1
|
Kye YJ, Lee SY, Kim HR, Lee BH, Park JH, Park MS, Ji GE, Sung MK. Lactobacillus acidophilus PIN7 paraprobiotic supplementation ameliorates DSS-induced colitis through anti-inflammatory and immune regulatory effects. J Appl Microbiol 2022; 132:3189-3200. [PMID: 34878713 DOI: 10.1111/jam.15406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/26/2021] [Accepted: 12/06/2021] [Indexed: 12/14/2022]
Abstract
AIMS This study aimed to evaluate the efficacy of paraprobiotics Lactobacillus acidophilus PIN7 supplementation against dextran sodium sulphate (DSS)-induced colitis in mice and to determine their mechanisms of the action. METHODS AND RESULTS Ten-week-old female BALB/C mice were randomly divided into five groups. Each group was administered with PBS (control and DSS group), live PIN7 (LIVE group), heat-killed PIN7 (HEAT group) or lysozyme-treated PIN7 (LYSOZYME group) for 10 days followed by 2.5% DSS supply in drinking water for 5 days except for the control group. Colitis-associated DAI scores were significantly (p < 0.05) attenuated in HEAT and LYSOZYME group. The HEAT group exhibited significantly (p < 0.05) lower colonic tissue damage score compared to the DSS group. Furthermore, HEAT and LYSOZYME groups showed significantly (p < 0.05) higher colonic expressions of toll-like receptor (TLR) 6 and intestinal junction protein E-cadherin and occludin compared to the DSS group. LYSOZYME group showed significantly (p < 0.05) lower colonic expressions of Th2 cell-associated pro-inflammatory molecules, namely GATA3 and IL-4, and higher expression of anti-inflammatory NLRP6 and IL-18 compared to the DSS group. Also, HEAT group exhibited significantly (p < 0.05) lower colonic p-IκBα expression compared to the DSS group, while COX-2 expression was significantly (p < 0.05) suppressed by both paraprobiotics supplementation. Paraprobiotics significantly altered the composition of the intestinal microbiota. CONCLUSION Paraprobiotic L. acidophilus PIN7 ameliorated DSS-induced colitis by regulating immune-modulatory TLR6 signalling and gut microbiota composition. SIGNIFICANCE AND IMPACT OF THE STUDY This study suggests paraprobiotic L. acidophilus PIN7 are superior candidates to prevent intestinal inflammation associated with dysregulated immune responses.
Collapse
Affiliation(s)
- Yeon-Jin Kye
- Department of Food and Nutrition, College of Human Ecology, Sookmyung Women's University, Yongsan-gu, Republic of Korea
| | - So-Young Lee
- Department of Food and Nutrition, College of Human Ecology, Sookmyung Women's University, Yongsan-gu, Republic of Korea
| | - Ha-Ra Kim
- Department of Food and Nutrition, College of Human Ecology, Sookmyung Women's University, Yongsan-gu, Republic of Korea
| | - Byung-Hoo Lee
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam, Republic of Korea
| | - Jong-Hyun Park
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam, Republic of Korea
| | - Myeong-Soo Park
- Research Center, BIFIDO Co., Ltd., Hongcheon, Republic of Korea
| | - Geun-Eog Ji
- Research Center, BIFIDO Co., Ltd., Hongcheon, Republic of Korea
- Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul, Republic of Korea
| | - Mi-Kyung Sung
- Department of Food and Nutrition, College of Human Ecology, Sookmyung Women's University, Yongsan-gu, Republic of Korea
| |
Collapse
|
2
|
Ho TY, Mealiea D, Okamoto L, Stojdl DF, McCart JA. Deletion of immunomodulatory genes as a novel approach to oncolytic vaccinia virus development. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:85-97. [PMID: 34514091 PMCID: PMC8411212 DOI: 10.1016/j.omto.2021.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 05/12/2021] [Indexed: 11/30/2022]
Abstract
Vaccinia virus (VV) has emerged as a promising platform for oncolytic virotherapy. Many clinical VV candidates, such as the double-deleted VV, vvDD, are engineered with deletions that enhance viral tumor selectivity based on cellular proliferation rates. An alternative approach is to exploit the dampened interferon-based innate immune responses of tumor cells by deleting one of the many VV immunomodulatory genes expressed to dismantle the antiviral response. We hypothesized that such a VV mutant would be attenuated in non-tumor cells but retain the ability to effectively propagate in and kill tumor cells, yielding a tumor-selective oncolytic VV with significant anti-tumor potency. In this study, we demonstrated that VVs with a deletion in one of several VV immunomodulatory genes (N1L, K1L, K3L, A46R, or A52R) have similar or improved in vitro replication, spread, and cytotoxicity in colon and ovarian cancer cells compared to vvDD. These deletion mutants are tumor selective, and the best performing candidates (ΔK1L, ΔA46R, and ΔA52R VV) are associated with significant improvement in survival, as well as immunomodulation, within the tumor environment. Overall, we show that exploiting the diminished antiviral responses in tumors serves as an effective strategy for generating tumor-selective and potent oncolytic VVs, with important implications in future oncolytic virus (OV) design.
