1
|
Liang G, Ma Y, Deng P, Li S, He C, He H, Liu H, Fan Y, Li Z. Role of cell-based therapies in digestive disorders: Obstacles and opportunities. Regen Ther 2025; 29:1-18. [PMID: 40124469 PMCID: PMC11925584 DOI: 10.1016/j.reth.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/01/2025] [Accepted: 02/20/2025] [Indexed: 03/25/2025] Open
Abstract
Stem cell-based therapies have emerged as a promising frontier in the treatment of gastrointestinal disorders, offering potential solutions for challenges posed by conventional treatments. This review comprehensively examines recent advancements in cell-based therapeutic strategies, particularly focusing on stem cell applications, immunotherapy, and cellular therapies for digestive diseases. It highlights the successful differentiation of enteric neural progenitors from pluripotent stem cells and their application in animal models, such as Hirschsprung disease. Furthermore, the review evaluates clinical trials and experimental studies demonstrating the potential of stem cells in regenerating damaged tissues, modulating immune responses, and promoting healing in conditions like Crohn's disease and liver failure. By addressing challenges, such as scalability, immunogenicity, and ethical considerations, the review underscores the translational opportunities and obstacles in realizing the clinical potential of these therapies. Concluding with an emphasis on future directions, the study provides insights into optimizing therapeutic efficacy and fostering innovations in personalized medicine for digestive disorders.
Collapse
Affiliation(s)
- Guodong Liang
- First Surgery Department of Colorectal, Gastric and Abdominal Tumors, Jilin Cancer Hospital, Changchun 130012, China
| | - Yuehan Ma
- First Surgery Department of Colorectal, Gastric and Abdominal Tumors, Jilin Cancer Hospital, Changchun 130012, China
| | - Ping Deng
- Medical Department, Jilin Cancer Hospital, Changchun 130012, China
| | - Shufeng Li
- First Department of Gynecological Tumor, Jilin Cancer Hospital, Changchun 130012, China
| | - Chunyan He
- Department of Anaesthesia, Jilin Cancer Hospital, Changchun 130012, China
| | - Haihang He
- Department of Otorhinolaryngology, Oral Maxillofacial, Head and Neck, Jilin Cancer Hospital, Changchun 130012, China
| | - Hairui Liu
- First Surgery Department of Colorectal, Gastric and Abdominal Tumors, Jilin Cancer Hospital, Changchun 130012, China
| | - Yunda Fan
- First Surgery Department of Colorectal, Gastric and Abdominal Tumors, Jilin Cancer Hospital, Changchun 130012, China
| | - Ze Li
- First Surgery Department of Colorectal, Gastric and Abdominal Tumors, Jilin Cancer Hospital, Changchun 130012, China
| |
Collapse
|
2
|
Boopathy K, Palaniyandi T, Ravi M, Wahab MRA, Baskar G, Rab SO, Saeed M, Balaramnavar VM. Exploring the potential of stem cell therapy: Applications, types, and future directions. Acta Histochem 2025; 127:152237. [PMID: 40020616 DOI: 10.1016/j.acthis.2025.152237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 03/03/2025]
Abstract
One of the most significant treatment approaches now accessible is stem cell therapy. Over the last few decades, a lot of study has been done in this field, and this fascinating feature of plasticity could have therapeutic uses. The potential of stem cells to restore function lost as a result of disease, trauma, congenital defects, and age has made stem cell research a key priority for scientific and medical organizations across the world. Stem cells are a crucial topic of study in regenerative medicine because of their capacity to replace, repair, or regenerate damaged cells, tissues, or organs. As a result, stem cell therapy is being used as a treatment strategy for a number of illnesses. Because stem cells may proliferate indefinitely and generate vast quantities of differentiated cells needed for transplantation, they hold enormous promise for regenerative medicine. Stem cells can be reprogrammed from adult cell types or originate from embryonic or fetal origins. Depending on their availability and place of origin, stem cells can be totipotent, pluripotent, multipotent, oligopotent, or unipotent. With stem cell treatment, many ailments, including diabetes, liver disease, infertility, wounds and traumas, neurological disorders, cardiovascular disease, and cancer, might be cured. Various types of stem cell treatment are described in this review along with their applications in different therapeutic fields, ethical considerations, and advantages and disadvantages.
Collapse
Affiliation(s)
- KeerthiShri Boopathy
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Chennai 600095, India
| | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Chennai 600095, India; ACS-Advanced Medical Research Institute, Dr. M.G.R Educational and Research Institute, Chennai 600077, India.
| | - Maddaly Ravi
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu 600 116, India
| | | | - Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Chennai 600095, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Vishal M Balaramnavar
- School of Pharmacy and Research Centre, Sanskriti University, Chhata, Mathura, Uttar Pradesh 281401, India
| |
Collapse
|
3
|
Tong L, Tang L, Tang B, Zhang J. Impacts of stem cells from different sources on wound healing rate in diabetic foot ulcers: a systematic review and meta-analysis. Front Genet 2025; 15:1541992. [PMID: 39935694 PMCID: PMC11811113 DOI: 10.3389/fgene.2024.1541992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 12/31/2024] [Indexed: 02/13/2025] Open
Abstract
Background Diabetic foot ulcers (DFU) are a significant complication of diabetes, with huge implications on patient morbidity and healthcare costs. The objective of this meta-analysis was to evaluate the impacts of stem cells from different sources on wound healing rate in DFU patients. Methods We systematically retrieved records via key databases PubMed, Cochrane Library, Web of Science, Embase, China National Knowledge Infrastructure (CNKI) and Wanfang from the inception to October 2024. The Stata 16.0 (Stata Corp, TX) software was used to perform the meta-analysis. Risk of bias in all included studies was evaluated by Cochrane Risk of Bias version 2. Results A total of 24 studies involving 1,321 patients were included. There was an increased likelihood of wound healing with peripheral blood-derived stem cells, the most effective cells (odds ratios (OR) = 7.31, 95% CI: 2.90-18.47), followed by adipose-derived stem cells (OR = 5.23, 95% CI: 2.76-9.90), umbilical cord-derived stem cells (OR = 4.94, 95% CI: 0.61-40.03), bone-derived stem cells (OR = 4.36, 95% CI: 2.43-7.85) and other sources stem cells (OR = 3.16, 95% CI: 1.83-5.45). Nevertheless, only umbilical cord-derived stem cells showed statistical significance (p < 0.05). The heterogeneity ranged from non-existent in the adipose and peripheral blood groups (I2 = 0.00%) to moderate in the bone groups (I2 = 26.31%) and other groups (I2 = 30.62%), and substantial in the umbilical cord groups (I2 = 88.37%). Asymmetrical funnel plots pointed to publication bias, but the trim-and-fill method to correct for this brought the effect estimates even lower: based on the pooled OR, corrected OR was 3.40 (95% CI 2.39-4.84). Stem cell therapy was also associated with improvements in several secondary outcomes, suggesting its potential to influence the progression of DFU. Conclusion Our study suggested that stem cells from different sources showed potential in promoting wound healing in DFU, although with some variation in effectiveness. Despite some publication bias and moderate heterogeneity, the overall therapeutic effect remained positive. These findings indicated that stem cell therapy might influence the progression of DFU.
Collapse
Affiliation(s)
- Le Tong
- Department of Emergency Medicine, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
- Disaster Medical Center, Sichuan University, Chengdu, China
- Nursing Key Laboratory of Sichuan Province, Chengdu, China
| | - Lin Tang
- Department of Emergency Medicine, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
- Disaster Medical Center, Sichuan University, Chengdu, China
- Nursing Key Laboratory of Sichuan Province, Chengdu, China
| | - Bangli Tang
- Department of Dermatology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Jianna Zhang
- Department of Emergency Medicine, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
- Disaster Medical Center, Sichuan University, Chengdu, China
- Nursing Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
4
|
Sajjad MW, Muzamil F, Sabir M, Ashfaq UA. Regenerative Medicine and Nanotechnology Approaches against Cardiovascular Diseases: Recent Advances and Future Prospective. Curr Stem Cell Res Ther 2025; 20:50-71. [PMID: 38343052 DOI: 10.2174/011574888x263530230921074827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 01/31/2025]
Abstract
Regenerative medicine refers to medical research focusing on repairing, replacing, or regenerating damaged or diseased tissues or organs. Cardiovascular disease (CVDs) is a significant health issue globally and is the leading cause of death in many countries. According to the Centers for Disease Control and Prevention (CDC), one person dies every 34 seconds in the United States from cardiovascular diseases, and according to a World Health Organization (WHO) report, cardiovascular diseases are the leading cause of death globally, taking an estimated 17.9 million lives each year. Many conventional treatments are available using different drugs for cardiovascular diseases, but these treatments are inadequate. Stem cells and nanotechnology are promising research areas for regenerative medicine treating CVDs. Regenerative medicines are a revolutionary strategy for advancing and successfully treating various diseases, intending to control cardiovascular disorders. This review is a comprehensive study of different treatment methods for cardiovascular diseases using different types of biomaterials as regenerative medicines, the importance of different stem cells in therapeutics, the expanded role of nanotechnology in treatment, the administration of several types of stem cells, their tracking, imaging, and the final observation of clinical trials on many different levels as well as it aims to keep readers up to pace on emerging therapeutic applications of some specific organs and disorders that may improve from regenerative medicine shortly.
Collapse
Affiliation(s)
- Muhammad Waseem Sajjad
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Fatima Muzamil
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Maida Sabir
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
5
|
Son Y, Li P, Ortega D, Qiu H, Prachyl H, Yang M, Zhu W. Generation of a Human Induced Pluripotent Stem Cell Line Expressing a Magnetic Resonance Imaging Reporter Gene. SMALL METHODS 2024; 8:e2301764. [PMID: 38708688 PMCID: PMC11483194 DOI: 10.1002/smtd.202301764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/09/2024] [Indexed: 05/07/2024]
Abstract
The objective of the current study is to develop a new method for tracking transplanted human induced pluripotent stem cells-derived cardiomyocytes (hiPSC-CMs) using magnetic resonance imaging (MRI). The CRISPR/dCas9 activation system is employed to overexpress ferritin heavy chain (FHC) in hiPSC-CMs. The mRNA and protein expression of FHC in hiPSC and hiPSC-CMs significantly increased after transfection. Iron chloride does not affect the cell viability in a concentration range from 0 to 2000 µm. hiPSCs overexpressing FHC (hiPSC- FHCOE) and hiPSC-CMs overexpressing FHC (hiPSC-CM-FHCOE) significantly enhanced cellular uptake of iron chloride but with no changes in electrophysiological properties compared to hiPSC-CM-Control. Furthermore, hiPSC-CM-FHCOE presented robust contrast and lower T2* values, signifying their potential as highly effective candidates for cardiac MRI. Next, hiPSC-CM-FHCOE is injected into mouse hearts and after 3 days of transplantation, MR images are obtained. hiPSC-CM-FHCOE cells exhibited clear signals in the hearts with lower T2* and rapid signal decay. Collectively, data from this proof-of-concept study demonstrated that endogenous labeling with FHC in hiPSC-CMs can be a potent strategy for enhancing the accuracy of cardiac MRI. This technology represents a significant step forward in tracking the transplanted hiPSC-CMs in the hearts of live animals.
