1
|
Cong Y, Wu Y, Liu Y, Ai Y, Wang X, Wei C, Ding H, Xu G, Sun W. TCDD inhibits the proliferation of C17.2 cells through the activation of the c-Cbl/β-catenin signaling pathway. Toxicol In Vitro 2025; 104:106014. [PMID: 39880321 DOI: 10.1016/j.tiv.2025.106014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/23/2024] [Accepted: 01/26/2025] [Indexed: 01/31/2025]
Abstract
2,3,7,8-tetrachlordibenzo-p-dioxin (TCDD) belongs to the category of persistent environmental pollutants, and gestational exposure to TCDD can lead to cognitive, memory, and motor deficits, as well as altered neuron development in rodents. However, the molecular mechanisms underlying TCDD's neurotoxicity remain unclear. Neural stem cells (NSCs) possess the capacity for self-renewal and can generate various cell types within the brain, playing fundamental roles in brain development and regeneration. This study investigated the impact of TCDD on the proliferation of mouse NSCs, specifically focusing on the C17.2 cell line. The results demonstrated that TCDD inhibited the proliferation of C17.2 cells in a dose-dependent manner. Even low doses of TCDD (5 nM) significantly reduced C17.2 cell proliferation. Regarding the molecular mechanisms, it was found that TCDD induced the degradation of β-catenin, a key regulator of cell proliferation, through the upregulation of the E3 ubiquitin ligase, casitas B-lineage lymphoma (c-Cbl), which was dependent on the aryl-hydrocarbon Receptor (AhR). Furthermore, knockdown of c-Cbl alleviated the TCDD-induced inhibition of C17.2 proliferation and of the reduction of β-catenin expression. Our research provides foundational data to understand the mechanism of TCDD-induced neurotoxicity through the inhibition of NSCs proliferation, and suggests that the c-cbl/β-catenin pathway may serve as a potential therapeutic target for countering the neurotoxicants of TCDD.
Collapse
Affiliation(s)
- Yewen Cong
- School of Public Health, Nantong University, Nantong 226019, Jiangsu, China; Affiliated Matern & Care Hospital, Nantong University, Nantong 226007, Jiangsu, China
| | - Yue Wu
- School of Public Health, Nantong University, Nantong 226019, Jiangsu, China
| | - Yue Liu
- School of Public Health, Nantong University, Nantong 226019, Jiangsu, China
| | - Yongjun Ai
- School of Public Health, Nantong University, Nantong 226019, Jiangsu, China
| | - Xiping Wang
- School of Public Health, Nantong University, Nantong 226019, Jiangsu, China
| | - Chunxi Wei
- School of Public Health, Nantong University, Nantong 226019, Jiangsu, China
| | - Haoyu Ding
- School of Public Health, Nantong University, Nantong 226019, Jiangsu, China
| | - Guangfei Xu
- School of Public Health, Nantong University, Nantong 226019, Jiangsu, China.
| | - Wenxing Sun
- School of Public Health, Nantong University, Nantong 226019, Jiangsu, China.
| |
Collapse
|
2
|
Puranik N, Jung H, Song M. SPROUTY2, a Negative Feedback Regulator of Receptor Tyrosine Kinase Signaling, Associated with Neurodevelopmental Disorders: Current Knowledge and Future Perspectives. Int J Mol Sci 2024; 25:11043. [PMID: 39456824 PMCID: PMC11507918 DOI: 10.3390/ijms252011043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Growth-factor-induced cell signaling plays a crucial role in development; however, negative regulation of this signaling pathway is important for sustaining homeostasis and preventing diseases. SPROUTY2 (SPRY2) is a potent negative regulator of receptor tyrosine kinase (RTK) signaling that binds to GRB2 during RTK activation and inhibits the GRB2-SOS complex, which inhibits RAS activation and attenuates the downstream RAS/ERK signaling cascade. SPRY was formerly discovered in Drosophila but was later discovered in higher eukaryotes and was found to be connected to many developmental abnormalities. In several experimental scenarios, increased SPRY2 protein levels have been observed to be involved in both peripheral and central nervous system neuronal regeneration and degeneration. SPRY2 is a desirable pharmaceutical target for improving intracellular signaling activity, particularly in the RAS/ERK pathway, in targeted cells because of its increased expression under pathological conditions. However, the role of SPRY2 in brain-derived neurotrophic factor (BDNF) signaling, a major signaling pathway involved in nervous system development, has not been well studied yet. Recent research using a variety of small-animal models suggests that SPRY2 has substantial therapeutic promise for treating a range of neurological conditions. This is explained by its function as an intracellular ERK signaling pathway inhibitor, which is connected to a variety of neuronal activities. By modifying this route, SPRY2 may open the door to novel therapeutic approaches for these difficult-to-treat illnesses. This review integrates an in-depth analysis of the structure of SPRY2, the role of its major interactive partners in RTK signaling cascades, and their possible mechanisms of action. Furthermore, this review highlights the possible role of SPRY2 in neurodevelopmental disorders, as well as its future therapeutic implications.
Collapse
Affiliation(s)
| | | | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea; (N.P.); (H.J.)
| |
Collapse
|
3
|
Lee CY, The M, Meng C, Bayer FP, Putzker K, Müller J, Streubel J, Woortman J, Sakhteman A, Resch M, Schneider A, Wilhelm S, Kuster B. Illuminating phenotypic drug responses of sarcoma cells to kinase inhibitors by phosphoproteomics. Mol Syst Biol 2024; 20:28-55. [PMID: 38177929 PMCID: PMC10883282 DOI: 10.1038/s44320-023-00004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 11/06/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Kinase inhibitors (KIs) are important cancer drugs but often feature polypharmacology that is molecularly not understood. This disconnect is particularly apparent in cancer entities such as sarcomas for which the oncogenic drivers are often not clear. To investigate more systematically how the cellular proteotypes of sarcoma cells shape their response to molecularly targeted drugs, we profiled the proteomes and phosphoproteomes of 17 sarcoma cell lines and screened the same against 150 cancer drugs. The resulting 2550 phenotypic profiles revealed distinct drug responses and the cellular activity landscapes derived from deep (phospho)proteomes (9-10,000 proteins and 10-27,000 phosphorylation sites per cell line) enabled several lines of analysis. For instance, connecting the (phospho)proteomic data with drug responses revealed known and novel mechanisms of action (MoAs) of KIs and identified markers of drug sensitivity or resistance. All data is publicly accessible via an interactive web application that enables exploration of this rich molecular resource for a better understanding of active signalling pathways in sarcoma cells, identifying treatment response predictors and revealing novel MoA of clinical KIs.
Collapse
Affiliation(s)
- Chien-Yun Lee
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Matthew The
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Chen Meng
- Bavarian Biomolecular Mass Spectrometry Center (BayBioMS), Technical University of Munich, Freising, Germany
| | - Florian P Bayer
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Kerstin Putzker
- Chemical Biology Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | - Julian Müller
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Johanna Streubel
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Julia Woortman
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Amirhossein Sakhteman
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Moritz Resch
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Annika Schneider
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Stephanie Wilhelm
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany.
- Bavarian Biomolecular Mass Spectrometry Center (BayBioMS), Technical University of Munich, Freising, Germany.
- German Cancer Consortium (DKTK), partner site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
4
|
Dosquet H, Neirinckx V, Meyrath M, Wantz M, Haan S, Niclou SP, Szpakowska M, Chevigné A. Nanoluciferase-based complementation assays to monitor activation, modulation and signaling of receptor tyrosine kinases (RTKs). Methods Enzymol 2023; 682:1-16. [PMID: 36948698 DOI: 10.1016/bs.mie.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Receptor tyrosine kinases (RTKs) are transmembrane receptors activated by a wide diversity of growth factors, cytokines or hormones. They ensure multiple roles in cellular processes, including proliferation, differentiation and survival. They are also crucial drivers of development and progression of multiple cancer types, and represent important drug targets. Generally, ligand binding induces dimerization of RTK monomers, which induces auto-/transphosphorylation of tyrosine residues on the intracellular tails leading to the recruitment of adaptor proteins and modifying enzymes to promote and modulate various downstream signaling pathways. This chapter details easy, rapid, sensitive and versatile methods based on split Nanoluciferase complementation technology (NanoBiT) to monitor activation and modulation of two models of RTKs (EGFR and AXL) through the measurement of their dimerization and the recruitment of the adaptor protein Grb2 (SH2 domain-containing growth factor receptor-bound protein 2) and the receptor-modifying enzyme, the ubiquitin ligase Cbl.
Collapse
Affiliation(s)
- Hugo Dosquet
- Department of Cancer Research, NORLUX Neuro-Oncology Laboratory, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Virginie Neirinckx
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Liège, Belgium
| | - Max Meyrath
- Department of Infection and Immunity, Immunopharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - May Wantz
- Department of Infection and Immunity, Immunopharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Serge Haan
- Faculty of Science, Technology and Medicine, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Simone P Niclou
- Department of Cancer Research, NORLUX Neuro-Oncology Laboratory, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg; Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Martyna Szpakowska
- Department of Infection and Immunity, Immunopharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Andy Chevigné
- Department of Infection and Immunity, Immunopharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
5
|
Tang R, Langdon WY, Zhang J. Negative regulation of receptor tyrosine kinases by ubiquitination: Key roles of the Cbl family of E3 ubiquitin ligases. Front Endocrinol (Lausanne) 2022; 13:971162. [PMID: 35966060 PMCID: PMC9365936 DOI: 10.3389/fendo.2022.971162] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) serve as transmembrane receptors that participate in a broad spectrum of cellular processes including cellular growth, motility, differentiation, proliferation, and metabolism. Hence, elucidating the regulatory mechanisms of RTKs involved in an assortment of diseases such as cancers attracts increasing interest from researchers. Members of the Cbl family ubiquitin ligases (c-Cbl, Cbl-b and Cbl-c in mammals) have emerged as negative regulators of activated RTKs. Upon activation of RTKs by growth factors, Cbl binds to RTKs via its tyrosine kinase binding (TKB) domain and targets them for ubiquitination, thus facilitating their degradation and negative regulation of RTK signaling. RTKs such as epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGF), fibroblast growth factor receptor (FGFR) and hepatocyte growth factor receptor (HGFR) undergo ubiquitination upon interaction with Cbl family members. In this review, we summarize the current knowledge related to the negative regulation of RTKs by Cbl family proteins.
