1
|
Taeb S, Rostamzadeh D, Amini SM, Rahmati M, Golshekan M, Abedinzade M, Ahmadi E, Neha S, Najafi M. Revolutionizing Cancer Treatment: Harnessing the Power of Mesenchymal Stem Cells for Precise Targeted Therapy in the Tumor Microenvironment. Curr Top Med Chem 2025; 25:243-262. [PMID: 38797895 DOI: 10.2174/0115680266299112240514103048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024]
Abstract
In recent years, mesenchymal stem cells (MSCs) have emerged as promising anti-- cancer mediators with the potential to treat several cancers. MSCs have been modified to produce anti-proliferative, pro-apoptotic, and anti-angiogenic molecules that could be effective against a variety of malignancies. Additionally, customizing MSCs with cytokines that stimulate pro-tumorigenic immunity or using them as vehicles for traditional chemical molecules with anti-cancer characteristics. Even though the specific function of MSCs in tumors is still challenged, promising outcomes from preclinical investigations of MSC-based gene therapy for a variety of cancers inspire the beginning of clinical trials. In addition, the tumor microenvironment (TME) could have a substantial influence on normal tissue stem cells, which can affect the treatment outcomes. To overcome the complications of TME in cancer development, MSCs could provide some signs of hope for converting TME into unequivocal therapeutic tools. Hence, this review focuses on engineered MSCs (En-MSCs) as a promising approach to overcoming the complications of TME.
Collapse
Affiliation(s)
- Shahram Taeb
- Department of Radiology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Davoud Rostamzadeh
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030, Connecticut, USA
| | - Seyed Mohammad Amini
- Radiation Biology Research center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rahmati
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mostafa Golshekan
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mahmoud Abedinzade
- Department of Medical Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Elham Ahmadi
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030, Connecticut, USA
| | - Singh Neha
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030, Connecticut, USA
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
2
|
Béguin J, Foloppe J, Maurey C, Laloy E, Hortelano J, Nourtier V, Pichon C, Cochin S, Cordier P, Huet H, Quemeneur E, Klonjkowski B, Erbs P. Preclinical Evaluation of the Oncolytic Vaccinia Virus TG6002 by Translational Research on Canine Breast Cancer. MOLECULAR THERAPY-ONCOLYTICS 2020; 19:57-66. [PMID: 33072863 PMCID: PMC7533293 DOI: 10.1016/j.omto.2020.08.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/29/2020] [Indexed: 12/12/2022]
Abstract
Oncolytic virotherapy is a promising therapeutic approach for the treatment of cancer. TG6002 is a recombinant oncolytic vaccinia virus deleted in the thymidine kinase and ribonucleotide reductase genes and armed with the suicide gene FCU1, which encodes a bifunctional chimeric protein that efficiently catalyzes the direct conversion of the nontoxic 5-fluorocytosine into the toxic metabolite 5-fluorouracil. In translational research, canine tumors and especially mammary cancers are relevant surrogates for human cancers and can be used as preclinical models. Here, we report that TG6002 is able to replicate in canine tumor cell lines and is oncolytic in such cells cultured in 2D or 3D as well as canine mammary tumor explants. Furthermore, intratumoral injections of TG6002 lead to inhibition of the proliferation of canine tumor cells grafted into mice. 5-fluorocytosine treatment of mice significantly improves the anti-tumoral activity of TG6002 infection, a finding that can be correlated with its conversion into 5-fluorouracil within infected fresh canine tumor biopsies. In conclusion, our study suggests that TG6002 associated with 5-fluorocytosine is a promising therapy for human and canine cancers.