Collapse
Affiliation(s)
- Tiffany Y Ho
- Toronto General Hospital Research Institute, University Health Network, 280 Elizabeth Street, Toronto, ON M5G 2C4, Canada
| | - David Mealiea
- Toronto General Hospital Research Institute, University Health Network, 280 Elizabeth Street, Toronto, ON M5G 2C4, Canada.,Department of Surgery, University of Toronto, Stewart Building, 149 College Street, Toronto, ON M5T 1P5, Canada
| | - Lili Okamoto
- Toronto General Hospital Research Institute, University Health Network, 280 Elizabeth Street, Toronto, ON M5G 2C4, Canada
| | - David F Stojdl
- Department of Biology, Microbiology, and Immunology, Children's Hospital of Eastern Ontario (CHEO) Research Institute, 401 Smyth Road, Ottawa ON K1H 5B2, Canada
| | - J Andrea McCart
- Toronto General Hospital Research Institute, University Health Network, 280 Elizabeth Street, Toronto, ON M5G 2C4, Canada.,Department of Surgery, University of Toronto, Stewart Building, 149 College Street, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
3
|
Lee HYJ, Meng M, Liu Y, Su T, Kwan HY. Medicinal herbs and bioactive compounds overcome the drug resistance to epidermal growth factor receptor inhibitors in non-small cell lung cancer. Oncol Lett 2021; 22:646. [PMID: 34386068 DOI: 10.3892/ol.2021.12907] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. Non-small cell lung cancer (NSCLC) accounts for ~85% of all lung cancer cases. Patients harboring epidermal growth factor receptor (EGFR) mutations usually develop resistance to treatment with frontline EGFR-tyrosine kinase inhibitors (EGFR-TKIs). The present review summarizes the current findings and delineates the molecular mechanism of action for the therapeutic effects of herbal extracts and phytochemicals in overcoming EGFR-TKI resistance in NSCLC. Novel molecular targets underlying EGFR-TKI resistance in NSCLC are also discussed. This review provides valuable information for the development of herbal bioactive compounds as alternative treatments for EGFR-TKI-resistant NSCLC.