Collapse
Affiliation(s)
- Rong Tang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Wallace Y. Langdon
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Jian Zhang
- Department of Pathology, The University of Iowa, Iowa City, IA, United States
- *Correspondence: Jian Zhang,
| |
Collapse
|
6
|
Xia W, Xie J, Cai Z, Liu X, Wen J, Cui ZK, Zhao R, Zhou X, Chen J, Mao X, Gu Z, Zou Z, Zou Z, Zhang Y, Zhao M, Mac M, Song Q, Bai X. Damaged brain accelerates bone healing by releasing small extracellular vesicles that target osteoprogenitors. Nat Commun 2021; 12:6043. [PMID: 34654817 PMCID: PMC8519911 DOI: 10.1038/s41467-021-26302-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 09/27/2021] [Indexed: 01/15/2023] Open
Abstract
Clinical evidence has established that concomitant traumatic brain injury (TBI) accelerates bone healing, but the underlying mechanism is unclear. This study shows that after TBI, injured neurons, mainly those in the hippocampus, release osteogenic microRNA (miRNA)-enriched small extracellular vesicles (sEVs), which targeted osteoprogenitors in bone to stimulate bone formation. We show that miR-328a-3p and miR-150-5p, enriched in the sEVs after TBI, promote osteogenesis by directly targeting the 3'UTR of FOXO4 or CBL, respectively, and hydrogel carrying miR-328a-3p-containing sEVs efficiently repaires bone defects in rats. Importantly, increased fibronectin expression on sEVs surface contributes to targeting of osteoprogenitors in bone by TBI sEVs, thereby implying that modification of the sEVs surface fibronectin could be used in bone-targeted drug delivery. Together, our work unveils a role of central regulation in bone formation and a clear link between injured neurons and osteogenitors, both in animals and clinical settings.
Collapse
Affiliation(s)
- Wei Xia
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jing Xie
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhiqing Cai
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xuhua Liu
- State Key Laboratory of Organ Failure Research, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510630, China
| | - Jing Wen
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhong-Kai Cui
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Run Zhao
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaomei Zhou
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiahui Chen
- State Key Laboratory of Organ Failure Research, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510630, China
| | - Xinru Mao
- Department of Clinical laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhengtao Gu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation Research, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhimin Zou
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation Research, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhipeng Zou
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yue Zhang
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ming Zhao
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation Research, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Maegele Mac
- Institute for Research in Operative Medicine, Private University of Witten-Herdecke, Cologne Merheim Medical Center, Ostmerheimerstr 200, D-51109, Cologne, Germany
| | - Qiancheng Song
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Xiaochun Bai
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
7
|
Koivu MKA, Chakroborty D, Tamirat MZ, Johnson MS, Kurppa KJ, Elenius K. Identification of Predictive ERBB Mutations by Leveraging Publicly Available Cell Line Databases. Mol Cancer Ther 2020; 20:564-576. [PMID: 33323455 DOI: 10.1158/1535-7163.mct-20-0590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/24/2020] [Accepted: 12/07/2020] [Indexed: 11/16/2022]
Abstract
Although targeted therapies can be effective for a subgroup of patients, identification of individuals who benefit from the treatments is challenging. At the same time, the predictive significance of the majority of the thousands of mutations observed in the cancer tissues remains unknown. Here, we describe the identification of novel predictive biomarkers for ERBB-targeted tyrosine kinase inhibitors (TKIs) by leveraging the genetic and drug screening data available in the public cell line databases: Cancer Cell Line Encyclopedia, Genomics of Drug Sensitivity in Cancer, and Cancer Therapeutics Response Portal. We assessed the potential of 412 ERBB mutations in 296 cell lines to predict responses to 10 different ERBB-targeted TKIs. Seventy-six ERBB mutations were identified that were associated with ERBB TKI sensitivity comparable with non-small cell lung cancer cell lines harboring the well-established predictive EGFR L858R mutation or exon 19 deletions. Fourteen (18.4%) of these mutations were classified as oncogenic by the cBioPortal database, whereas 62 (81.6%) were regarded as novel potentially predictive mutations. Of the nine functionally validated novel mutations, EGFR Y1069C and ERBB2 E936K were transforming in Ba/F3 cells and demonstrated enhanced signaling activity. Mechanistically, the EGFR Y1069C mutation disrupted the binding of the ubiquitin ligase c-CBL to EGFR, whereas the ERBB2 E936K mutation selectively enhanced the activity of ERBB heterodimers. These findings indicate that integrating data from publicly available cell line databases can be used to identify novel, predictive nonhotspot mutations, potentially expanding the patient population benefiting from existing cancer therapies.
Collapse
Affiliation(s)
- Marika K A Koivu
- Institute of Biomedicine, and Medicity Research Laboratories, University of Turku, Turku, Finland.,Turku Doctoral Programme of Molecular Medicine, Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Deepankar Chakroborty
- Institute of Biomedicine, and Medicity Research Laboratories, University of Turku, Turku, Finland.,Turku Doctoral Programme of Molecular Medicine, Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Mahlet Z Tamirat
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Mark S Johnson
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Kari J Kurppa
- Institute of Biomedicine, and Medicity Research Laboratories, University of Turku, Turku, Finland
| | - Klaus Elenius
- Institute of Biomedicine, and Medicity Research Laboratories, University of Turku, Turku, Finland. .,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Department of Oncology, Turku University Hospital, Turku, Finland
| |
Collapse
|
8
|
Systematic identification of CDC34 that functions to stabilize EGFR and promote lung carcinogenesis. EBioMedicine 2020; 53:102689. [PMID: 32114396 PMCID: PMC7047192 DOI: 10.1016/j.ebiom.2020.102689] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/24/2022] Open
Abstract
Background How the oncoprotein epidermal growth factor receptor (EGFR) evades proteolytic degradation and accumulates in non-small cell lung cancer (NSCLC) remains unclear, and ubiquitin pathway genes (UPGs) that are critical to NSCLC needs to be systematically identified. Methods A total of 696 UPGs (including E1, E2, E3, and deubiquitinases) were silenced by small interfering RNA (siRNA) library in NSCLC cells, the candidates were verified, and their significance was evaluated in patients with NSCLC. The effects of a candidate gene on EGFR were investigated in vitro and in vivo. Findings We report 31 candidates that are required for cell proliferation, with the E2 ubiquitin conjugase CDC34 as the most significant one. CDC34 is elevated in tumor tissues in 76 of 114 (66.7%) NSCLCs and inversely associated with prognosis, is higher in smoker patients than nonsmoker patients, and is induced by tobacco carcinogens in normal human lung epithelial cells. Forced expression of CDC34 promotes, whereas knockdown of CDC34 inhibits, NSCLC cell proliferation in vitro and in vivo. CDC34 competes with c-Cbl to bind Y1045 to inhibit polyubiquitination and degradation of EGFR. In EGFR-L858R and EGFR-T790M/Del (exon 19)-driven lung tumor growth in mouse models, knockdown of CDC34 significantly inhibits tumor formation. Interpretation These results demonstrate that an E2 enzyme is capable of competing with E3 ligase to stabilize substrates, and CDC34 represents an attractive therapeutic target for NSCLCs. Funding National Key Research and Development Program of China, National Natural Science Foundation of China, and the CAMS Innovation Fund for Medical Sciences.
Collapse
|
9
|
Li Q, Liu B, Chao HP, Ji Y, Lu Y, Mehmood R, Jeter C, Chen T, Moore JR, Li W, Liu C, Rycaj K, Tracz A, Kirk J, Calhoun-Davis T, Xiong J, Deng Q, Huang J, Foster BA, Gokhale A, Chen X, Tang DG. LRIG1 is a pleiotropic androgen receptor-regulated feedback tumor suppressor in prostate cancer. Nat Commun 2019; 10:5494. [PMID: 31792211 PMCID: PMC6889295 DOI: 10.1038/s41467-019-13532-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
LRIG1 has been reported to be a tumor suppressor in gastrointestinal tract and epidermis. However, little is known about the expression, regulation and biological functions of LRIG1 in prostate cancer (PCa). We find that LRIG1 is overexpressed in PCa, but its expression correlates with better patient survival. Functional studies reveal strong tumor-suppressive functions of LRIG1 in both AR+ and AR- xenograft models, and transgenic expression of LRIG1 inhibits tumor development in Hi-Myc and TRAMP models. LRIG1 also inhibits castration-resistant PCa and exhibits therapeutic efficacy in pre-established tumors. We further show that 1) AR directly transactivates LRIG1 through binding to several AR-binding sites in LRIG1 locus, and 2) LRIG1 dampens ERBB expression in a cell type-dependent manner and inhibits ERBB2-driven tumor growth. Collectively, our study indicates that LRIG1 represents a pleiotropic AR-regulated feedback tumor suppressor that functions to restrict oncogenic signaling from AR, Myc, ERBBs, and, likely, other oncogenic drivers.
Collapse
Affiliation(s)
- Qiuhui Li
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, 430079, Wuhan, China
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Bigang Liu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Hsueh-Ping Chao
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Yibing Ji
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Rashid Mehmood
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Collene Jeter
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - John R Moore
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Wenqian Li
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Can Liu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Kiera Rycaj
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Amanda Tracz
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Jason Kirk
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Tammy Calhoun-Davis
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Jie Xiong
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Qu Deng
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Jiaoti Huang
- Department of Pathology, Duke University of School of Medicine, Durham, NC, 27710, USA
| | - Barbara A Foster
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Abhiram Gokhale
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Xin Chen
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA.
- Department of Oncology, Tongji Hospital, Tongji Medical School, Huazhong University of Science and Technology (HUST), 430030, Wuhan, China.
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA.
- Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, 200120, Shanghai, China.
| |
Collapse
|
10
|
Hoesl C, Fröhlich T, Hundt JE, Kneitz H, Goebeler M, Wolf R, Schneider MR, Dahlhoff M. The transmembrane protein LRIG2 increases tumor progression in skin carcinogenesis. Mol Oncol 2019; 13:2476-2492. [PMID: 31580518 PMCID: PMC6822252 DOI: 10.1002/1878-0261.12579] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/18/2019] [Accepted: 10/01/2019] [Indexed: 01/23/2023] Open
Abstract
Over the last few decades, the number of cases of non‐melanoma skin cancer (NMSC) has risen to over 3 million cases every year worldwide. Members of the ERBB receptor family are important regulators of skin development and homeostasis and, when dysregulated, contribute to skin pathogenesis. In this study, we investigated leucine‐rich repeats and immunoglobulin‐like domains 2 (LRIG2), a transmembrane protein involved in feedback loop regulation of the ERBB receptor family during NMSC. LRIG2 was identified to be up‐regulated in various types of squamous cell carcinoma (SCC), but little is known about LRIG2 in cutaneous SCC (cSCC). To investigate the function of LRIG2 in cSCC in vivo, we generated a skin‐specific LRIG2 overexpressing transgenic mouse line (LRIG2‐TG) using the Tet‐Off system. We employed the 7,12‐dimethylbenz(a)anthracene/12‐O‐tetra‐decanoylphorbol‐13‐acetate (DMBA/TPA) two‐stage chemical carcinogenesis model and analyzed the skin during homeostasis and tumorigenesis. LRIG2‐TG mice did not exhibit alterations in skin development or homeostasis but showed an interaction between LRIG2 and thrombospondin‐1, which is often involved in angiogenesis and tumorigenesis. However, during carcinogenesis, transgenic animals showed significantly increased tumor progression and a more rapid development of cSCC. This was accompanied by changes in the ERBB system. After a single TPA application, inflammation of the epidermis was enhanced during LRIG2 overexpression. In human skin samples, LRIG2 expression was identified in the basal layer of the epidermis and in hair follicles of normal skin, but also in cSCC samples. In conclusion, epidermal LRIG2 excess is associated with activated EGFR/ERBB4‐MAPK signaling and accelerated tumor progression in experimentally induced NMSC, suggesting LRIG2 as a potential oncoprotein in skin.
Collapse
Affiliation(s)
- Christine Hoesl
- Institute of Molecular Animal Breeding and BiotechnologyGene CenterLMU MünchenGermany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA)Gene CenterLMU MünchenGermany
| | - Jennifer E. Hundt
- Lübeck Institute for Experimental DermatologyUniversität zu LübeckGermany
| | - Hermann Kneitz
- Klinik und Poliklinik für Dermatologie, Venerologie und AllergologieUniversitätsklinikum WürzburgGermany
| | - Matthias Goebeler
- Klinik und Poliklinik für Dermatologie, Venerologie und AllergologieUniversitätsklinikum WürzburgGermany
| | - Ronald Wolf
- Department of Dermatology und AllergologyPhilipps UniversityMarburgGermany
| | - Marlon R. Schneider
- Institute of Molecular Animal Breeding and BiotechnologyGene CenterLMU MünchenGermany
| | - Maik Dahlhoff
- Institute of Molecular Animal Breeding and BiotechnologyGene CenterLMU MünchenGermany
| |
Collapse
|
11
|
Lee N, Lee J, Lee SH, Kim S, Kim S. Disproportionately high levels of HGF induce the degradation of the c-met receptor through the proteasomal degradation pathway. Biochem Biophys Res Commun 2018; 505:925-930. [PMID: 30309648 DOI: 10.1016/j.bbrc.2018.09.127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 09/20/2018] [Indexed: 12/31/2022]
Abstract
Hepatocyte growth factor (HGF) receptor is a member of the receptor tyrosine kinases (RTKs) and has been reported to perform diverse functions in various cell types during both the developmental and adult stages. Among different roles, HGF is best known for its angiogenic effects of inducing the migration of endothelial cells. Because angiogenesis is one of the prerequisite steps for tumor metastasis, HGF-dependent cell migration has to be tightly controlled. However, the underlying mechanisms regulating the optimum level of HGF/c-met signaling have been poorly understood. In this study, we tested whether the migration of endothelial cells is regulated by a negative feedback mechanism under disproportionately large amounts of HGF. Data from endothelial cell migration assays showed that HGF activity increased as its concentration increased, but declined beyond a certain point. Under limiting conditions, amounts of phosphorylated Erk and Akt surged, reaching a plateau in which the enhanced level was more or less maintained. The c-met receptor was degraded when unnecessarily large amounts of HGF were present. Under these conditions, HGF could no longer activate downstream signaling pathways even if cells were re-treated with optimal amounts of HGF. Excessive doses of HGF increased the phosphorylation of tyrosine residue 1003 involved in the ubiquitination of c-met, and phosphorylated c-met was diverted toward the proteasomal degradation pathway. Taken together, HGF/c-met signaling is tightly regulated by a negative feedback loop through an ubiquitin-proteasomal degradation pathway.
Collapse
Affiliation(s)
- Nayeon Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea; R&D Center for Innovative Medicines, Viromed Co Ltd, Seoul, South Korea
| | - Junghun Lee
- R&D Center for Innovative Medicines, Viromed Co Ltd, Seoul, South Korea
| | - Sang Hwan Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Subin Kim
- R&D Center for Innovative Medicines, Viromed Co Ltd, Seoul, South Korea
| | - Sunyoung Kim
- R&D Center for Innovative Medicines, Viromed Co Ltd, Seoul, South Korea.
| |
Collapse
|
12
|
Pawlak A, Rejmak-Kozicka E, Gil KE, Ziemba A, Kaczmarek L, Gil RJ. Patterns of desmin expression in idiopathic dilated cardiomyopathy are related to the desmin mRNA and ubiquitin expression. J Investig Med 2018; 67:11-19. [PMID: 30097466 DOI: 10.1136/jim-2017-000707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2018] [Indexed: 12/28/2022]
Abstract
Desmin expression depends on desmin messenger RNA (mRNA) and ubiquitin proteasome system. This process is poorly understood in dilated cardiomyopathy. The aim of the study was to investigate whether changes of desmin mRNA and ubiquitin expression correlate with types of desmin expression in cardiomyocytes. Endomyocardial biopsy was performed in 60 patients (85% men, mean age 46±14 years) with heart failure (HF; left ventricular ejection fraction <45%). Desmin and ubiquitin expression were analysed in histological sections by immunohistochemistry and in Western blot. Desmin mRNA expression was determined by fluorescent in situ hybridization methods. In patients with weak/even desmin expression, weak/even expression of ubiquitin in the cytosol and low desmin mRNA expression in the cytosol and nuclei of cardiomyocytes were observed. Expression of ubiquitin and desmin mRNA increased along with the progression of desmin cytoskeleton remodeling. Desmin mRNA and ubiquitin were weakly expressed/absent in cardiomyocytes with low/lack of desmin expression. Variations in desmin mRNA, desmin and ubiquitin expression were associated with gradual changes in myocardial structure and clinical parameters. To conclude, changes in ubiquitin and desmin mRNA expression are related to patterns of desmin expression. An increase in the expression of ubiquitin and desmin mRNA may be a protective feature against unfavorable cell remodeling. This may reduce the adverse effects of cytoskeleton damage in the early stages of HF. Low/lack ubiquitin and/or desmin mRNA expression may be markers of end-stage HF.
Collapse
Affiliation(s)
- Agnieszka Pawlak
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.,Department of Invasive Cardiology, Central Clinical Hospital of the Ministry of Interior, Warsaw, Poland
| | - Emilia Rejmak-Kozicka
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Elżbieta Gil
- Department of Invasive Cardiology, Central Clinical Hospital of the Ministry of Interior, Warsaw, Poland
| | - Andrzej Ziemba
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Leszek Kaczmarek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Robert Julian Gil
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.,Department of Invasive Cardiology, Central Clinical Hospital of the Ministry of Interior, Warsaw, Poland
| |
Collapse
|
13
|
Deubiquitinating Enzymes and Bone Remodeling. Stem Cells Int 2018; 2018:3712083. [PMID: 30123285 PMCID: PMC6079350 DOI: 10.1155/2018/3712083] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/29/2018] [Indexed: 02/05/2023] Open
Abstract
Bone remodeling, which is essential for bone homeostasis, is controlled by multiple factors and mechanisms. In the past few years, studies have emphasized the role of the ubiquitin-dependent proteolysis system in regulating bone remodeling. Deubiquitinases, which are grouped into five families, remove ubiquitin from target proteins and are involved in several cell functions. Importantly, a number of deubiquitinases mediate bone remodeling through regulating differentiation and/or function of osteoblast and osteoclasts. In this review, we review the functions and mechanisms of deubiquitinases in mediating bone remodeling.
Collapse
|
14
|
Boopathy GTK, Lynn JLS, Wee S, Gunaratne J, Hong W. Phosphorylation of Mig6 negatively regulates the ubiquitination and degradation of EGFR mutants in lung adenocarcinoma cell lines. Cell Signal 2017; 43:21-31. [PMID: 29196224 DOI: 10.1016/j.cellsig.2017.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/16/2017] [Accepted: 11/27/2017] [Indexed: 12/29/2022]
Abstract
Activating mutations in the kinase domain of epidermal growth factor receptor (EGFR) leads to the constitutively active kinase, improves the EGFR stability and promotes malignant transformation in lung adenocarcinoma. Despite the clinical significance, the mechanism by which the increased kinase activity stabilizes the receptor is not completely understood. Using SILAC phosphoproteomic approach, we identify that Mig6 is highly phosphorylated at S256 in EGFR mutants (19del and L858R). Loss of Mig6 contributes to the efficient degradation of EGFR wildtype and mutants in lung cancer cells. Mig6 regulates the recruitment of c-Cbl to EGFR as the ablation of Mig6 enables efficient ubiquitination of the EGFR mutants through elevated recruitment of c-Cbl. We show that the cells with activating mutants of EGFR inactivate Mig6 through phosphorylation at S256. Inactivated Mig6 causes inefficient ubiquitination of EGFR, leading to defective degradation of the receptor thus contributing to the increased stability of the receptor. Taken together, we show a novel function of Mig6 in regulating the ubiquitination of EGFR.