Collapse
Affiliation(s)
- Yura Son
- Department of Cardiovascular Medicine, Department of Physiology and Biomedical Engineering, and Center for Regenerative Biotherapeutics, Mayo Clinic Arizona, Scottsdale, AZ, 85259, USA
| | - Pengsheng Li
- Department of Cardiovascular Medicine, Department of Physiology and Biomedical Engineering, and Center for Regenerative Biotherapeutics, Mayo Clinic Arizona, Scottsdale, AZ, 85259, USA
| | - Dakota Ortega
- KE Biosciences Preclinical Imaging Center, Arizona State University, Tempe, AZ, 85281, USA
| | - Huiliang Qiu
- Department of Cardiovascular Medicine, Department of Physiology and Biomedical Engineering, and Center for Regenerative Biotherapeutics, Mayo Clinic Arizona, Scottsdale, AZ, 85259, USA
| | - Hannah Prachyl
- Department of Cardiovascular Medicine, Department of Physiology and Biomedical Engineering, and Center for Regenerative Biotherapeutics, Mayo Clinic Arizona, Scottsdale, AZ, 85259, USA
| | - Ming Yang
- Department of Radiology, Mayo Clinic Arizona, Scottsdale, AZ, 85259, USA
| | - Wuqiang Zhu
- Department of Cardiovascular Medicine, Department of Physiology and Biomedical Engineering, and Center for Regenerative Biotherapeutics, Mayo Clinic Arizona, Scottsdale, AZ, 85259, USA
| |
Collapse
|
6
|
Huang D, Yang X, Peng Z, Yin H, Liu Y, Zhang Y, Li C, Chen G, Wang Q. Multichannel-optical imaging for in vivo evaluating the safety and therapeutic efficacy of stem cells in tumor model in terms of cell tropism, proliferation and NF-κB activity. Biomaterials 2024; 307:122510. [PMID: 38422837 DOI: 10.1016/j.biomaterials.2024.122510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/20/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
Stem cell-based cancer treatment has garnered significant attention, yet its safety and efficacy remain incompletely understood. The nuclear factor-kappa B (NF-κB) pathway, a critical signaling mechanism involved in tumor growth, angiogenesis, and invasion, serves as an essential metric for evaluating the behavior of stem cells in tumor models. Herein, we report the development of a triple-channel imaging system capable of simultaneously monitoring the tropism of stem cells towards tumors, assessing tumor proliferation, and quantifying tumor NF-κB activity. In this system, we generated a CRISPR-Cas9 gene-edited human glioblastoma cell line, GE-U87-MG, which provided a reliable readout of the proliferation and NF-κB activity of tumors by EF1α-RFLuc- and NF-κB-GLuc-based bioluminescent imaging, respectively. Additionally, near infrared-II emitting Tat-PEG-AgAuSe quantum dots were developed for tracking of stem cell tropism towards tumor. In a representative case involving human mesenchymal stem cells (hMSCs), multichannel imaging revealed no discernible effect of hMSCs on the proliferation and NF-κB activity of GE-U87-MG tumors. Moreover, hMSCs engineered to overexpress the necrosis factor-related apoptosis-inducing ligand were able to inhibit NF-κB activity and growth of GE-U87-MG in vivo. Taken together, our imaging system represents a powerful and feasible approach to evaluating the safety and therapeutic efficacy of stem cells in tumor models.
Collapse
Affiliation(s)
- Dehua Huang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Xue Yang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zhao Peng
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Hongqiang Yin
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Yongyang Liu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Yejun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Chunyan Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Guangcun Chen
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China.
| | - Qiangbin Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Lee J, Kim H, Lim HR, Kim YS, Hoang TTT, Choi J, Jeong GJ, Kim H, Herbert R, Soltis I, Kim KR, Lee SH, Kwon Y, Lee Y, Jang YC, Yeo WH. Large-scale smart bioreactor with fully integrated wireless multivariate sensors and electronics for long-term in situ monitoring of stem cell culture. SCIENCE ADVANCES 2024; 10:eadk6714. [PMID: 38354246 PMCID: PMC10866562 DOI: 10.1126/sciadv.adk6714] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
Achieving large-scale, cost-effective, and reproducible manufacturing of stem cells with the existing devices is challenging. Traditional single-use cell-bag bioreactors, limited by their rigid and single-point sensors, struggle with accuracy and scalability for high-quality cell manufacturing. Here, we introduce a smart bioreactor system that enables multi-spatial sensing for real-time, wireless culture monitoring. This scalable system includes a low-profile, label-free thin-film sensor array and electronics integrated with a flexible cell bag, allowing for simultaneous assessment of culture properties such as pH, dissolved oxygen, glucose, and temperature, to receive real-time feedback for up to 30 days. The experimental results show the accurate monitoring of time-dynamic and spatial variations of stem cells and myoblast cells with adjustable carriers from a plastic dish to a 2-liter cell bag. These advances open up the broad applicability of the smart sensing system for large-scale, lower-cost, reproducible, and high-quality engineered cell manufacturing for broad clinical use.
Collapse
Affiliation(s)
- Jimin Lee
- George W. Woodruff School of Mechanical Engineering, College of Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Hojoong Kim
- George W. Woodruff School of Mechanical Engineering, College of Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Hyo-Ryoung Lim
- Major of Human Biocovergence, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| | - Yun Soung Kim
- Biomedical Engineering and Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Thi Thai Thanh Hoang
- Department of Orthopaedics, Musculoskeletal Institute, Emory University, Atlanta, GA 30329, USA
- Atlanta VA Medical Center, Decatur, GA 30033, USA
| | - Jeongmoon Choi
- Department of Orthopaedics, Musculoskeletal Institute, Emory University, Atlanta, GA 30329, USA
- Altos Labs-San Diego Institute of Science, San Diego, CA 92121, USA
| | - Gun-Jae Jeong
- Department of Orthopaedics, Musculoskeletal Institute, Emory University, Atlanta, GA 30329, USA
- Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hodam Kim
- George W. Woodruff School of Mechanical Engineering, College of Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Robert Herbert
- George W. Woodruff School of Mechanical Engineering, College of Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 USA
| | - Ira Soltis
- George W. Woodruff School of Mechanical Engineering, College of Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ka Ram Kim
- George W. Woodruff School of Mechanical Engineering, College of Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Sung Hoon Lee
- IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Electrical and Computer Engineering, College of Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Youngjin Kwon
- George W. Woodruff School of Mechanical Engineering, College of Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yunki Lee
- Department of Orthopaedics, Musculoskeletal Institute, Emory University, Atlanta, GA 30329, USA
- Atlanta VA Medical Center, Decatur, GA 30033, USA
| | - Young Charles Jang
- Department of Orthopaedics, Musculoskeletal Institute, Emory University, Atlanta, GA 30329, USA
- Atlanta VA Medical Center, Decatur, GA 30033, USA
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, College of Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Institute for Materials, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
8
|
Bua G, Marrazzo P, Manaresi E, Gamberini C, Bonsi L, Alviano F, Gallinella G. Non-Permissive Parvovirus B19 Infection: A Reservoir and Questionable Safety Concern in Mesenchymal Stem Cells. Int J Mol Sci 2023; 24:ijms24098204. [PMID: 37175911 PMCID: PMC10179342 DOI: 10.3390/ijms24098204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are multipotent cells with differentiation, immunoregulatory and regenerative properties. Because of these features, they represent an attractive tool for regenerative medicine and cell-based therapy. However, MSCs may act as a reservoir of persistent viruses increasing the risk of failure of MSCs-based therapies and of viral transmission, especially in immunocompromised patients. Parvovirus B19V (B19V) is a common human pathogen that infects bone marrow erythroid progenitor cells, leading to transient or persistent anemia. Characteristics of B19V include the ability to cross the placenta, infecting the fetus, and to persist in several tissues. We thus isolated MSCs from bone marrow (BM-MSCs) and fetal membrane (FM-MSCs) to investigate their permissiveness to B19V infection. The results suggest that both BM- and FM- MSCs can be infected by B19V and, while not able to support viral replication, allow persistence over time in the infected cultures. Future studies are needed to understand the potential role of MSCs in B19V transmission and the conditions that can favor a potential reactivation of the virus.
Collapse
Affiliation(s)
- Gloria Bua
- Department of Pharmacy and Biotechnology, University of Bologna, 40138 Bologna, Italy
| | - Pasquale Marrazzo
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Elisabetta Manaresi
- Department of Pharmacy and Biotechnology, University of Bologna, 40138 Bologna, Italy
| | - Chiara Gamberini
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Laura Bonsi
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Francesco Alviano
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Giorgio Gallinella
- Department of Pharmacy and Biotechnology, University of Bologna, 40138 Bologna, Italy
| |
Collapse
|
9
|
Liu X, Li J, Wang W, Ren X, Hu JF. Therapeutic restoration of female reproductive and endocrine dysfunction using stem cells. Life Sci 2023; 322:121658. [PMID: 37023951 DOI: 10.1016/j.lfs.2023.121658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
Millions of women worldwide suffer from infertility associated with gynecologic disorders such as premature ovarian insufficiency, polycystic ovary syndrome, Asherman syndrome, endometriosis, preeclampsia, and fallopian tube obstruction. These disorders can lead to infertility and thereby affect the quality of life of the infertile couple because of their psychological impact and significant costs. In recent years, stem cell therapy has emerged as a therapeutic approach to repair or replace damaged tissues or organs. This review describes the recent development as well as the underlying mechanisms of stem cell therapy for a variety of female reproductive diseases, offering us new therapeutic options for the treatment of female reproductive and endocrine dysfunction.