Collapse
Affiliation(s)
- Hiu Yan Jennifer Lee
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, P.R. China
| | - Mingjing Meng
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Yulong Liu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, P.R. China
| | - Tao Su
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Hiu Yee Kwan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, P.R. China
| |
Collapse
|
4
|
Selmin OI, Papoutsis AJ, Hazan S, Smith C, Greenfield N, Donovan MG, Wren SN, Doetschman TC, Snider JM, Snider AJ, Chow SHH, Romagnolo DF. n-6 High Fat Diet Induces Gut Microbiome Dysbiosis and Colonic Inflammation. Int J Mol Sci 2021; 22:ijms22136919. [PMID: 34203196 PMCID: PMC8269411 DOI: 10.3390/ijms22136919] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Concerns are emerging that a high-fat diet rich in n-6 PUFA (n-6HFD) may alter gut microbiome and increase the risk of intestinal disorders. Research is needed to model the relationships between consumption of an n-6HFD starting at weaning and development of gut dysbiosis and colonic inflammation in adulthood. We used a C57BL/6J mouse model to compare the effects of exposure to a typical American Western diet (WD) providing 58.4%, 27.8%, and 13.7% energy (%E) from carbohydrates, fat, and protein, respectively, with those of an isocaloric and isoproteic soybean oil-rich n-6HFD providing 50%E and 35.9%E from total fat and carbohydrates, respectively on gut inflammation and microbiome profile. Methods: At weaning, male offspring were assigned to either the WD or n-6HFD through 10-16 weeks of age. The WD included fat exclusively from palm oil whereas the n-6HFD contained fat exclusively from soybean oil. We recorded changes in body weight, cyclooxygenase-2 (COX-2) expression, colon histopathology, and gut microbiome profile. Results: Compared to the WD, the n-6HFD increased plasma levels of n-6 fatty acids; colonic expression of COX-2; and the number of colonic inflammatory and hyperplastic lesions. At 16 weeks of age, the n-6HFD caused a marked reduction in the gut presence of Firmicutes, Clostridia, and Lachnospiraceae, and induced growth of Bacteroidetes and Deferribacteraceae. At the species level, the n-6HFD sustains the gut growth of proinflammatory Mucispirillum schaedleri and Lactobacillus murinus. Conclusions: An n-6HFD consumed from weaning to adulthood induces a shift in gut bacterial profile associated with colonic inflammation.
Collapse
Affiliation(s)
- Ornella I. Selmin
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ 85721, USA; (O.I.S.); (S.N.W.); (J.M.S.); (A.J.S.)
- The University of Arizona Cancer Center, Tucson, AZ 85724, USA;
| | | | - Sabine Hazan
- ProgenomaBiome, Ventura, CA 93003, USA; (A.J.P.); (S.H.)
| | | | | | - Micah G. Donovan
- Cancer Biology Graduate Interdisciplinary Program, The University of Arizona, Tucson, AZ 85724, USA;
| | - Spencer N. Wren
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ 85721, USA; (O.I.S.); (S.N.W.); (J.M.S.); (A.J.S.)
| | - Thomas C. Doetschman
- Department of Molecular and Cellular Medicine, The University of Arizona, Tucson, AZ 85724, USA;
| | - Justin M. Snider
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ 85721, USA; (O.I.S.); (S.N.W.); (J.M.S.); (A.J.S.)
| | - Ashley J. Snider
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ 85721, USA; (O.I.S.); (S.N.W.); (J.M.S.); (A.J.S.)
| | - Sherry H.-H. Chow
- The University of Arizona Cancer Center, Tucson, AZ 85724, USA;
- Department of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Donato F. Romagnolo
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ 85721, USA; (O.I.S.); (S.N.W.); (J.M.S.); (A.J.S.)
- The University of Arizona Cancer Center, Tucson, AZ 85724, USA;
- Cancer Biology Graduate Interdisciplinary Program, The University of Arizona, Tucson, AZ 85724, USA;
- Correspondence:
| |
Collapse
|
5
|
Afroz S, Battu S, Giddaluru J, Khan N. Dengue Virus Induced COX-2 Signaling Is Regulated Through Nutrient Sensor GCN2. Front Immunol 2020; 11:1831. [PMID: 32903536 PMCID: PMC7438581 DOI: 10.3389/fimmu.2020.01831] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/08/2020] [Indexed: 12/25/2022] Open
Abstract
Nutrient sensor GCN2 plays a crucial role in the maintenance of cellular homeostasis during the condition of amino acid deprivation. Dysfunction in the GCN2 signaling underlies several chronic metabolic diseases. Recent studies highlight the anti-viral potential of GCN2 against RNA viruses such as Sindbis and HIV. However, its effect on dengue virus (DENV) pathogenesis remains poorly understood. Herein, we report that GCN2 deficient cells show increased DENV replication and viral yield in the culture supernatants compared to WT cells infected with DENV. Notably, enhanced DENV replication in GCN2-/- cells is associated with increased COX-2/PGE2 signaling. Conversely, GCN2 overexpression/activation effectively contains DENV infection by inhibiting COX-2/PGE2 signaling. Mechanistically, deletion of GCN2 triggers enhanced production of COX-2/PGE2 through profound activation of Iκκ-NF-κB signaling pathway. Altogether our results unveil a hitherto unrecognized role of GCN2 in DENV pathogenesis, thereby suggesting that targeting the GCN2 pathway might offer a novel therapeutic intervention against DENV infection.