Collapse
Affiliation(s)
- Gandhi T K Boopathy
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, 138673, Singapore.
| | - Julia Lim Sze Lynn
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Sheena Wee
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Jayantha Gunaratne
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, 138673, Singapore.
| |
Collapse
|
15
|
Smith G, Tomlinson D, Harrison M, Ponnambalam S. Chapter Eight - Ubiquitin-Mediated Regulation of Cellular Responses to Vascular Endothelial Growth Factors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 141:313-38. [DOI: 10.1016/bs.pmbts.2016.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Meabon JS, De Laat R, Ieguchi K, Wiley JC, Hudson MP, Bothwell M. LINGO-1 protein interacts with the p75 neurotrophin receptor in intracellular membrane compartments. J Biol Chem 2015; 290:9511-20. [PMID: 25666623 DOI: 10.1074/jbc.m114.608018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Indexed: 11/06/2022] Open
Abstract
Axon outgrowth inhibition in response to trauma is thought to be mediated via the binding of myelin-associated inhibitory factors (e.g. Nogo-66, myelin-associated glycoprotein, oligodendrocyte myelin glycoprotein, and myelin basic protein) to a putative tripartite LINGO-1·p75(NTR)·Nogo-66 receptor (NgR) complex at the cell surface. We found that endogenous LINGO-1 expression in neurons in the cortex and cerebellum is intracellular. Mutation or truncation of the highly conserved LINGO-1 C terminus altered this intracellular localization, causing poor intracellular retention and increased plasma membrane expression. p75(NTR) associated predominantly with natively expressed LINGO-1 containing immature N-glycans, characteristic of protein that has not completed trans-Golgi-mediated processing, whereas mutant forms of LINGO-1 with enhanced plasma membrane expression did not associate with p75(NTR). Co-immunoprecipitation experiments demonstrated that LINGO-1 and NgR competed for binding to p75(NTR) in a manner that is difficult to reconcile with the existence of a LINGO-1·p75(NTR)·NgR ternary complex. These findings contradict models postulating functional LINGO-1·p75(NTR)·NgR complexes in the plasma membrane.
Collapse
Affiliation(s)
- James S Meabon
- From the Departments of Psychiatry and Behavioral Sciences, the Mental Illness Research Education and Clinical Center, Veterans Affairs Medical Center, Seattle, Washington 98108
| | | | - Katsuaki Ieguchi
- the Department of Pharmacology, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | | | - Mark P Hudson
- Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| | - Mark Bothwell
- Physiology and Biophysics, University of Washington, Seattle, Washington 98195,
| |
Collapse
|
17
|
Saritas-Yildirim B, Silva EM. The role of targeted protein degradation in early neural development. Genesis 2014; 52:287-99. [PMID: 24623518 DOI: 10.1002/dvg.22771] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/05/2014] [Accepted: 03/07/2014] [Indexed: 11/08/2022]
Abstract
As neural stem cells differentiate into neurons during neurogenesis, the proteome of the cells is restructured by de novo expression and selective removal of regulatory proteins. The control of neurogenesis at the level of gene regulation is well documented and the regulation of protein abundance through protein degradation via the Ubiquitin/26S proteasome pathway is a rapidly developing field. This review describes our current understanding of the role of the proteasome pathway in neurogenesis. Collectively, the studies show that targeted protein degradation is an important regulatory mechanism in the generation of new neurons.
Collapse
|
18
|
Tushar MD, Ramanathan A. Tyrosine 1045 codon mutations in exon 27 of EGFR are infrequent in oral squamous cell carcinomas. Asian Pac J Cancer Prev 2014; 14:4279-82. [PMID: 23991943 DOI: 10.7314/apjcp.2013.14.7.4279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The activation and inactivation of receptor tyrosine kinases are tightly regulated to ensure faithful replication of cells. After having transduced extracellular growth activating signals, activated EGFR is subjected to downregulation either by clathrin mediated endocytosis or c-Cbl mediated proteasome degradation depending on the ligand concentration. c-Cbl is an ubiquitin ligase which requires a phosphorylated tyrosine residue at position 1045 in the cytoplasmic domain of EGFR to interact and add ubiquitin molecules. While activating mutations in exons 19 and 21 have been associated with the development of several cancers, the status of mutations at tyrosine 1045 coding exon 27 of EGFR remain to be investigated. Consistently, defective phosphorylation at 1045 has been associated with sustained phosphorylation of EGFR in non-small lung carcinomas. Hence in the present study we investigated the genetic status of the tyrosine 1045 coding site within exon 27 of EGFR gene to explore for possible occurrence of mutations in this region, especially since no studies have addressed this issue so far. MATERIALS AND METHODS Tumor chromosomal DNA isolated from thirty five surgically excised oral squamous cell carcinoma tissues was subjected to PCR amplification with intronic primers flanking the tyrosine 1045 coding exon 27 of EGFR gene. The PCR amplicons were subsequently subjected to direct sequencing to elucidate the mutation status. RESULTS Sequence analysis identified no mutations in the tyrosine 1045 codon of EGFR in any of the thirty five samples that were analyzed. CONCLUSIONS The lack of identification of mutation in the tyrosine 1045 codon of EGFR suggests that mutations in this region may be relatively rare in oral squamous cell carcinomas. To the best of our knowledge, this study is the first to have explored the genetic status of exon 27 of EGFR in oral squamous cell carcinoma tissue samples.
Collapse
Affiliation(s)
- Mehta Dhaval Tushar
- Human Genetics Laboratory, Sree Balaji Medical and Dental College and Hospital, Bharath University, Chennai, India.
| | | |
Collapse
|
19
|
Rizzi SC, Upton Z, Bott K, Dargaville TR. Recent advances in dermal wound healing: biomedical device approaches. Expert Rev Med Devices 2014; 7:143-54. [DOI: 10.1586/erd.09.57] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Angiopoietin 1 and angiopoietin 2 are associated with medial thickening of hepatic arterial branches in biliary atresia. Pediatr Res 2014; 75:22-8. [PMID: 24126820 DOI: 10.1038/pr.2013.177] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 06/04/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND Biliary atresia (BA) is an infantile disorder characterized by progressive sclerosing cholangiopathy leading to biliary obstruction. First-line treatment of BA is hepatoportoenterostomy, the prognosis of which is related to age at surgery and to histological variables such as extent of fibrosis and ductular reaction. Hepatic arterial medial thickening (MT) suggests an arteriopathy in BA pathogenesis. We evaluated the expression of angiopoietin (ANGPT)/tyrosine kinase with immunoglobulin-like and epidermal growth factor-like domains 2 (TIE2) system in liver samples obtained from patients with BA, correlating it with MT, variables associated with disease severity, and postoperative prognosis. METHODS ANGPT1, ANGPT2, and TIE2 expression levels were assessed by quantitative PCR in liver samples obtained from BA patients (n = 23) at portoenterostomy and age-matched infants with intrahepatic cholestasis (IHC; n = 7). Histological variables were morphometrically assessed. RESULTS ANGPT1 and ANGPT2 were overexpressed in BA in comparison with IHC (P = 0.024 and P = 0.029, respectively). In BA, ANGPTs expression was positively correlated with MT (ANGPT1: rs = 0.59, P = 0.013; ANGPT2: rs = 0.52, P = 0.032), not with the variables associated with disease severity. TIE2 and ANGPTs expression levels were negatively correlated (ANGPT1: rs = -0.73, P < 0.001; ANGPT2: rs = -0.54, P = 0.007). CONCLUSION In BA, there is overexpression of both ANGPT1 and ANGPT2, which is correlated with MT but not with age at portoenterostomy or with the histological variables associated with disease severity at the time of procedure.
Collapse
|
21
|
Lee H, Tsygankov AY. Cbl-family proteins as regulators of cytoskeleton-dependent phenomena. J Cell Physiol 2013; 228:2285-93. [DOI: 10.1002/jcp.24412] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/29/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Hojin Lee
- Department of Microbiology and Immunology; Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research; Temple University School of Medicine; Philadelphia Pennsylvania
| | - Alexander Y. Tsygankov
- Department of Microbiology and Immunology; Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research; Temple University School of Medicine; Philadelphia Pennsylvania
| |
Collapse
|
22
|
Rajendran S, Muthupalani RS, Ramanathan A. Lack of RING finger domain (RFD) mutations of the c-cbl gene in oral squamous cell carcinomas in Chennai, India. Asian Pac J Cancer Prev 2013; 14:1073-5. [PMID: 23621189 DOI: 10.7314/apjcp.2013.14.2.1073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In normal cells, activated epidermal growth factor receptor (EGFR) molecules are subjected to ubiquitination-mediated proteasome degradation pathway by c-Cbl, an ubiquitin ligase that checks uncontrolled proliferation. Hence expression of wild type c-Cbl molecule is essential to keep this degradation machinery in a functional state. Loss of expression or function of c-Cbl may consequently lead to sustained activation of EGFR and promote carcinogenesis, loss of function mutations in the c-Cbl gene already being reported in lung and hematopoietic cancers. However, the genetic status of c-Cbl in oral squamous cell carcinoma (OSCC) is not known. Hence in the present study we investigated the genomic DNA isolated from OSCC tissue biopsy samples for mutations in the RING finger domain coding region of c-Cbl gene, which has also been reported to be most frequently mutated in other cancers. MATERIALS AND METHODS Total genomic DNA isolated from thirty two post surgical OSCC tissue samples were amplified using primers flanking the exon 8 of c-Cbl gene that codes for the RING finger domain. The PCR amplicons were then resolved in a 1.2% agarose gel, purified and subjected to direct sequencing to screen for mutations. RESULTS The sequencing data of the thirty two OSCC samples did not identify mutations in the RING finger domain coding region of c-Cbl gene. CONCLUSIONS To the best of our knowledge, this is the first time that the genetic status of c-Cbl gene in OSCC samples has been investigated. The present data indicates that genetic alteration of RING finger domain coding region of c-Cbl gene is relatively infrequent in OSCC samples.
Collapse
Affiliation(s)
- Senthilnathan Rajendran
- Department of Oral and Maxillofacial Surgery, Meenakshiammal Dental College and Hospital, Maduravoyal, India.
| | | | | |
Collapse
|
23
|
Wiszniak S, Lumb R, Kabbara S, Scherer M, Schwarz Q. Li-gazing at the crest: modulation of the neural crest by the ubiquitin pathway. Int J Biochem Cell Biol 2013; 45:1087-91. [PMID: 23458963 DOI: 10.1016/j.biocel.2013.02.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/08/2013] [Accepted: 02/22/2013] [Indexed: 10/27/2022]
Abstract
Neural crest cells are a transient population of stem cells that give rise to a diverse range of cell types during embryonic development. Through gain-of-function and loss-of-function studies in several model organisms many key signalling pathways and cell-type specific transcription factors essential for neural crest cell development have been identified. However, the role of post-translational regulation remains largely unexplored. Here we review this cell type with a foray into the known and potential roles of the ubiquitination pathway in key signalling events during neural crest cell development.