Collapse
Affiliation(s)
- Jérémy Béguin
- UMR Virologie, INRA, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, Maisons-Alfort 94700, France
- Transgene S.A., 400 Boulevard Gonthier d’Andernach, Parc d’innovation, CS80166, Illkirch-Graffenstaden Cedex 67405, France
- Service de Médecine Interne, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort, 94700, France
- Corresponding author: Jérémy Béguin, UMR Virologie, INRA, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 7 Avenue du Général de Gaulle, Maisons-Alfort 94700, France.
| | - Johann Foloppe
- Transgene S.A., 400 Boulevard Gonthier d’Andernach, Parc d’innovation, CS80166, Illkirch-Graffenstaden Cedex 67405, France
| | - Christelle Maurey
- Service de Médecine Interne, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort, 94700, France
| | - Eve Laloy
- UMR Virologie, INRA, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, Maisons-Alfort 94700, France
- Laboratoire d’Anatomo-cytopathologie, Biopôle Alfort, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort 94700, France
| | - Julie Hortelano
- Transgene S.A., 400 Boulevard Gonthier d’Andernach, Parc d’innovation, CS80166, Illkirch-Graffenstaden Cedex 67405, France
| | - Virginie Nourtier
- Transgene S.A., 400 Boulevard Gonthier d’Andernach, Parc d’innovation, CS80166, Illkirch-Graffenstaden Cedex 67405, France
| | - Christelle Pichon
- Transgene S.A., 400 Boulevard Gonthier d’Andernach, Parc d’innovation, CS80166, Illkirch-Graffenstaden Cedex 67405, France
| | - Sandrine Cochin
- Transgene S.A., 400 Boulevard Gonthier d’Andernach, Parc d’innovation, CS80166, Illkirch-Graffenstaden Cedex 67405, France
| | - Pascale Cordier
- Transgene S.A., 400 Boulevard Gonthier d’Andernach, Parc d’innovation, CS80166, Illkirch-Graffenstaden Cedex 67405, France
| | - Hélène Huet
- UMR Virologie, INRA, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, Maisons-Alfort 94700, France
- Laboratoire d’Anatomo-cytopathologie, Biopôle Alfort, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort 94700, France
| | - Eric Quemeneur
- Transgene S.A., 400 Boulevard Gonthier d’Andernach, Parc d’innovation, CS80166, Illkirch-Graffenstaden Cedex 67405, France
| | - Bernard Klonjkowski
- UMR Virologie, INRA, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, Maisons-Alfort 94700, France
| | - Philippe Erbs
- Transgene S.A., 400 Boulevard Gonthier d’Andernach, Parc d’innovation, CS80166, Illkirch-Graffenstaden Cedex 67405, France
- Corresponding author: Philippe Erbs, Transgene S.A., 400 Boulevard Gonthier d’Andernach, Parc d’innovation, CS80166, Illkirch-Graffenstaden Cedex 67405, France.
| |
Collapse
|
3
|
Kloker LD, Yurttas C, Lauer UM. Three-dimensional tumor cell cultures employed in virotherapy research. Oncolytic Virother 2018; 7:79-93. [PMID: 30234074 PMCID: PMC6130269 DOI: 10.2147/ov.s165479] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Oncolytic virotherapy constitutes an upcoming alternative treatment option for a broad spectrum of cancer entities. However, despite great research efforts, there is still only a single US Food and Drug Administration/European Medicines Agency-approved oncolytic virus available for clinical use. One reason for that is the gap between promising preclinical data and limited clinical success. Since oncolytic viruses are biological agents, they might require more realistic in vitro tumor models than common monolayer tumor cell cultures to provide meaningful predictive preclinical evaluation results. For more realistic invitro tumor models, three-dimensional tumor cell-culture systems can be employed in preclinical virotherapy research. This review provides an overview of spheroid and hydrogel tumor cell cultures, organotypic tumor-tissue slices, organotypic raft cultures, and tumor organoids utilized in the context of oncolytic virotherapy. Furthermore, we also discuss advantages, disadvantages, techniques, and difficulties of these three-dimensional tumor cell-culture systems when applied specifically in virotherapy research.