Collapse
Affiliation(s)
- Sumbul Afroz
- Department of Biotechnology and Bioinformatics, School of Life-Sciences, University of Hyderabad, Hyderabad, India
| | - Srikanth Battu
- Department of Biotechnology and Bioinformatics, School of Life-Sciences, University of Hyderabad, Hyderabad, India.,Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | - Jeevan Giddaluru
- Department of Biotechnology and Bioinformatics, School of Life-Sciences, University of Hyderabad, Hyderabad, India
| | - Nooruddin Khan
- Department of Biotechnology and Bioinformatics, School of Life-Sciences, University of Hyderabad, Hyderabad, India.,Department of Animal Biology, School of Life-Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
6
|
Hibino S, Chikuma S, Kondo T, Ito M, Nakatsukasa H, Omata-Mise S, Yoshimura A. Inhibition of Nr4a Receptors Enhances Antitumor Immunity by Breaking Treg-Mediated Immune Tolerance. Cancer Res 2018; 78:3027-3040. [PMID: 29559474 DOI: 10.1158/0008-5472.can-17-3102] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/17/2018] [Accepted: 03/15/2018] [Indexed: 11/16/2022]
Abstract
Enhanced infiltration of regulatory T cells (Treg) into tumor tissue is detrimental to patients with cancer and is closely associated with poor prognosis as they create an immunosuppressive state that suppresses antitumor immune responses. Therefore, breaking Treg-mediated immune tolerance is important when considering cancer immunotherapy. Here, we show that the Nr4a nuclear receptors, key transcription factors maintaining Treg genetic programs, contribute to Treg-mediated suppression of antitumor immunity in the tumor microenvironment. Mice lacking Nr4a1 and Nr4a2 genes specifically in Tregs showed resistance to tumor growth in transplantation models without exhibiting any severe systemic autoimmunity. The chemotherapeutic agent camptothecin and a common cyclooxygenase-2 inhibitor were found to inhibit transcriptional activity and induction of Nr4a factors, and they synergistically exerted antitumor effects. Genetic inactivation or pharmacologic inhibition of Nr4a factors unleashed effector activities of CD8+ cytotoxic T cells and evoked potent antitumor immune responses. These findings demonstrate that inactivation of Nr4a in Tregs breaks immune tolerance toward cancer, and pharmacologic modulation of Nr4a activity may be a novel cancer treatment strategy targeting the immunosuppressive tumor microenvironment.Significance: This study reveals the role of Nr4a transcription factors in Treg-mediated tolerance to antitumor immunity, with possible therapeutic implications for developing effective anticancer therapies. Cancer Res; 78(11); 3027-40. ©2018 AACR.
Collapse
Affiliation(s)
- Sana Hibino
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Shunsuke Chikuma
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Taisuke Kondo
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Minako Ito
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroko Nakatsukasa
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Setsuko Omata-Mise
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
7
|
Sander WJ, O'Neill HG, Pohl CH. Prostaglandin E 2 As a Modulator of Viral Infections. Front Physiol 2017; 8:89. [PMID: 28261111 PMCID: PMC5306375 DOI: 10.3389/fphys.2017.00089] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/01/2017] [Indexed: 02/06/2023] Open
Abstract
Viral infections are a major cause of infectious diseases worldwide. Inflammation and the immune system are the major host defenses against these viral infection. Prostaglandin E2 (PGE2), an eicosanoid generated by cyclooxygenases, has been shown to modulate inflammation and the immune system by regulating the expression/concentration of cytokines. The effect of PGE2 on viral infection and replication is cell type- and virus-family-dependent. The host immune system can be modulated by PGE2, with regards to immunosuppression, inhibition of nitrogen oxide (NO) production, inhibition of interferon (IFN) and apoptotic pathways, and inhibition of viral receptor expression. Furthermore, PGE2 can play a role in viral infection directly by increasing the production and release of virions, inhibiting viral binding and replication, and/or stimulating viral gene expression. PGE2 may also have a regulatory role in the induction of autoimmunity and in signaling via Toll-like receptors. In this review the known effects of PGE2 on the pathogenesis of various infections caused by herpes simplex virus, rotavirus, influenza A virus and human immunodeficiency virus as well the therapeutic potential of PGE2 are discussed.