Collapse
Affiliation(s)
- Sophie Wiszniak
- Centre for Cancer Biology, SA Pathology, Adelaide 5000, Australia
| | | | | | | | | |
Collapse
|
24
|
Sévère N, Dieudonné FX, Marie PJ. E3 ubiquitin ligase-mediated regulation of bone formation and tumorigenesis. Cell Death Dis 2013; 4:e463. [PMID: 23328670 PMCID: PMC3564004 DOI: 10.1038/cddis.2012.217] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ubiquitination–proteasome and degradation system is an essential process that regulates protein homeostasis. This system is involved in the regulation of cell proliferation, differentiation and survival, and dysregulations in this system lead to pathologies including cancers. The ubiquitination system is an enzymatic cascade that mediates the marking of target proteins by an ubiquitin label and thereby directs their degradation through the proteasome pathway. The ubiquitination of proteins occurs through a three-step process involving ubiquitin activation by the E1 enzyme, allowing for the transfer to a ubiquitin-conjugated enzyme E2 and to the targeted protein via ubiquitin-protein ligases (E3), the most abundant group of enzymes involved in ubiquitination. Significant advances have been made in our understanding of the role of E3 ubiquitin ligases in the control of bone turnover and tumorigenesis. These ligases are implicated in the regulation of bone cells through the degradation of receptor tyrosine kinases, signaling molecules and transcription factors. Initial studies showed that the E3 ubiquitin ligase c-Cbl, a multi-domain scaffold protein, regulates bone resorption by interacting with several molecules in osteoclasts. Further studies showed that c-Cbl controls the ubiquitination of signaling molecules in osteoblasts and in turn regulates osteoblast proliferation, differentiation and survival. Recent data indicate that c-Cbl expression is decreased in primary bone tumors, resulting in excessive receptor tyrosine kinase signaling. Consistently, c-Cbl ectopic expression reduces bone tumorigenesis by promoting tyrosine kinase receptor degradation. Here, we review the mechanisms of action of E3 ubiquitin ligases in the regulation of normal and pathologic bone formation, and we discuss how targeting the interactions of c-Cbl with some substrates may be a potential therapeutic strategy to promote osteogenesis and to reduce tumorigenesis.
Collapse
Affiliation(s)
- N Sévère
- Laboratory of Osteoblast Biology and Pathology, INSERM U606, Paris, France
| | | | | |
Collapse
|
25
|
Glogowska A, Stetefeld J, Weber E, Ghavami S, Hoang-Vu C, Klonisch T. Epidermal growth factor cytoplasmic domain affects ErbB protein degradation by the lysosomal and ubiquitin-proteasome pathway in human cancer cells. Neoplasia 2012; 14:396-409. [PMID: 22745586 DOI: 10.1596/neo.111514] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 04/15/2012] [Accepted: 04/16/2012] [Indexed: 12/19/2022]
Abstract
The cytoplasmic domains of EGF-like ligands, including EGF cytoplasmic domain (EGFcyt), have important biological functions. Using specific constructs and peptides of human EGF cytoplasmic domain, we demonstrate that EGFcyt facilitates lysosomal and proteasomal protein degradation, and this coincided with growth inhibition of human thyroid and glioma carcinoma cells. EGFcyt and exon 22-23-encoded peptide (EGF22.23) enhanced procathepsin B (procathB) expression and procathB-mediated lysosomal degradation of EGFR/ErbB1 as determined by inhibitors for procathB and the lysosomal ATPase inhibitor BafA1. Presence of mbEGFctF, EGFcyt, EGF22.23, and exon 23-encoded peptides suppressed the expression of the deubiqitinating enzyme ubiquitin C-terminal hydrolase-L1 (UCH-L1). This coincided with hyperubiquitination of total cellular proteins and ErbB1/2 and reduced proteasome activity. Upon small interfering RNA-mediated silencing of endogenously expressed UCH-L1, a similar hyperubiquitinylation phenotype, reduced ErbB1/2 content, and attenuated growth was observed. The exon 23-encoded peptide region of EGFcyt was important for these biologic actions. Structural homology modeling of human EGFcyt showed that this molecular region formed an exposed surface loop. Peptides derived from this EGFcyt loop structure may aid in the design of novel peptide therapeutics aimed at inhibiting growth of cancer cells.
Collapse
Affiliation(s)
- Aleksandra Glogowska
- Department of Human Anatomy and Cell Science, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | |
Collapse
|
26
|
Cross-talk between mitogenic Ras/MAPK and survival PI3K/Akt pathways: a fine balance. Biochem Soc Trans 2012; 40:139-46. [PMID: 22260680 DOI: 10.1042/bst20110609] [Citation(s) in RCA: 367] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In the present paper, we describe multiple levels of cross-talk between the PI3K (phosphoinositide 3-kinase)/Akt and Ras/MAPK (mitogen-activated protein kinase) signalling pathways. Experimental data and computer simulations demonstrate that cross-talk is context-dependent and that both pathways can activate or inhibit each other. Positive influence of the PI3K pathway on the MAPK pathway is most effective at sufficiently low doses of growth factors, whereas negative influence of the MAPK pathway on the PI3K pathway is mostly pronounced at high doses of growth factors. Pathway cross-talk endows a cell with emerging capabilities for processing and decoding signals from multiple receptors activated by different combinations of extracellular cues.
Collapse
|
27
|
Osada S, Imai H, Sasaki Y, Tanaka Y, Matsuhashi N, Okumura N, Nagase M, Nonaka K, Yoshida K. Therapeutic strategies for synchronous and multiple liver metastases from colorectal cancer. Oncol Rev 2012; 6:e9. [PMID: 25992211 PMCID: PMC4419631 DOI: 10.4081/oncol.2012.e9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/15/2012] [Accepted: 05/28/2012] [Indexed: 01/23/2023] Open
Abstract
Metastasis in the liver is one of the most critical factors in the prognosis of patients with colorectal cancer. The incidence of synchronous liver metastasis has been found to be approximately 20–25%, but the optimal timing of surgical resection remains controversial. Neoadjuvant chemotherapy has also been found to be beneficial not only for initially unresectable but also resectable synchronous metastases and traditional surgical strategies of hepatic resection with past chemotherapeutic regimens have been used less and less over the past several years. This review will discuss treatments in association with the recently developed chemotherapeutic regimens.
Collapse
Affiliation(s)
- Shinji Osada
- Surgical Oncology, Gifu University School of Medicine, Gifu, Japan
| | - Hisashi Imai
- Surgical Oncology, Gifu University School of Medicine, Gifu, Japan
| | - Yoshiyuki Sasaki
- Surgical Oncology, Gifu University School of Medicine, Gifu, Japan
| | - Yoshihiro Tanaka
- Surgical Oncology, Gifu University School of Medicine, Gifu, Japan
| | | | - Naoki Okumura
- Surgical Oncology, Gifu University School of Medicine, Gifu, Japan
| | - Michitaka Nagase
- Surgical Oncology, Gifu University School of Medicine, Gifu, Japan
| | - Kenichi Nonaka
- Surgical Oncology, Gifu University School of Medicine, Gifu, Japan
| | - Kazuhiro Yoshida
- Surgical Oncology, Gifu University School of Medicine, Gifu, Japan
| |
Collapse
|
28
|
Upton Z, Wallace HJ, Shooter GK, van Lonkhuyzen DR, Yeoh-Ellerton S, Rayment EA, Fleming JM, Broszczak D, Queen D, Sibbald RG, Leavesley DI, Stacey MC. Human pilot studies reveal the potential of a vitronectin: growth factor complex as a treatment for chronic wounds. Int Wound J 2012; 8:522-32. [PMID: 21914133 DOI: 10.1111/j.1742-481x.2011.00859.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Several different advanced treatments have been used to improve healing in chronic wounds, but none have shown sustained success. The application of topical growth factors (GFs) has displayed some potential, but the varying results, high doses and high costs have limited their widespread adoption. Many treatments have ignored the evidence that wound healing is driven by interactions between extracellular matrix proteins and GFs, not just GFs alone. We report herein that a clinical Good Manufacturing Practice-grade vitronectin:growth factor (cVN:GF) complex is able to stimulate functions relevant to wound repair in vitro, such as enhanced cellular proliferation and migration. Furthermore, we assessed this complex as a topical wound healing agent in a single-arm pilot study using venous leg ulcers, as well as several 'difficult to heal' case studies. The cVN:GF complex was safe and re-epithelialisation was observed in all but 1 of the 30 patients in the pilot study. In addition, the case studies show that this complex may be applied to several ulcer aetiologies, such as venous leg ulcers, diabetic foot ulcers and pressure ulcers. These findings suggest that further evaluation is warranted to determine whether the cVN:GF complex may be an effective topical treatment for chronic wounds.
Collapse
Affiliation(s)
- Zee Upton
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Bai L, McEachern D, Yang CY, Lu J, Sun H, Wang S. LRIG1 modulates cancer cell sensitivity to Smac mimetics by regulating TNFα expression and receptor tyrosine kinase signaling. Cancer Res 2012; 72:1229-38. [PMID: 22241084 DOI: 10.1158/0008-5472.can-11-2428] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Smac mimetics block inhibitor of apoptosis proteins to trigger TNFα-dependent apoptosis in cancer cells. However, only a small subset of cancer cells seem to be sensitive to Smac mimetics and even sensitive cells can develop resistance. Herein, we elucidated mechanisms underlying the intrinsic and acquired resistance of cancer cells to Smac mimetics. In vitro and in vivo investigations revealed that the expression of the cell surface protein LRIG1, a negative regulator of receptor tyrosine kinases (RTK), is downregulated in resistant derivatives of breast cancer cells sensitive to Smac mimetics. RNA interference-mediated downregulation of LRIG1 markedly attenuated the growth inhibitory activity of the Smac mimetic SM-164 in drug-sensitive breast and ovarian cancer cells. Furthermore, LRIG1 downregulation attenuated TNFα gene expression induced by Smac mimetics and increased the activity of multiple RTKs, including c-Met and Ron. The multitargeted tyrosine kinase inhibitors Crizotinib and GSK1363089 greatly enhanced the anticancer activity of SM-164 in all resistant cell derivatives, with the combination of SM-164 and GSK1363089 also completely inhibiting the outgrowth of resistant tumors in vivo. Together, our findings show that both upregulation of RTK signaling and attenuated TNFα expression caused by LRIG1 downregulation confers resistance to Smac mimetics, with implications for a rational combination strategy.
