool for cancer gene therapy.
Collapse
Affiliation(s)
- Cheng Qian
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China.
| | | | | |
Collapse
|
47
|
Sikorski CW, Lesniak MS. Immunotherapy for malignant glioma: current approaches and future directions. Neurol Res 2005; 27:703-16. [PMID: 16197807 DOI: 10.1179/016164105x49481] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Traditional therapies for the treatment of malignant glioma have failed to make appreciable gains regarding patient outcome in the last decade. Therefore, immunotherapeutic approaches have become increasingly popular in the treatment of this cancer. This article reviews general immunology of the central nervous system and the immunobiology of malignant glioma to provide a foundation for understanding the rationale behind current glioma immunotherapies. A review of currently implemented immunological treatments is then provided with special attention paid to the use of vaccines, gene therapy, cytokines, dendritic cells and viruses. Insights into future and developing avenues of glioma immunotherapy, such as novel delivery systems, are also discussed.
Collapse
Affiliation(s)
- Christian W Sikorski
- Division of Neurosurgery, The University of Chicago Pritzker School of Medicine, 5841 South Maryland Avenue, MC 3026, Chicago, Illinois 60637, USA
| | | |
Collapse
|
48
|
Abstract
The prognosis for patients with malignant glioma, which is the most common primary intracranial neoplasm, remains dismal despite significant progress in neurooncological therapies and technology. This is largely due to the inability of current treatment strategies to address the highly invasive nature of this disease. Malignant glial cells often disseminate throughout the brain, making it exceedingly difficult to target and treat all intracranial neoplastic foci, with the result that tumor recurrence is inevitable despite aggressive surgery and adjuvant radiotherapy and/or chemotherapy. The use of neural stem cells (NSCs) as delivery vehicles for tumor-toxic molecules represents the first experimental strategy aimed specifically at targeting disseminated tumor pockets. Investigators have demonstrated that NSCs possess robust tropism for infiltrating tumor cells, and that they can be used to deliver therapeutic agents directly to tumor satellites, with significant therapeutic benefit. With the aim of developing these findings into a clinically viable technology that would not be hindered by ethical and tissue rejection-related concerns, the use of adult tissue-derived stem cells has recently been explored. These technologies represent important progress in the development of a treatment strategy that can specifically target disseminated neoplastic pockets within the brain. Despite encouraging results in preclinical models, however, there are significant impediments that must be overcome prior to clinical implementation of this strategy. Key among these are an inadequate understanding of the specific tropic mechanisms that govern NSC migration toward invasive tumor, and the need to refine the processes used to generate tumor-tropic stem cells from adult tissues so that this can be accomplished in a clinically practicable fashion. Despite these limitations, the use of stem cell therapies for brain tumors holds significant promise and may emerge as an important therapeutic modality for patients with malignant glioma.
Collapse
Affiliation(s)
- Moneeb Ehtesham
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2380, USA.
| | | | | |
Collapse
|
49
|
Tang J, Flomenberg P, Harshyne L, Kenyon L, Andrews DW. Glioblastoma Patients Exhibit Circulating Tumor-Specific CD8+ T Cells. Clin Cancer Res 2005; 11:5292-9. [PMID: 16033848 DOI: 10.1158/1078-0432.ccr-05-0545] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE There is growing interest in developing cellular immune therapies for glioblastoma multiforme, but little is known about tumor-specific T-cell responses. A glioblastoma multiforme-specific T-cell assay was developed using monocyte-derived dendritic cells to present tumor antigens from the established glioblastoma multiforme cell line U118. EXPERIMENTAL DESIGN Peripheral blood mononuclear cells (PBMC) and tumor cells were obtained from nine patients with newly diagnosed brain tumors: five glioblastoma multiforme, two oligodendroglioma, one ependymoma, and one astrocytoma. PBMCs were incubated overnight with autologous tumor cells or autologous dendritic cells loaded with a U118 cell lysate, and responses were detected by IFN-gamma ELISPOT and cytokine flow cytometry assays. RESULTS PBMCs from all glioblastoma multiforme patients exhibited IFN-gamma responses to autologous tumor but not to HLA-mismatched U118 cells. Glioblastoma multiforme-specific IFN-gamma responses were primarily mediated by CD8+ T cells and represented approximately 2% of total CD8+ T cells. Additionally, all glioblastoma multiforme patients responded to autologous dendritic cells loaded with U118 lysate but not with low-grade astrocytoma cell lysates. PBMCs from four patients with other brain tumor types and one normal donor failed to respond to U118 lysate-loaded autologous dendritic cells. These data indicate that the IFN-gamma responses to U118 lysate-loaded autologous dendritic cells are glioblastoma multiforme specific. Moreover, PBMCs stimulated 1 to 2 weeks with U118 lysate-loaded dendritic cells exhibited MHC class I-restricted cytotoxicity against autologous tumor cells. CONCLUSIONS Glioblastoma multiforme patients exhibit circulating tumor-specific CD8+ T cells that recognize shared tumor antigens from the glioblastoma multiforme cell line U118. These data show that glioblastoma multiformes are immunogenic and support the development of immunotherapy trials.
Collapse
Affiliation(s)
- Jie Tang
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
50
|
Shah K, Hsich G, Breakefield XO. Neural precursor cells and their role in neuro-oncology. Dev Neurosci 2005; 26:118-30. [PMID: 15711055 DOI: 10.1159/000082132] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Accepted: 01/07/2004] [Indexed: 01/08/2023] Open
Abstract
Neural precursor cells (NPCs) provide a new mode for delivery of genes and proteins to brain tumors. These cells exist both in the developing and the adult nervous systems of all mammalian organisms. They have the ability to self-renew, migrate to diseased areas of the brain and differentiate into neurons, astrocytes and oligodendrocytes. The migratory ability of NPCs and their capacity to differentiate into all neural phenotypes provides a powerful tool for the treatment of both diffuse and localized neurological disorders. NPCs have been used in transplantation to replace damaged cells and in cancer therapy to provide therapeutic proteins and vectors to eliminate malignant cells in the brain. This review focuses on the characteristics of NPCs and their experimental use in the therapy for brain tumors. Examples are provided of monitoring migration of NPCs by bioluminescence imaging in living animals and of using them to deliver the apoptotic protein, TRAIL, to kill tumor cells.
Collapse
Affiliation(s)
- Khalid Shah
- Department of Neurology, Massachusetts General Hospital and Neuroscience Program, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|