Collapse
Affiliation(s)
- Xiaobo Liu
- The Laboratory of Cancer Precision Medicine, the First Hospital of Jilin University, Changchun, Jilin 130061, China
| | - Jiajia Li
- The Laboratory of Cancer Precision Medicine, the First Hospital of Jilin University, Changchun, Jilin 130061, China; Department of Gynecologic Oncology, Gynecology and Obstetrics Centre, the First Hospital of Jilin University, Changchun, Jilin 130012, China
| | - Wenjun Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin 130061, China; Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Xue Ren
- Department of Gynecologic Oncology, Gynecology and Obstetrics Centre, the First Hospital of Jilin University, Changchun, Jilin 130012, China
| | - Ji-Fan Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin 130061, China; Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| |
Collapse
|
10
|
Jeyaraman M, Verma T, Jeyaraman N, Patro BP, Nallakumarasamy A, Khanna M. Is mandible derived mesenchymal stromal cells superior in proliferation and regeneration to long bone-derived mesenchymal stromal cells? World J Methodol 2023; 13:10-17. [PMID: 37035028 PMCID: PMC10080497 DOI: 10.5662/wjm.v13.i2.10] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 03/15/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are cells with the characteristic ability of self-renewal along with the ability to exhibit multilineage differentiation. Bone marrow (BM) is the first tissue in which MSCs were identified and BM-MSCs are most commonly used among various MSCs in clinical settings. MSCs can stimulate and promote osseous regeneration. Due to the difference in the development of long bones and craniofacial bones, the mandibular-derived MSCs (M-MSCs) have distinct differentiation characteristics as compared to that of long bones. Both mandibular and long bone-derived MSCs are positive for MSC-associated markers such as CD-73, -105, and -106, stage-specific embryonic antigen 4 and Octamer-4, and negative for hematopoietic markers such as CD-14, -34, and -45. As the M-MSCs are derived from neural crest cells, they have embryogenic cells which promote bone repair and high osteogenic potential. In vitro and in vivo animal-based studies demonstrate a higher rate of proliferation and high osteogenic potential for M-MSCs as compared to long-bones MSCs, but in vivo studies in human subjects are lacking. The BM-MSCs have their advantages and limitations. M-MSCs may be utilized as an alternative source of MSCs which can be utilized for tissue engineering and promoting the regeneration of bone. M-MSCs may have potential advantages in the repair of craniofacial or orofacial defects. Considering the utility of M-MSCs in the field of orthopaedics, we have discussed various unresolved questions, which need to be explored for their better utility in clinical practice.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600056, Tamil Nadu, India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India
- Department of Regenerative Medicine, Indian Stem Cell Study Group Association, Lucknow 226010, Uttar Pradesh, India
| | - Tushar Verma
- Department of Orthopaedic Rheumatology, Fellow in Indian Orthopaedic Rheumatology Association, Lucknow 226010, Uttar Pradesh, India
| | - Naveen Jeyaraman
- Department of Regenerative Medicine, Indian Stem Cell Study Group Association, Lucknow 226010, Uttar Pradesh, India
- Department of Orthopaedic Rheumatology, Fellow in Indian Orthopaedic Rheumatology Association, Lucknow 226010, Uttar Pradesh, India
- Department of Orthopaedics, Rathimed Speciality Hospital, Chennai 600040, Tamil Nadu, India
| | - Bishnu Prasad Patro
- Department of Regenerative Medicine, Indian Stem Cell Study Group Association, Lucknow 226010, Uttar Pradesh, India
- Department of Orthopaedics, All India Institute of Medical Sciences, Bhubaneswar 751019, Odisha, India
| | - Arulkumar Nallakumarasamy
- Department of Regenerative Medicine, Indian Stem Cell Study Group Association, Lucknow 226010, Uttar Pradesh, India
- Department of Orthopaedic Rheumatology, Fellow in Indian Orthopaedic Rheumatology Association, Lucknow 226010, Uttar Pradesh, India
- Department of Orthopaedics, All India Institute of Medical Sciences, Bhubaneswar 751019, Odisha, India
| | - Manish Khanna
- Department of Regenerative Medicine, Indian Stem Cell Study Group Association, Lucknow 226010, Uttar Pradesh, India
| |
Collapse
|
11
|
Mollashahi B, Latifi-Navid H, Owliaee I, Shamdani S, Uzan G, Jamehdor S, Naserian S. Research and Therapeutic Approaches in Stem Cell Genome Editing by CRISPR Toolkit. Molecules 2023; 28:1982. [PMID: 36838970 PMCID: PMC9961668 DOI: 10.3390/molecules28041982] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
The most widely used genome editing toolkit is CRISPR (clustered regularly interspaced short palindromic repeats). It provides the possibility of replacing and modifying DNA and RNA nucleotides. Furthermore, with advancements in biological technology, inhibition and activation of the transcription of specific gene(s) has become possible. Bioinformatics tools that target the evolution of CRISPR-associated protein 9 (Cas9) turn this protein into a vehicle that is specific for a DNA or RNA region with single guide RNA (sgRNA). This toolkit could be used by researchers to investigate the function of stem cell gene(s). Here, in this review article, we cover recent developments and applications of this technique in stem cells for research and clinical purposes and discuss different CRISPR/Cas technologies for knock-out, knock-in, activation, or inhibition of gene expression. Additionally, a comparison of several deliveries and off-target detecting strategies is discussed.
Collapse
Affiliation(s)
- Behrouz Mollashahi
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| | - Hamid Latifi-Navid
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 14965/161, Iran
| | - Iman Owliaee
- Department of Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamedan 6517838636, Iran
| | - Sara Shamdani
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Paris-Saclay University, 94807 Villejuif, France
- CellMedEx, 94100 Saint Maur Des Fossés, France
| | - Georges Uzan
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Paris-Saclay University, 94807 Villejuif, France
| | - Saleh Jamehdor
- Department of Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamedan 6517838636, Iran
| | - Sina Naserian
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Paris-Saclay University, 94807 Villejuif, France
- CellMedEx, 94100 Saint Maur Des Fossés, France
| |
Collapse
|
12
|
Wang B, Gao W, Zheng MY, Lin G, Lue TF. Recent advances in stem cell therapy for erectile dysfunction: a narrative review. Expert Opin Biol Ther 2023; 23:565-573. [PMID: 37078259 PMCID: PMC10330142 DOI: 10.1080/14712598.2023.2203811] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
INTRODUCTION While phosphodiesterase type 5 inhibitors (PDE5is) and others are used to treat Erectile dysfunction (ED), many patients are either unresponsive or resistant to it. Stem cell therapy (SCT) is a promising alternative approach. Numerous preclinical trials have demonstrated improved erectile function in animal models using SCT, although the number of clinical trials investigating SCT for men with ED is limited. Nonetheless, findings from human clinical trials suggest that SCT may be a useful treatment option. AREAS COVERED Biomedical literature, including PubMed, ClinicalTrials.gov, and European Union Clinical Trials Registry, were analyzed to summarize and synthesize information on stem cell therapy for ED in this narrative review. The achievements in preclinical and clinical evaluations are presented and critically analyzed. EXPERT OPINION SCT has demonstrated some benefits in improving erectile function, while further studies are urgently needed. Such studies would provide valuable insights into the optimal use of stem cell therapy and its potential as a therapeutic option for ED. Taking advantage of different mechanisms of action involved in various regenerative therapies, combination therapies such as SCT and low-energy shock waves or platelet-rich plasma may provide a more effective therapy and warrant further research.
Collapse
Affiliation(s)
- Bohan Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenjun Gao
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Micha Y. Zheng
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Guiting Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Tom F Lue
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
13
|
Lin Z, Gao L, Hou N, Zhi X, Zhang Y, Che Z, Deng A. Application of low-intensity pulsed ultrasound on tissue resident stem cells: Potential for ophthalmic diseases. Front Endocrinol (Lausanne) 2023; 14:1153793. [PMID: 37008913 PMCID: PMC10063999 DOI: 10.3389/fendo.2023.1153793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
INTRODUCTION Tissue-resident stem cells (TRSCs) have the ability to self-renew and differentiate throughout an individual's lifespan, and they utilize both mechanisms to maintain homeostasis and regenerate damaged tissues. Several studies suggest that these stem cells can serve as a potential source for cell-replacement-based therapy by promoting differentiation or expansion. In recent years, low-intensity pulsed ultrasound (LIPUS) has been demonstrated to effectively stimulate stem cell proliferation and differentiation, promote tissue regeneration, and inhibit inflammatory responses. AIMS To present a comprehensive overview of current application and mechanism of LIPUS on tissue resident stem cells. METHODS We searched PubMed, Web of Science for articles on the effects of LIPUS on tissue resident stem cells and its application. RESULTS The LIPUS could modulate cellular activities such as cell viability, proliferation and differentiation of tissue resident stem cells and related cells through various cellular signaling pathways. Currently, LIPUS, as the main therapeutic ultrasound, is being widely used in the treatment of preclinical and clinical diseases. CONCLUSION The stem cell research is the hot topic in the biological science, while in recent years, increasing evidence has shown that TRSCs are good targets for LIPUS-regulated regenerative medicine. LIPUS may be a novel and valuable therapeutic approach for the treatment of ophthalmic diseases. How to further improve its efficiency and accuracy, as well as the biological mechanism therein, will be the focus of future research.
Collapse
|
14
|
Wong PF, Dharmani M, Ramasamy TS. Senotherapeutics for mesenchymal stem cell senescence and rejuvenation. Drug Discov Today 2023; 28:103424. [PMID: 36332835 DOI: 10.1016/j.drudis.2022.103424] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/04/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
Mesenchymal stem cells (MSCs) are susceptible to replicative senescence and senescence-associated functional decline, which hampers their use in regenerative medicine. Senotherapeutics are drugs that target cellular senescence through senolytic and senomorphic functions to induce apoptosis and suppress chronic inflammation caused by the senescence-associated secreted phenotype (SASP), respectively. Therefore, senotherapeutics could delay aging-associated degeneration. They could also be used to eliminate senescent MSCs during in vitro expansion or bioprocessing for transplantation. In this review, we discuss the role of senotherapeutics in MSC senescence, rejuvenation, and transplantation, with examples of some tested compounds in vitro. The prospects, challenges, and the way forward in clinical applications of senotherapeutics in cell-based therapeutics are also discussed.
Collapse
Affiliation(s)
- Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Murugan Dharmani
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Thamil Selvee Ramasamy
- Stem Cell Biology Laboratory, Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603 Wilayah Persekutuan Kuala Lumpur, Malaysia.
| |
Collapse
|
15
|
Srinivasan M, Thangaraj SR, Ramasubramanian K, Thangaraj PP, Ramasubramanian KV. Artificial intelligence in stem cell therapies and organ regeneration. ARTIFICIAL INTELLIGENCE IN TISSUE AND ORGAN REGENERATION 2023:175-190. [DOI: 10.1016/b978-0-443-18498-7.00001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Qiao Y, Zhang Q, Peng Y, Qiao X, Yan J, Wang B, Zhu Z, Li Z, Zhang Y. Effect of stem cell treatment on burn wounds: A systemic review and a meta-analysis. Int Wound J 2023; 20:8-17. [PMID: 35560869 PMCID: PMC9797938 DOI: 10.1111/iwj.13831] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 01/07/2023] Open
Abstract
A meta-analysis was performed to evaluate the effect of stem cells treatment in managing burn wounds. A systematic literature search up to March 2022 incorporated 24 studies reported between 2013 and 2021 including 400 animals with burn wounds at the beginning of the study; 211 were using stem cells treatment, and 189 controlled. Statistical tools like the contentious method were used within a random or fixed-influence model to establish the mean difference (MD) with 95% confidence intervals (CIs) to evaluate the influence of stem cells treatment in managing burn wounds. Stem cells treatment had a significantly higher burn wound healing rate (MD, 15.18; 95% CI, 11.29-19.07, P < .001), higher blood vessel number (MD, 12.28; 95% CI, 10.06-14.51, P < .001), higher vascular endothelial growth factor (MD, 10.24; 95% CI, 7.19-13.29, P < .001), lower interleukin-1 level (MD, -98.48; 95% CI, -155.33 to -41.63, P < .001), and lower tumour necrosis factor α level (MD, -28.71; 95% CI, -46.65 to -10.76, P < .002) compared with control in animals' models with burn wounds. Stem cells treatment had a significantly higher burn wound healing rate, higher blood vessel number, higher vascular endothelial growth factor, lower interleukin-1 level, and lower tumour necrosis factor α level compared with control in animals' models with burn wounds. Further studies are required to validate these findings.
Collapse
Affiliation(s)
- Yating Qiao
- Department of Gastrointestinal SurgeryAffiliated Hospital of Hebei UniversityBoadingChina
| | - Qingrong Zhang
- Department of Burn and Plastic SurgeryAffiliated Hospital of Nantong UniversityNantongChina
| | - Ying Peng
- Department of Burn and Plastic SurgeryAffiliated Hospital of Nantong UniversityNantongChina
| | | | - Jun Yan
- Department of Burn and Plastic SurgeryAffiliated Hospital of Nantong UniversityNantongChina
| | - Bolin Wang
- Department of Burn and Plastic SurgeryAffiliated Hospital of Nantong UniversityNantongChina
| | - Zhihan Zhu
- Department of Burn and Plastic SurgeryAffiliated Hospital of Nantong UniversityNantongChina
| | - Zihan Li
- Department of Burn and Plastic SurgeryAffiliated Hospital of Nantong UniversityNantongChina
| | - Yi Zhang
- Department of Burn and Plastic SurgeryAffiliated Hospital of Nantong UniversityNantongChina
| |
Collapse
|
17
|
Marino A, Battaglini M, Tapeinos C, Larrañaga A, Ciofani G. Innovative nanotechnology tools for the functional control and tracking of human stem cells. MATERIALS TODAY ADVANCES 2022; 16:100298. [DOI: 10.1016/j.mtadv.2022.100298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
18
|
Bölük A, Yavuz M, Demircan T. Axolotl: A resourceful vertebrate model for regeneration and beyond. Dev Dyn 2022; 251:1914-1933. [PMID: 35906989 DOI: 10.1002/dvdy.520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/04/2022] [Accepted: 07/21/2022] [Indexed: 01/30/2023] Open
Abstract
The regenerative capacity varies significantly among the animal kingdom. Successful regeneration program in some animals results in the functional restoration of tissues and lost structures. Among the highly regenerative animals, axolotl provides multiple experimental advantages with its many extraordinary characteristics. It has been positioned as a regeneration model organism due to its exceptional renewal capacity, including the internal organs, central nervous system, and appendages, in a scar-free manner. In addition to this unique regeneration ability, the observed low cancer incidence, its resistance to carcinogens, and the reversing effect of its cell extract on neoplasms strongly suggest its usability in cancer research. Axolotl's longevity and efficient utilization of several anti-aging mechanisms underline its potential to be employed in aging studies.