Collapse
Affiliation(s)
- Longchuan Bai
- University of Michigan Comprehensive Cancer Center and Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|
30
|
Zhang J, Chintalgattu V, Shih T, Ai D, Xia Y, Khakoo AY. MicroRNA-9 is an activation-induced regulator of PDGFR-beta expression in cardiomyocytes. J Mol Cell Cardiol 2011; 51:337-46. [PMID: 21684288 DOI: 10.1016/j.yjmcc.2011.05.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 05/10/2011] [Accepted: 05/25/2011] [Indexed: 11/18/2022]
Abstract
The platelet derived growth factor receptor (PDGFR) is an important target for novel anti-cancer therapeutics, but agents targeting PDGFR have been associated with cardiotoxicity. Cardiomyocyte PDGFR-β signaling in pressure-overloaded hearts induces compensatory angiogenesis via a paracrine-signaling cascade. Tight regulation of receptor tyrosine kinases in response to ligand stimulation is a critical part of any such cascade. The objective of the present study was to characterize the early and late regulation of PDGFR-β following ligand stimulation and define a potential role for microRNAs (miRNAs) predicted to interact with the 3'UTR of PDGFR-β in feedback regulation. Using two in-vitro model systems (U87 glioblastoma cells and neonatal cardiomyocytes), we observed that in response to stimulation with PDGF-BB, levels of PDGFR-β declined beginning at one hour, persisting for 48 h. PDGFR-β mRNA levels declined beginning at 6h after receptor activation. Early, but not late activation-induced receptor downregulation was proteasome dependent. Levels of miRNA-9 (miR-9) were significantly increased in U87 cells and cardiomyocytes beginning 6h after addition of ligand. In response to pressure overload, miR-9 levels were significantly reduced in the hearts of cardiac-specific PDGFR-β knockout mice. Luciferase reporter assays demonstrate that miR-9 directly interacts with its predicted seed in the 3'UTR of PDGFR-β. Increasing miR-9 levels reduces levels of PDGFR-β, resulting in a reduction in the paracrine angiogenic capacity of cardiomyocytes, consistent with the established function of cardiomyocyte PDGFR-β. Importantly, increase of anti-miR-9 in cardiomyocytes attenuates ligand-induced PDGFR-β downregulation. In conclusion, we have identified miR-9 as an activation-induced regulator of PDGFR-β expression in cardiomyocytes that is part of a negative feedback loop which serves to modulate PDGFR-β expression upon ligand-stimulation through direct interaction with the 3'UTR of PDFGR-β. This article is part of a Special Issue entitled 'Possible Editorial'.
Collapse
Affiliation(s)
- Jianhu Zhang
- Department of Cardiology, UT M.D. Anderson Cancer Center, USA
| | | | | | | | | | | |
Collapse
|
31
|
Ubiquitylation and developmental regulation of invariant surface protein expression in trypanosomes. EUKARYOTIC CELL 2011; 10:916-31. [PMID: 21571921 DOI: 10.1128/ec.05012-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The cell surface of Trypanosoma brucei is dominated by the glycosylphosphatidylinositol-anchored variant surface glycoprotein (VSG), which is essential for immune evasion. VSG biosynthesis, trafficking, and turnover are well documented, but trans-membrane domain (TMD) proteins, including the invariant surface glycoproteins (ISGs), are less well characterized. Internalization and degradation of ISG65 depend on ubiquitylation of conserved cytoplasmic lysines. Using epitope-tagged ISG75 and reporter chimeric proteins bearing the cytoplasmic and trans-membrane regions of ISG75, together with multiple mutants with lysine-to-arginine mutations, we demonstrate that the cytoplasmic tail of ISG75 is both sufficient and necessary for endosomal targeting and degradation. The ISG75 chimeric reporter protein localized to endocytic organelles, while lysine-null versions were significantly stabilized at the cell surface. Importantly, ISG75 cytoplasmic lysines are modified by extensive oligoubiquitin chains and ubiquitylation is abolished in the lysine-null version. Furthermore, we find evidence for differential modes of turnover of ISG65 and ISG75. Full-length lysine-null ISG65 localization and protein turnover are significantly perturbed, but ISG75 localization and protein turnover are not, while ubiquitin conjugates can be detected for full-length lysine-null ISG75 but not ISG65. We find that the ISG75 ectodomain has a predicted coiled-coil, suggesting that ISG75 could be part of a complex, while ISG65 behaves independently. We also demonstrate a developmental stage-specific mechanism for exclusion of surface ISG expression in insect-stage cells by a ubiquitin-independent mechanism. We suggest that ubiquitylation may be a general mechanism for regulating trans-membrane domain surface proteins in trypanosomes.
Collapse
|
32
|
Lee H, Tsygankov AY. c-Cbl regulates glioma invasion through matrix metalloproteinase 2. J Cell Biochem 2011; 111:1169-78. [PMID: 20717917 DOI: 10.1002/jcb.22839] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
c-Cbl, a multifunctional adaptor and an E3 ubiquitin ligase, plays a role in such cytoskeleton-mediated events as cell adhesion and migration. Invasiveness of human glioma is dependent on cell adhesion, migration, and degradation of extracellular matrix (ECM). However, the function of c-Cbl in glioma invasion has never been investigated. We report here, for the first time, that c-Cbl plays a positive role in the invasion of ECM by SNB19 glioma cells. RNAi-mediated depletion of c-Cbl decreases SNB19 cell invasion and expression of matrix metalloproteinase 2 (MMP2). Consistent with these findings, SNB19 cells expressing wild-type, but not mutant c-Cbl show increased invasion and MMP2 expression. We demonstrate that the observed role of c-Cbl in invasion of SNB19 cells is not mediated by the previously shown effects of c-Cbl on cell adhesion and migration or on EGFR signaling. Together, our results suggest that c-Cbl promotes glioma invasion through up-regulation of MMP2.
Collapse
Affiliation(s)
- Hojin Lee
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | |
Collapse
|
33
|
Duan L, Raja SM, Chen G, Virmani S, Williams SH, Clubb RJ, Mukhopadhyay C, Rainey MA, Ying G, Dimri M, Chen J, Reddi AL, Naramura M, Band V, Band H. Negative regulation of EGFR-Vav2 signaling axis by Cbl ubiquitin ligase controls EGF receptor-mediated epithelial cell adherens junction dynamics and cell migration. J Biol Chem 2011; 286:620-33. [PMID: 20940296 PMCID: PMC3013022 DOI: 10.1074/jbc.m110.188086] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Indexed: 02/04/2023] Open
Abstract
The E3 ubiquitin ligase Casitas B lymphoma protein (Cbl) controls the ubiquitin-dependent degradation of EGF receptor (EGFR), but its role in regulating downstream signaling elements with which it associates and its impact on biological outcomes of EGFR signaling are less clear. Here, we demonstrate that stimulation of EGFR on human mammary epithelial cells disrupts adherens junctions (AJs) through Vav2 and Rac1/Cdc42 activation. In EGF-stimulated cells, Cbl regulates the levels of phosphorylated Vav2 thereby attenuating Rac1/Cdc42 activity. Knockdown of Cbl and Cbl-b enhanced the EGF-induced disruption of AJs and cell motility. Overexpression of constitutively active Vav2 activated Rac1/Cdc42 and reorganized junctional actin cytoskeleton; these effects were suppressed by WT Cbl and enhanced by a ubiquitin ligase-deficient Cbl mutant. Cbl forms a complex with phospho-EGFR and phospho-Vav2 and facilitates phospho-Vav2 ubiquitinylation. Cbl can also interact with Vav2 directly in a Cbl Tyr-700-dependent manner. A ubiquitin ligase-deficient Cbl mutant enhanced the morphological transformation of mammary epithelial cells induced by constitutively active Vav2; this effect requires an intact Cbl Tyr-700. These results indicate that Cbl ubiquitin ligase plays a critical role in the maintenance of AJs and suppression of cell migration through down-regulation of EGFR-Vav2 signaling.
Collapse
Affiliation(s)
- Lei Duan
- From the Eppley Institute for Cancer and Allied Diseases, and
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | - Srikumar M. Raja
- From the Eppley Institute for Cancer and Allied Diseases, and
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | - Gengsheng Chen
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | - Sumeet Virmani
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | | | - Robert J. Clubb
- From the Eppley Institute for Cancer and Allied Diseases, and
| | | | - Mark A. Rainey
- From the Eppley Institute for Cancer and Allied Diseases, and
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | - Guoguang Ying
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | - Manjari Dimri
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | - Jing Chen
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | - Alagarsamy L. Reddi
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | - Mayumi Naramura
- From the Eppley Institute for Cancer and Allied Diseases, and
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | - Vimla Band
- From the Eppley Institute for Cancer and Allied Diseases, and
- Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198-5950 and
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| | - Hamid Band
- From the Eppley Institute for Cancer and Allied Diseases, and
- Departments of Biochemistry and Molecular Biology, Pathology and Microbiology, Pharmacology and Neuroscience, and
- the Department of Medicine, NorthShore University Health Systems, Northwestern University, Evanston, Illinois 60201
| |
Collapse
|
34
|
Abstract
With unique genetic and cell biological strengths, C. elegans has emerged as a powerful model system for studying many biological processes. These processes are typically regulated by complex genetic networks consisting of genes. Identifying those genes and organizing them into genetic pathways are two major steps toward understanding the mechanisms that regulate biological events. Forward genetic screens with various designs are a traditional approach for identifying candidate genes. The completion of the genome sequencing in C. elegans and the advent of high-throughput experimental techniques have led to the development of two additional powerful approaches: functional genomics and systems biology. Genes that are discovered by these approaches can be ordered into interacting pathways through a variety of strategies, involving genetics, cell biology, biochemistry, and functional genomics, to gain a more complete understanding of how gene regulatory networks control a particular biological process. The aim of this review is to provide an overview of the approaches available to identify and construct the genetic pathways using C. elegans.
