1
|
Alsaleem M, Sindi S, Alhazmi S, Hassan S, Ganash M, Alburae N, Alkhayyat S, Linjawi A, Elaimi A, Alharthy SA, Algothmi K, Farsi R, Alrefaei G, Alsubhi N, Hamdi N, Alkhatabi H. Deciphering the prognostic impact of aberrant DNA methylation on ANGPT1 gene in breast cancer. Sci Rep 2025; 15:6611. [PMID: 39994266 PMCID: PMC11850880 DOI: 10.1038/s41598-025-90001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
Breast cancer (BC) is a multifaceted disease distinguished by a range of molecular subtypes and varying clinical prognoses. The involvement of DNA methylation in the dysregulation of gene expression has been linked to the development and progression of BC. Therefore, this study aimed to investigate the association between ANGPT1 gene expression and DNA methylation in BC patients. Eight Saudi female blood samples were used to undergo for whole genome bisulfite sequencing (WGBS) and RNA sequencing for the identification of novel DNA methylation targets. Several public domain BC datasets including the METABRIC cohort, TCGA, and Kaplan Meier Plotter datasets, were used to explore the prognostic significance of ANGPT1 gene. Then, the demethylation agent 5-aza-2'-deoxycytidine was used to examine the potential association between DNA methylation and ANGPT1 expression. Finally, the validation was conducted on blood samples from 49 Saudi females using methylight techniques. Our results shows that upregulation of ANGPT1 gene expression exhibited hypomethylation pattern in BC samples. these results were confirmed by MCF7 cell line experiments. Demethylating using 5-aza in MCF7 and MCF10A showed a high expression of ANGPT1 in both cell lines. ANGPT1 mRNA expression was found to poor prognostic biomarker and lower Breast Cancer-Specific Survival (BCSS) in BC patients. The potential importance of abnormal DNA methylation in the development and advancement of BC is significant. ANGPT1 may act as an oncogene and could be extensively studied further to behave as a predictive biomarker for breast cancer.
Collapse
Affiliation(s)
- Mansour Alsaleem
- Unit of Scientific Research, Applied College, Qassim University, Qassim, Saudi Arabia
| | - Samar Sindi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Safiah Alhazmi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
- Immunology Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia.
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Sabah Hassan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Najla bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Magdah Ganash
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Najla Alburae
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shadi Alkhayyat
- Department of Internal Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Aisha Elaimi
- Department of Medical Laboratory Science, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Institute of genomics Medicine Science (IGMS), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saif A Alharthy
- Department of Medical Laboratory Science, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Toxicology and Forensic Sciences Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khloud Algothmi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reem Farsi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghadeer Alrefaei
- Department of Biology, University of Jeddah, Jeddah, Saudi Arabia
| | - Nouf Alsubhi
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Norah Hamdi
- Department of Biology, King Khalid University, Abha, Saudi Arabia
| | - Heba Alkhatabi
- Department of Medical Laboratory Science, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Institute of genomics Medicine Science (IGMS), King Abdulaziz University, Jeddah, Saudi Arabia
- Hematology Research Unit (HRU), King Fahd Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Fonódi M, Nagy L, Boratkó A. Role of Protein Phosphatases in Tumor Angiogenesis: Assessing PP1, PP2A, PP2B and PTPs Activity. Int J Mol Sci 2024; 25:6868. [PMID: 38999976 PMCID: PMC11241275 DOI: 10.3390/ijms25136868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Tumor angiogenesis, the formation of new blood vessels to support tumor growth and metastasis, is a complex process regulated by a multitude of signaling pathways. Dysregulation of signaling pathways involving protein kinases has been extensively studied, but the role of protein phosphatases in angiogenesis within the tumor microenvironment remains less explored. However, among angiogenic pathways, protein phosphatases play critical roles in modulating signaling cascades. This review provides a comprehensive overview of the involvement of protein phosphatases in tumor angiogenesis, highlighting their diverse functions and mechanisms of action. Protein phosphatases are key regulators of cellular signaling pathways by catalyzing the dephosphorylation of proteins, thereby modulating their activity and function. This review aims to assess the activity of the protein tyrosine phosphatases and serine/threonine phosphatases. These phosphatases exert their effects on angiogenic signaling pathways through various mechanisms, including direct dephosphorylation of angiogenic receptors and downstream signaling molecules. Moreover, protein phosphatases also crosstalk with other signaling pathways involved in angiogenesis, further emphasizing their significance in regulating tumor vascularization, including endothelial cell survival, sprouting, and vessel maturation. In conclusion, this review underscores the pivotal role of protein phosphatases in tumor angiogenesis and accentuate their potential as therapeutic targets for anti-angiogenic therapy in cancer.
Collapse
Affiliation(s)
| | | | - Anita Boratkó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (M.F.); (L.N.)
| |
Collapse
|
3
|
Bani-Ahmad MA, Ghanem D. Prognostic value of circulatory growth factors to predict responsiveness to chemotherapy and remission status of patients with acute myeloid leukemia. Arch Med Sci 2024; 20:1887-1893. [PMID: 39967929 PMCID: PMC11831328 DOI: 10.5114/aoms/185617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/04/2024] [Indexed: 02/20/2025] Open
Abstract
Introduction Tumor neovascularization, an essential requirement for malignant disease progression and metastasis, depends on the dysregulation of pro-angiogenic and anti-angiogenic activities. This study aimed to investigate the utilization of circulatory angiopoietins (Ang-1 and Ang-2), vascular endothelial growth factor (VEGF-A and VEGF-C), and basic fibroblast growth factor (bFGF) as a prognostic tool for acute myeloid leukemia (AML). Material and methods Twenty-four AML patients who were under chemotherapeutic intervention were included. Patients' relapse status, responsiveness to chemotherapy, and remission status were obtained from their medical profiles. For comparative purposes, fifteen healthy subjects were included. Serum levels of growth factors were measured. Results As compared to control subjects, AML patients had significantly lower average levels of Ang-1 (170.8 ±12.7 versus 59.2 ±12.5 ng/ml) and VEGF-A (56.0 ±13.1 versus 98.6 ±11.9 ng/dl) that coincide with a higher average level of Ang-2 (18.5 ±4.1 ng/ml versus 7.5 ±0.8 ng/ml). Spearman's correlation analysis defined a significant association of sAng-1 and sAng-2 with patients' response to chemotherapy (ρ = 0.488) and remission status (ρ = 0.476), respectively. According to the receiver operating characteristic (ROC) curve, downregulation of Ang-1 has good predictivity for poor responsiveness to chemotherapy (AUC = 0.781, p < 0.05) while upregulation of sAng-2 has good predictivity for failed remission status (AUC = 0.779, p < 0.05). Conclusions In the context of AML, dysregulated circulatory levels of Ang-1 and Ang-2 are suggested prognostic markers to provide useful predictivity of patients' adverse responsiveness to chemotherapy and remission status, respectively.
Collapse
Affiliation(s)
- Mohammad Ahmad Bani-Ahmad
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Jordan
| | - Duaa Ghanem
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Jordan
| |
Collapse
|
4
|
Magar AG, Morya VK, Kwak MK, Oh JU, Noh KC. A Molecular Perspective on HIF-1α and Angiogenic Stimulator Networks and Their Role in Solid Tumors: An Update. Int J Mol Sci 2024; 25:3313. [PMID: 38542288 PMCID: PMC10970012 DOI: 10.3390/ijms25063313] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 01/02/2025] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is a major transcriptional factor, which plays an important role in cellular reprogramming processes under hypoxic conditions, which facilitate solid tumors' progression. HIF-1α is directly involved in the regulation of the angiogenesis, metabolic reprogramming, and extracellular matrix remodeling of the tumor microenvironment. Therefore, an in-depth study on the role of HIF-1α in solid tumor malignancies is required to develop novel anti-cancer therapeutics. HIF-1α also plays a critical role in regulating growth factors, such as the vascular endothelial growth factor, fibroblast growth factor, and platelet-derived growth factor, in a network manner. Additionally, it plays a significant role in tumor progression and chemotherapy resistance by regulating a variety of angiogenic factors, including angiopoietin 1 and angiopoietin 2, matrix metalloproteinase, and erythropoietin, along with energy pathways. Therefore, this review attempts to provide comprehensive insight into the role of HIF-1α in the energy and angiogenesis pathways of solid tumors.
Collapse
Affiliation(s)
- Anuja Gajanan Magar
- Hallym University Dongtan Sacred Heart Hospital, Dongtan 18450, Republic of Korea
- School of Medicine, Hallym University, Chuncheon-si 24252, Republic of Korea
| | - Vivek Kumar Morya
- Hallym University Dongtan Sacred Heart Hospital, Dongtan 18450, Republic of Korea
| | - Mi Kyung Kwak
- Hallym University Dongtan Sacred Heart Hospital, Dongtan 18450, Republic of Korea
| | - Ji Ung Oh
- Hallym University Dongtan Sacred Heart Hospital, Dongtan 18450, Republic of Korea
| | - Kyu Cheol Noh
- Hallym University Dongtan Sacred Heart Hospital, Dongtan 18450, Republic of Korea
| |
Collapse
|
5
|
Thapa K, Khan H, Kaur G, Kumar P, Singh TG. Therapeutic targeting of angiopoietins in tumor angiogenesis and cancer development. Biochem Biophys Res Commun 2023; 687:149130. [PMID: 37944468 DOI: 10.1016/j.bbrc.2023.149130] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023]
Abstract
The formation and progression of tumors in humans are linked to the abnormal development of new blood vessels known as neo-angiogenesis. Angiogenesis is a broad word that encompasses endothelial cell migration, proliferation, tube formation, and intussusception, as well as peri-EC recruitment and extracellular matrix formation. Tumor angiogenesis is regulated by angiogenic factors, out of which some of the most potent angiogenic factors such as vascular endothelial growth factor and Angiopoietins (ANGs) in the body are produced by macrophages and other immune cells within the tumor microenvironment. ANGs have a distinct function in tumor angiogenesis and behavior. ANG1, ANG 2, ANG 3, and ANG 4 are the family members of ANG out of which ANG2 has been extensively investigated owing to its unique role in modifying angiogenesis and its tight association with tumor progression, growth, and invasion/metastasis, which makes it an excellent candidate for therapeutic intervention in human malignancies. ANG modulators have demonstrated encouraging outcomes in the treatment of tumor development, either alone or in conjunction with VEGF inhibitors. Future development of more ANG modulators targeting other ANGs is needed. The implication of ANG1, ANG3, and ANG4 as probable therapeutic targets for anti-angiogenesis treatment in tumor development should be also evaluated. The article has described the role of ANG in tumor angiogenesis as well as tumor growth and the treatment strategies modulating ANGs in tumor angiogenesis as demonstrated in clinical studies. The pharmacological modulation of ANGs and ANG-regulated pathways that are responsible for tumor angiogenesis and cancer development should be evaluated for the development of future molecular therapies.
Collapse
Affiliation(s)
- Komal Thapa
- Chitkara School of Pharmacy, Chitkara University, 174103, Himachal Pradesh, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Gagandeep Kaur
- Chitkara School of Pharmacy, Chitkara University, 174103, Himachal Pradesh, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, 151401, Bathinda, India
| | | |
Collapse
|
6
|
Qian C, Liu C, Liu W, Zhou R, Zhao L. Targeting vascular normalization: a promising strategy to improve immune-vascular crosstalk in cancer immunotherapy. Front Immunol 2023; 14:1291530. [PMID: 38193080 PMCID: PMC10773740 DOI: 10.3389/fimmu.2023.1291530] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024] Open
Abstract
Blood vessels are a key target for cancer therapy. Compared with the healthy vasculature, tumor blood vessels are extremely immature, highly permeable, and deficient in pericytes. The aberrantly vascularized tumor microenvironment is characterized by hypoxia, low pH, high interstitial pressure, and immunosuppression. The efficacy of chemotherapy, radiotherapy, and immunotherapy is affected by abnormal blood vessels. Some anti-angiogenic drugs show vascular normalization effects in addition to targeting angiogenesis. Reversing the abnormal state of blood vessels creates a normal microenvironment, essential for various cancer treatments, specifically immunotherapy. In addition, immune cells and molecules are involved in the regulation of angiogenesis. Therefore, combining vascular normalization with immunotherapy may increase the efficacy of immunotherapy and reduce the risk of adverse reactions. In this review, we discussed the structure, function, and formation of abnormal vessels. In addition, we elaborated on the role of the immunosuppressive microenvironment in the formation of abnormal vessels. Finally, we described the clinical challenges associated with the combination of immunotherapy with vascular normalization, and highlighted future research directions in this therapeutic area.