Collapse
Affiliation(s)
- Aydın Bölük
- School of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Mervenur Yavuz
- Institute of Health Sciences, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Turan Demircan
- Department of Medical Biology, School of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey
| |
Collapse
|
19
|
Cruz LJ, Rezaei S, Grosveld F, Philipsen S, Eich C. Nanoparticles targeting hematopoietic stem and progenitor cells: Multimodal carriers for the treatment of hematological diseases. Front Genome Ed 2022; 4:1030285. [PMID: 36407494 PMCID: PMC9666682 DOI: 10.3389/fgeed.2022.1030285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/10/2022] [Indexed: 10/03/2023] Open
Abstract
Modern-day hematopoietic stem cell (HSC) therapies, such as gene therapy, modify autologous HSCs prior to re-infusion into myelo-conditioned patients and hold great promise for treatment of hematological disorders. While this approach has been successful in numerous clinical trials, it relies on transplantation of ex vivo modified patient HSCs, which presents several limitations. It is a costly and time-consuming procedure, which includes only few patients so far, and ex vivo culturing negatively impacts on the viability and stem cell-properties of HSCs. If viral vectors are used, this carries the additional risk of insertional mutagenesis. A therapy delivered to HSCs in vivo, with minimal disturbance of the HSC niche, could offer great opportunities for novel treatments that aim to reverse disease symptoms for hematopoietic disorders and could bring safe, effective and affordable genetic therapies to all parts of the world. However, substantial unmet needs exist with respect to the in vivo delivery of therapeutics to HSCs. In the last decade, in particular with the development of gene editing technologies such as CRISPR/Cas9, nanoparticles (NPs) have become an emerging platform to facilitate the manipulation of cells and organs. By employing surface modification strategies, different types of NPs can be designed to target specific tissues and cell types in vivo. HSCs are particularly difficult to target due to the lack of unique cell surface markers that can be utilized for cell-specific delivery of therapeutics, and their shielded localization in the bone marrow (BM). Recent advances in NP technology and genetic engineering have resulted in the development of advanced nanocarriers that can deliver therapeutics and imaging agents to hematopoietic stem- and progenitor cells (HSPCs) in the BM niche. In this review we provide a comprehensive overview of NP-based approaches targeting HSPCs to control and monitor HSPC activity in vitro and in vivo, and we discuss the potential of NPs for the treatment of malignant and non-malignant hematological disorders, with a specific focus on the delivery of gene editing tools.
Collapse
Affiliation(s)
- Luis J. Cruz
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Somayeh Rezaei
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Frank Grosveld
- Erasmus University Medical Center, Department of Cell Biology, Rotterdam, Netherlands
| | - Sjaak Philipsen
- Erasmus University Medical Center, Department of Cell Biology, Rotterdam, Netherlands
| | - Christina Eich
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
20
|
Efficient expansion of rare human circulating hematopoietic stem/progenitor cells in steady-state blood using a polypeptide-forming 3D culture. Protein Cell 2022; 13:808-824. [PMID: 35230662 PMCID: PMC9237197 DOI: 10.1007/s13238-021-00900-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/14/2021] [Indexed: 11/13/2022] Open
Abstract
Although widely applied in treating hematopoietic malignancies, transplantation of hematopoietic stem/progenitor cells (HSPCs) is impeded by HSPC shortage. Whether circulating HSPCs (cHSPCs) in steady-state blood could be used as an alternative source remains largely elusive. Here we develop a three-dimensional culture system (3DCS) including arginine, glycine, aspartate, and a series of factors. Fourteen-day culture of peripheral blood mononuclear cells (PBMNCs) in 3DCS led to 125- and 70-fold increase of the frequency and number of CD34+ cells. Further, 3DCS-expanded cHSPCs exhibited the similar reconstitution rate compared to CD34+ HSPCs in bone marrow. Mechanistically, 3DCS fabricated an immunomodulatory niche, secreting cytokines as TNF to support cHSPC survival and proliferation. Finally, 3DCS could also promote the expansion of cHSPCs in patients who failed in HSPC mobilization. Our 3DCS successfully expands rare cHSPCs, providing an alternative source for the HSPC therapy, particularly for the patients/donors who have failed in HSPC mobilization.
Collapse
|
21
|
Shivatare SS, Shivatare VS, Wong CH. Glycoconjugates: Synthesis, Functional Studies, and Therapeutic Developments. Chem Rev 2022; 122:15603-15671. [PMID: 36174107 PMCID: PMC9674437 DOI: 10.1021/acs.chemrev.1c01032] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycoconjugates are major constituents of mammalian cells that are formed via covalent conjugation of carbohydrates to other biomolecules like proteins and lipids and often expressed on the cell surfaces. Among the three major classes of glycoconjugates, proteoglycans and glycoproteins contain glycans linked to the protein backbone via amino acid residues such as Asn for N-linked glycans and Ser/Thr for O-linked glycans. In glycolipids, glycans are linked to a lipid component such as glycerol, polyisoprenyl pyrophosphate, fatty acid ester, or sphingolipid. Recently, glycoconjugates have become better structurally defined and biosynthetically understood, especially those associated with human diseases, and are accessible to new drug, diagnostic, and therapeutic developments. This review describes the status and new advances in the biological study and therapeutic applications of natural and synthetic glycoconjugates, including proteoglycans, glycoproteins, and glycolipids. The scope, limitations, and novel methodologies in the synthesis and clinical development of glycoconjugates including vaccines, glyco-remodeled antibodies, glycan-based adjuvants, glycan-specific receptor-mediated drug delivery platforms, etc., and their future prospectus are discussed.
Collapse
Affiliation(s)
- Sachin S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Vidya S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
22
|
F. V, V. D. P, C. M, M. LI, C. D, G. P, D. C, A. T, M. G, S. DF, M. T, V. V, G. S. Targeting epigenetic alterations in cancer stem cells. FRONTIERS IN MOLECULAR MEDICINE 2022; 2:1011882. [PMID: 39086963 PMCID: PMC11285701 DOI: 10.3389/fmmed.2022.1011882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/08/2022] [Indexed: 08/02/2024]
Abstract
Oncogenes or tumor suppressor genes are rarely mutated in several pediatric tumors and some early stage adult cancers. This suggests that an aberrant epigenetic reprogramming may crucially affect the tumorigenesis of these tumors. Compelling evidence support the hypothesis that cancer stem cells (CSCs), a cell subpopulation within the tumor bulk characterized by self-renewal capacity, metastatic potential and chemo-resistance, may derive from normal stem cells (NSCs) upon an epigenetic deregulation. Thus, a better understanding of the specific epigenetic alterations driving the transformation from NSCs into CSCs may help to identify efficacious treatments to target this aggressive subpopulation. Moreover, deepening the knowledge about these alterations may represent the framework to design novel therapeutic approaches also in the field of regenerative medicine in which bioengineering of NSCs has been evaluated. Here, we provide a broad overview about: 1) the role of aberrant epigenetic modifications contributing to CSC initiation, formation and maintenance, 2) the epigenetic inhibitors in clinical trial able to specifically target the CSC subpopulation, and 3) epigenetic drugs and stem cells used in regenerative medicine for cancer and diseases.
Collapse
Affiliation(s)
- Verona F.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Pantina V. D.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Modica C.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Lo Iacono M.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - D’Accardo C.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Porcelli G.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Cricchio D.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Turdo A.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Gaggianesi M.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Di Franco S.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Todaro M.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Veschi V.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Stassi G.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| |
Collapse
|
23
|
Therapeutic Potential of Skin Stem Cells and Cells of Skin Origin: Effects of Botanical Drugs Derived from Traditional Medicine. Stem Cell Rev Rep 2022; 18:1986-2001. [PMID: 35648312 DOI: 10.1007/s12015-022-10388-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 12/09/2022]
Abstract
Skin, the largest organ of the body, plays a vital role in protecting inner organs. Skin stem cells (SSCs) comprise a group of cells responsible for multiplication and replacement of damaged and non-functional skin cells; thereby help maintain homeostasis of skin functions. SSCs and differentiated cells of the skin such as melanocytes and keratinocytes, have a plethora of applications in regenerative medicine. However, as SSCs reside in small populations in specific niches in the skin, use of external stimulants for cell proliferation in vitro and in vivo is vital. Synthetic and recombinant stimulants though available, pose many challenges due to their exorbitant prices, toxicity issues and side effects. Alternatively, time tested traditional medicine preparations such as polyherbal formulations are widely tested as effective natural stimulants, to mainly stimulate proliferation, and melanogenesis/prevention of melanogenesis of both SSCs and cells of skin origin. Complex, multiple targets, synergistic bioactivities of the phytochemical constituents of herbal preparations amply justify these as natural stimulants. The use of these formulations in clinical applications such as in skin regeneration for burn wounds, wound healing acceleration, enhancement or decrease of melanin pigmentations will be in great demand. Although much multidisciplinary research is being conducted on the use of herbal formulas as stem cell stimulants, very few related clinical trials are yet registered with the NIH clinical trial registry. Therefore, identification/ discovery, in depth investigations culminating in clinical trials, as well as standardization and commercialization of such natural stimulants must be promoted, ensuring the sustainable use of medicinal plants.
Collapse
|
24
|
Park S, Kwon W, Kim HY, Ji YR, Kim D, Kim W, Han JE, Cho GJ, Yun S, Kim MO, Ryoo ZY, Han SH, Park JK, Choi SK. Knockdown of Maged1 inhibits cell cycle progression and causes cell death in mouse embryonic stem cells. Differentiation 2022; 125:18-26. [DOI: 10.1016/j.diff.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 11/25/2022]
|
25
|
Safina I, Embree MC. Biomaterials for recruiting and activating endogenous stem cells in situ tissue regeneration. Acta Biomater 2022; 143:26-38. [PMID: 35292413 PMCID: PMC9035107 DOI: 10.1016/j.actbio.2022.03.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 12/20/2022]
Abstract
Over the past two decades in situ tissue engineering has emerged as a new approach where biomaterials are used to harness the body's own stem/progenitor cells to regenerate diseased or injured tissue. Immunomodulatory biomaterials are designed to promote a regenerative environment, recruit resident stem cells to diseased or injured tissue sites, and direct them towards tissue regeneration. This review explores advances gathered from in vitro and in vivo studies on in situ tissue regenerative therapies. Here we also examine the different ways this approach has been incorporated into biomaterial sciences in order to create customized biomaterial products for therapeutic applications in a broad spectrum of tissues and diseases. STATEMENT OF SIGNIFICANCE: Biomaterials can be designed to recruit stem cells and coordinate their behavior and function towards the restoration or replacement of damaged or diseased tissues in a process known as in situ tissue regeneration. Advanced biomaterial constructs with precise structure, composition, mechanical, and physical properties can be transplanted to tissue site and exploit local stem cells and their micro-environment to promote tissue regeneration. In the absence of cells, we explore the critical immunomodulatory, chemical and physical properties to consider in material design and choice. The application of biomaterials for in situ tissue regeneration has the potential to address a broad range of injuries and diseases.