Collapse
Affiliation(s)
- Zheng Wang
- Dept. of Biology, Duke University, Durham NC
| | | |
Collapse
|
35
|
Thomson S, Petti F, Sujka-Kwok I, Mercado P, Bean J, Monaghan M, Seymour SL, Argast GM, Epstein DM, Haley JD. A systems view of epithelial-mesenchymal transition signaling states. Clin Exp Metastasis 2010; 28:137-55. [PMID: 21194007 PMCID: PMC3040305 DOI: 10.1007/s10585-010-9367-3] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 12/07/2010] [Indexed: 12/13/2022]
Abstract
Epithelial–mesenchymal transition (EMT) is an important contributor to the invasion and metastasis of epithelial-derived cancers. While considerable effort has focused in the regulators involved in the transition process, we have focused on consequences of EMT to prosurvival signaling. Changes in distinct metastable and ‘epigentically-fixed’ EMT states were measured by correlation of protein, phosphoprotein, phosphopeptide and RNA transcript abundance. The assembly of 1167 modulated components into functional systems or machines simplified biological understanding and increased prediction confidence highlighting four functional groups: cell adhesion and migration, metabolism, transcription nodes and proliferation/survival networks. A coordinate metabolic reduction in a cluster of 17 free-radical stress pathway components was observed and correlated with reduced glycolytic and increased oxidative phosphorylation enzyme capacity, consistent with reduced cell cycling and reduced need for macromolecular biosynthesis in the mesenchymal state. An attenuation of EGFR autophosphorylation and a switch from autocrine to paracrine-competent EGFR signaling was implicated in the enablement of tumor cell chemotaxis. A similar attenuation of IGF1R, MET and RON signaling with EMT was observed. In contrast, EMT increased prosurvival autocrine IL11/IL6-JAK2-STAT signaling, autocrine fibronectin-integrin α5β1 activation, autocrine Axl/Tyro3/PDGFR/FGFR RTK signaling and autocrine TGFβR signaling. A relatively uniform loss of polarity and cell–cell junction linkages to actin cytoskeleton and intermediate filaments was measured at a systems level. A more heterogeneous gain of ECM remodeling and associated with invasion and migration was observed. Correlation to stem cell, EMT, invasion and metastasis datasets revealed the greatest similarity with normal and cancerous breast stem cell populations, CD49fhi/EpCAM-/lo and CD44hi/CD24lo, respectively.
Collapse
Affiliation(s)
- Stuart Thomson
- Translational Research, OSI Pharmaceuticals Inc, 1 Bioscience Park Drive, Farmingdale, NY 11735, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
An adjacent arginine, and the phosphorylated tyrosine in the c-Met receptor target sequence, dictates the orientation of c-Cbl binding. FEBS Lett 2010; 585:281-5. [DOI: 10.1016/j.febslet.2010.11.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 11/19/2010] [Accepted: 11/27/2010] [Indexed: 11/24/2022]
|
37
|
Chihara T, Suzu S, Hassan R, Chutiwitoonchai N, Hiyoshi M, Motoyoshi K, Kimura F, Okada S. IL-34 and M-CSF share the receptor Fms but are not identical in biological activity and signal activation. Cell Death Differ 2010; 17:1917-1927. [PMID: 20489731 DOI: 10.1038/cdd.2010.60] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Macrophage colony-stimulating factor (M-CSF) regulates the production, survival and function of macrophages through Fms, the receptor tyrosine kinase. Recently, interleukin-34 (IL-34), which shares no sequence homology with M-CSF, was identified as an alternative Fms ligand. Here, we provide the first evidence that these ligands indeed resemble but are not necessarily identical in biological activity and signal activation. In culture systems tested, IL-34 and M-CSF showed an equivalent ability to support cell growth or survival. However, they were different in the ability to induce the production of chemokines such as MCP-1 and eotaxin-2 in primary macrophages, the morphological change in TF-1-fms cells and the migration of J774A.1 cells. Importantly, IL-34 induced a stronger but transient tyrosine phosphorylation of Fms and downstream molecules, and rapidly downregulated Fms. Even in the comparison of active domains, these ligands showed no sequence homology including the position of cysteines. Interestingly, an anti-Fms monoclonal antibody (Mab) blocked both IL-34-Fms and M-CSF-Fms binding, but another MAb blocked only M-CSF-Fms binding. These results suggested that IL-34 and M-CSF differed in their structure and Fms domains that they bound, which caused different bioactivities and signal activation kinetics/strength. Our findings indicate that macrophage phenotype and function are differentially regulated even at the level of the single receptor, Fms.
Collapse
Affiliation(s)
- T Chihara
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Although now dogma, the idea that nonvertebrate organisms such as yeast, worms, and flies could inform, and in some cases even revolutionize, our understanding of oncogenesis in humans was not immediately obvious. Aided by the conservative nature of evolution and the persistence of a cohort of devoted researchers, the role of model organisms as a key tool in solving the cancer problem has, however, become widely accepted. In this review, we focus on the nematode Caenorhabditis elegans and its diverse and sometimes surprising contributions to our understanding of the tumorigenic process. Specifically, we discuss findings in the worm that address a well-defined set of processes known to be deregulated in cancer cells including cell cycle progression, growth factor signaling, terminal differentiation, apoptosis, the maintenance of genome stability, and developmental mechanisms relevant to invasion and metastasis.
Collapse
Affiliation(s)
- Natalia V. Kirienko
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| | - Kumaran Mani
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| | - David S. Fay
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| |
Collapse
|
39
|
Abstract
The ubiquitin-proteasome system (UPS) is a major proteolytic system that regulates the degradation of intracellular proteins in the heart. The UPS regulates the turnover of misfolded and damaged proteins, in addition to numerous cellular processes, by affecting the stability of short-lived proteins such as transcription factors and cell signaling pathways. The UPS is tightly regulated by the specificity of ubiquitin ligases that recognize specific substrates and direct the addition of ubiquitin, targeting the substrates for degradation by the 26S proteasome. An increasing number of cardiac ubiquitin ligases have been identified, and the number of substrates each one is known to recognize also has increased, expanding their roles. Although mainly cardioprotective roles have been attributed to ubiquitin ligases, new studies have identified exceptions to this rule. This review discusses the mechanisms of cardiac ubiquitin ligases and identifies their role in common cardiac diseases including cardiac hypertrophy, cardiac atrophy, ischemic heart disease, and diabetic cardiomyopathy.
Collapse
|
40
|
Holmlund C, Haapasalo H, Yi W, Raheem O, Brännström T, Bragge H, Henriksson R, Hedman H. Cytoplasmic LRIG2 expression is associated with poor oligodendroglioma patient survival. Neuropathology 2009; 29:242-7. [PMID: 18992012 DOI: 10.1111/j.1440-1789.2008.00970.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The three leucine-rich repeats and immunoglobulin-like domains (LRIG) genes encode integral membrane proteins. Of these, LRIG1 negatively regulates growth factor signaling and is implicated as a tumor suppressor in certain malignancies. In astrocytic tumors, the subcellular distribution of LRIG proteins is associated with specific clinicopathological features and patient survival. The role of LRIG proteins in oligodendroglioma has not previously been studied. Here we used immunohistochemistry to analyze the expression of the LRIG proteins in 63 oligodendroglial tumors, and evaluated possible associations between LRIG protein expression and clinicopathological parameters. Notably, cytoplasmic LRIG2 expression was found to be an independent prognostic factor associated with poor oligodendroglioma patient survival. This is the first report of an LRIG protein showing a negative effect on survival, suggesting that LRIG2 might have a function different from that of LRIG1, and possibly contributing to the etiology of oligodendroglioma.
Collapse
Affiliation(s)
- Camilla Holmlund
- Departments of Radiation Sciences, Oncology, Umeå University, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Edwin F, Anderson K, Ying C, Patel TB. Intermolecular interactions of Sprouty proteins and their implications in development and disease. Mol Pharmacol 2009; 76:679-91. [PMID: 19570949 PMCID: PMC2769046 DOI: 10.1124/mol.109.055848] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 07/01/2009] [Indexed: 12/19/2022] Open
Abstract
Receptor tyrosine kinase (RTK) signaling is spatially and temporally regulated by a number of positive and negative regulatory mechanisms. These regulatory mechanisms control the amplitude and duration of the signals initiated at the cell surface to have a normal or aberrant biological outcome in development and disease, respectively. In the past decade, the Sprouty (Spry) family of proteins has been identified as modulators of RTK signaling in normal development and disease. This review summarizes recent advances concerning the biological activities modulated by Spry family proteins, their interactions with signaling proteins, and their involvement in cardiovascular diseases and cancer. The diversity of mechanisms in the regulation of Spry expression and activity in cell systems emphasizes the crucial role of Spry proteins in development and growth across the animal kingdom.
Collapse
Affiliation(s)
- Francis Edwin
- Department of Pharmacology and Experimental Therapeutics, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | | | | | | |
Collapse
|
42
|
Liu NS, Loo LS, Loh E, Seet LF, Hong W. Participation of Tom1L1 in EGF-stimulated endocytosis of EGF receptor. EMBO J 2009; 28:3485-99. [PMID: 19798056 PMCID: PMC2756567 DOI: 10.1038/emboj.2009.282] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 08/18/2009] [Indexed: 12/25/2022] Open
Abstract
Although many proteins have been shown to participate in ligand-stimulated endocytosis of EGF receptor (EGFR), the adaptor protein responsible for interaction of activated EGFR with endocytic machinery remains elusive. We show here that EGF stimulates transient tyrosine phosphorylation of Tom1L1 by the Src family kinases, resulting in transient interaction of Tom1L1 with the activated EGFR bridged by Grb2 and Shc. Cytosolic Tom1L1 is recruited onto the plasma membrane and subsequently redistributes into the early endosome. Mutant forms of Tom1L1 defective in Tyr-phosphorylation or interaction with Grb2 are incapable of interaction with EGFR. These mutants behave as dominant-negative mutants to inhibit endocytosis of EGFR. RNAi-mediated knockdown of Tom1L1 inhibits endocytosis of EGFR. The C-terminal tail of Tom1L1 contains a novel clathrin-interacting motif responsible for interaction with the C-terminal region of clathrin heavy chain, which is important for exogenous Tom1L1 to rescue endocytosis of EGFR in Tom1L1 knocked-down cells. These results suggest that EGF triggers a transient Grb2/Shc-mediated association of EGFR with Tyr-phosphorylated Tom1L1 to engage the endocytic machinery for endocytosis of the ligand-receptor complex.