Collapse
Affiliation(s)
- Cheng Qian
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Chaoqun Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Weiwei Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Rui Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Liang Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Bhardwaj V, Zhang X, Pandey V, Garg M. Neo-vascularization-based therapeutic perspectives in advanced ovarian cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188888. [PMID: 37001618 DOI: 10.1016/j.bbcan.2023.188888] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023]
Abstract
The process of angiogenesis is well described for its potential role in the development of normal ovaries, and physiological functions as well as in the initiation, progression, and metastasis of ovarian cancer (OC). In advanced stages of OC, cancer cells spread outside the ovary to the pelvic, abdomen, lung, or multiple secondary sites. This seriously limits the efficacy of therapeutic options contributing to fatal clinical outcomes. Notably, a variety of angiogenic effectors are produced by the tumor cells to initiate angiogenic processes leading to the development of new blood vessels, which provide essential resources for tumor survival, dissemination, and dormant micro-metastasis of tumor cells. Multiple proangiogenic effectors and their signaling axis have been discovered and functionally characterized for potential clinical utility in OC. In this review, we have provided the current updates on classical and emerging proangiogenic effectors, their signaling axis, and the immune microenvironment contributing to the pathogenesis of OC. Moreover, we have comprehensively reviewed and discussed the significance of the preclinical strategies, drug repurposing, and clinical trials targeting the angiogenic processes that hold promising perspectives for the better management of patients with OC.
Collapse
Affiliation(s)
- Vipul Bhardwaj
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Institute of Biopharmaceutical and Bioengineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Xi Zhang
- Shenzhen Bay Laboratory, Shenzhen 518055, PR China
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Institute of Biopharmaceutical and Bioengineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Sector-125, Noida 201301, India.
| |
Collapse
|
8
|
Zhang J, Li W, Wang W, Chen Q, Xu Z, Deng M, Zhou L, He G. Dual roles of FAK in tumor angiogenesis: A review focused on pericyte FAK. Eur J Pharmacol 2023; 947:175694. [PMID: 36967077 DOI: 10.1016/j.ejphar.2023.175694] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
Focal adhesion kinase (FAK), also known as protein tyrosine kinase 2 (PTK2), is a ubiquitously expressed non-receptor tyrosine kinase, that plays a pivotal role in integrin-mediated signal transduction. Endothelial FAK is upregulated in many types of cancer and promotes tumorigenesis and tumor progression. However, recent studies have shown that pericyte FAK has the opposite effect. This review article dissects the mechanisms, by which endothelial cells (ECs) and pericyte FAK regulate angiogenesis, with an emphasis on the Gas6/Axl pathway. In particular, this article discusses the role of pericyte FAK loss on angiogenesis during tumorigenesis and metastasis. In addition, the existing challenges and future application of drug-based anti-FAK targeted therapies will be discussed to provide a theoretical basis for further development and use of FAK inhibitors.
Collapse
|
9
|
Ezhilarasan D, Najimi M. Deciphering the possible reciprocal loop between hepatic stellate cells and cancer cells in the tumor microenvironment of the liver. Crit Rev Oncol Hematol 2023; 182:103902. [PMID: 36621514 DOI: 10.1016/j.critrevonc.2022.103902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/07/2023] Open
Abstract
Activated hepatic stellate cells (HSCs)/myofibroblasts are the important sources of cancer-associated fibroblasts in the liver tumor microenvironment (TME). The crosstalk between activated HSCs and tumor cells mediates HCC progression, metastasis, tumor cell survival, angiogenesis and chemoresistance. In TME, HCC cells secrete various soluble factors responsible for the phenotypic activation of quiescent HSCs. Tumor cells use activated HSC-derived extracellular matrix (ECM) for migration and invasion. Further, in liver TME, activated HSCs and sinusoidal endothelial cells engage in a crosstalk that causes the secretion of angiogenesis and metastasis-related growth factors and cytokines. Activated HSCs and immune cells crosstalk to decrease immune surveillance in the liver TME by increasing the population of T regulatory cells and M2 macrophages or myeloid-derived suppressor cells. Thus, HSCs play a vital role in liver TME cell interactions. Therefore, a deep understanding of HSCs activation and their crosstalk with cancer and immune cells in TME may lead to the development of novel therapeutic strategies to target HCC.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India.
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels 1200, Belgium
| |
Collapse
|
10
|
Lee YC, Lam HM, Rosser C, Theodorescu D, Parks WC, Chan KS. The dynamic roles of the bladder tumour microenvironment. Nat Rev Urol 2022; 19:515-533. [PMID: 35764795 PMCID: PMC10112172 DOI: 10.1038/s41585-022-00608-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2022] [Indexed: 02/07/2023]
Abstract
Bladder cancer is a prevalent but currently understudied cancer type and patient outcomes are poor when it progresses to the muscle-invasive stage. Current research in bladder cancer focuses on the genetic and epigenetic alterations occurring within the urothelial cell compartment; however, the stromal compartment receives less attention. Dynamic changes and intercellular communications occur in the tumour microenvironment (TME) of the bladder - a new concept and niche that we designate as the bladder TME (bTME) - during tumour evolution, metastatic progression and in the context of therapeutic response. Collagens and their cognate receptors, the discoidin domain receptors, have a role in various steps of the metastatic cascade and in immune checkpoint resistance. Furthermore, the presence of another TME niche, the metastatic TME (met-TME), is a novel concept that could support divergent progression of metastatic colonization in different organs, resulting in distant metastases with distinct characteristics and genetics from the primary tumour. The stroma has divergent roles in mediating therapeutic response to BCG immunotherapy and immune checkpoint inhibitors, as well as conventional chemotherapy or trimodality therapy (that is, maximal transurethral resection of bladder tumour, chemotherapy and radiotherapy). The local bTME and distant met-TME are currently conceptually and therapeutically unexploited niches that should be actively investigated. New biological insights from these TMEs will enable rational design of strategies that co-target the tumour and stroma, which are expected to improve the outcomes of patients with advanced bladder cancer.
Collapse
Affiliation(s)
- Yu-Cheng Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hung-Ming Lam
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Charles Rosser
- Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dan Theodorescu
- Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - William C Parks
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Keith Syson Chan
- Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Academic Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Chang YH, Vuong CK, Ngo NH, Yamashita T, Ye X, Futamura Y, Fukushige M, Obata-Yasuoka M, Hamada H, Osaka M, Hiramatsu Y, Sakurai T, Ohneda O. Extracellular vesicles derived from Wharton's Jelly mesenchymal stem cells inhibit the tumor environment via the miR-125b/HIF1α signaling pathway. Sci Rep 2022; 12:13550. [PMID: 35941273 PMCID: PMC9359975 DOI: 10.1038/s41598-022-17767-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/30/2022] [Indexed: 11/24/2022] Open
Abstract
Triple negative breast cancer (TNBC) is associated with worse outcomes and results in high mortality; therefore, great efforts are required to find effective treatment. In the present study, we suggested a novel strategy to treat TNBC using mesenchymal stem cell (MSC)-derived extracellular vesicles (EV) to transform the behaviors and cellular communication of TNBC cells (BCC) with other non-cancer cells related to tumorigenesis and metastasis. Our data showed that, BCC after being internalized with EV derived from Wharton’s Jelly MSC (WJ-EV) showed the impaired proliferation, stemness properties, tumorigenesis and metastasis under hypoxic conditions. Moreover, these inhibitory effects may be involved in the transfer of miRNA-125b from WJ-EV to BCC, which downregulated the expression of HIF1α and target genes related to proliferation, epithelial-mesenchymal transition, and angiogenesis. Of note, WJ-EV-internalized BCC (wBCC) showed transformed behaviors that attenuated the in vivo development and metastatic ability of TNBC, the angiogenic abilities of endothelial cells and endothelial progenitor cells and the generation of cancer-associated fibroblasts from MSC. Furthermore, wBCC generated a new EV with modified functions that contributed to the inhibitory effects on tumorigenesis and metastasis of TNBC. Taken together, our findings suggested that WJ-EV treatment is a promising therapy that results in the generation of wBCC to interrupt the cellular crosstalk in the tumor environment and inhibit the tumor progression in TNBC.
Collapse
Affiliation(s)
- Yun-Hsuan Chang
- Ph.D. Program in Humanics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.,Graduate School of Comprehensive Human Science, Laboratory of Regenerative Medicine and Stem Cell Biology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Cat-Khanh Vuong
- Graduate School of Comprehensive Human Science, Laboratory of Regenerative Medicine and Stem Cell Biology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Nhat-Hoang Ngo
- Graduate School of Comprehensive Human Science, Laboratory of Regenerative Medicine and Stem Cell Biology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Toshiharu Yamashita
- Graduate School of Comprehensive Human Science, Laboratory of Regenerative Medicine and Stem Cell Biology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Xiucai Ye
- Department of Computer Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yasunori Futamura
- Department of Computer Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Mizuho Fukushige
- Graduate School of Comprehensive Human Science, Laboratory of Regenerative Medicine and Stem Cell Biology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Mana Obata-Yasuoka
- Department of Obstetrics and Gynecology, University of Tsukuba, Tsukuba, Japan
| | - Hiromi Hamada
- Department of Obstetrics and Gynecology, University of Tsukuba, Tsukuba, Japan
| | - Motoo Osaka
- Department of Cardiovascular Surgery, University of Tsukuba, Tsukuba, Japan
| | - Yuji Hiramatsu
- Department of Cardiovascular Surgery, University of Tsukuba, Tsukuba, Japan
| | - Tetsuya Sakurai
- Ph.D. Program in Humanics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.,Department of Computer Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Osamu Ohneda
- Ph.D. Program in Humanics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan. .,Graduate School of Comprehensive Human Science, Laboratory of Regenerative Medicine and Stem Cell Biology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
12
|
Lu M, Fan X, Liao W, Li Y, Ma L, Yuan M, Gu R, Wei Z, Wang C, Zhang H. Identification of significant genes as prognostic markers and potential tumor suppressors in lung adenocarcinoma via bioinformatical analysis. BMC Cancer 2021; 21:616. [PMID: 34039311 PMCID: PMC8157630 DOI: 10.1186/s12885-021-08308-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 05/05/2021] [Indexed: 01/15/2023] Open
Abstract
Background Lung adenocarcinoma (LAC) is the predominant histologic subtype of lung cancer and has a complicated pathogenesis with high mortality. The purpose of this study was to identify differentially expressed genes (DEGs) with prognostic value and determine their underlying mechanisms. Methods Gene expression data of GSE27262 and GSE118370 were acquired from the Gene Expression Omnibus database, enrolling 31 LAC and 31 normal tissues. Common DEGs between LAC and normal tissues were identified using the GEO2R tool and Venn diagram software. Next, the Database for Annotation, Visualization, and Integrated Discovery (DAVID) was used to analyze the Gene Ontology and Kyoto Encyclopedia of Gene and Genome (KEGG) pathways. Then, protein-protein interaction (PPI) network of DEGs was visualized by Cytoscape with Search Tool for the Retrieval of Interacting Genes and central genes were identified via Molecular Complex Detection. Furthermore, the expression and prognostic information of central genes were validated via Gene Expression Profiling Interactive Analysis (GEPIA) and Kaplan-Meier analysis, respectively. Finally, DAVID, real-time PCR and immunohistochemistry were applied to re-analyze the identified genes, which were also further validated in two additional datasets from ArrayExpress database. Results First, 189 common DEGs were identified among the two datasets, including 162 downregulated and 27 upregulated genes. Next, Gene Ontology and KEGG pathway analysis of the DEGs were conducted through DAVID. Then, PPI network of DEGs was constructed and 17 downregulated central genes were identified. Furthermore, the 17 downregulated central genes were validated via GEPIA and datasets from ArrayExpress, and 12 of them showed a significantly better prognosis. Finally, six genes were identified significantly enriched in neuroactive ligand-receptor interactions (EDNRB, RXFP1, P2RY1, CALCRL) and Rap1 signaling pathway (TEK, P2RY1, ANGPT1) via DAVID, which were further validated to be weakly expressed in LAC tissues via RNA quantification and immunohistochemistry analysis. Conclusions The low expression pattern and relation to prognosis indicated that the six genes were potential tumor suppressor genes in LAC. In conclusion, we identified six significantly downregulated DEGs as prognostic markers and potential tumor suppressor genes in LAC based on integrated bioinformatics methods, which could act as potential molecular markers and therapeutic targets for LAC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08308-3.