Collapse
Affiliation(s)
| | | | - Carolina H. Pohl
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free StateBloemfontein, South Africa
| |
Collapse
|
8
|
Zhang Y, Hoda MN, Zheng X, Li W, Luo P, Maddipati KR, Seki T, Ergul A, Wang MH. Combined therapy with COX-2 inhibitor and 20-HETE inhibitor reduces colon tumor growth and the adverse effects of ischemic stroke associated with COX-2 inhibition. Am J Physiol Regul Integr Comp Physiol 2014; 307:R693-703. [PMID: 24990856 DOI: 10.1152/ajpregu.00422.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
20-Hydroxyeicosatetraenoic acid (20-HETE), Cyp4a-derived eicosanoid, is a lipid mediator that promotes tumor growth, as well as causing detrimental effects in cerebral circulation. We determined whether concurrent inhibition of cyclooxygenase-2 (COX-2) and 20-HETE affects colon tumor growth and ischemic stroke outcomes. The expression of Cyp4a and COXs and production of 20-HETE and PGE2 were determined in murine colon carcinoma (MC38) cells. We then examined the effects of combined treatment with rofecoxib, a potent COX-2 inhibitor, and HET0016, a potent Cyp4a inhibitor, on the growth and proliferation of MC38 cells. Subsequently, we tested the effects of HET0016 plus rofecoxib in MC38 tumor and ischemic stroke models. Cyp4a and COXs are highly expressed in MC38 cells. Respectively, HET0016 and rofecoxib inhibited 20-HETE and PGE2 formation in MC38 cells. Moreover, rofecoxib combined with HET0016 had greater inhibitory effects on the growth and proliferation of MC38 cells than did rofecoxib alone. Importantly, rofecoxib combined with HET0016 provided greater inhibition on tumor growth than did rofecoxib alone in MC38 tumor-bearing mice. Prolonged treatment with rofecoxib selectively induced circulating 20-HETE levels and caused cerebrovascular damage after ischemic stroke, whereas therapy with rofecoxib and HET0016 attenuated 20-HETE levels and reduced rofecoxib-induced cerebrovascular damage and stroke outcomes during anti-tumor therapy. Thus these results demonstrate that combination therapy with rofecoxib and HET0016 provides a new treatment of colon tumor, which can not only enhance the anti-tumor efficacy of rofecoxib, but also reduce rofecoxib-induced cerebrovascular damage and stroke outcomes.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Physiology, Georgia Regents University, Augusta, Georgia; Department of Orthopedics, Puren Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Md Nasrul Hoda
- Department of Medical Laboratory, Imaging & Radiologic Sciences, College of Allied Health Sciences, Georgia Regents University, Augusta, Georgia
| | - Xuan Zheng
- Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, Georgia; Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Weiguo Li
- Department of Physiology, Georgia Regents University, Augusta, Georgia
| | - Pengcheng Luo
- Huangshi Central Hospital, Hubei Polytechnic University and Hubei Key Laboratory of Kidney Disease, Pathogenesis, and Intervention, Huangshi, Hubei, China; and
| | - Krishna Rao Maddipati
- Department of Pathology and WSU Lipidomics Core, Wayne State University, Detroit, Michigan
| | - Tsugio Seki
- Department of Physiology, Georgia Regents University, Augusta, Georgia
| | - Adviye Ergul
- Department of Physiology, Georgia Regents University, Augusta, Georgia
| | - Mong-Heng Wang
- Department of Physiology, Georgia Regents University, Augusta, Georgia;
| |
Collapse
|
9
|