Collapse
Affiliation(s)
- Linus D Kloker
- Department of Clinical Tumor Biology, University Hospital, University of Tübingen, Tübingen, Germany,
| | - Can Yurttas
- Department of General, Visceral and Transplant Surgery, University Hospital, University of Tübingen, Tübingen, Germany
| | - Ulrich M Lauer
- Department of Clinical Tumor Biology, University Hospital, University of Tübingen, Tübingen, Germany, .,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Tübingen, Germany,
| |
Collapse
|
4
|
Rossi ÚA, Finocchiaro LME, Glikin GC. Interferon-β gene transfer inhibits melanoma cells adhesion and migration. Cytokine 2015; 89:201-208. [PMID: 26597133 DOI: 10.1016/j.cyto.2015.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/08/2015] [Accepted: 11/09/2015] [Indexed: 02/06/2023]
Abstract
We evaluated the effects of expression of interferon-β (IFNβ) after lipofection on melanoma cells adhesion and migration. Three canine mucosal (Ak, Br and Ol) and one human dermal (SB2) melanomas were assayed. By means of the wound healing assay, we found a significant inhibitory effect of canine IFNβ gene expression on cells migration in Br and Ol monolayers. This effect could be reproduced on unlipofected Ol cells with conditioned culture media obtained from canine IFNβ gene-lipofected Ol cells, and with recombinant human IFNβ on unlipofected SB2 cells. Furthermore, IFNβ gene expression of the four tested tumor cells significantly inhibited their adhesion to extracellular matrix (ECM) proteins and their spreading from multicellular spheroids onto gelatin coating. The addition of catalase reverted the increase of reactive oxygen species (ROS) in Ol cells and the inhibition of cell migration in monolayers (Ol) and spheroids (Ol an SB2) produced by canine and human IFNβ expression, suggesting the involvement of ROS as mediators of IFNβ action on the cells interactions with ECM. Together with its known immune, antiangiogenic and cytotoxic effects, the present data strongly support more studies exploring the clinical potential of IFNβ for cancer therapy.
Collapse
Affiliation(s)
- Úrsula A Rossi
- Unidad de Transferencia Genética, Instituto de Oncología "Ángel H. Roffo", Universidad de Buenos Aires, Argentina
| | - Liliana M E Finocchiaro
- Unidad de Transferencia Genética, Instituto de Oncología "Ángel H. Roffo", Universidad de Buenos Aires, Argentina
| | - Gerardo C Glikin
- Unidad de Transferencia Genética, Instituto de Oncología "Ángel H. Roffo", Universidad de Buenos Aires, Argentina.
| |
Collapse
|
5
|
Rossi ÚA, Gil-Cardeza ML, Villaverde MS, Finocchiaro LME, Glikin GC. Interferon-β gene transfer induces a strong cytotoxic bystander effect on melanoma cells. Biomed Pharmacother 2015; 72:44-51. [PMID: 26054674 DOI: 10.1016/j.biopha.2015.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/03/2015] [Indexed: 12/30/2022] Open
Abstract
A local gene therapy scheme for the delivery of type I interferons could be an alternative for the treatment of melanoma. We evaluated the cytotoxic effects of interferon-β (IFNβ) gene lipofection on tumor cell lines derived from three human cutaneous and four canine mucosal melanomas. The cytotoxicity of human IFNβ gene lipofection resulted higher or equivalent to that of the corresponding addition of the recombinant protein (rhIFNβ) to human cells. IFNβ gene lipofection was not cytotoxic for only one canine melanoma cell line. When cultured as monolayers, three human and three canine IFNβ-lipofected melanoma cell lines displayed a remarkable bystander effect. As spheroids, the same six cell lines were sensitive to IFNβ gene transfer, two displaying a significant multicell resistance phenotype. The effects of conditioned IFNβ-lipofected canine melanoma cell culture media suggested the release of at least one soluble thermolabile cytotoxic factor that could not be detected in human melanoma cells. By using a secretion signal-free truncated human IFNβ, we showed that its intracellular expression was enough to induce cytotoxicity in two human melanoma cell lines. The lower cytoplasmatic levels of reactive oxygen species detected after intracellular IFNβ expression could be related to the resistance displayed by one human melanoma cell line. As IFNβ gene transfer was effective against most of the assayed melanomas in a way not limited by relatively low lipofection efficiencies, the clinical potential of this approach is strongly supported.