Collapse
|
26
|
Potential for Stem Cell-Based Therapy in the Road of Treatment for Neurological Disorders Secondary to COVID-19. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021; 8:355-369. [PMID: 34746370 PMCID: PMC8555723 DOI: 10.1007/s40883-021-00234-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 09/19/2021] [Accepted: 10/01/2021] [Indexed: 11/30/2022]
Abstract
Abstract
The severe acute respiratory syndrome coronavirus 2 has led to the worldwide pandemic named coronavirus disease 2019 (COVID-19). It has caused a significant increase in the number of cases and mortalities since its first diagnosis in December 2019. Although COVID-19 primarily affects the respiratory system, neurological involvement of the central and peripheral nervous system has been also reported. Herein, the higher risk of neurodegenerative diseases in COVID-19 patients in future is also imaginable. Neurological complications of COVID-19 infection are more commonly seen in severely ill individuals; but, earlier diagnosis and treatment can lead to better long-lasting results. In this respect, stem cell biotechnologies with considerable self-renewal and differentiation capacities have experienced great progress in the field of neurological disorders whether in finding out their underlying processes or proving them promising therapeutic approaches. Herein, many neurological disorders have been found to benefit from stem cell medicine strategies. Accordingly, in the present review, the authors are trying to discuss stem cell-based biotechnologies as promising therapeutic options for neurological disorders secondary to COVID-19 infection through reviewing neurological manifestations of COVID-19 and current stem cell-based biotechnologies for neurological disorders. Lay Summary Due to the substantial burden of neurological disorders in the health, economic, and social system of society, the emergence of neurological manifestations following COVID-19 (as a life-threatening pandemic) creates the need to use efficient and modern methods of treatment. Since stem cell-based methods have been efficient for a large number of neurological diseases, it seems that the use of mentioned methods is also effective in the process of improving neurological disorders caused by COVID-19. Hereupon, the current review aims to address stem cell-based approaches as treatments showing promise to neurological disorders related to COVID-19.
Collapse
|
27
|
Tadokoro S, Tokuyama-Toda R, Tatehara S, Ide S, Umeki H, Miyoshi K, Noma T, Satomura K. A New Induction Method for the Controlled Differentiation of Human-Induced Pluripotent Stem Cells Using Frozen Sections. Cells 2021; 10:2827. [PMID: 34831050 PMCID: PMC8616214 DOI: 10.3390/cells10112827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 02/04/2023] Open
Abstract
Considering that every tissue/organ has the most suitable microenvironment for its functional cells, controlling induced pluripotent stem cell (iPSC) differentiation by culture on frozen sections having a suitable microenvironment is possible. Induced PSCs were cultured on frozen sections of the liver, the brain, the spinal cord, and cover glasses (control) for 9 days. The iPSCs cultured on the sections of the liver resembled hepatocytes, whereas those on sections of the brain and the spinal cord resembled neuronal cells. The percentage of hepatocytic marker-positive cells in the iPSCs cultured on the sections of the liver was statistically higher than that of those in the iPSCs cultured on the sections of the brain and the spinal cord or on cover glasses. In contrast, the iPSCs cultured on the sections of the brain and the spinal cord revealed a high percentage of neural marker-positive cells. Thus, iPSCs can be differentiated into a specific cell lineage in response to specific factors within frozen sections of tissues/organs. Differentiation efficacy of the frozen sections markedly differed between the iPSC clones. Therefore, our induction method could be simple and effective for evaluating the iPSC quality.
Collapse
Affiliation(s)
- Susumu Tadokoro
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (S.T.); (R.T.-T.); (S.T.); (S.I.); (H.U.)
| | - Reiko Tokuyama-Toda
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (S.T.); (R.T.-T.); (S.T.); (S.I.); (H.U.)
| | - Seiko Tatehara
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (S.T.); (R.T.-T.); (S.T.); (S.I.); (H.U.)
| | - Shinji Ide
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (S.T.); (R.T.-T.); (S.T.); (S.I.); (H.U.)
| | - Hirochika Umeki
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (S.T.); (R.T.-T.); (S.T.); (S.I.); (H.U.)
| | - Keiko Miyoshi
- Department of Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, 3-18-15, Kuramoto, Tokushima 770-8504, Japan;
| | - Takafumi Noma
- Department of Nutrition and Health Promotion, Hiroshima Jogakuin University, 4-13-1, Ushitahigashi, Higashiku, Hiroshima 732-0063, Japan;
| | - Kazuhito Satomura
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (S.T.); (R.T.-T.); (S.T.); (S.I.); (H.U.)
| |
Collapse
|
28
|
Ahani-Nahayati M, Niazi V, Moradi A, Pourjabbar B, Roozafzoon R, Baradaran-Rafii A, Keshel SH. Umbilical cord mesenchymal stem/stromal cells potential to treat organ disorders; an emerging strategy. Curr Stem Cell Res Ther 2021; 17:126-146. [PMID: 34493190 DOI: 10.2174/1574888x16666210907164046] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 11/22/2022]
Abstract
Currently, mesenchymal stem/stromal cells (MSCs) have attracted growing attention in the context of cell-based therapy in regenerative medicine. Following the first successful procurement of human MSCs from bone marrow (BM), these cells isolation has been conducted from various origins, in particular, the umbilical cord (UC). Umbilical cord-derived mesenchymal stem/stromal cells (UC-MSCs) can be acquired by a non-invasive plan and simply cultured, and thereby signifies their superiority over MSCs derived from other sources for medical purposes. Due to their unique attributes, including self-renewal, multipotency, and accessibility concomitant with their immunosuppressive competence and lower ethical concerns, UC-MSCs therapy is described as encouraging therapeutic options in cell-based therapies. Regardless of their unique aptitude to adjust inflammatory response during tissue recovery and delivering solid milieu for tissue restoration, UC-MSCs can be differentiated into a diverse spectrum of adult cells (e.g., osteoblast, chondrocyte, type II alveolar, hepatocyte, and cardiomyocyte). Interestingly, they demonstrate a prolonged survival and longer telomeres compared with MSCs derived from other sources, suggesting that UC-MSCs are desired source to use in regenerative medicine. In the present review, we deliver a brief review of UC-MSCs isolation, expansion concomitantly with immunosuppressive activities, and try to collect and discuss recent pre-clinical and clinical researches based on the use of UC-MSCs in regenerative medicine, focusing on with special focus on in vivo researches.
Collapse
Affiliation(s)
- Milad Ahani-Nahayati
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran. Iran
| | - Vahid Niazi
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran. Iran
| | - Alireza Moradi
- Department of Physiology, School of Medicine, Iran University of Medical Science, Tehran. Iran
| | - Bahareh Pourjabbar
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran. Iran
| | - Reza Roozafzoon
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran. Iran
| | | | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran. Iran
| |
Collapse
|
29
|
Hernández-Patiño RI, Rossani G, Arriola A, Tello-Majluf D, Vargas JDLC. Stem cells and repair of necrosis after dermolipectomy: a case study. J Wound Care 2021; 30:Xi-Xv. [PMID: 34597166 DOI: 10.12968/jowc.2021.30.sup9a.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Skin ulcers secondary to necrosis post-dermolipectomy occur infrequently. Despite their rarity and because of their complex pathopathophysiological nature, their resolution is a major challenge for plastic surgeons. This study is to recognise the safety and efficiency of use of CD34 stem cells (SC), obtained from the patient's bone marrow, within a solid autologous fibrin scaffold in the case of female patient with an ulcer with torpid evolution as a result of an abdominal dermolipectomy. The concept was to regenerate the affected tissue, and to induce and promote the formation of granulation tissue that is compact enough to stimulate repair by secondary intention or facilitating surgical closure. We applied a technique under specific protocols to obtain the stem cells. The healing technique-the application of CD34 stem cells without any surgical intervention-was applied at two ambulatory sessions. There were no complications or concomitant infections, and recovery was complete within five weeks via secondary intention healing, achieving a significant and satisfactory healing response in the patient, improving both her physical and mental health. In this case study, CD34 stem cells were used successfully in the treatment of a hard-to-heal ulcer. It is necessary to carry out further investigations with a greater number of patients to substantiate the use of this intervention in patients with hard-to-heal wounds.
Collapse
Affiliation(s)
- Rafael Ivan Hernández-Patiño
- Instituto de Investigación en Ciencias Biomédicas, INICIB. Facultad de Medicina Humana, Universidad Ricardo Palma, Lima, Perú.,Instituto Peruano de Ingeniería Celular y Manufactura Tisular - INGECEL, Lima, Peru
| | - German Rossani
- Instituto de Investigación en Ciencias Biomédicas, INICIB. Facultad de Medicina Humana, Universidad Ricardo Palma, Lima, Perú.,Instituto Peruano de Ingeniería Celular y Manufactura Tisular - INGECEL, Lima, Peru
| | - Augusto Arriola
- Instituto de Investigación en Ciencias Biomédicas, INICIB. Facultad de Medicina Humana, Universidad Ricardo Palma, Lima, Perú.,Instituto Peruano de Ingeniería Celular y Manufactura Tisular - INGECEL, Lima, Peru
| | | | - Jhony De la Cruz Vargas
- Instituto de Investigación en Ciencias Biomédicas, INICIB. Facultad de Medicina Humana, Universidad Ricardo Palma, Lima, Perú
| |
Collapse
|
30
|
Afshari A, Yaghobi R, Rezaei G. Inter-regulatory role of microRNAs in interaction between viruses and stem cells. World J Stem Cells 2021; 13:985-1004. [PMID: 34567421 PMCID: PMC8422934 DOI: 10.4252/wjsc.v13.i8.985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/11/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are well known for post-transcriptional regulatory ability over specific mRNA targets. miRNAs exhibit temporal or tissue-specific expression patterns and regulate the cell and tissue developmental pathways. They also have determinative roles in production and differentiation of multiple lineages of stem cells and might have therapeutic advantages. miRNAs are a part of some viruses' regulatory machinery, not a byproduct. The trace of miRNAs was detected in the genomes of viruses and regulation of cell reprograming and viral pathogenesis. Combination of inter-regulatory systems has been detected for miRNAs during viral infections in stem cells. Contraction between viruses and stem cells may be helpful in therapeutic tactics, pathogenesis, controlling viral infections and defining stem cell developmental strategies that is programmed by miRNAs as a tool. Therefore, in this review we intended to study the inter-regulatory role of miRNAs in the interaction between viruses and stem cells and tried to explain the advantages of miRNA regulatory potentials, which make a new landscape for future studies.
Collapse
Affiliation(s)
- Afsoon Afshari
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz 7193711351, Iran
| | - Ramin Yaghobi
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz 7193711351, Iran.
| | - Ghazal Rezaei
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz 7193711351, Iran
| |
Collapse
|
31
|
Application of mesenchymal stem cells in corneal regeneration. Tissue Cell 2021; 73:101600. [PMID: 34371292 DOI: 10.1016/j.tice.2021.101600] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/24/2021] [Accepted: 07/25/2021] [Indexed: 12/13/2022]
Abstract
Due to delicate its structure, the cornea is susceptible to physical, chemical, and genetic damages. Corneal transplantation is the main treatment for serious corneal damage, but it faces significant challenges, including donor shortages and severe complications. In recent years, cell therapy is suggested as a novel alternative method for corneal regeneration. Regarding the unique characteristics of Mesenchymal stem cells including the potential to differentiate into discrete cell types, secretion of growth factors, mobilization potency, and availability from different sources; special attention has been paid to these cells in corneal engineering. Differentiation of MSCs into specialized corneal cells such as keratocytes, epithelial and endothelial cells is reported. Potential for Treatment of keratitis, reducing inflammation, and inhibition of neovascularization by MSCs, introducing them as novel agents for corneal repairing. In this review, various types of MSCs used to treat corneal injuries as well as their potential for restoring different corneal layers was investigated.