Collapse
Affiliation(s)
- Mingze Lu
- Department of Human Resources, General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Xiaowen Fan
- Department of Thoracic Surgery, General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Weilin Liao
- Department of Thoracic Surgery, General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Yijiao Li
- Department of Anesthesiology, The People's Hospital of Leshan, Leshan, 614000, China
| | - Lijie Ma
- Department of Pulmonary and Critical Care Medicine, General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Mu Yuan
- Department of Scientific Research & Training, General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Rui Gu
- Basic Medical Laboratory, General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Zhengdao Wei
- Department of Outpatient, General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Chao Wang
- Department of Pathology, General Hospital of Western Theater Command, NO.270 Tianhui Road, Rongdu Avenue, Jinniu District, Chengdu, 610083, China.
| | - Hua Zhang
- Department of Pathology, General Hospital of Western Theater Command, NO.270 Tianhui Road, Rongdu Avenue, Jinniu District, Chengdu, 610083, China. .,State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
13
|
Anti-Angiogenic Therapy: Current Challenges and Future Perspectives. Int J Mol Sci 2021; 22:ijms22073765. [PMID: 33916438 PMCID: PMC8038573 DOI: 10.3390/ijms22073765] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023] Open
Abstract
Anti-angiogenic therapy is an old method to fight cancer that aims to abolish the nutrient and oxygen supply to the tumor cells through the decrease of the vascular network and the avoidance of new blood vessels formation. Most of the anti-angiogenic agents approved for cancer treatment rely on targeting vascular endothelial growth factor (VEGF) actions, as VEGF signaling is considered the main angiogenesis promotor. In addition to the control of angiogenesis, these drugs can potentiate immune therapy as VEGF also exhibits immunosuppressive functions. Despite the mechanistic rational that strongly supports the benefit of drugs to stop cancer progression, they revealed to be insufficient in most cases. We hypothesize that the rehabilitation of old drugs that interfere with mechanisms of angiogenesis related to tumor microenvironment might represent a promising strategy. In this review, we deepened research on the molecular mechanisms underlying anti-angiogenic strategies and their failure and went further into the alternative mechanisms that impact angiogenesis. We concluded that the combinatory targeting of alternative effectors of angiogenic pathways might be a putative solution for anti-angiogenic therapies.
Collapse
|
14
|
Parmar D, Apte M. Angiopoietin inhibitors: A review on targeting tumor angiogenesis. Eur J Pharmacol 2021; 899:174021. [PMID: 33741382 DOI: 10.1016/j.ejphar.2021.174021] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 02/08/2023]
Abstract
Angiogenesis is the process of formation of new blood vessels from existing ones. Vessels serve the purpose of providing oxygen, nutrients and removal of waste from the cells. The physiological angiogenesis is a normal process and is required in the embryonic development, wound healing, menstrual cycle. For homeostasis, balance of pro angiogenic factors and anti angiogenic factors like is important. Their imbalance causes a process known as "angiogenic switch" which leads to various pathological conditions like inflammation, tumor and restenosis. Like normal cells, tumor cells also require oxygen and nutrients to grow which is provided by tumor angiogenesis. Hence angiogenic process can be inhibited to prevent tumor growth. This gives rise to study of anti angiogenic drugs. Currently approved anti angiogenic drugs are mostly VEGF inhibitors, but VEGF inhibitors have certain limitations like toxicity, low progression free survival (PFS), and resistance to anti VEGF therapy. This article focuses on angiopoietins as alternative and potential targets for anti angiogenic therapy. Angiopoietins are ligands of Tie receptor and play a crucial role in angiogenesis, their inhibition can prevent many tumor growths even on later stages of development. We present current clinical and preclinical stages of angiopoietin inhibitors. Drugs studied in the article are selective as well as non-selective inhibitors of angiopoietin 2 like Trebananib (AMG 386), AMG 780, REGN 910, CVX 060, MEDI 3617 and dual inhibitors of angiopoietin 2 and VEGF like Vanucizumab and RG7716. The angiopoietin inhibitors show promising results alone and in combination with VEGF inhibitors in various malignancies.
Collapse
Affiliation(s)
- Digna Parmar
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle, Maharashtra, India.
| | - Madhavi Apte
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle, Maharashtra, India.
| |
Collapse
|
15
|
Sheth V, Wang L, Bhattacharya R, Mukherjee P, Wilhelm S. Strategies for Delivering Nanoparticles across Tumor Blood Vessels. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2007363. [PMID: 37197212 PMCID: PMC10187772 DOI: 10.1002/adfm.202007363] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Indexed: 05/19/2023]
Abstract
Nanoparticle transport across tumor blood vessels is a key step in nanoparticle delivery to solid tumors. However, the specific pathways and mechanisms of this nanoparticle delivery process are not fully understood. Here, the biological and physical characteristics of the tumor vasculature and the tumor microenvironment are explored and how these features affect nanoparticle transport across tumor blood vessels is discussed. The biological and physical methods to deliver nanoparticles into tumors are reviewed and paracellular and transcellular nanoparticle transport pathways are explored. Understanding the underlying pathways and mechanisms of nanoparticle tumor delivery will inform the engineering of safer and more effective nanomedicines for clinical translation.
Collapse
Affiliation(s)
- Vinit Sheth
- Stephenson School of Biomedical Engineering, University of Oklahoma, 173 Felgar St, Norman, OK 73019, USA
| | - Lin Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, 173 Felgar St, Norman, OK 73019, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, 800 NE 10th St, Oklahoma City, OK 73104, USA
| | - Priyabrata Mukherjee
- Department of Pathology, Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, 800 NE 10th St, Oklahoma City, OK 73104, USA
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, 173 Felgar St, Norman, OK 73019, USA
| |
Collapse
|
16
|
Chen J, Chen S, Zhang B, Liu J. SIRT3 as a potential therapeutic target for heart failure. Pharmacol Res 2021; 165:105432. [PMID: 33508434 DOI: 10.1016/j.phrs.2021.105432] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/12/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022]
Abstract
Heart failure causes significant morbidity and mortality worldwide. The underlying mechanisms and pathological changes associated with heart failure are exceptionally complex. Despite recent advances in heart failure research, treatment outcomes remain poor. The sirtuin family member sirtuin-3 (SIRT3) is involved in several key biological processes, including ATP production, catabolism, and reactive oxygen species detoxification. In addition to its role in metabolism, SIRT3 regulates cell death and survival and has been implicated in the pathogenesis of cardiovascular diseases. Emerging evidence also shows that SIRT3 can protect cardiomyocytes from hypertrophy, ischemia-reperfusion injury, cardiac fibrosis, and impaired angiogenesis. In this review article, we summarize the recent advances in SIRT3 research and discuss the role of SIRT3 in heart failure. We also discuss the potential use of SIRT3 as a therapeutic target in heart failure.
Collapse
Affiliation(s)
- Jie Chen
- Cardiovascular Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, 430071, People's Republic of China
| | - Shiqi Chen
- Cardiovascular Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, 430071, People's Republic of China
| | - Bingxia Zhang
- Cardiovascular Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, 430071, People's Republic of China
| | - Junwei Liu
- Cardiovascular Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, 430071, People's Republic of China.
| |
Collapse
|
17
|
Mazzeo A, Gai C, Trento M, Porta M, Beltramo E. Effects of thiamine and fenofibrate on high glucose and hypoxia-induced damage in cell models of the inner blood-retinal barrier. Acta Diabetol 2020; 57:1423-1433. [PMID: 32656709 DOI: 10.1007/s00592-020-01565-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022]
Abstract
AIMS Although diabetic retinopathy has long been considered a microvascular complication, retinal neurodegeneration and inflammation may precede its clinical manifestations. Despite all research efforts, the primary treatment options remain laser photocoagulation and anti-vascular endothelial growth factor (VEGF) intravitreal injections, both aggressive and targeting the late stages of the disease. Medical treatments addressing the early phases of diabetic retinopathy are therefore needed. We aimed at verifying if thiamine and fenofibrate protect the cells of the inner blood-retinal barrier from the metabolic stress induced by diabetic-like conditions. METHODS Human microvascular endothelial cells (HMECs), retinal pericytes (HRPs) and Müller cells (MIO-M1) were cultured in intermittent high glucose (intHG) and/or hypoxia, with addition of fenofibrate or thiamine. Modulation of adhesion molecules and angiogenic factors was addressed. RESULTS Integrins β1/αVβ3 and ICAM1 were upregulated in HMECs/HRPs cultured in diabetic-like conditions, as well as metalloproteases MMP2/9 in HRP, with a reduction in their inhibitor TIMP1; MMP2 increased also in HMEC, and TIMP1 decreased in MIO-M1. VEGF and HIF-1α were strongly increased in HMEC in intHG + hypoxia, and VEGF also in HRP. Ang-1/2 augmented in HMEC/MIO-M1, and MCP-1 in HRP/MIO-M1 in intHG + hypoxia. Thiamine was able to normalize all such abnormal modulations, while fenofibrate had effects in few cases only. CONCLUSIONS We suggest that endothelial cells and pericytes are more affected than Müller cells by diabetic-like conditions. Fenofibrate shows a controversial behavior, potentially positive on Müller cells and pericytes, but possibly detrimental to endothelium, while thiamine confirms once more to be an effective agent in reducing diabetes-induced retinal damage.
Collapse
Affiliation(s)
- Aurora Mazzeo
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Chiara Gai
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Marina Trento
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Massimo Porta
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Elena Beltramo
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy.
| |
Collapse
|
18
|
Ali AS, Perren A, Lindskog C, Welin S, Sorbye H, Grönberg M, Janson ET. Candidate protein biomarkers in pancreatic neuroendocrine neoplasms grade 3. Sci Rep 2020; 10:10639. [PMID: 32606315 PMCID: PMC7327066 DOI: 10.1038/s41598-020-67670-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/08/2020] [Indexed: 12/28/2022] Open
Abstract
Pancreatic neuroendocrine neoplasms (PanNENs) are rare tumours that compose 1–2% of all pancreatic tumours.
Patients with metastatic grade 3 neoplasia are usually treated with chemotherapy but have a poor progression-free and overall survival. According to the WHO 2017 classification, they are divided into neuroendocrine tumours (NETs) G3 and neuroendocrine carcinomas (NECs). Despite the new classification, new diagnostic and prognostic biomarkers are needed to sub-categorise the patients and to help guide therapy decisions. Blood from 42 patients and 42 healthy controls were screened for the presence of 92 proteins with the Immuno-Oncology panel using the Proximity Extension Assay provided by Olink Biosciences. Immunohistochemical staining of FAS ligand (FASLG) was performed on 16 patient tumour specimens using a commercial antibody. Fifty-four out of 87 evaluable proteins differed significantly in concentration between blood from patients and blood from healthy controls. FASLG was the only protein for which the concentration in blood was significantly lower in patients compared to controls and the levels correlated negatively to Ki-67 index. Seven of 14 evaluable PanNEN G3 specimens showed FASLG immunoreactivity in the tumour cells while there was scattered immunoreactivity in immune cells. Positive FASLG immunoreactivity correlated to well-differentiated morphology.
FASLG concentration in blood was significantly lower in patients with pancreatic NENs G3 compared to controls, and the expression in tumour tissue was variable. Furthermore, FASLG was negatively correlated to Ki-67 and was more frequently expressed in well-differentiated tumours. Taken together, these results may suggest a role of FASLG in PanNENs.