Collapse
Affiliation(s)
- Úrsula A Rossi
- Unidad de Transferencia Genética, Instituto de Oncología "Ángel H. Roffo", Universidad de Buenos Aires, Argentina
| | - María L Gil-Cardeza
- Unidad de Transferencia Genética, Instituto de Oncología "Ángel H. Roffo", Universidad de Buenos Aires, Argentina
| | - Marcela S Villaverde
- Unidad de Transferencia Genética, Instituto de Oncología "Ángel H. Roffo", Universidad de Buenos Aires, Argentina
| | - Liliana M E Finocchiaro
- Unidad de Transferencia Genética, Instituto de Oncología "Ángel H. Roffo", Universidad de Buenos Aires, Argentina
| | - Gerardo C Glikin
- Unidad de Transferencia Genética, Instituto de Oncología "Ángel H. Roffo", Universidad de Buenos Aires, Argentina.
| |
Collapse
|
6
|
An armed, YB-1-dependent oncolytic adenovirus as a candidate for a combinatorial anti-glioma approach of virotherapy, suicide gene therapy and chemotherapeutic treatment. Cancer Gene Ther 2014; 22:30-43. [PMID: 25501992 DOI: 10.1038/cgt.2014.67] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/18/2014] [Accepted: 11/18/2014] [Indexed: 12/27/2022]
Abstract
We investigated the novel recombinant oncolytic adenovirus Ad-delo-sr39TK-RGD, armed with a mutant herpes simplex virus type 1 thymidine kinase (HSV1-sr39TK) as a suicide gene, and explored its antitumor efficacy in combination with HSV1-sr39TK/ganciclovir (GCV) gene therapy and temozolomide (TMZ). Ad-delo-sr39TK-RGD is an E1-mutated conditionally replicating adenovirus dependent on the human Y-box binding protein 1 (YB-1). Thus, we utilized the YB-1 dependency of the vector to target human glioma cells in vitro, using two-dimensional cell culture and three-dimensional multicellular spheroids, and demonstrated the strong replication competence and oncolytic potential of the virus. The cytotoxicity mediated by HSV1-sr39TK and its prodrug GCV enhanced the oncolytic effect even at <0.1 μg ml(-1) GCV and induced cell killing of > 95% after adding GCV 0-1 days following infection. An increased bystander effect of viral replication and GCV in co-cultured infected and uninfected cells was observed. Co-administrating Ad-delo-sr39TK-RGD with TMZ and GCV, spheroid growth was reduced drastically. Gamma counting of infected spheroids demonstrated successful accumulation of the radiotracer (18)F-labeled 9-[4-fluoro-3-(hydroxymethyl)butyl]guanine mediated by HSV1-sr39TK. Hence, our results show that the combination of YB-1-dependent virotherapy with suicide genes and TMZ effectively induces glioma cell killing and may allow for in vivo non-invasive imaging within a limited time frame.
Collapse
|
7
|
Baghdiguian S, Martinand-Mari C, Maury B, Lorman V, Mangeat P. [Would D'Arcy Thompson have predicted a topological control of apoptosis?]. Med Sci (Paris) 2013; 29:411-5. [PMID: 23621937 DOI: 10.1051/medsci/2013294015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The laws that drive morphogenesis remain a major biological question. Today's views emphasize molecular autonomous processes rather than physical and mechanical constraints proposed by d'Arcy Thompson earlier on. In Ciona intestinalis oocyte, follicular cells formed by two distinct sets of geometrically-ordered epithelial monolayers positioned over the egg control apoptosis, implying that physically-predetermined shapes play a role in the control of cell determinism. In follicular cells ideally positioned over the spherical geometry of the egg, a drastic, optimized and polarized inward apoptosis sequence directly results from this positioning, suggesting the existence of some apoptotic master cells which control the destiny of neighboring cells. This concept could shed a new light on the origin of massive apoptosis phases that take place during embryogenesis in vertebrates (e.g., cavitation, inter-digitation). It could also be applied to specific therapeutic strategies to fight cancer.