Collapse
|
32
|
Wartalski K, Gorczyca G, Wiater J, Tabarowski Z, Duda M. Porcine ovarian cortex-derived putative stem cells can differentiate into endothelial cells in vitro. Histochem Cell Biol 2021; 156:349-362. [PMID: 34269874 PMCID: PMC8550686 DOI: 10.1007/s00418-021-02016-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 12/19/2022]
Abstract
Endothelial cells (ECs), the primary component of the vasculature, play a crucial role in neovascularization. However, the number of endogenous ECs is inadequate for both experimental purposes and clinical applications. Porcine ovarian putative stem cells (poPSCs), although not pluripotent, are characterized by great plasticity. Therefore, this study aimed to investigate whether poPSCs have the potential to differentiate into cells of endothelial lineage. poPSCs were immunomagnetically isolated from postnatal pig ovaries based on the presence of SSEA-4 protein. Expression of mesenchymal stem cells (MSCs) markers after pre-culture, both at the level of mRNA: ITGB1, THY, and ENG and corresponding protein: CD29, CD90, and CD105 were significantly higher compared to the control ovarian cortex cells. To differentiate poPSCs into ECs, inducing medium containing vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), insulin-like growth factor (IGF), epidermal growth factor (EGF), ascorbic acid, and heparin was applied. After 14 days, poPSC differentiation into ECs was confirmed by immunofluorescence staining for vascular endothelial cadherin (VECad) and vascular endothelial growth factor receptor-2 (VEGFR-2). Semi-quantitative WB analysis of these proteins confirmed their high abundance. Additionally, qRT-PCR showed that mRNA expression of corresponding marker genes: CDH5, KDR was significantly higher compared with undifferentiated poPSCs. Finally, EC functional status was confirmed by the migration test that revealed that they were capable of positive chemotaxis, while tube formation assay demonstrated their ability to develop capillary networks. In conclusion, our results provided evidence that poPSCs may constitute the MSC population in the ovary and confirmed that they might be a potential source of ECs for tissue engineering.
Collapse
Affiliation(s)
- Kamil Wartalski
- Faculty of Medicine, Department of Histology, Jagiellonian University Medical College, Kopernika 7 Street, 31-034, Krakow, Poland
| | - Gabriela Gorczyca
- Faculty of Biology, Institute of Zoology and Biomedical Research, Department of Endocrinology, Jagiellonian University in Krakow, Gronostajowa 9 Street, 30-387, Krakow, Poland
| | - Jerzy Wiater
- Faculty of Medicine, Department of Histology, Jagiellonian University Medical College, Kopernika 7 Street, 31-034, Krakow, Poland
| | - Zbigniew Tabarowski
- Faculty of Biology, Institute of Zoology and Biomedical Research, Department of Experimental Hematology, Jagiellonian University in Krakow, Gronostajowa 9 Street, 30-387, Krakow, Poland
| | - Małgorzata Duda
- Faculty of Biology, Institute of Zoology and Biomedical Research, Department of Endocrinology, Jagiellonian University in Krakow, Gronostajowa 9 Street, 30-387, Krakow, Poland.
| |
Collapse
|
33
|
Eroglu B, Genova E, Zhang Q, Su Y, Shi X, Isales C, Eroglu A. Photobiomodulation has rejuvenating effects on aged bone marrow mesenchymal stem cells. Sci Rep 2021; 11:13067. [PMID: 34158600 PMCID: PMC8219765 DOI: 10.1038/s41598-021-92584-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/08/2021] [Indexed: 01/06/2023] Open
Abstract
The plasticity and proliferative capacity of stem cells decrease with aging, compromising their tissue regenerative potential and therapeutic applications. This decline is directly linked to mitochondrial dysfunction. Here, we present an effective strategy to reverse aging of mouse bone marrow mesenchymal stem cells (BM-MSCs) by restoring their mitochondrial functionality using photobiomodulation (PBM) therapy. Following the characterization of young and aged MSCs, our results show that a near-infrared PBM treatment delivering 3 J/cm2 is the most effective modality for improving mitochondrial functionality and aging markers. Furthermore, our results unveil that young and aged MSCs respond differently to the same modality of PBM: whereas the beneficial effect of a single PBM treatment dissipates within 7 h in aged stem cells, it is lasting in young ones. Nevertheless, by applying three consecutive treatments at 24-h intervals, we were able to obtain a lasting rejuvenating effect on aged MSCs. Our findings are of particular significance for improving autologous stem cell transplantation in older individuals who need such therapies most.
Collapse
Affiliation(s)
- Binnur Eroglu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA-2004, Augusta, GA, 30912, USA
| | - Evan Genova
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA-2004, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA-2004, Augusta, GA, 30912, USA
| | - Yun Su
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA-2004, Augusta, GA, 30912, USA
| | - Xingming Shi
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA-2004, Augusta, GA, 30912, USA
| | - Carlos Isales
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA-2004, Augusta, GA, 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Ali Eroglu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA-2004, Augusta, GA, 30912, USA.
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
34
|
Ahani-Nahayati M, Niazi V, Moradi A, Pourjabbar B, Roozafzoon R, Baradaran-Rafii A, Keshel SH. Cell-based therapy for ocular disorders: A promising frontier. Curr Stem Cell Res Ther 2021; 17:147-165. [PMID: 34161213 DOI: 10.2174/1574888x16666210622124555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/06/2021] [Accepted: 04/19/2021] [Indexed: 11/22/2022]
Abstract
As the ocular disorders causing long-term blindness or optical abnormalities of the ocular tissue affect the quality of life of patients to a large extent, awareness of their corresponding pathogenesis and the earlier detection and treatment need more consideration. Though current therapeutics result in desirable outcomes, they do not offer an inclusive solution for development of visual impairment to blindness. Accordingly, stem cells, because of their particular competencies, have gained extensive attention for application in regenerative medicine of ocular diseases. In the last decades, a wide spectrum of stem cells surrounding mesenchymal stem/stromal cells (MSC), neural stem cells (NSCs), and embryonic/induced pluripotent stem cells (ESCs/iPSCs) accompanied by Müller glia, ciliary epithelia-derived stem cells, and retinal pigment epithelial (RPE) stem cells have been widely investigated to report their safety and efficacy in preclinical models and also human subjects. In this regard, in the first interventions, RPE cell suspensions were successfully utilized to ameliorate visual defects of the patients suffering from age-related macular degeneration (AMD) after subretinal transplantation. Herein, we will explain the pathogenesis of ocular diseases and highlight the novel discoveries and recent findings in the context of stem cell-based therapies in these disorders, focusing on the in vivo reports published during the last decade.
Collapse
Affiliation(s)
- Milad Ahani-Nahayati
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Vahid Niazi
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Alireza Moradi
- Department of Physiology, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Bahareh Pourjabbar
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Reza Roozafzoon
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | | | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
35
|
Luque-Campos N, Bustamante-Barrientos FA, Pradenas C, García C, Araya MJ, Bohaud C, Contreras-López R, Elizondo-Vega R, Djouad F, Luz-Crawford P, Vega-Letter AM. The Macrophage Response Is Driven by Mesenchymal Stem Cell-Mediated Metabolic Reprogramming. Front Immunol 2021; 12:624746. [PMID: 34149687 PMCID: PMC8213396 DOI: 10.3389/fimmu.2021.624746] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 05/13/2021] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent adult stromal cells widely studied for their regenerative and immunomodulatory properties. They are capable of modulating macrophage plasticity depending on various microenvironmental signals. Current studies have shown that metabolic changes can also affect macrophage fate and function. Indeed, changes in the environment prompt phenotype change. Therefore, in this review, we will discuss how MSCs orchestrate macrophage’s metabolic plasticity and the impact on their function. An improved understanding of the crosstalk between macrophages and MSCs will improve our knowledge of MSC’s therapeutic potential in the context of inflammatory diseases, cancer, and tissue repair processes in which macrophages are pivotal.
Collapse
Affiliation(s)
- Noymar Luque-Campos
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.,Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile.,Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Felipe A Bustamante-Barrientos
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.,Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
| | - Carolina Pradenas
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.,Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile.,Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Cynthia García
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.,Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile.,Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - María Jesús Araya
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.,Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile.,Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | | | | | - Roberto Elizondo-Vega
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | | | - Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.,Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
| | - Ana María Vega-Letter
- Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile.,Cells for Cells, Regenero, Las Condes, Santiago, Chile.,Laboratory of Nano-Regenerative Medicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| |
Collapse
|
36
|
Zhang NN, Lu CY, Chen MJ, Xu XL, Shu GF, Du YZ, Ji JS. Recent advances in near-infrared II imaging technology for biological detection. J Nanobiotechnology 2021; 19:132. [PMID: 33971910 PMCID: PMC8112043 DOI: 10.1186/s12951-021-00870-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/24/2021] [Indexed: 12/24/2022] Open
Abstract
Molecular imaging technology enables us to observe the physiological or pathological processes in living tissue at the molecular level to accurately diagnose diseases at an early stage. Optical imaging can be employed to achieve the dynamic monitoring of tissue and pathological processes and has promising applications in biomedicine. The traditional first near-infrared (NIR-I) window (NIR-I, range from 700 to 900 nm) imaging technique has been available for more than two decades and has been extensively utilized in clinical diagnosis, treatment and scientific research. Compared with NIR-I, the second NIR window optical imaging (NIR-II, range from 1000 to 1700 nm) technology has low autofluorescence, a high signal-to-noise ratio, a high tissue penetration depth and a large Stokes shift. Recently, this technology has attracted significant attention and has also become a heavily researched topic in biomedicine. In this study, the optical characteristics of different fluorescence nanoprobes and the latest reports regarding the application of NIR-II nanoprobes in different biological tissues will be described. Furthermore, the existing problems and future application perspectives of NIR-II optical imaging probes will also be discussed.![]()
Collapse
Affiliation(s)
- Nan-Nan Zhang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Lishui Hospital, Zhejiang University School of Medicine, Lishui, 323000, Zhejiang, China
| | - Chen-Ying Lu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Lishui Hospital, Zhejiang University School of Medicine, Lishui, 323000, Zhejiang, China
| | - Min-Jiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Lishui Hospital, Zhejiang University School of Medicine, Lishui, 323000, Zhejiang, China
| | - Xiao-Ling Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Gao-Feng Shu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Lishui Hospital, Zhejiang University School of Medicine, Lishui, 323000, Zhejiang, China
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jian-Song Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Lishui Hospital, Zhejiang University School of Medicine, Lishui, 323000, Zhejiang, China.
| |
Collapse
|
37
|
Bandekar M, Maurya DK, Sharma D, Sandur SK. Preclinical Studies and Clinical Prospects of Wharton's Jelly-Derived MSC for Treatment of Acute Radiation Syndrome. CURRENT STEM CELL REPORTS 2021; 7:85-94. [PMID: 33936933 PMCID: PMC8080090 DOI: 10.1007/s40778-021-00188-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
Purpose of Review Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs) have received widespread attention from researchers owing to the remarkable benefits offered by these cells over other stem cells. The primitive nature of WJ-MSCs, ease of isolation, differentiation ability, and immuno-modulatory nature make these cells superior to bone marrow MSCs and ideal to treat various human ailments. This review explores ability of WJ-MSCs to mitigate acute radiation syndrome caused by planned or unplanned radiation exposure. Recent Findings Recent reports suggest that WJ-MSCs home to damaged tissues in irradiated host and mitigate radiation induced damage to radiosensitive tissues such as hematopoietic and gastrointestinal systems. WJ-MSCs and conditioned media were found to protect mice from radiation induced mortality and also prevent radiation dermatitis. Local irradiation-induced lung toxicity in mice was significantly reduced by CXCR4 over-expressing WJ-MSCs. Summary Emerging evidences support safety and effectiveness of WJ-MSCs for treatment of acute radiation syndrome and lung injury after planned or accidental exposure. Additionally, conditioned media collected after culturing WJ-MSCs can also be used for mitigation of radiation dermatitis. Clinical translation of these findings would be possible after careful evaluation of resilience, effectiveness, and molecular mechanism of action of xenogeneic WJ-MSCs in non-human primates.