Collapse
Affiliation(s)
- Abir Salwa Ali
- Department of Medical Sciences, Section of Endocrine Oncology, Uppsala University, Rudbecklaboratoriet, hus R3, vån 2, Dag Hammarskjölds väg 20, 752 85, Uppsala, Sweden
| | - Aurel Perren
- Department of Pathology, University of Bern, Bern, Switzerland
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Staffan Welin
- Department of Medical Sciences, Section of Endocrine Oncology, Uppsala University, Rudbecklaboratoriet, hus R3, vån 2, Dag Hammarskjölds väg 20, 752 85, Uppsala, Sweden
| | - Halfdan Sorbye
- Department of Oncology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Malin Grönberg
- Department of Medical Sciences, Section of Endocrine Oncology, Uppsala University, Rudbecklaboratoriet, hus R3, vån 2, Dag Hammarskjölds väg 20, 752 85, Uppsala, Sweden.
| | - Eva Tiensuu Janson
- Department of Medical Sciences, Section of Endocrine Oncology, Uppsala University, Rudbecklaboratoriet, hus R3, vån 2, Dag Hammarskjölds väg 20, 752 85, Uppsala, Sweden
| |
Collapse
|
19
|
Vimalraj S, Saravanan S, Raghunandhakumar S, Anuradha D. Melatonin regulates tumor angiogenesis via miR-424-5p/VEGFA signaling pathway in osteosarcoma. Life Sci 2020; 256:118011. [PMID: 32592723 DOI: 10.1016/j.lfs.2020.118011] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/17/2020] [Accepted: 06/22/2020] [Indexed: 01/03/2023]
Abstract
Melatonin is recognized as an anti-angiogenic agent, but its function in the tumor microenvironment especially in osteosarcoma remains uncertain. Among the selected miRNAs, miR-205, miR-424, miR-140, miR-106, and miR-519 were upregulated by melatonin in osteosarcoma cells. The functional role of miR-424-5p in osteosarcoma was further analyzed using miR-424-5p mimic/inhibitor. VEGFA mRNA and protein expression were altered by miR-424-5p mimic/inhibitor transfection with and without melatonin treatment and it was further identified that the VEGFA 3'UTR is directly targeted by miR-424-5p using the luciferase reporter gene system. The conditioned medium from SaOS2 and MG63 cells treated with melatonin and/or transfected with miR-424-5p mimic/inhibitor was exposed to endothelial cells, and cell proliferation and migration was analyzed. MG-63 and SaOS2 cells are also transfected with miR-424-5p inhibitors and positioned on CAM vascular bed to study the angiogenic activity at both morphological and molecular level under melatonin treatment. Our observations demonstrate for the first time that, melatonin upregulated the expression of miR-424-5p in osteosarcoma inhibiting VEGFA. Furthermore, it suppresses tumor angiogenesis, modulating surrounding endothelial cell proliferation and migration as well as the morphology of blood vessels, and angiogenic growth factors. These findings suggest that melatonin could play a pivotal role in tumor suppression via miR-424-5p/VEGFA axis.
Collapse
Affiliation(s)
- Selvaraj Vimalraj
- Centre for Biotechnology, Anna University, Chennai 600 025, Tamil Nadu, India.
| | - Sekaran Saravanan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), Department of Biotechnology, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India
| | - Subramanian Raghunandhakumar
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077, Tamil Nadu, India
| | | |
Collapse
|
20
|
Mei Y, Zhu Y, Teo HY, Liu Y, Song Y, Lim HY, Binte Hanafi Z, Angeli V, Liu H. The indirect antiangiogenic effect of IL-37 in the tumor microenvironment. J Leukoc Biol 2020; 107:783-796. [PMID: 32125036 DOI: 10.1002/jlb.3ma0220-207rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 01/28/2023] Open
Abstract
IL-37, a newly identified IL-1 family cytokine, has been shown to play an important role in inflammatory diseases, autoimmune diseases, and carcinogenesis. IL-37 has been suggested to suppress tumoral angiogenesis, whereas some publications showed that IL-37 promoted angiogenesis through TGF-β signaling in both physiologic and pathologic conditions. Therefore, the function of IL-37 in tumoral angiogenesis is not clear and the underlying mechanism is not known. In this current study, we investigated the direct role of IL-37 on endothelial cells, as well as its indirect effect on angiogenesis through functioning on tumor cells both in vitro and in vivo. We found that IL-37 treatment directly promoted HUVEC migration and tubule formation, indicating IL-37 as a proangiogenic factor. Surprisingly, the supernatants from IL-37 overexpressing tumor cell line promoted HUVEC apoptosis and inhibited its migration and tubule formation. Furthermore, we demonstrated that IL-37 suppressed tumor angiogenesis in a murine orthotopic hepatocellular carcinoma model, suggesting its dominant antiangiogenesis role in vivo. Moreover, microarray and qPCR analysis demonstrated that IL-37 reduced the expressions of proangiogenic factors and increased the expressions of antiangiogenic factors by tumor cells. Matrix metalloproteinase (MMP)2 expression was significantly decreased by IL-37 in both cell lines and murine tumor models. MMP9 and vascular endothelial growth factor expressions were also reduced in murine tumors overexpressing IL-37, as well as in cell lines overexpressing IL-37 under hypoxic conditions. In conclusion, although IL-37 could exert direct proangiogenic effects on endothelial cells, it plays an antiangiogenic role via modulating proangiogenic and antiangiogenic factor expressions by tumor cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Yu Mei
- Immunology Programme, Life Sciences Institute and Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Ying Zhu
- Immunology Programme, Life Sciences Institute and Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Huey Yee Teo
- Immunology Programme, Life Sciences Institute and Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Yonghao Liu
- Immunology Programme, Life Sciences Institute and Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Yuan Song
- Immunology Programme, Life Sciences Institute and Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Hwee Ying Lim
- Immunology Programme, Life Sciences Institute and Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Zuhairah Binte Hanafi
- Immunology Programme, Life Sciences Institute and Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Veronique Angeli
- Immunology Programme, Life Sciences Institute and Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Haiyan Liu
- Immunology Programme, Life Sciences Institute and Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
21
|
Yao S, Dong SS, Ding JM, Rong Y, Zhang YJ, Chen H, Chen JB, Chen YX, Yan H, Dai Z, Guo Y. Sex-specific SNP-SNP interaction analyses within topologically associated domains reveals ANGPT1 as a novel tumor suppressor gene for lung cancer. Genes Chromosomes Cancer 2020; 59:13-22. [PMID: 31385379 DOI: 10.1002/gcc.22793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 07/16/2019] [Accepted: 07/22/2019] [Indexed: 01/24/2023] Open
Abstract
Genetic interaction has been recognized to be an important cause of the missing heritability. The topologically associating domain (TAD) is a self-interacting genomic region, and the DNA sequences within a TAD physically interact with each other more frequently. Sex differences influence cancer susceptibility at the genetic level. Here, we performed both regular and sex-specific genetic interaction analyses within TAD to identify susceptibility genes for lung cancer in 5204 lung cancer patients and 7389 controls. We found that one SNP pair, rs4262299-rs1654701, was associated with lung cancer in women after multiple testing corrections (combined P = 8.52 × 10-9 ). Single-SNP analyses did not detect significant association signals for these two SNPs. Both identified SNPs are located in the intron region of ANGPT1. We further found that 5% of nonsmall cell lung cancer patients have an alteration in ANGPT1, indicated the potential role of ANGPT1 in the neoplastic progression in lung cancer. The expression of ANGPT1 was significantly down-regulated in patients in lung squamous cell carcinoma and lung adenocarcinoma. We checked the interaction effect on the ANGPT1 expression and lung cancer and found that the minor allele "G" of rs1654701 increased ANGPT1 gene expression and decreased lung cancer risk with the increased dosage of "A" of rs4262299, which consistent with the tumor suppressor function of ANGPT1. Survival analyses found that the high expression of ANGPT1 was individually associated with a higher survival probability in lung cancer patients. In summary, our results suggest that ANGPT1 may be a novel tumor suppressor gene for lung cancer.
Collapse
Affiliation(s)
- Shi Yao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Shan-Shan Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Jing-Miao Ding
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Yu Rong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Yu-Jie Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Hao Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Jia-Bin Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Yi-Xiao Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Han Yan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Zhijun Dai
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, P. R. China
| | - Yan Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| |
Collapse
|
22
|
Li D, Jiao W, Liang Z, Wang L, Chen Y, Wang Y, Liang Y, Niu H. Variation in energy metabolism arising from the effect of the tumor microenvironment on cell biological behaviors of bladder cancer cells and endothelial cells. Biofactors 2020; 46:64-75. [PMID: 31580525 DOI: 10.1002/biof.1568] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/13/2019] [Accepted: 08/30/2019] [Indexed: 12/15/2022]
Abstract
Tumor energy metabolism and angiogenesis play significant roles in tumor genesis and development, while the effect of the tumor microenvironment (TME), which tumors rely on, is always ignored. In this research, we cocultured bladder cancer (BC) T24 cells with tumor-associated human umbilical vein endothelial cells (HUVECs) under normoxic and hypoxic conditions and detected proliferation, migration, oxidative phosphorylation (OXPHOS) and glycolysis to reveal the energy metabolism characteristics and their effect on cell biological behaviors (CBBs) in the TME. Compared with single-cultured cells, both cocultured T24 cells and HUVECs showed poor proliferation and migration in hypoxic environment, and OXPHOS was activated in cocultured T24 cells but weakened in cocultured HUVECs. However, in normoxic environment, cocultured T24 cells grew much faster while cocultured HUVECs grew slower compared with single-cultured cells. Additionally, glycolysis played a crucial role in energy metabolism and was inhibited in cocultured T24 cells but activated in cocultured HUVECs. In normoxic TME, OXPHOS take main responsibility of energy metabolism. T24 cells exhibited increased proliferation and migration with HUVECs support. In hypoxic TME, glycolysis may be the primary energy supply pathway. T24 cells then exhibit suppressed proliferation and migration, while HUVECs tend to promote angiogenesis to adapt to the harsh TME.
Collapse
Affiliation(s)
- Dan Li
- Key Laboratory, Department of Urology and Andrology, Affiliated Hospital of Qingdao University, Qingdao Shi, Shandong Sheng, China
| | - Wei Jiao
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao Shi, Shandong Sheng, China
| | - Zhijuan Liang
- Key Laboratory, Department of Urology and Andrology, Affiliated Hospital of Qingdao University, Qingdao Shi, Shandong Sheng, China
| | - Liping Wang
- Key Laboratory, Department of Urology and Andrology, Affiliated Hospital of Qingdao University, Qingdao Shi, Shandong Sheng, China
| | - Yuanbin Chen
- Key Laboratory, Department of Urology and Andrology, Affiliated Hospital of Qingdao University, Qingdao Shi, Shandong Sheng, China
| | - Yonghua Wang
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao Shi, Shandong Sheng, China
| | - Ye Liang
- Key Laboratory, Department of Urology and Andrology, Affiliated Hospital of Qingdao University, Qingdao Shi, Shandong Sheng, China
| | - Haitao Niu
- Key Laboratory, Department of Urology and Andrology, Affiliated Hospital of Qingdao University, Qingdao Shi, Shandong Sheng, China
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao Shi, Shandong Sheng, China
| |
Collapse
|
23
|
Mazzeo A, Lopatina T, Gai C, Trento M, Porta M, Beltramo E. Functional analysis of miR-21-3p, miR-30b-5p and miR-150-5p shuttled by extracellular vesicles from diabetic subjects reveals their association with diabetic retinopathy. Exp Eye Res 2019; 184:56-63. [DOI: 10.1016/j.exer.2019.04.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 10/27/2022]
|
24
|
Nakazaki M, Sasaki M, Kataoka-Sasaki Y, Oka S, Suzuki J, Sasaki Y, Nagahama H, Hashi K, Kocsis JD, Honmou O. Intravenous infusion of mesenchymal stem cells improves impaired cognitive function in a cerebral small vessel disease model. Neuroscience 2019; 408:361-377. [DOI: 10.1016/j.neuroscience.2019.04.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/18/2019] [Accepted: 04/07/2019] [Indexed: 12/18/2022]
|
25
|
Xin M, He J, Yang W, Yin X, Wang J. Wenshen Yangxue decoction improves endometrial receptivity recovery and promotes endometrial angiogenesis in a rat model. PHARMACEUTICAL BIOLOGY 2018; 56:573-579. [PMID: 31070529 PMCID: PMC6292361 DOI: 10.1080/13880209.2018.1510973] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/28/2018] [Accepted: 08/08/2018] [Indexed: 06/09/2023]
Abstract
CONTEXT Wenshen Yangxue decoction (WSYXD) is a famous traditional Chinese medicine (TCM) formula and has been used in infertility treatment, but the exact mechanism is still unknown. OBJECTIVES To determine if WSYXD improves endometrial receptivity recovery and promotes endometrial angiogenesis in a rat model. MATERIALS AND METHODS A total of 100 proestrus female SPF Wistar rats were randomly assigned into five groups: control (saline), model (saline and hydroxyurea solution), high (5.2/100 g), middle (2.6/100 g) and low (1.3/100 g) WSYXD dose groups for 10 d. The microvessel densities, endometrial microstructure, as well as blastocysts number, were observed, followed by detection of angiogenesis-related gene/protein expression by immunohistochemistry, western blot and quantitative real-time polymerase chain reaction (RT-PCR), respectively. RESULTS Compared with the model group, the blastocyst number in WSYXD middle and high groups were significantly increased (4.50 ± 3.11 vs. 13.00 ± 2.12, 14.00 ± 1.83, p < 0.01). Lower MVD can be found in the model group (4.7) when compared with the normal control (13.7), middle (8.4) and high (9.7) dose groups. Additionally, significant differences were observed in VEGF, HIF-1α, p-AKT, p-PI3K, Ang1 and Ang2 (all p < 0.01) among different groups. DISCUSSION AND CONCLUSIONS In conclusion, WSYXD could help endometrial receptivity recovery and promote endometrial angiogenesis through PI3K, HIF-1α signalling and VEGF expression regulation. This study provides molecular evidence for application of WSYXD in the clinic and promotes new drug development from TCM.