Xu X, Chen X, Li Y, Cao H, Shi C, Guan S, Zhang S, He B, Wang J. Cyclooxygenase-2 regulated by the nuclear factor-κB pathway plays an important role in endometrial breakdown in a female mouse menstrual-like model. Endocrinology 2013; 154:2900-11. [PMID: 23720426 DOI: 10.1210/en.2012-1993] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of prostaglandins (PGs) in menstruation has long been proposed. Although evidence from studies on human and nonhuman primates supports the involvement of PGs in menstruation, whether PGs play an obligatory role in the process remains unclear. Although cyclooxygenase (COX) inhibitors have been used in the treatment of irregular uterine bleeding, the mechanism involved has not been elucidated. In this study, we used a recently established mouse menstrual-like model for investigating the role of COX in endometrial breakdown and its regulation. Administration of the nonspecific COX inhibitor indomethacin and the COX-2 selective inhibitor DuP-697 led to inhibition of the menstrual-like process. Furthermore, immunostaining analysis showed that the nuclear factor (NF)κB proteins P50, P65, and COX-2 colocalized in the outer decidual stroma at 12 to 16 hours after progesterone withdrawal. Chromatin immunoprecipitation analysis showed that NFκB binding to the Cox-2 promoter increased at 12 hours after progesterone withdrawal in vivo, and real-time PCR analysis showed that the NFκB inhibitors pyrrolidine dithiocarbamate and MG-132 inhibited Cox-2 mRNA expression in vivo and in vitro, respectively. Furthermore, COX-2 and NFκB inhibitors similarly reduced endometrial breakdown, suggesting that NFκB/COX-2-derived PGs play a critical role in this process. In addition, the CD45(+) leukocyte numbers were sharply reduced following indomethacin (COX-1 and COX-2 inhibitor), DuP-697 (COX-2 inhibitor), and pyrrolidine dithiocarbamate (NFκB inhibitor) treatment. Collectively, these data indicate that NFκB/COX-2-induced PGs regulate leukocyte influx, leading to endometrial breakdown.
Collapse
Affiliation(s)
- Xiangbo Xu
- Reproductive Physiology Laboratory, National Research Institute for Family Planning, Beijing 100081, People’s Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ruimi N, Petrova RD, Agbaria R, Sussan S, Wasser SP, Reznick AZ, Mahajna J. Inhibition of TNFα-induced iNOS expression in HSV-tk transduced 9L glioblastoma cell lines by Marasmius oreades substances through NF-κB- and MAPK-dependent mechanisms. Mol Biol Rep 2010; 37:3801-12. [PMID: 20224909 DOI: 10.1007/s11033-010-0035-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 02/24/2010] [Indexed: 01/01/2023]
Abstract
Nitric oxide (NO) is a gaseous, radical molecule that plays a role in various physiological processes. Previously, we reported that transduction of murine colon cancer cells (MC38) with herpes simplex virus thymidine kinase (HSV-tk) gene resulted in a significant over-expression of cyclooxygenase-2 (COX-2) and activation of NF-kB pathway. In this study we show that TNFα, but not LPS, was significantly able to stimulate the production of NO in HSV-tk transduced 9L glioblastoma cell lines, mediated by the up-regulation of iNOS transcript and iNOS protein. The TNFα-induced up-regulation of iNOS expression was mediated by MAPK and NF-κB signaling pathways as revealed by using selective pharmaceutical inhibitors. A culture liquid extract of the edible and medicinal mushroom Marasmius oreades that was previously shown to inhibit iNOS expression in MCF-7 was utilized to prepare fractions and evaluate their ability to affect TNFα-induced iNOS expression in HSV tk transduced 9L cell lines. While most of the tested fractions were shown to inhibit TNFα-induced iNOS expression, they targeted different signaling pathways in a selective fashion. Here, we report that fraction SiSiF1 interfered with IKBα phosphorylation and consequently interfered with NF-κB activation pathway. SiSiF1 showed minimal interference with the phosphorylation of p38 and JNK proteins. In contrast, fraction SiSiF3 selectively inhibited the phosphorylation of p38 and fractions SiSiF4 and SiSiF5 selectively inhibited the phosphorylation of JNK with no observed effect against IKBα and p38 phosphorylation. Our data illustrate the complexity of iNOS regulation in HSV tk transduced 9L cell lines and also the richness of natural products with bioactive substances that may act synergistically through different signaling pathways to affect iNOS gene expression.