Collapse
Affiliation(s)
- Stephen Baghdiguian
- Université Montpellier 2, CNRS UMR5554, Institut des Sciences de l'évolution, place Eugène Bataillon, 34095 Montpellier Cedex 5, France.
| | | | | | | | | |
Collapse
|
8
|
Interferon-β lipofection I. Increased efficacy of chemotherapeutic drugs on human tumor cells derived monolayers and spheroids. Cancer Gene Ther 2012; 19:508-16. [PMID: 22595795 DOI: 10.1038/cgt.2012.27] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We evaluated the effect of hIFNβ gene transfer alone or in combination with different antineoplastic drugs commonly used in cancer treatment. Five human tumor-derived cell lines were cultured as monolayers and spheroids. Four cell lines (Ewing sarcomas EW7 and COH, melanoma M8 and mammary carcinoma MCF-7) were sensitive to hIFNβ gene lipofection. Although this effect appeared in both culture configurations, spheroids showed a relative multicellular resistance (insensitive colon carcinoma HT-29 excluded). EW7 and M8 hIFNβ-expressing cells were exposed to different concentrations of bleomycin, bortezomib, carboplatin, doxorubicin, etoposide, methotrexate, paclitaxel and vincristine in both configuration models. In chemotherapy-sensitive EW7 monolayers, the combination of hIFNβ gene and antineoplastic drugs displayed only additive or counteractive (methotrexate) effects, suggesting that cytotoxic mechanisms triggered by hIFNβ gene lipofection could be saturating the signaling pathways. Conversely, in chemotherapy-resistant EW7 spheroids or M8 cells, the combination of hIFNβ with drugs that mainly operate at the genotoxic level (doxorubicin, methotrexate and paclitaxel) presented only additive effects. However, drugs that also increase pro-oxidant species can complement the antitumor efficacy of the hIFNβ gene and clearly caused potentiated effects (bleomycin, bortezomib, carboplatin, etoposide and vincristine). The great bystander effect induced by hIFNβ gene lipofection could be among the main causes of its effectiveness, because only 1 or 2% of EW7 or M8 hIFNβ-expressing cells killed more than 60 or 80% of cell population, respectively.
Collapse
|
9
|
Prados J, Melguizo C, Rama AR, Ortiz R, Segura A, Boulaiz H, Vélez C, Caba O, Ramos JL, Aránega A. Gef gene therapy enhances the therapeutic efficacy of doxorubicin to combat growth of MCF-7 breast cancer cells. Cancer Chemother Pharmacol 2010; 66:69-78. [PMID: 19771430 DOI: 10.1007/s00280-009-1135-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2009] [Accepted: 09/07/2009] [Indexed: 12/14/2022]
Abstract
PURPOSE The potential use of combined therapy is under intensive study including the association between classical cytotoxic and genes encoding toxic proteins which enhanced the antitumour activity. The main aim of this work was to evaluate whether the gef gene, a suicide gene which has a demonstrated antiproliferative activity in tumour cells, improved the antitumour effect of chemotherapeutic drugs used as first-line treatment in the management of advanced breast cancer. METHODS MCF-7 human breast cancer cells were transfected with gef gene using pcDNA3.1-TOPO expression vector. To determine the effect of the combined therapy, MCF-7 transfected and non-transfected cells were exposed to paclitaxel, docetaxel and doxorubicin at different concentrations. The growth-inhibitory effect of gef gene and/or drugs was assessed by MTT assay. Apoptosis modulation was determined by flow cytometric analysis, DNA fragmentation and morphological analysis. Multicellular tumour spheroids (MTS) from MCF-7 cells were used to confirm effectiveness of combined therapy (gef gene and drug). RESULTS Our results demonstrate that combined therapy gef gene/drugs (paclitaxel, docetaxel or doxurubicin) caused a decrease in cell viability. However, only the gef-doxorubicin (10 microM) combination induced a greater enhancement in the antitumour activity in MCF-7 cells. Most importantly, this combined strategy resulted in a significant synergistic effect, thus allowing lower doses of the drug to be used to achieve the same therapeutic effect. These results were confirmed using MTS in which volume decrease with combined therapy was greater than obtained using the gene therapy or chemotherapy alone, or the sum of both therapies. CONCLUSIONS The cytotoxic effect of gef gene in breast cancer cells enhances the chemotherapeutic effect of doxorubicin. This therapeutic approach has the potential to overcome some of the major limitations of conventional chemotherapy, and may therefore constitute a promising strategy for future applications in breast cancer therapy.