Collapse
Affiliation(s)
- Mingwei Xin
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, PR China
| | - Junqin He
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, PR China
| | - Wei Yang
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, PR China
| | - Xiaodan Yin
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, PR China
| | - Jingshang Wang
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, PR China
| |
Collapse
|
26
|
Zhu Y, Gao M, Zhou T, Xie M, Mao A, Feng L, Yao X, Wong WT, Ma X. The TRPC5 channel regulates angiogenesis and promotes recovery from ischemic injury in mice. J Biol Chem 2018; 294:28-37. [PMID: 30413532 DOI: 10.1074/jbc.ra118.005392] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/06/2018] [Indexed: 11/06/2022] Open
Abstract
Ischemia-related diseases are a leading cause of death worldwide, and promoting therapeutic angiogenesis is key for effective recovery from hypoxia-ischemia. Given the limited success of angiogenic factors, such as vascular endothelial growth factor, in clinical trials, it is important to find more promising angiogenic targets. Here, using both cell- and tissue-based assays and a mouse model of injury-induced ischemia, we investigated the involvement of the transient receptor potential canonical 5 (TRPC5) ion channel in angiogenesis and the effects of a TRPC5 activator, the Food and Drug Administration-approved drug riluzole, on recovery from ischemic injury. We demonstrate that TRPC5 is involved in endothelial cell sprouting, angiogenesis, and blood perfusion in an oxygen-induced retinopathy model and a hind limb ischemia model. We found a potential regulatory link between nuclear factor of activated T cell isoform c3 and angiopoietin-1 that could provide the mechanistic basis for the angiogenic function of TRPC5. Importantly, treatment with riluzole, which can activate TRPC5 in endothelial cells, improved recovery from ischemia in mice. Our study reveals TRPC5 as a potential angiogenic target and suggests riluzole as a promising drug for managing ischemic diseases.
Collapse
Affiliation(s)
- Yifei Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214000, China; School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong 999077, China
| | - Mengru Gao
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214000, China
| | - Tingting Zhou
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214000, China
| | - Mingxu Xie
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214000, China; School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong 999077, China
| | - Aiqin Mao
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214000, China
| | - Lei Feng
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214000, China
| | - Xiaoqiang Yao
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong 999077, China
| | - Wing Tak Wong
- State Key Laboratory of Agrobiotechnology (CUHK), School of Life Sciences, Chinese University of Hong Kong, Hong Kong 999077, China
| | - Xin Ma
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214000, China.
| |
Collapse
|
27
|
Chen IH, Aguilar HA, Paez Paez JS, Wu X, Pan L, Wendt MK, Iliuk AB, Zhang Y, Tao WA. Analytical Pipeline for Discovery and Verification of Glycoproteins from Plasma-Derived Extracellular Vesicles as Breast Cancer Biomarkers. Anal Chem 2018; 90:6307-6313. [PMID: 29629753 DOI: 10.1021/acs.analchem.8b01090] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- I-Hsuan Chen
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - J. Sebastian Paez Paez
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xiaofeng Wu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Li Pan
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Michael K. Wendt
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Anton B. Iliuk
- Tymora Analytical Operations, West Lafayette, Indiana 47906, United States
| | - Ying Zhang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - W. Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
28
|
Abstract
Immunotherapy has emerged as a major therapeutic modality in oncology. Currently, however, the majority of patients with cancer do not derive benefit from these treatments. Vascular abnormalities are a hallmark of most solid tumours and facilitate immune evasion. These abnormalities stem from elevated levels of proangiogenic factors, such as VEGF and angiopoietin 2 (ANG2); judicious use of drugs targeting these molecules can improve therapeutic responsiveness, partially owing to normalization of the abnormal tumour vasculature that can, in turn, increase the infiltration of immune effector cells into tumours and convert the intrinsically immunosuppressive tumour microenvironment (TME) to an immunosupportive one. Immunotherapy relies on the accumulation and activity of immune effector cells within the TME, and immune responses and vascular normalization seem to be reciprocally regulated. Thus, combining antiangiogenic therapies and immunotherapies might increase the effectiveness of immunotherapy and diminish the risk of immune-related adverse effects. In this Perspective, we outline the roles of VEGF and ANG2 in tumour immune evasion and progression, and discuss the evidence indicating that antiangiogenic agents can normalize the TME. We also suggest ways that antiangiogenic agents can be combined with immune-checkpoint inhibitors to potentially improve patient outcomes, and highlight avenues of future research.
Collapse
|
29
|
Allen H, Shraga-Heled N, Blumenfeld M, Dego-Ashto T, Fuchs-Telem D, Gilert A, Aberman Z, Ofir R. Human Placental-Derived Adherent Stromal Cells Co-Induced with TNF-α and IFN-γ Inhibit Triple-Negative Breast Cancer in Nude Mouse Xenograft Models. Sci Rep 2018; 8:670. [PMID: 29330447 PMCID: PMC5766494 DOI: 10.1038/s41598-017-18428-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 12/11/2017] [Indexed: 12/26/2022] Open
Abstract
Culturing 3D-expanded human placental-derived adherent stromal cells (ASCs) in the presence of tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) transiently upregulated the secretion of numerous anti-proliferative, anti-angiogenic and pro-inflammatory cytokines. In a 3D-spheroid screening assay, conditioned medium from these induced-ASCs inhibited proliferation of cancer cell lines, including triple-negative breast cancer (TNBC) lines. In vitro co-culture studies of induced-ASCs with MDA-MB-231 human breast carcinoma cells, a model representing TNBC, supports a mechanism involving immunomodulation and angiogenesis inhibition. In vivo studies in nude mice showed that intramuscular administration of induced-ASCs halted MDA-MB-231 cell proliferation, and inhibited tumor progression and vascularization. Thirty percent of treated mice experienced complete tumor remission. Murine serum concentrations of the tumor-supporting cytokines Interleukin-6 (IL-6), Vascular endothelial growth factor (VEGF) and Granulocyte-colony stimulating factor (G-CSF) were lowered to naïve levels. A somatic mutation analysis identified numerous genes which could be screened in patients to increase a positive therapeutic outcome. Taken together, these results show that targeted changes in the secretion profile of ASCs may improve their therapeutic potential.
Collapse
|
30
|
Butler CT, Reynolds AL, Tosetto M, Dillon ET, Guiry PJ, Cagney G, O'Sullivan J, Kennedy BN. A Quininib Analogue and Cysteinyl Leukotriene Receptor Antagonist Inhibits Vascular Endothelial Growth Factor (VEGF)-independent Angiogenesis and Exerts an Additive Antiangiogenic Response with Bevacizumab. J Biol Chem 2016; 292:3552-3567. [PMID: 28035003 DOI: 10.1074/jbc.m116.747766] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 12/19/2016] [Indexed: 12/31/2022] Open
Abstract
Excess blood vessel growth contributes to the pathology of metastatic cancers and age-related retinopathies. Despite development of improved treatments, these conditions are associated with high economic costs and drug resistance. Bevacizumab (Avastin®), a monoclonal antibody against vascular endothelial growth factor (VEGF), is used clinically to treat certain types of metastatic cancers. Unfortunately, many patients do not respond or inevitably become resistant to bevacizumab, highlighting the need for more effective antiangiogenic drugs with novel mechanisms of action. Previous studies discovered quininib, an antiangiogenic small molecule antagonist of cysteinyl leukotriene receptors 1 and 2 (CysLT1 and CysLT2). Here, we screened a series of quininib analogues and identified a more potent antiangiogenic novel chemical entity (IUPAC name (E)-2-(2-quinolin-2-yl-vinyl)-benzene-1,4-diol HCl) hereafter designated Q8. Q8 inhibits developmental angiogenesis in Tg(fli1:EGFP) zebrafish and inhibits human microvascular endothelial cell (HMEC-1) proliferation, tubule formation, and migration. Q8 elicits antiangiogenic effects in a VEGF-independent in vitro model of angiogenesis and exerts an additive antiangiogenic response with the anti-VEGF biologic bevacizumab. Cell-based receptor binding assays confirm that Q8 is a CysLT1 antagonist and is sufficient to reduce cellular levels of NF-κB and calpain-2 and secreted levels of the proangiogenic proteins intercellular adhesion molecule-1, vascular cell adhesion protein-1, and VEGF. Distinct reductions of VEGF by bevacizumab explain the additive antiangiogenic effects observed in combination with Q8. In summary, Q8 is a more effective antiangiogenic drug compared with quininib. The VEGF-independent activity coupled with the additive antiangiogenic response observed in combination with bevacizumab demonstrates that Q8 offers an alternative therapeutic strategy to combat resistance associated with conventional anti-VEGF therapies.
Collapse
Affiliation(s)
- Clare T Butler
- From the UCD School of Biomolecular and Biomedical Science, UCD Conway Institute and
| | - Alison L Reynolds
- From the UCD School of Biomolecular and Biomedical Science, UCD Conway Institute and
| | - Miriam Tosetto
- Centre for Colorectal Disease, St. Vincent's University Hospital, Dublin 4, Ireland, and
| | - Eugene T Dillon
- From the UCD School of Biomolecular and Biomedical Science, UCD Conway Institute and
| | - Patrick J Guiry
- UCD School of Chemistry, UCD Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Gerard Cagney
- From the UCD School of Biomolecular and Biomedical Science, UCD Conway Institute and
| | - Jacintha O'Sullivan
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland
| | - Breandán N Kennedy
- From the UCD School of Biomolecular and Biomedical Science, UCD Conway Institute and
| |
Collapse
|
31
|
Purushothaman P, Uppal T, Sarkar R, Verma SC. KSHV-Mediated Angiogenesis in Tumor Progression. Viruses 2016; 8:E198. [PMID: 27447661 PMCID: PMC4974533 DOI: 10.3390/v8070198] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/18/2016] [Accepted: 07/07/2016] [Indexed: 12/14/2022] Open
Abstract
Human herpesvirus 8 (HHV-8), also known as Kaposi's sarcoma-associated herpesvirus (KSHV), is a malignant human oncovirus belonging to the gamma herpesvirus family. HHV-8 is closely linked to the pathogenesis of Kaposi's sarcoma (KS) and two other B-cell lymphoproliferative diseases: primary effusion lymphoma (PEL) and a plasmablastic variant of multicentric Castleman's disease (MCD). KS is an invasive tumor of endothelial cells most commonly found in untreated HIV-AIDS or immuno-compromised individuals. KS tumors are highly vascularized and have abnormal, excessive neo-angiogenesis, inflammation, and proliferation of infected endothelial cells. KSHV directly induces angiogenesis in an autocrine and paracrine fashion through a complex interplay of various viral and cellular pro-angiogenic and inflammatory factors. KS is believed to originate due to a combination of KSHV's efficient strategies for evading host immune systems and several pro-angiogenic and pro-inflammatory stimuli. In addition, KSHV infection of endothelial cells produces a wide array of viral oncoproteins with transforming capabilities that regulate multiple host-signaling pathways involved in the activation of angiogenesis. It is likely that the cellular-signaling pathways of angiogenesis and lymph-angiogenesis modulate the rate of tumorigenesis induction by KSHV. This review summarizes the current knowledge on regulating KSHV-mediated angiogenesis by integrating the findings reported thus far on the roles of host and viral genes in oncogenesis, recent developments in cell-culture/animal-model systems, and various anti-angiogenic therapies for treating KSHV-related lymphoproliferative disorders.