Collapse
Affiliation(s)
- Nili Ruimi
- Migal-Galilee Technology Center, Cancer Drug Discovery Program, P.O. Box 831, Kiryat Shmona, Israel
| | | | | | | | | | | | | |
Collapse
|
11
|
Boldrup L, Coates PJ, Gu X, Nylander K. ΔNp63 isoforms differentially regulate gene expression in squamous cell carcinoma: identification ofCox-2as a novel p63 target. J Pathol 2009; 218:428-36. [DOI: 10.1002/path.2560] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
12
|
Charalambous MP, Lightfoot T, Speirs V, Horgan K, Gooderham NJ. Expression of COX-2, NF-kappaB-p65, NF-kappaB-p50 and IKKalpha in malignant and adjacent normal human colorectal tissue. Br J Cancer 2009; 101:106-15. [PMID: 19513071 PMCID: PMC2713702 DOI: 10.1038/sj.bjc.6605120] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND: Cyclooxygenase-2 (COX-2) is selectively over-expressed in colorectal tumours. The mechanism of COX-2 induction in these tumours is not fully understood, although evidence suggests a possible link between nuclear factor (NF)-κB and COX-2. We hypothesised an association between COX-2 expression and NF-κB-p65, NF-κB-p50 and IκB-kinase-α (IKKα) in both epithelial and stromal cells in human colorectal cancer. Methods: Using immunohistochemistry, we measured COX-2, NF-κB-p65, NF-κB-p65 nuclear localisation sequence (NLS), NF-κB-p50, NF-κB-p50 NLS and IKKα protein expression in matched colorectal biopsy samples comprising both non-tumour and adjacent tumour tissue from 32 patients with colorectal cancer. Results: We have shown that stromal cells of malignant and surrounding normal colorectal tissue express COX-2. In all cell types of malignant tissue, and in vascular endothelial cells (VECs) of neighbouring normal tissue, COX-2 expression was strongly associated with NF-κB-p65 expression (Pearson's correlation, P=0.019 for macrophages, P=0.001 for VECs, P=0.002 for fibroblasts (malignant tissue), and P=0.011 for VECs (non-malignant tissue)) but not NF-κB-p50 or IKKα. Conclusions: These data suggest that in these cells COX-2 induction may be mediated through activation of the canonical NF-κB pathway. Finally, the lack of association between COX-2, NF-κB-p65 or IKKα in stromal cells with the clinical severity of colorectal cancer as determined by Duke's stage, suggests that COX-2, NF-κB-p65 and IKKα expression are possibly early post-initiation events, which could be involved in tumour progression.
Collapse
Affiliation(s)
- M P Charalambous
- Leeds Institute of Molecular Medicine, Wellcome Trust, St James's University Hospital, Leeds, UK
| | | | | | | | | |
Collapse
|
13
|
Nacci C, Tarquinio M, De Benedictis L, Mauro A, Zigrino A, Carratù MR, Quon MJ, Montagnani M. Endothelial dysfunction in mice with streptozotocin-induced type 1 diabetes is opposed by compensatory overexpression of cyclooxygenase-2 in the vasculature. Endocrinology 2009; 150:849-61. [PMID: 18845644 PMCID: PMC2646543 DOI: 10.1210/en.2008-1069] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 09/26/2008] [Indexed: 11/19/2022]
Abstract
Cardiovascular complications of diabetes result from endothelial dysfunction secondary to persistent hyperglycemia. We investigated potential compensatory mechanisms in the vasculature that oppose endothelial dysfunction in diabetes. BALB/c mice were treated with streptozotocin (STZ) to induce type 1 diabetes (T1D). In mesenteric vascular beds (MVBs), isolated ex vivo from mice treated with STZ for 1 wk, dose-dependent vasorelaxation to acetylcholine (ACh) or sodium nitroprusside was comparable with that in age-matched control mice (CTRL). By contrast, MVBs from mice treated with STZ for 8 wk had severely impaired vasodilator responses to ACh consistent with endothelial dysfunction. Pretreatment of MVBs from CTRL mice with nitric oxide synthase inhibitor nearly abolished vasodilation to ACh. In MVB from 1-wk STZ-treated