Collapse
Affiliation(s)
- Jose Prados
- Department of Human Anatomy and Embryology, School of Medicine, Institute of Biopathology and Regenerative Medicine, University of Granada, 18071, Granada, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Suicide gene therapy on spontaneous canine melanoma: correlations between in vivo tumors and their derived multicell spheroids in vitro. Gene Ther 2009; 17:26-36. [PMID: 19741734 DOI: 10.1038/gt.2009.107] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To validate the use of multicellular spheroids to predict the efficacy of herpes simplex thymidine kinase/ganciclovir (HSVtk/GCV) suicide gene therapy in the respective in vivo tumors, we established and characterized 15 melanoma-derived cell lines from surgically excised melanoma tumors. Three HSVtk-lipofected cell lines were not sensitive to GCV in any culture configuration, other five displayed similar sensitivity as monolayers or spheroids, and only one resulted more sensitive when grown as spheroids. Other six cell lines manifested a relative multicellular resistance (MCR) phenotype growing as spheroids, compared with the same cells growing as monolayers. The reverse correlation between the MCR and the monolayers survival to HSVtk/GCV suggests that one of the main causes of MCR would be the rapid cell repopulation after suicide gene treatment. The high correlation of MCR with the spheroids radial growth and with the mitotic index of the respective originary tumors supported this re-growth involvement. A remarkable finding was the high correlation in HSVtk/GCV sensitivity between in vivo tumor and the corresponding derived cell lines growing as spheroids (R(2) = 0.85). This strongly encourages the implementation of spheroids as highly realistic experimental model for optimizing and predicting the in vivo response of the respective tumors to therapeutic strategies.
Collapse
|
11
|
Goodman TT, Ng CP, Pun SH. 3-D tissue culture systems for the evaluation and optimization of nanoparticle-based drug carriers. Bioconjug Chem 2008; 19:1951-9. [PMID: 18788773 PMCID: PMC2652657 DOI: 10.1021/bc800233a] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nanoparticle carriers are attractive vehicles for a variety of drug delivery applications. In order to evaluate nanoparticle formulations for biological efficacy, monolayer cell cultures are typically used as in vitro testing platforms. However, these studies sometimes poorly predict the efficacy of the drug in vivo. The poor in vitro and in vivo correlation may be attributed in part to the inability of two-dimensional cultures to reproduce extracellular barriers, and may also be due to differences in cell phenotype between cells cultured as monolayers and cells in native tissue. In order to more accurately predict in vivo results, it is desirable to test nanoparticle therapeutics in cells cultured in three-dimensional (3-D) models that mimic in vivo conditions. In this review, we discuss some 3-D culture systems that have been used to assess nanoparticle delivery and highlight several implications for nanoparticle design garnered from studies using these systems. While our focus will be on nanoparticle drug formulations, many of the systems discussed here could, or have been, used for the assessment of small molecule or peptide/protein drugs. We also offer some examples of advancements in 3-D culture that could provide even more highly predictive data for designing nanoparticle therapeutics for in vivo applications.
Collapse
Affiliation(s)
| | | | - Suzie Hwang Pun
- Department of Bioengineering, University of Washington, 1705 NE Pacific Street, Seattle, WA 98195, USA
| |
Collapse
|
12
|
Suicide gene and cytokines combined nonviral gene therapy for spontaneous canine melanoma. Cancer Gene Ther 2008; 15:165-72. [PMID: 18219342 DOI: 10.1038/sj.cgt.7701096] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Canine spontaneous melanoma is a highly aggressive tumor resistant to current therapies. We evaluated the safety, efficacy and antitumor effects of direct intratumor injections of lipoplexes encoding herpes simplex thymidine kinase coadministrated with ganciclovir, and irradiated transgenic xenogeneic cells secreting 20-30 mug day(-1) of human granulocyte-macrophage colony-stimulating factor and interleukin-2. Toxicity was minimal or absent in all patients. This combined treatment (CT) induced tumor regression and a pronounced immune cell infiltration. The objective responses (47%: 21/45) averaged 80% of tumor mass loss. Local CT also induced systemic antitumor response evidenced by complete remission of one pulmonary metastasis and by the significantly higher percentage of metastasis-free patients (76: 34/45)) until the study ending compared to untreated (UC: 29%, 5/17), surgery-treated (CX: 48%, 11/23) or suicide gene-treated controls (SG: 56%, 9/16) (Fisher's exact test). CT significantly improved median survival time: 160 (57-509) days compared to UC (69 (10-169)), CX (82 (43-216)) or SG (94 (46-159)). CT also increased (P<0.00001, Kaplan-Meier analysis) metastasis-free survival: >509 (57-509) days with respect to UC: 41 (10-169), CX: 133 (43-216) and SG: >159 (41-159). Therefore, CT controlled tumor growth by delaying or preventing distant metastasis, thereby significantly extending survival and recovering the quality of life.