Collapse
Affiliation(s)
- Pravinkumar Purushothaman
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, 1664 N Virginia Street, MS 320, Reno, NV 89557, USA.
| | - Timsy Uppal
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, 1664 N Virginia Street, MS 320, Reno, NV 89557, USA.
| | - Roni Sarkar
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, 1664 N Virginia Street, MS 320, Reno, NV 89557, USA.
| | - Subhash C Verma
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, 1664 N Virginia Street, MS 320, Reno, NV 89557, USA.
| |
Collapse
|
32
|
Han A, Chae YC, Park JW, Kim KB, Kim JY, Seo SB. Transcriptional repression of ANGPT1 by histone H3K9 demethylase KDM3B. BMB Rep 2016; 48:401-6. [PMID: 25413303 PMCID: PMC4577290 DOI: 10.5483/bmbrep.2015.48.7.188] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Indexed: 11/20/2022] Open
Abstract
Here we report that the H3K9 demethylase KDM3B represses transcription of the angiogenesis regulatory gene, ANGPT1. Negative regulation of ANGPT1 by KDM3B is independent of its Jumonji (JmjC) domain-mediated H3K9 demethylase activity. We demonstrate that KDM3B downregulates ANGPT1 via interaction with SMRT, and suggest that the repressor complex is formed at the promoter area of ANGPT1. Using MTT and wound healing assays, depletion of KDM3B was found to increase cell proliferation and cell motility, indicating that KDM3B has a role in angiogenesis. [BMB Reports 2015; 48(7): 401-406]
Collapse
Affiliation(s)
- Arim Han
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756, Korea
| | - Yun-Cheol Chae
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756, Korea
| | - Jin Woo Park
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756, Korea
| | - Kee-Beom Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756, Korea
| | - Ji-Young Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756, Korea
| | - Sang-Beom Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756, Korea
| |
Collapse
|
33
|
Kaneko S, Nakatani Y, Takezaki T, Hide T, Yamashita D, Ohtsu N, Ohnishi T, Terasaka S, Houkin K, Kondo T. Ceacam1L Modulates STAT3 Signaling to Control the Proliferation of Glioblastoma-Initiating Cells. Cancer Res 2015; 75:4224-34. [PMID: 26238781 DOI: 10.1158/0008-5472.can-15-0412] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/27/2015] [Indexed: 11/16/2022]
Abstract
Glioblastoma-initiating cells (GIC) are a tumorigenic cell subpopulation resistant to radiotherapy and chemotherapy, and are a likely source of recurrence. However, the basis through which GICs are maintained has yet to be elucidated in detail. We herein demonstrated that the carcinoembryonic antigen-related cell adhesion molecule Ceacam1L acts as a crucial factor in GIC maintenance and tumorigenesis by activating c-Src/STAT3 signaling. Furthermore, we showed that monomers of the cytoplasmic domain of Ceacam1L bound to c-Src and STAT3 and induced their phosphorylation, whereas oligomerization of this domain ablated this function. Our results suggest that Ceacam1L-dependent adhesion between GIC and surrounding cells play an essential role in GIC maintenance and proliferation, as mediated by signals transmitted by monomeric forms of the Ceacam1L cytoplasmic domain.
Collapse
Affiliation(s)
- Sadahiro Kaneko
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan. Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Yuka Nakatani
- Laboratory for Cell Lineage Modulation, Center for Developmental Biology, RIKEN, Kobe, Hyogo, Japan
| | - Tatsuya Takezaki
- Laboratory for Cell Lineage Modulation, Center for Developmental Biology, RIKEN, Kobe, Hyogo, Japan. Department of Neurosurgery, Kumamoto University Graduate School of Medical Science, Kumamoto, Kumamoto, Japan
| | - Takuichiro Hide
- Laboratory for Cell Lineage Modulation, Center for Developmental Biology, RIKEN, Kobe, Hyogo, Japan. Department of Neurosurgery, Kumamoto University Graduate School of Medical Science, Kumamoto, Kumamoto, Japan
| | - Daisuke Yamashita
- Department of Neurosurgery, Ehime University Graduate School of Medicine, To-on, Ehime, Japan
| | - Naoki Ohtsu
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takanori Ohnishi
- Department of Neurosurgery, Ehime University Graduate School of Medicine, To-on, Ehime, Japan
| | - Shunsuke Terasaka
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Kiyohiro Houkin
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Toru Kondo
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan. Laboratory for Cell Lineage Modulation, Center for Developmental Biology, RIKEN, Kobe, Hyogo, Japan.
| |
Collapse
|
34
|
Luo X, Zhao H, Hennah L, Ning J, Liu J, Tu H, Ma D. Impact of isoflurane on malignant capability of ovarian cancer in vitro. Br J Anaesth 2014; 114:831-9. [PMID: 25501719 DOI: 10.1093/bja/aeu408] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Metastatic recurrence of ovarian cancer is the foremost cause of postoperative mortality. With recent research indicating that inhalation of anaesthetics may influence cancer cell behaviour, this study investigated the effects of isoflurane on the expression of tumorigenic markers and proliferative capacity in ovarian cancer cells. METHODS Ovarian cancer (SK-OV3) cells were cultured and then exposed to 2% isoflurane for 2 h. The expression of markers involved in cell proliferation, angiogenesis, and migration were assessed up to 24 h after treatment using immunofluorescence staining, western blotting, and flow cytometry. The effects of isoflurane on in vitro angiogenesis and migration were also determined. RESULTS Isoflurane exposure significantly increased insulin-like growth factor (IGF)-1 and IGF-1R expression, cell cycle progression, and cell proliferation in SK-OV3 cells. Increased expression of the angiogenic markers vascular endothelial growth factor (VEGF) by 56% (P<0.05) and angiopoietin-1 by 62% (P<0.05) was also observed 24 h after isoflurane exposure together with an enhanced in vitro angiogenesis. Cell migration was significantly increased after exposure to isoflurane together with increased production of both matrix metalloproteinases 2 and 9 (both P<0.05) by almost five-fold relative to control. These effects were abolished when IGF-1R signalling was blocked either by neutralizing antibody or by small interfering RNA. CONCLUSIONS Our data indicate that isoflurane increases the malignant potential of ovarian cancer cells through the up-regulation of markers associated with the cell cycle, proliferation, and angiogenesis. This study warrants further investigations.
Collapse
Affiliation(s)
- X Luo
- Department of Anaesthesiology and Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - H Zhao
- Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - L Hennah
- Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - J Ning
- Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - J Liu
- Department of Anaesthesiology and
| | - H Tu
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - D Ma
- Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| |
Collapse
|
35
|
Oebisu N, Hoshi M, Ieguchi M, Takada J, Iwai T, Ohsawa M, Nakamura H. Contrast-enhanced color Doppler ultrasonography increases diagnostic accuracy for soft tissue tumors. Oncol Rep 2014; 32:1654-60. [PMID: 25109621 DOI: 10.3892/or.2014.3378] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 07/17/2014] [Indexed: 11/06/2022] Open
Abstract
Resolution of ultrasonography (US) has undergone marked development. Additionally, a new-generation contrast medium (Sonazoid) used for US is newly available. Contrast-enhanced US has been widely used for evaluating several types of cancer. In the present study, we evaluated the ability of color Doppler US (CDUS) and Sonazoid to differentiate between benign and malignant soft tissue tumors. A total of 180 patients (87 male, 93 female) were enrolled in the present study. The patient ages ranged from 1 to 91 years (mean 58.1±20.0 years). The maximum size, depth, tumor margins, shape, echogenicity and textural pattern were measured on gray-scale images. CDUS was used to evaluate the intratumoral blood flow with and without Sonazoid. Peak systolic flow velocity (Vp), mean flow velocity (Vm), resistivity index (RI) and pulsatility index (PI) of each detected intratumoral artery were automatically calculated with power Doppler US (PDUS). The present study included 118 benign and 62 malignant tumors. Statistical significances were found in size, depth, tumor margin and textural pattern but not in shape or echogenicity on gray-scale images. Before Sonazoid injection, CDUS findings showed 55% sensitivity, 77% specificity and 69% accuracy, whereas contrast-enhanced CDUS showed 87% sensitivity, 68% specificity and 74% accuracy. There were no statistically significant differences between malignant and benign tumors regarding the mean Vp, Vm, RI and PI values determined on PDUS. In conclusion, contrast-enhanced CDUS proved to be a reliable diagnostic tool for detecting malignant potential in soft tissue tumors.
Collapse
Affiliation(s)
- Naoto Oebisu
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Abeno-Ku, Osaka 545‑8585, Japan
| | - Manabu Hoshi
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Abeno-Ku, Osaka 545‑8585, Japan
| | - Makoto Ieguchi
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Abeno-Ku, Osaka 545‑8585, Japan
| | - Jun Takada
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Abeno-Ku, Osaka 545‑8585, Japan
| | - Tadashi Iwai
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Abeno-Ku, Osaka 545‑8585, Japan
| | - Masahiko Ohsawa
- Department of Diagnostic Pathology, Osaka City University Graduate School of Medicine, Abeno-Ku, Osaka 545‑8585, Japan
| | - Hiroaki Nakamura
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Abeno-Ku, Osaka 545‑8585, Japan
| |
Collapse
|
36
|
Milbreta U, von Boxberg Y, Mailly P, Nothias F, Soares S. Astrocytic and vascular remodeling in the injured adult rat spinal cord after chondroitinase ABC treatment. J Neurotrauma 2014; 31:803-18. [PMID: 24380419 DOI: 10.1089/neu.2013.3143] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Upregulation of extracellular chondroitin sulfate proteoglycans (CSPG) is a primary cause for the failure of axons to regenerate after spinal cord injury (SCI), and the beneficial effect of their degradation by chondroitinase ABC (ChABC) is widely documented. Little is known, however, about the effect of ChABC treatment on astrogliosis and revascularization, two important factors influencing axon regrowth. This was investigated in the present study. Immediately after a spinal cord hemisection at thoracic level 8-9, we injected ChABC intrathecally at the sacral level, repeated three times until 10 days post-injury. Our results show an effective cleavage of CSPG glycosaminoglycan chains and stimulation of axonal remodeling within the injury site, accompanied by an extended period of astrocyte remodeling (up to 4 weeks). Interestingly, ChABC treatment favored an orientation of astrocytic processes directed toward the injury, in close association with axons at the lesion entry zone, suggesting a correlation between axon and astrocyte remodeling. Further, during the first weeks post-injury, ChABC treatment affected the morphology of laminin-positive blood vessel basement membranes and vessel-independent laminin deposits: hypertrophied blood vessels with detached or duplicated basement membrane were more numerous than in lesioned untreated animals. In contrast, at later time points, laminin expression increased and became more directly associated with newly formed blood vessels, the size of which tended to be closer to that found in intact tissue. Our data reinforce the idea that ChABC injection in combination with other synergistic treatments is a promising therapeutic strategy for SCI repair.