Collapse
Affiliation(s)
- Mayuri Bandekar
- Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India.,University of Mumbai, Kalina, Mumbai, 400098 India
| | - Dharmendra K Maurya
- Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094 India
| | - Deepak Sharma
- Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094 India
| | - Santosh K Sandur
- Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094 India
| |
Collapse
|
38
|
Worku MG. Pluripotent and Multipotent Stem Cells and Current Therapeutic Applications: Review. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2021; 14:3-7. [PMID: 33880040 PMCID: PMC8052119 DOI: 10.2147/sccaa.s304887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/29/2021] [Indexed: 12/17/2022]
Abstract
There is numerous evidence for the presence of stem cells, which is important for the treatment of a wide variety of disease conditions. Stem cells have a great therapeutic effect on different degenerative diseases through the development of specialized cells. Embryonic stem (ES) cells are derived from preimplantation embryos, which have a natural karyotype. This cell has the capacity of proliferation indefinitely and undifferentiated. Stem cells are very crucial for the treatment of different chronic and degenerative diseases. For instance, stem cell clinical trials have been done for ischemic heart disease. Also, the olfactory cells for spinal cord lesions and human fetal pancreatic cells for diabetes mellitus are the other clinical importance of stem cell therapy. Extracellular matrix (ECM) and other environmental factors influence the fate and activity of stem cells.
Collapse
Affiliation(s)
- Misganaw Gebrie Worku
- Department of Human Anatomy, University of Gondar, College of Medicine and Health Science, School of Medicine, Gondar, Ethiopia
| |
Collapse
|
39
|
Parkins KM, Melo KP, Chen Y, Ronald JA, Foster PJ. Visualizing tumour self-homing with magnetic particle imaging. NANOSCALE 2021; 13:6016-6023. [PMID: 33683241 DOI: 10.1039/d0nr07983a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Due to their innate tumour homing capabilities, in recent years, circulating tumour cells (CTCs) have been engineered to express therapeutic genes for targeted treatment of primary and metastatic lesions. Additionally, previous studies have incorporated optical or PET imaging reporter genes to enable noninvasive monitoring of therapeutic CTCs in preclinical tumour models. An alternative method for tracking cells is to pre-label them with imaging probes prior to transplantation into the body. This is typically more sensitive to low numbers of cells since large amounts of probe can be concentrated in each cell. The objective of this work was to evaluate magnetic particle imaging (MPI) for the detection of iron-labeled experimental CTCs. CTCs were labeled with micro-sized iron oxide (MPIO) particles, administered via intra-cardiac injection in tumour bearing mice and were detected in the tumour region of the mammary fat pad. Iron content and tumour volumes were calculated. Ex vivo MPI of the tumours and immunohistochemistry were used to validate the imaging data. Here, we demonstrate for the first time the ability of MPI to sensitively detect systemically administered iron-labeled CTCs and to visualize tumour self-homing in a murine model of human breast cancer.
Collapse
Affiliation(s)
- Katie M Parkins
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada.
| | | | | | | | | |
Collapse
|
40
|
Wnt/β-catenin signaling mediates the abnormal osteogenic and adipogenic capabilities of bone marrow mesenchymal stem cells from chronic graft-versus-host disease patients. Cell Death Dis 2021; 12:308. [PMID: 33758171 PMCID: PMC7988169 DOI: 10.1038/s41419-021-03570-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 12/30/2022]
Abstract
Chronic graft-versus-host disease (cGVHD) is the main cause of non-relapse mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Mesenchymal stem cells (MSCs) in bone marrow (BM) remain unclear in the pathophysiology of cGVHD. In this study, we analyzed BM-MSCs from 66 patients after allo-HSCT, including 33 with active cGVHD and 33 without cGVHD. BM-MSCs showed similar morphology, frequency, phenotype, and proliferation in patients with or without cGVHD. MSCs from the active cGVHD group showed a decreased apoptosis rate (P < 0.01). Osteogenic capacity was increased while adipogenic capacity was decreased in the active cGVHD MSCs compared with no-cGVHD MSCs. The expressions of osteogenic gene RUNX2 and COL1A1 were higher (P < 0.001) while adipogenic gene PPAR-γ and FABP4 were lower (P < 0.001) in the active cGVHD MSCs than no-cGVHD MSCs. These changes were associated with the severity of cGVHD (P < 0.0001; r = 0.534, r = 0.476, r = -0.796, and r = -0.747, respectively in RUNX2, COL1A1, PPAR-γ, and FABP4). The expression of Wnt/β-catenin pathway ligand Wnt3a was increased in cGVHD-MSCs. The dysfunction of cGVHD-MSCs could be reversed by Dickkopf related protein 1(DKK1) to inhibit the binding of Wnt3a. In summary, the differentiation of BM-MSCs was abnormal in active cGVHD, and its underlying mechanism is the upregulated of Wnt3a through Wnt/β-catenin signaling pathway of MSCs.
Collapse
|
41
|
Khatkar H, See A. Stem Cell Therapy in the Management of Fracture Non-Union - Evaluating Cellular Mechanisms and Clinical Progress. Cureus 2021; 13:e13869. [PMID: 33859917 PMCID: PMC8038927 DOI: 10.7759/cureus.13869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bone, as a physiological and anatomical construct, displays remarkable intrinsic healing capacity. The overwhelming majority of fractures will heal satisfactorily, if aligned anatomically, compressed and immobilised appropriately. Of the 10% of fractures that do not heal, even under ideal mechanical and biological conditions, further consideration must be given to augment bone healing. Management strategies for non-union pose a significant clinical challenge to the practicing orthopaedic surgeon. Stem cell therapy is beginning to demonstrate significant potential for augmented bone repair in the context of non-union. This review attempts to contextualise the function of stem cells within this clinical setting, reviewing the relevant cellular mechanisms and clinical applications. From evaluating the literature base, there is a lack of high-quality evidence examining the role of mesenchymal stem cells (MSCs) within this research focus. Appropriately designed randomised controlled trials are required to evaluate this research area further, with a view to guiding future treatment options for the practicing orthopaedic surgeon.
Collapse
Affiliation(s)
- Harman Khatkar
- Trauma and Orthopaedics, Royal Berkshire Hospital, Reading, GBR.,Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, GBR
| | - Abbas See
- Trauma and Orthopaedics, Kettering General Hospital, Kettering, GBR
| |
Collapse
|
42
|
Capella-Monsonís H, Zeugolis DI. Decellularized xenografts in regenerative medicine: From processing to clinical application. Xenotransplantation 2021; 28:e12683. [PMID: 33709410 DOI: 10.1111/xen.12683] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/28/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
Decellularized xenografts are an inherent component of regenerative medicine. Their preserved structure, mechanical integrity and biofunctional composition have well established them in reparative medicine for a diverse range of clinical indications. Nonetheless, their performance is highly influenced by their source (ie species, age, tissue) and processing (ie decellularization, crosslinking, sterilization and preservation), which govern their final characteristics and determine their success or failure for a specific clinical target. In this review, we provide an overview of the different sources and processing methods used in decellularized xenografts fabrication and discuss their effect on the clinical performance of commercially available decellularized xenografts.
Collapse
Affiliation(s)
- Héctor Capella-Monsonís
- 1Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Dimitrios I Zeugolis
- 1Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland
| |
Collapse
|
43
|
Asgharzade S, Talaei A, Farkhondeh T, Forouzanfar F. A Review on Stem Cell Therapy for Neuropathic Pain. Curr Stem Cell Res Ther 2021; 15:349-361. [PMID: 32056531 DOI: 10.2174/1574888x15666200214112908] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/16/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022]
Abstract
Neuropathic pain is a complex, chronic pain state that is heterogeneous in nature and caused by the consequence of a lesion or disease affecting the somatosensory system. Current medications give a long-lasting pain relief only in a limited percentage of patients also associated with numerous side effects. Stem cell transplantation is one of the attractive therapeutic platforms for the treatment of a variety of diseases, such as neuropathic pain. Here, the authors review the therapeutic effects of stem cell transplantation of different origin and species in different models of neuropathic pain disorders. Stem cell transplantation could alleviate the neuropathic pain; indeed, stem cells are the source of cells, which differentiate into a variety of cell types and lead trophic factors to migrate to the lesion site opposing the effects of damage. In conclusion, this review suggests that stem cell therapy can be a novel approach for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Samira Asgharzade
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Andisheh Talaei
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
44
|
Li Y, Jiang QL, Van der Merwe L, Lou DH, Lin C. Preclinical efficacy of stem cell therapy for skin flap: a systematic review and meta-analysis. Stem Cell Res Ther 2021; 12:28. [PMID: 33413598 PMCID: PMC7791712 DOI: 10.1186/s13287-020-02103-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022] Open
Abstract
Background A skin flap is one of the most critical surgical techniques for the restoration of cutaneous defects. However, the distal necrosis of the skin flap severely restricts the clinical application of flap surgery. As there is no consensus on the treatment methods to prevent distal necrosis of skin flaps, more effective and feasible interventions to prevent skin flaps from necrosis are urgently needed. Stem therapy as a potential method to improve the survival rate of skin flaps is receiving increasing attention. Methods This review followed the recommendations from the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statements. Twenty studies with 500 animals were included by searching Web of Science, EMBASE, PubMed, and Cochrane Library databases, up until October 8, 2020. Moreover, the references of the included articles were searched manually to obtain other studies. All analyses were conducted using Review Manager V.5.3 software. Results Meta-analysis of all 20 studies demonstrated stem cell treatment has significant effects on reducing necrosis of skin flap compared with the control group (SMD: 3.20, 95% CI 2.47 to 3.93). Besides, subgroup analysis showed differences in the efficacy of stem cells in improving the survival rate of skin flaps in areas of skin flap, cell type, transplant types, and method of administration of stem cells. The meta-analysis also showed that stem cell treatment had a significant effect on increasing blood vessel density (SMD: 2.96, 95% CI 2.21 to 3.72) and increasing the expression of vascular endothelial growth factor (VEGF, SMD: 4.34, 95% CI 2.48 to 6.1). Conclusions The preclinical evidence of our systematic review indicate that stem cell-based therapy is effective for promoting early angiogenesis by up regulating VEGF and ultimately improving the survival rate of skin flap. In summary, small area skin flap, the administration method of intra-arterial injection, ASCs and MSCs, and xenogenic stem cells from humans showed more effective for the survival of animal skin flaps. In general, stem cell-based therapy may be a promising method to prevent skin flap necrosis.