mice, vasodilation to ACh was only partially impaired by L-N(omega)-arginine methyl ester. Thus, vasculature of mice with T1D may have compensatory nitric oxide-independent mechanisms to augment vasodilation to ACh and oppose endothelial dysfunction. Indeed, pretreatment of MVBs isolated from 1-wk STZ-treated mice with NS-398 [selective cyclooxygenase (COX)-2 inhibitor] unmasked endothelial dysfunction not evident in CTRL mice pretreated without or with NS-398. Expression of COX-2 in MVBs, aortic endothelial cells, and aortic vascular smooth muscle cells from STZ-treated mice was significantly increased (vs. CTRL). Moreover, concentrations of the COX-2-dependent vasodilator 6-keto-prostaglandin F-1alpha was elevated in conditioned media from aorta of STZ-treated mice. We conclude that endothelial dysfunction in a mouse model of T1D is opposed by compensatory up-regulation of COX-2 expression and activity in the vasculature that may be relevant to developing novel therapeutic strategies for diabetes and its cardiovascular complications.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Cyclooxygenase 2/metabolism
- Cyclooxygenase 2/physiology
- Cyclooxygenase 2 Inhibitors/pharmacology
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/physiopathology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Male
- Mice
- Mice, Inbred BALB C
- NG-Nitroarginine Methyl Ester/pharmacology
- Nitric Oxide Synthase Type III/metabolism
- Nitrobenzenes/pharmacology
- Oncogene Protein v-akt/metabolism
- Streptozocin
- Sulfonamides/pharmacology
- Up-Regulation/drug effects
- Up-Regulation/physiology
Collapse
Affiliation(s)
- Carmela Nacci
- Department of Pharmacology and Human Physiology, University of Bari Medical School, Bari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Dunphy GB, Chen G, Webster JM. The antioxidants dimethylsulfoxide and dimethylthiourea affect the immediate adhesion responses of larval haemocytes from 3 lepidopteran insect species. Can J Microbiol 2008; 53:1330-47. [PMID: 18059566 DOI: 10.1139/w07-096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Antioxidants, dimethylsulfoxide (DMSO) and dimethylthiourea (DMTU), at concentrations not affecting the viability of blood cells (haemocytes) from the larval stage of 3 lepidopteran insects - Galleria mellonella, Lymantria dispar, and Malacosoma disstria - differed in their influence on the innate binding of haemocytes to glass, bacteria to haemocytes, and on humoral responses to alien materials. In vitro DMSO had little effect, whereas DMTU substantially impaired the adhesion of the haemocyte types, the plasmatocytes and granular cells, to slides as well as the attachment of Bacillus subtilis to these haemocytes. Although both antioxidants increased lysozyme and phenoloxidase activities, there was no correlation of enzyme activity and haemocyte adhesion responses, possibly reflecting sequestered radicals. Nitric oxide and hydroxyl radicals offset the DMTU effect. In the absence of antioxidants, inactivate protein kinases A (PKA) and C (PKC) enhanced haemocyte aggregation. In general, DMSO, as opposed to DMTU, did not alter the effects of PKA and PKC activators and inhibitors on haemocyte aggregation or of PKC and PKA activities. High concentrations of DMSO and all levels of DMTU, although inhibiting PKA and PKC, inhibited haemocyte adhesion to slides. Comparable results occurred for DMTU-treated haemocytes incubated with B. subtilis. In vivo DMSO, unlike DMTU, did not impair plasmatocyte or granular cell responses to foreign materials, including bacterial removal from the haemolymph and nodulation.
Collapse
Affiliation(s)
- Gary B Dunphy
- Department of Natural Resource Sciences, Macdonald Campus, McGill University, Macdonald Campus, 21111 Lakeshore Road, Sainte Anne de Bellevue, QC H9X 3V9, Canada.
| | | | | |
Collapse
|