Collapse
Affiliation(s)
- Ulla Milbreta
- 1 Neuroscience Paris Seine/UMR8246/U1130/UMCR18 , IBPS/UPMC Univ Paris 06, Paris, France
| | | | | | | | | |
Collapse
|
37
|
Agoulnik SI, Kawano S, Taylor N, Oestreicher J, Matsui J, Chow J, Oda Y, Funahashi Y. Eribulin mesylate exerts specific gene expression changes in pericytes and shortens pericyte-driven capillary network in vitro. Vasc Cell 2014; 6:3. [PMID: 24581301 PMCID: PMC4016419 DOI: 10.1186/2045-824x-6-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 02/24/2014] [Indexed: 02/06/2023] Open
Abstract
Background Eribulin mesylate is a synthetic macrocyclic ketone analog of the marine sponge natural product halichondrin B. Eribulin is a tubulin-binding drug and approved in many countries worldwide for treatment of certain patients with advanced breast cancer. Here we investigated antiproliferative and antiangiogenic effects of eribulin on vascular cells, human umbilical vein endothelial cells (HUVECs) and human brain vascular pericytes (HBVPs), in vitro in comparison with another tubulin-binding drug, paclitaxel. Methods HUVECs and HBVPs were treated with either eribulin or paclitaxel and their antiproliferative effects were evaluated. Global gene expression profiling changes caused by drug treatments were studied using Affymetrix microarray platform and custom TaqMan Low Density Cards. To examine effects of the drugs on pericyte-driven in vitro angiogenesis, we compared lengths of capillary networks in co-cultures of HUVECs with HBVPs. Results Both eribulin and paclitaxel showed potent activities in in vitro proliferation of HUVECs and HBVPs, with the half-maximal inhibitory concentrations (IC50) in low- to sub-nmol/L concentrations. When gene expression changes were assessed in HUVECs, the majority of affected genes overlapped for both treatments (59%), while in HBVPs, altered gene signatures were drug-dependent and the overlap was limited to just 12%. In HBVPs, eribulin selectively affected 11 pathways (p < 0.01) such as Cell Cycle Control of Chromosomal Replication. In contrast, paclitaxel was tended to regulate 27 pathways such as PI3K/AKT. Only 5 pathways were commonly affected by both treatments. In in vitro pericyte-driven angiogenesis model, paclitaxel showed limited activity while eribulin shortened the formed capillary networks of HUVECs driven by HBVPs at low nmol/L concentrations starting at day 3 after treatments. Conclusions Our findings suggest that pericytes, but not endothelial cells, responded differently, to two mechanistically-distinct tubulin-binding drugs, eribulin and paclitaxel. While eribulin and paclitaxel induced similar changes in gene expression in endothelial cells, in pericytes their altered gene expression was unique and drug-specific. In the functional endothelial-pericyte co-culture assay, eribulin, but not paclitaxel showed strong efficacy not only as a cytotoxic drug but also as a potent antivascular agent that affected pericyte-driven in vitro angiogenesis.
Collapse
Affiliation(s)
| | - Satoshi Kawano
- Eisai Co., Ltd, Tokodai 5-1-3, Tsukuba, Ibaraki 300-2635, Japan
| | - Noel Taylor
- Eisai Inc, 4 Corporate Drive, Andover, MA 01810, USA
| | - Judith Oestreicher
- Eisai Inc, 4 Corporate Drive, Andover, MA 01810, USA.,Present address: Infinity Pharmaceuticals, 780 Memorial Drive, Cambridge, MA 02139, USA
| | - Junji Matsui
- Eisai Co., Ltd, Tokodai 5-1-3, Tsukuba, Ibaraki 300-2635, Japan
| | - Jesse Chow
- Eisai Inc, 4 Corporate Drive, Andover, MA 01810, USA
| | - Yoshiya Oda
- Eisai Inc, 4 Corporate Drive, Andover, MA 01810, USA
| | | |
Collapse
|
38
|
Spinella F, Caprara V, Cianfrocca R, Rosanò L, Di Castro V, Garrafa E, Natali PG, Bagnato A. The interplay between hypoxia, endothelial and melanoma cells regulates vascularization and cell motility through endothelin-1 and vascular endothelial growth factor. Carcinogenesis 2014; 35:840-8. [PMID: 24473118 DOI: 10.1093/carcin/bgu018] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Reciprocal growth factor exchanges between endothelial and malignant cells within the hypoxic microenvironment determine tumor progression. However, the nature of these exchanges has not yet been fully explored. We studied the mutual regulation between endothelial cells (EC), melanoma cells and hypoxia that dictate tumor aggressiveness and angiogenic activity. Here, we investigated the presence of bidirectional autocrine/paracrine endothelin (ET)-1/ET receptor (ETBR) signaling in melanoma cells, blood and lymphatic EC. In all these cells, hypoxia enhanced ET-1 expression, which in turn induced vascular endothelial growth factor (VEGF)-A and VEGF-C secretion, through the hypoxia-inducible growth factor (HIF)-1α and HIF-2α. Autocrine/paracrine exchanges of ET-1, VEGF-A and VEGF-C promoted tumor aggressiveness and morphological changes in blood and lymphatic EC. Furthermore, conditioned media from EC enhanced melanoma cell migration and vessel-like channel formation. This regulation was inhibited by ETBR blockade, by using the selective ETBR antagonist, or ETBR small interfering RNA (siRNA), and by VEGFR-2/-3 antibodies, indicating that ET-1, VEGF-A/VEGF-C, produced by melanoma cells or EC mediated inter-regulation between these cells. Interestingly, HIF-1α/HIF-2α siRNA, impaired this reciprocal regulation, demonstrating the key role of these transcriptional factors in signaling exchanges. In melanoma xenografts, the ETBR antagonist reduced tumor growth and the number of blood and lymphatic vessels. These results reveal an interplay between melanoma cells and EC mediated by ET-1 and VEGF-A/-C and coordinated by the hypoxic microenvironment through HIF-1α/2α transcriptional programs. Thus, targeting ETBR may improve melanoma treatment for tumor and EC, by inhibiting autocrine/paracrine signaling that sustains melanoma progression.
Collapse
Affiliation(s)
- Francesca Spinella
- Experimental Oncology Department, Regina Elena National Cancer Institute, 00144 Rome
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Jaipersad AS, Lip GYH, Silverman S, Shantsila E. The role of monocytes in angiogenesis and atherosclerosis. J Am Coll Cardiol 2013; 63:1-11. [PMID: 24140662 DOI: 10.1016/j.jacc.2013.09.019] [Citation(s) in RCA: 320] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/13/2013] [Accepted: 09/16/2013] [Indexed: 02/06/2023]
Abstract
New vessel formation inside the arterial wall and atherosclerotic plaques plays a critical role in pathogenesis of heart attacks and strokes. The 2 known mechanisms resulting in the formation of new vessels within the plaque are local ischemia and inflammation. Blood monocytes play an important role in both processes. First, they express receptors for vascular endothelial growth factor and some of them may serve as circulating ancestors of endothelial cells. Second, monocytes are associated with inflammation by synthesis of inflammatory molecules following their activation (e.g., after stimulation of Toll-like receptors). Neovascularization is a reparative response to ischemia, and includes 3 processes: angiogenesis, arteriogenesis, and vasculogenesis. Angiogenesis, the formation of new capillary vessels is known to occur in response to a hypoxic environment. The interaction between leukocytes and vascular wall via overexpression of various molecules facilitates the migration of inflammatory cells into the plaque microenvironment. Monocytes are intimately involved in tissue damage and repair and an imbalance of these processes may have detrimental consequences for plaque development and stability. Importantly, monocytes are comprised of distinct subsets with different cell surface markers and functional characteristics and this heterogeneity may be relevant to angiogenic processes in atherosclerosis. The aim of this review article is to present an overview of the available evidence supporting a role for monocytes in angiogenesis and atherosclerosis.
Collapse
Affiliation(s)
- Anthony S Jaipersad
- University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham, United Kingdom
| | - Gregory Y H Lip
- University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham, United Kingdom
| | - Stanley Silverman
- Department of Vascular Surgery, City Hospital, Birmingham, United Kingdom
| | - Eduard Shantsila
- University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham, United Kingdom.
| |
Collapse
|
40
|
Kamei N, Kwon SM, Alev C, Nakanishi K, Yamada K, Masuda H, Ishikawa M, Kawamoto A, Ochi M, Asahara T. Ex-vivo expanded human blood-derived CD133+ cells promote repair of injured spinal cord. J Neurol Sci 2013; 328:41-50. [PMID: 23498368 DOI: 10.1016/j.jns.2013.02.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/14/2013] [Accepted: 02/15/2013] [Indexed: 12/18/2022]
Abstract
Human blood-derived CD133(+) cell populations, which are believed to represent a hematopoietic/endothelial progenitor fraction, have the ability to promote the repair of injured spinal cord in animal models. However, the mechanisms by which CD133(+) cell transplantation promotes spinal cord regeneration remain to be clarified. Another possible hurdle on the way to clinical applicability of these cells is their scarce representation in the overall population of mononuclear cells. We therefore analyzed and compared ex-vivo expanded human cord blood derived CD133(+) cells with freshly isolated CD133(+) cells as well as corresponding CD133(-) control mononuclear cells in respect to their ability to promote spinal cord repair using in vitro assays and cell transplantation into a mouse spinal cord injury model. In vitro, expanded cells as well as fresh CD133(+) cells formed endothelial progenitor cell (EPC) colonies, whereas CD133(-) cells formed no EPC colonies. In vivo, the administration of fresh CD133(+) and expanded cells enhanced angiogenesis, astrogliosis, axon growth and functional recovery after injury. In contrast, the administration of CD133(-) cells failed to promote axon growth and functional recovery, but moderately enhanced angiogenesis and astrogliosis. In addition, high-dose administration of expanded cells was highly effective in the induction of regenerative processes at the injured spinal cord.
Collapse
Affiliation(s)
- Naosuke Kamei
- Group of Vascular Regeneration, Institute of Biomedical Research and Innovation, 2-2 Minatojima-minamimachi, Kobe, Hyogo, 650-0047, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Gottschling S, Granzow M, Kuner R, Jauch A, Herpel E, Xu EC, Muley T, Schnabel PA, Herth FJF, Meister M. Mesenchymal stem cells in non-small cell lung cancer--different from others? Insights from comparative molecular and functional analyses. Lung Cancer 2013; 80:19-29. [PMID: 23294501 DOI: 10.1016/j.lungcan.2012.12.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 12/05/2012] [Accepted: 12/09/2012] [Indexed: 01/09/2023]
Abstract
BACKGROUND Cancer-associated fibroblasts (CAF) play a vital role in lung cancer initiation and progression. Although mesenchymal stem cells (MSC) are considered progenitor cells of fibroblasts and show cancer modulating abilities themselves, analyses on their presence and properties in lung cancer are lacking so far. METHODS We performed a comparative molecular and functional analysis of MSC derived from non-small cell lung cancer (NSCLC) and corresponding normal lung tissue (NLT) of a total of 15 patients. MSC were identified and selected according to their mesenchymal multilineage differentiation capability and surface marker profile. RESULTS Compared to NLT-MSC, NSCLC-MSC showed accelerated growth kinetics and reduced sensitivity to cisplatin. Karyotyping, comparative genomic hybridization and multiplex fluorescence in situ hybridization revealed no chromosomal aberrations. However, gene expression profiling of NSCLC- and NLT-MSC indicated variable expression of 62 genes involved in proliferation, DNA repair, apoptosis, extracellular matrix synthesis, tissue remodeling and angiogenesis. Differential expression of the selected candidate genes butyrylcholinesterase, clusterin and quiescin Q6 sulfhydryl oxidase 1 was validated by quantitative real-time PCR and, on protein level, by immunohistochemical analyses of original tumor tissue. Upon exposure to tumor cell-conditioned medium or transforming growth factor-β, both, NSCLC-MSC and NLT-MSC acquired expression of α-smooth muscle actin (α-SMA), a major characteristics of CAF. CONCLUSIONS This study indicates that NSCLC tissue contains MSC with specific molecular and functional properties. These cells might represent a progenitor reservoir for CAF and thus crucially contribute to lung cancer progression.