Collapse
|
13
|
Finocchiaro LME, Glikin GC. Cytokine-enhanced vaccine and suicide gene therapy as surgery adjuvant treatments for spontaneous canine melanoma. Gene Ther 2007; 15:267-76. [DOI: 10.1038/sj.gt.3303072] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Andrei G. Three-dimensional culture models for human viral diseases and antiviral drug development. Antiviral Res 2006; 71:96-107. [PMID: 16844237 DOI: 10.1016/j.antiviral.2006.05.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 05/30/2006] [Accepted: 05/31/2006] [Indexed: 10/24/2022]
Abstract
Researchers are recognizing the limitations of two-dimensional (2D) cell cultures, given the fact that they do not reproduce the morphology and biochemical features that the cells possess in the original tissue. As an alternative, the three-dimensional (3D) cell culture approach offers researchers the possibility to study cell growth and differentiation under conditions that more closely resemble the in vivo situation with regard to cell shape and cellular environment. Currently, 3D culture models are being employed in many areas of biomedical research because they offer a more realistic milieu than 2D cultures. The era of 2D culture techniques is moving towards a new epoch of culture systems in 3D. The present review is focused on topics of research on 3D cell cultures in virology and their use in antiviral drug development.
Collapse
|
15
|
Mellor HR, Davies LA, Caspar H, Pringle CR, Hyde SC, Gill DR, Callaghan R. Optimising non-viral gene delivery in a tumour spheroid model. J Gene Med 2006; 8:1160-70. [PMID: 16807955 DOI: 10.1002/jgm.947] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Our current understanding of how the unique tumour microenvironment influences the efficacy of gene delivery is limited. The current investigation systematically examines the efficiency of several non-viral gene transfer agents to transfect multicellular tumour spheroids (MCTS), an in vitro model that displays a faithful three-dimensional (3D) representation of solid tumour tissue. METHODS Using a luciferase reporter assay, gene transfer to MCTS was optimised for 22 kDa linear and 25 kDa branched polyethyleneimine (PEI), the cationic lipids Lipofectamine(trade mark) and DCChol : DOPE, and the physical approach of tissue electroporation. Confocal microscopy was used to take optical tissue slices to identify the tissue localisation of green fluorescent protein (GFP) reporter gene expression and the distribution of fluorescently labelled complexes. A MCTS model of quiescent tumour regions was used to establish the influence of cellular proliferation status on gene transfer efficiency. RESULTS Of the polyplexes tested, 22 kDa linear PEI provided optimal gene delivery, with gene expression peaking at 46 h. Despite being the optimal vector tested, PEI-mediated transfection was limited to cells at the MCTS periphery. Using fluorescent PEI, it was found that complexes could only penetrate the outer 3-5 proliferating cell layers of the MCTS, sparing the deeper quiescent cells. Gene delivery in an MCTS model comprised entirely of quiescent cells demonstrated that in addition to being inaccessible to the vector, quiescent tumour regions are inherently less susceptible to PEI-mediated transfection than proliferating regions. This 'resistance' to transfection observed in quiescent cells was overcome through the use of electroporation. Despite the improved efficacy of electroporation in quiescent tissue, the gene expression was still confined to the outer regions of MCTS. The results suggest that limited access to central regions of an MCTS remain a significant barrier to gene delivery. CONCLUSIONS This data provides new insights into tumour-specific factors affecting non-viral gene transfer and highlights the difficulties in delivering genes to avascular tumour regions. The MCTS model is a useful system for the initial screening of future gene therapy strategies for solid tumours.
Collapse
Affiliation(s)
- H R Mellor
- Oxford Drug Resistance Group, Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | | | | | | | | | | | | |
Collapse
|