Collapse
Affiliation(s)
- Yuan Li
- Department of Burn, The First Affiliated Hospital of Wenzhou Medical University, Nan Bai Xiang, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Qi-Lin Jiang
- Department of Burn, The First Affiliated Hospital of Wenzhou Medical University, Nan Bai Xiang, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Leanne Van der Merwe
- School of International Studies, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Dong-Hao Lou
- Department of Burn, The First Affiliated Hospital of Wenzhou Medical University, Nan Bai Xiang, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Cai Lin
- Department of Burn, The First Affiliated Hospital of Wenzhou Medical University, Nan Bai Xiang, Wenzhou, Zhejiang, 325000, People's Republic of China.
| |
Collapse
|
45
|
Sekiya T, Holley MC. Cell Transplantation to Restore Lost Auditory Nerve Function is a Realistic Clinical Opportunity. Cell Transplant 2021; 30:9636897211035076. [PMID: 34498511 PMCID: PMC8438274 DOI: 10.1177/09636897211035076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hearing is one of our most important means of communication. Disabling hearing loss (DHL) is a long-standing, unmet problem in medicine, and in many elderly people, it leads to social isolation, depression, and even dementia. Traditionally, major efforts to cure DHL have focused on hair cells (HCs). However, the auditory nerve is also important because it transmits electrical signals generated by HCs to the brainstem. Its function is critical for the success of cochlear implants as well as for future therapies for HC regeneration. Over the past two decades, cell transplantation has emerged as a promising therapeutic option for restoring lost auditory nerve function, and two independent studies on animal models show that cell transplantation can lead to functional recovery. In this article, we consider the approaches most likely to achieve success in the clinic. We conclude that the structure and biochemical integrity of the auditory nerve is critical and that it is important to preserve the remaining neural scaffold, and in particular the glial scar, for the functional integration of donor cells. To exploit the natural, autologous cell scaffold and to minimize the deleterious effects of surgery, donor cells can be placed relatively easily on the surface of the nerve endoscopically. In this context, the selection of donor cells is a critical issue. Nevertheless, there is now a very realistic possibility for clinical application of cell transplantation for several different types of hearing loss.
Collapse
Affiliation(s)
- Tetsuji Sekiya
- Department of Otolaryngology, Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Neurological Surgery, Hikone Chuo Hospital, Hikone, Japan
- Tetsuji Sekiya, Department of Otolaryngology, Head and Neck Surgery, Kyoto University Graduate School of Medicine, 606-8507 Kyoto, Japan,.
| | - Matthew C. Holley
- Department of Biomedical Science, University of Sheffield, Firth Court, Sheffield, England
| |
Collapse
|
46
|
Ramakrishna RR, Abd Hamid Z, Wan Zaki WMD, Huddin AB, Mathialagan R. Stem cell imaging through convolutional neural networks: current issues and future directions in artificial intelligence technology. PeerJ 2020; 8:e10346. [PMID: 33240655 PMCID: PMC7680049 DOI: 10.7717/peerj.10346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Stem cells are primitive and precursor cells with the potential to reproduce into diverse mature and functional cell types in the body throughout the developmental stages of life. Their remarkable potential has led to numerous medical discoveries and breakthroughs in science. As a result, stem cell-based therapy has emerged as a new subspecialty in medicine. One promising stem cell being investigated is the induced pluripotent stem cell (iPSC), which is obtained by genetically reprogramming mature cells to convert them into embryonic-like stem cells. These iPSCs are used to study the onset of disease, drug development, and medical therapies. However, functional studies on iPSCs involve the analysis of iPSC-derived colonies through manual identification, which is time-consuming, error-prone, and training-dependent. Thus, an automated instrument for the analysis of iPSC colonies is needed. Recently, artificial intelligence (AI) has emerged as a novel technology to tackle this challenge. In particular, deep learning, a subfield of AI, offers an automated platform for analyzing iPSC colonies and other colony-forming stem cells. Deep learning rectifies data features using a convolutional neural network (CNN), a type of multi-layered neural network that can play an innovative role in image recognition. CNNs are able to distinguish cells with high accuracy based on morphologic and textural changes. Therefore, CNNs have the potential to create a future field of deep learning tasks aimed at solving various challenges in stem cell studies. This review discusses the progress and future of CNNs in stem cell imaging for therapy and research.
Collapse
Affiliation(s)
- Ramanaesh Rao Ramakrishna
- Biomedical Science Programme and Centre for Diagnostic, Therapeutic and Investigative Science, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Zariyantey Abd Hamid
- Biomedical Science Programme and Centre for Diagnostic, Therapeutic and Investigative Science, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Wan Mimi Diyana Wan Zaki
- Department of Electrical, Electronic & Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Aqilah Baseri Huddin
- Department of Electrical, Electronic & Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Ramya Mathialagan
- Biomedical Science Programme and Centre for Diagnostic, Therapeutic and Investigative Science, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
47
|
Hameeda P, Katti S, Jammalamadugu R, Bhatt K, Peram MR, Kumbar V. Comparison of Effects of Curcumin and Nano-curcumin on the Survival of Human-Derived Mesenchymal Stem Cells: An Experimental Study. JOURNAL OF ADVANCED ORAL RESEARCH 2020. [DOI: 10.1177/2320206820949741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aim: To evaluate and compare the effect of curcumin (CUR) and Nano-curcumin (N-CUR) on human-derived mesenchymal stem cells (MSCs) in a dose-dependent manner. Materials and Methods: An experimental study performed with putative MSCs from a total of five systemically healthy subjects with chronic periodontitis. These putative MSCs were isolated by cell culture and were further characterized and identified by colony-forming unit assay and immunocytochemical analysis using cell surface markers CD105, CD146, CD45 and CD73. The identified MSCs were treated with different doses of CUR and N-CUR, and compared with α-minimum essential medium (α -MEM) for its cell viability by performing MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay for 48 and 72 hr. The statistically analysis was performed using one-way analysis of variance (ANOVA) followed by Tukey’s post hoc test and Bonferroni’s post hoc test. Results: Compared to the α-MEM group, both CUR and N-CUR treated cells have shown significantly ( P = .029) higher survival rate at lower concentration (0.1 and 0.5 µM/L), at 48 hr incubation. However, there was no statistically significant difference between the CUR and N-CUR groups on cell survival rate at both 48 and 72 hr incubation. When compared between the concentrations of the same group, significantly higher cell viability ( P = .001) was observed at lower concentrations (0.1, 0.5 µM/L) in both test groups after incubation for 48 and 72 hr. Conclusion: Both CUR and N-CUR have a dose-dependent effect on human derived MSCs survival when incubated for 48 hr, whereas N-CUR shows increased cell survival rate even at 72 hr of incubation. Although, the cautious use of CUR and N-CUR at higher concentrations is recommended.
Collapse
Affiliation(s)
- Pinjari Hameeda
- Department of Periodontology, Maratha Mandal Dental College, Belgaum, Karnataka, India
| | - Sandeep Katti
- Department of Periodontology, Maratha Mandal Dental College, Belgaum, Karnataka, India
| | | | - Kishore Bhatt
- Department of Microbiology, Maratha Mandal Dental College, Belgaum, Karnataka, India
| | - Malleswara Rao Peram
- Department of Pharmacology, Maratha Mandal College of Pharmacy, Belgaum, Karnataka, India
| | - Vijay Kumbar
- Central Research Laboratory, Maratha Mandal Dental College, Belgaum, Karnataka, India
| |
Collapse
|
48
|
Mandpe P, Prabhakar B, Shende P. Role of Liposomes-Based Stem Cell for Multimodal Cancer Therapy. Stem Cell Rev Rep 2020; 16:103-117. [PMID: 31786749 DOI: 10.1007/s12015-019-09933-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The utilization of stem cells as novel carriers to target tissues or organs of interest is a challenging task in delivery system. The composite cellular delivery with diverse signalling molecules as therapeutics increases stem cell capability and possesses the promising potential to augment, modify or commence localized or systemic restoration for vital applications in regenerative medicine. The inherent potential of stem cells to immigrate and reside at wounded site facilitates transportation of genes, polypeptides or nanosized molecules. Liposomes are micro- to nano-lipidic vesicles formed in aqueous solutions to encapsulate complex hydrophilic and lipophilic chemical substances. Moreover, these novel nanocarriers provide safer and efficient delivery of bioactives together with their potential applications in vaccine production, cosmeceuticals, imaging and diagnostic purpose. Tissue engineering promotes rejuvenation process and involves the synchronized utilization of cells with 3D bio-material scaffolds to fabricate living structures. This strategy requires regulated stimulus of cultured cells through combined mechanical signals and bioactive agents. This review highlights and summarizes the mechanism involved in stem cell migration, strategies to enhance homing, safety and efficacy studies of stem cells in various disease models and discusses the potential role of liposomes in prolonged and localized delivery of bioactives for regenerative medicines and tissue engineering techniques. Graphical Abstract Role of PEGylated liposomes in cancer stem cell therapy.
Collapse
Affiliation(s)
- Pankaj Mandpe
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta road, Vile Parle (W), Mumbai, India
| | - Bala Prabhakar
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta road, Vile Parle (W), Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta road, Vile Parle (W), Mumbai, India.
| |
Collapse
|
49
|
Sallam A, Mousa SA. Neurodegenerative Diseases and Cell Reprogramming. Mol Neurobiol 2020; 57:4767-4777. [PMID: 32785825 DOI: 10.1007/s12035-020-02039-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/24/2020] [Indexed: 10/23/2022]
Abstract
Neurodegenerative diseases have different types according to the onset of the disease, the time course, and the underlying pathology. Although the dogma that brain cells cannot regenerate has changed, the normal regenerative process of the brain is usually not sufficient to restore brain tissue defects after different pathological insults. Stem cell therapy and more recently cell reprogramming could achieve success in the process of brain renewal. This review article presents recent advances of stem cell therapies in neurodegenerative diseases and the role of cell reprogramming in the scope of optimizing a confined condition that could direct signaling pathways of the cell toward a specific neural lineage. Further, we will discuss different types of transcriptional factors and their role in neural cell fate direction.
Collapse
Affiliation(s)
- Abeer Sallam
- Department of Physiology, Faculty of Medicine, Alexandria University, Governorate, Alexandria, Egypt.,Center of Excellence for Research in Regenerative Medicine and its Applications (CERRMA) Faculty of Medicine, Alexandria University, Alexandria, Governorate, Egypt
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive, Rensselaer, NY, 12144, USA.
| |
Collapse
|
50
|
Dessie G, Derbew Molla M, Shibabaw T, Ayelign B. Role of Stem-Cell Transplantation in Leukemia Treatment. Stem Cells Cloning 2020; 13:67-77. [PMID: 32982314 PMCID: PMC7493021 DOI: 10.2147/sccaa.s262880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/25/2020] [Indexed: 12/12/2022] Open
Abstract
Stem cells (SCs) play a major role in advanced fields of regenerative medicine and other research areas. They are involved in the regeneration of damaged tissue or cells, due to their self-renewal characteristics. Tissue or cells can be damaged through a variety of diseases, including hematologic and nonhematologic malignancies. In regard to this, stem-cell transplantation is a cellular therapeutic approach to restore those impaired cells, tissue, or organs. SCs have a therapeutic potential in the application of stem-cell transplantation. Research has been focused mainly on the application of hematopoietic SCs for transplantation. Cord blood cells and human leukocyte antigen-haploidentical donors are considered optional sources of hematopoietic stem-cell transplantation. On the other hand, pluripotent embryonic SCs and induced pluripotent SCs hold promise for advancement of stem-cell transplantation. In addition, nonhematopoietic mesenchymal SCs play their own significant role as a functional bone-marrow niche and in the management of graft-vs-host disease effects during the posttransplantation process. In this review, the role of different types of SCs is presented with regard to their application in SC transplantation. In addition to this, the therapeutic value of autologous and allogeneic hematopoietic stem-cell transplantation is assessed with respect to different types of leukemia. Highly advanced and progressive scientific research has focused on the application of stem-cell transplantation on specific leukemia types. We evaluated and compared the therapeutic potential of SC transplantation with various forms of leukemia. This review aimed to focus on the application of SCs in the treatment of leukemia.
Collapse
Affiliation(s)
- Gashaw Dessie
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Meseret Derbew Molla
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Tewodros Shibabaw
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Birhanu Ayelign
- Department of Immunology and Molecular Biology, School of Biomedical and Laboratory, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|