Collapse
Affiliation(s)
- Sandra Gottschling
- Department of Thoracic Oncology, Thoraxklinik, University of Heidelberg, Amalienstr. 5, 69126 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Vickerman V, Kim C, Kamm RD. Microfluidic Devices for Angiogenesis. MECHANICAL AND CHEMICAL SIGNALING IN ANGIOGENESIS 2013. [DOI: 10.1007/978-3-642-30856-7_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
43
|
Danza K, Pilato B, Lacalamita R, Addati T, Giotta F, Bruno A, Paradiso A, Tommasi S. Angiogenetic axis angiopoietins/Tie2 and VEGF in familial breast cancer. Eur J Hum Genet 2012; 21:824-30. [PMID: 23232696 DOI: 10.1038/ejhg.2012.273] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 10/25/2012] [Accepted: 11/14/2012] [Indexed: 11/09/2022] Open
Abstract
Angiogenesis leads to the formation of blood vessels from pre-existing ones, allowing tumor growth. Vascular endothelial growth factor (VEGF) and Angiopoietins (Ang-1, Ang-2) have a pivotal role in tumor angiogenesis but few data regarding their role in hereditary breast cancer are available. The aim of the present study was to analyze Ang-1, Ang-2, tyrosine-protein kinase receptor Tie2 and VEGF expression and their correlation in a cohort of familial and sporadic breast cancers in order to verify whether the presence of germline mutations in BRCA may have a role in tumor microenvironment regulation. Tumor samples from a cohort of 41 patients with a first diagnosis and a family history of breast cancer and 19 patients with sporadic breast cancers were enrolled. The expression of Tie2, Ang-1, Ang-2 and VEGF were analyzed by quantitative real-time PCR. Patients harboring BRCA mutations had higher levels of Ang-1 (P=0.05), Ang-2 (P=0.02) and VEGF (P=0.04) mRNA compared with those without BRCA mutations (BRCAX). The same was observed in triple-negative breast cancer (TNBC). Moreover, a positive correlation between Ang-2 and VEGF was found in both the familial breast cancer group (BRCA carriers: r=0.83; P<0.0001 and BRCAX: r=0.58; P=0.008) and in TNBC (r=0.62; P=0.007). The higher levels of Ang-1, Ang-2 and VEGF mRNA found in BRCA carriers and TNBCs suggest that they could be attractive angiogenic therapeutic targets in these breast cancers.
Collapse
Affiliation(s)
- K Danza
- Molecular Genetic Laboratory, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, Bari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Johannessen TCA, Wagner M, Straume O, Bjerkvig R, Eikesdal HP. Tumor vasculature: the Achilles' heel of cancer? Expert Opin Ther Targets 2012; 17:7-20. [DOI: 10.1517/14728222.2013.730522] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
45
|
Buchanan CF, Szot CS, Wilson TD, Akman S, Metheny-Barlow LJ, Robertson JL, Freeman JW, Rylander MN. Cross-talk between endothelial and breast cancer cells regulates reciprocal expression of angiogenic factors in vitro. J Cell Biochem 2012; 113:1142-51. [PMID: 22095586 DOI: 10.1002/jcb.23447] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Reciprocal growth factor exchange between endothelial and malignant cells within the tumor microenvironment may directly stimulate neovascularization; however, the role of host vasculature in regulating tumor cell activity is not well understood. While previous studies have examined the angiogenic response of endothelial cells to tumor-secreted factors, few have explored tumor response to endothelial cells. Using an in vitro co-culture system, we investigated the influence of endothelial cells on the angiogenic phenotype of breast cancer cells. Specifically, VEGF, ANG1, and ANG2 gene and protein expression were assessed. When co-cultured with microvascular endothelial cells (HMEC-1), breast cancer cells (MDA-MB-231) significantly increased expression of ANG2 mRNA (20-fold relative to MDA-MB-231 monoculture). Moreover, MDA-MB-231/HMEC-1 co-cultures produced significantly increased levels of ANG2 (up to 580 pg/ml) and VEGF protein (up to 38,400 pg/ml) while ANG1 protein expression was decreased relative to MDA-MB-231 monocultures. Thus, the ratio of ANG1:ANG2 protein, a critical indicator of neovascularization, shifted in favor of ANG2, a phenomenon known to correlate with vessel destabilization and sprouting in vivo. This angiogenic response was not observed in nonmalignant breast epithelial cells (MCF-10A), where absolute protein levels of MCF-10A/HMEC-1 co-cultures were an order of magnitude less than that of the MDA-MB-231/HMEC-1 co-cultures. Results were further verified with a functional angiogenesis assay demonstrating well-defined microvascular endothelial cell (TIME) tube formation when cultured in media collected from MDA-MB-231/HMEC-1 co-cultures. This study demonstrates that the angiogenic activity of malignant mammary epithelial cells is significantly enhanced by the presence of endothelial cells.
Collapse
Affiliation(s)
- Cara F Buchanan
- Virginia Tech - Wake Forest University School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Pericytes on the tumor vasculature: jekyll or hyde? CANCER MICROENVIRONMENT 2012; 6:1-17. [PMID: 22467426 DOI: 10.1007/s12307-012-0102-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 03/08/2012] [Indexed: 12/15/2022]
Abstract
The induction of tumor vasculature, known as the 'angiogenic switch', is a rate-limiting step in tumor progression. Normal blood vessels are composed of two distinct cell types: endothelial cells which form the channel through which blood flows, and mural cells, the pericytes and smooth muscle cells which serve to support and stabilize the endothelium. Most functional studies have focused on the responses of endothelial cells to pro-angiogenic stimuli; however, there is mounting evidence that the supporting mural cells, particularly pericytes, may play key regulatory roles in both promoting vessel growth as well as terminating vessel growth to generate a mature, quiescent vasculature. Tumor vessels are characterized by numerous structural and functional abnormalities, including altered association between endothelial cells and pericytes. These dysfunctional, unstable vessels contribute to hypoxia, interstitial fluid pressure, and enhanced susceptibility to metastatic invasion. Increasing evidence points to the pericyte as a critical regulator of endothelial activation and subsequent vessel development, stability, and function. Here we discuss both the stimulatory and inhibitory effects of pericytes on the vasculature and the possible utilization of vessel normalization as a therapeutic strategy to combat cancer.
Collapse
|
47
|
Shang B, Cao Z, Zhou Q. Progress in tumor vascular normalization for anticancer therapy: challenges and perspectives. Front Med 2012; 6:67-78. [PMID: 22460450 DOI: 10.1007/s11684-012-0176-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Accepted: 11/16/2011] [Indexed: 02/07/2023]
Abstract
Antitumor angiogenic therapy has been shown promising in the treatment of several advanced cancers since the approval of the first antiangiogenic drug Avastin in 2004. Although the current antiangiogenic drugs reduce the density of tumor blood vessels and result in tumor shrinkage at the early stage of treatment, recent studies have shown that antiangiogenic therapy has transient and insufficient efficacy, resulting in tumor recurrence in patients after several months of treatment. Blockage of blood and oxygen supplies creates a hypoxic and acidic microenvironment in the tumor tissues, which fosters tumor cells to become more aggressive and metastatic. In 2001, Jain proposed tumor vascular normalization as an alternative approach to treating cancers based on the pioneering work on tumor blood vessels by several other researchers. At present, normalizing the disorganized tumor vasculature, rather than disrupting or blocking them, has emerged as a new option for anticancer therapy. Preclinical and clinical data have shown that tumor vascular normalization using monoclonal antibodies, proteins, peptides, small molecules, and pericytes resulted in decreased tumor size and reduced metastasis. However, current tumor vascular normalizing drugs display moderate anticancer efficacy. Accumulated data have shown that a variety of vasculogenic/angiogenic tumor cells and genes play important roles in tumor neovascularization, growth, and metastasis. Therefore, multiple-targeting of vasculogenic tumor cells and genes may improve the efficacy of tumor vascular normalization. To this end, the combination of antiangiogenic drugs with tumor vascular normalizing therapeutics, as well as the integration of Western medicine with traditional Chinese medicine, may provide a good opportunity for discovering novel tumor vascular normalizing drugs for an effective anticancer therapy.
Collapse
Affiliation(s)
- Bingxue Shang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou 215123, China
| | | | | |
Collapse
|
48
|
Ricciardi C, Canavese G, Castagna R, Ferrante I, Ricci A, Marasso SL, Napione L, Bussolino F. Integration of microfluidic and cantilever technology for biosensing application in liquid environment. Biosens Bioelectron 2010; 26:1565-70. [DOI: 10.1016/j.bios.2010.07.114] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 07/09/2010] [Accepted: 07/29/2010] [Indexed: 10/19/2022]
|
49
|
Vizio B, Novarino A, Giacobino A, Cristiano C, Prati A, Brondino G, Ciuffreda L, Bellone G. Pilot study to relate clinical outcome in pancreatic carcinoma and angiogenic plasma factors/circulating mature/progenitor endothelial cells: Preliminary results. Cancer Sci 2010; 101:2448-54. [PMID: 20950371 PMCID: PMC11158513 DOI: 10.1111/j.1349-7006.2010.01692.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Circulating endothelial cells (CEC) and bone marrow-derived endothelial progenitors (ECP) play important roles in tumor growth and have been proposed as non-invasive markers of angiogenesis. However, CEC and ECP levels have not been investigated in pancreatic carcinoma patients. Using four-color flow cytometry procedures, we evaluated the count of resting (rCEC) and activated (aCEC) endothelial cells and ECP in the peripheral blood of pancreatic carcinoma patients before and after chemotherapy, consisting of gemcitabine (GEM) alone or in combination with oxaliplatin (OX), or with 5-fluorouracil (5-FU). We also correlated CEC and ECP levels with plasma levels of relevant angiogenic factors, such as vascular endothelial growth factor (VEGF)-A, VEGF-D, angiopoietin (Angio)-1, and chemokine C-X-C motif ligand (CXCL)12, measured by ELISA, and with clinical features of pancreatic cancer. The aCEC, rCEC, ECP, and VEGF-A plasma levels were significantly higher in locally-advanced and metastatic patients than controls. Both ECP and VEGF-A levels correlated positively with disease stage and inversely with patient's overall survival. Measurements after the treatment course showed that VEGF-A plasma concentrations and ECP counts had decreased significantly. In particular, VEGF-A and rCEC were significantly down after treatment with GEM alone or in combination with OX. No significant differences in terms of circulating angiogenic factor or endothelial cell subtype levels were found between responders (patients entering partial remission or with stable disease) and non-responders (patients with progressive disease). The study provides insights into angiogenesis mechanisms in pancreatic carcinoma, for which anti-angiogenic targeting of VEGF-A and ECP could be of interest.
Collapse
Affiliation(s)
- Barbara Vizio
- Department of Clinical Physiopathology, University of Turin, Turin, Italy
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Chade AR, Zhu X, Krier JD, Jordan KL, Textor SC, Grande JP, Lerman A, Lerman LO. Endothelial progenitor cells homing and renal repair in experimental renovascular disease. Stem Cells 2010; 28:1039-47. [PMID: 20506499 PMCID: PMC2958683 DOI: 10.1002/stem.426] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tissue injury triggers reparative processes that often involve endothelial progenitor cells (EPCs) recruitment. We hypothesized that atherosclerotic renal artery stenosis (ARAS) activates homing signals that would be detectable in both the kidney and EPCs, and attenuated on renal repair using selective cell-based therapy. Pigs were treated with intrarenal autologous EPC after 6 weeks of ARAS. Four weeks later, expression of homing-related signals in EPC and kidney, single kidney function, microvascular (MV) density, and morphology were compared with untreated ARAS and normal control pigs (n = 7 each). Compared with normal EPC, EPC from ARAS pigs showed increased stromal cell-derived factor (SDF)-1, angiopoietin-1, Tie-2, and c-kit expression, but downregulation of erythropoietin (EPO) and its receptor. The ARAS kidney released the c-kit-ligand stem cell factor, uric acid, and EPO, and upregulated integrin beta2, suggesting activation of corresponding homing signaling. However, angiopoietin-1 and SDF-1/CXCR4 were not elevated. Administration of EPC into the stenotic kidney restored angiogenic activity, improved MV density, renal hemodynamics and function, decreased fibrosis and oxidative stress, and attenuated endogenous injury signals. The ARAS kidney releases specific homing signals corresponding to cognate receptors expressed by EPC. EPC show plasticity for organ-specific recruitment strategies, which are upregulated in early atherosclerosis. EPC are renoprotective as they attenuated renal dysfunction and damage in chronic ARAS, and consequently decreased the injury signals. Importantly, manipulation of homing signals may potentially allow therapeutic opportunities to increase endogenous EPC recruitment.
Collapse
Affiliation(s)
| | - Xiangyang Zhu
- The Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| | - James D. Krier
- The Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| | - Kyra L Jordan
- The Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| | - Stephen C. Textor
- The Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| | | | - Amir Lerman
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Lilach O. Lerman
- The Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
- The Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| |
Collapse
|