Collapse
Affiliation(s)
- Ning Sheng Liu
- Cancer and Developmental Cell Biology Division, Institute of Molecular and Cell Biology, Singapore
| | | | | | | | | |
Collapse
|
43
|
Abstract
This review article describes the pathways and mechanisms of endocytosis and post-endocytic sorting of the EGF receptor (EGFR/ErbB1) and other members of the ErbB family. Growth factor binding to EGFR accelerates its internalization through clathrin-coated pits which is followed by the efficient lysosomal targeting of internalized receptors and results in receptor down-regulation. The role of EGFR interaction with the Grb2 adaptor protein and Cbl ubiquitin ligase, and receptor ubiquitination in the clathrin-dependent internalization and sorting of EGFR in multivesicular endosomes is discussed. Activation and phosphorylation of ErbB2, ErbB3 and ErbB4 also results in their ubiquitination. However, these ErbBs are internalized and targeted to lysosomes less efficiently than EGFR. When overexpressed endocytosis-impaired ErbBs may inhibit the internalization and degradation of EGFR.
Collapse
Affiliation(s)
- Alexander Sorkin
- Department of Pharmacology, University of Colorado Denver Anschutz Medical Center, Aurora, Colorado 80045-0508, USA.
| | | |
Collapse
|
44
|
Llaverias G, Pou J, Ros E, Zambón D, Cofán M, Sánchez A, Vázquez-Carrera M, Sánchez RM, Laguna JC, Alegret M. Monocyte gene-expression profile in men with familial combined hyperlipidemia and its modification by atorvastatin treatment. Pharmacogenomics 2009; 9:1035-54. [PMID: 18681780 DOI: 10.2217/14622416.9.8.1035] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM The genetic origin of familial combined hyperlipidemia (FCH) is not well understood. We used microarray profiling of peripheral blood monocytes to search novel genes and pathways involved in FCH. METHODS Fasting plasma for determination of lipid profiles, inflammatory molecules and adipokines was obtained and peripheral blood monocytes were isolated from male FCH patients basally and after 4 weeks of atorvastatin treatment. Sex-, age- and adiposity-matched controls were also studied. Gene-expression profiles were analyzed using Affymetrix Human Genome U133A 2.0 GeneChip arrays. RESULTS Analysis of gene expression by cDNA microarrays showed that 82 genes were differentially expressed in FCH monocytes compared with controls. Atorvastatin treatment modified the expression of 86 genes. Pathway analysis revealed the over-representation of the complement and coagulation cascades, the hematopoietic cell lineage and the arachidonic acid metabolism pathways. Changes in the expression of some genes, confirmed by real-time RT-PCR, (CD36, leucine-rich repeats and immunoglobulin-like domains-1, tissue factor pathway inhibitor 2, myeloid cell nuclear differentiation antigen, tumor necrosis factor receptor superfamily, member 25, CD96 and lipoprotein lipase), may be related to a proinflammatory environment in FCH monocytes, which is partially reversed by atorvastatin. Higher plasma levels of triglycerides and free fatty acids and lower levels of adiponectin in FCH patients could also trigger changes in gene expression that atorvastatin cannot modify. CONCLUSION Our results show clear differences in gene expression in FCH monocytes compared with those of matched healthy controls, some of which are influenced by atorvastatin treatment.
Collapse
Affiliation(s)
- Gemma Llaverias
- Pharmacology Department, Faculty of Pharmacy and Biomedicine Institute (IBUB), University of Barcelona and Ciber Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Diagonal 643. E-08028, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hayashi H, Sugiyama Y. Short-chain ubiquitination is associated with the degradation rate of a cell-surface-resident bile salt export pump (BSEP/ABCB11). Mol Pharmacol 2009; 75:143-50. [PMID: 18829893 DOI: 10.1124/mol.108.049288] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The reduced expression of the bile salt export pump (BSEP/ABCB11) at the canalicular membrane is associated with cholestasis-induced hepatotoxicity due to the accumulation of bile acids in hepatocytes. We demonstrated previously that 4-phenylbutyrate (4PBA) treatment, a U.S. Food and Drug Administration-approved drug for the treatment of urea cycle disorders, induces the cell-surface expression of BSEP by prolonging the degradation rate of cell-surface-resident BSEP. On the other hand, BSEP mutations, E297G and D482G, found in progressive familial intrahepatic cholestasis type 2 (PFIC2), reduced it by shortening the degradation rate of cell-surface-resident BSEP. Therefore, to help the development of the medical treatment of cholestasis, we investigated the underlying mechanism by which 4PBA and PFIC2-type mutations affect the BSEP degradation from cell surface, focusing on short-chain ubiquitination. In Madin-Darby canine kidney II (MDCK II) cells expressing BSEP and rat canalicular membrane vesicles, the molecular mass of the mature form of BSEP/Bsep shifted from 170 to 190 kDa after ubiquitin modification (molecular mass, 8 kDa). Ubiquitination susceptibility of BSEP/Bsep was reduced in vitro and in vivo by 4PBA treatment and, conversely, was enhanced by BSEP mutations E297G and D482G. Moreover, biotin-labeling studies using MDCK II cells demonstrated that the degradation of cell-surface-resident chimeric protein fusing ubiquitin to BSEP was faster than that of BSEP itself. In conclusion, BSEP/Bsep is modified with two to three ubiquitins, and its ubiquitination is modulated by 4PBA treatment and PFIC2-type mutations. Modulation of short-chain ubiquitination can regulate the change in the degradation rate of cell-surface-resident BSEP by 4PBA treatment and PFIC2-type mutations.
Collapse
Affiliation(s)
- Hisamitsu Hayashi
- Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
46
|
Sorkin A, Goh LK. Endocytosis and intracellular trafficking of ErbBs. Exp Cell Res 2008; 314:3093-106. [PMID: 18793634 PMCID: PMC2605728 DOI: 10.1016/j.yexcr.2008.08.013] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 08/18/2008] [Accepted: 08/18/2008] [Indexed: 02/07/2023]
Abstract
This review article describes the pathways and mechanisms of endocytosis and post-endocytic sorting of the EGF receptor (EGFR/ErbB1) and other members of the ErbB family. Growth factor binding to EGFR accelerates its internalization through clathrin-coated pits which is followed by the efficient lysosomal targeting of internalized receptors and results in receptor down-regulation. The role of EGFR interaction with the Grb2 adaptor protein and Cbl ubiquitin ligase, and receptor ubiquitination in the clathrin-dependent internalization and sorting of EGFR in multivesicular endosomes is discussed. Activation and phosphorylation of ErbB2, ErbB3 and ErbB4 also results in their ubiquitination. However, these ErbBs are internalized and targeted to lysosomes less efficiently than EGFR. When overexpressed endocytosis-impaired ErbBs may inhibit the internalization and degradation of EGFR.
Collapse
Affiliation(s)
- Alexander Sorkin
- Department of Pharmacology, University of Colorado Denver Anschutz Medical Center, Aurora, Colorado 80045-0508, USA.
| | | |
Collapse
|
47
|
Jing X, Infante J, Nachtman RG, Jurecic R. E3 ligase FLRF (Rnf41) regulates differentiation of hematopoietic progenitors by governing steady-state levels of cytokine and retinoic acid receptors. Exp Hematol 2008; 36:1110-20. [PMID: 18495327 PMCID: PMC2570181 DOI: 10.1016/j.exphem.2008.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 04/01/2008] [Accepted: 04/01/2008] [Indexed: 12/27/2022]
Abstract
OBJECTIVE FLRF (Rnf41) gene was identified through screening of subtracted cDNA libraries form murine hematopoietic stem cells and progenitors. Subsequent work has revealed that FLRF acts as E3 ubiquitin ligase, and that it regulates steady-state levels of neuregulin receptor ErbB3 and participates in degradation of IAP protein BRUCE and parkin. The objective of this study was to start exploring the role of FLRF during hematopoiesis. MATERIALS AND METHODS FLRF was overexpressed in a murine multipotent hematopoietic progenitor cell line EML, which can differentiate into almost all blood cell lineages, and in pro-B progenitor cell line BaF3. The impact of FLRF overexpression on EML cell differentiation into myeloerythroid lineages was studied using hematopoietic colony-forming assays. The interaction of FLRF with cytokine receptors and receptor levels in control cells and EML and BaF3 cells overexpressing FLRF were examined with Western and immunoprecipitation. RESULTS Remarkably, overexpression of FLRF significantly attenuated erythroid and myeloid differentiation of EML cells in response to cytokines erythropoietin (EPO) and interleukin-3 (IL-3), and retinoic acid (RA), and resulted in significant and constitutive decrease of steady-state levels of IL-3, EPO, and RA receptor-alpha (RARalpha) in EML and BaF3 cells. Immunoprecipitation has revealed that FLRF interacts with IL-3, EPO, and RARalpha receptors in EML and BaF3 cells, and that FLRF-mediated downregulation of these receptors is ligand binding-independent. CONCLUSIONS The results of this study have revealed new FLRF-mediated pathway for ligand-independent receptor level regulation, and support the notion that through maintaining basal levels of cytokine receptors, FLRF is involved in the control of hematopoietic progenitor cell differentiation into myeloerythroid lineages.
Collapse
Affiliation(s)
- Xin Jing
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Jorge Infante
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Ronald G. Nachtman
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Roland Jurecic
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
48
|
Chung WL, Leung KF, Carrington M, Field MC. Ubiquitylation is required for degradation of transmembrane surface proteins in trypanosomes. Traffic 2008; 9:1681-97. [PMID: 18657071 DOI: 10.1111/j.1600-0854.2008.00785.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The surface of Trypanosoma brucei is dominated by glycosyl-phosphatidylinositol (GPI)-anchored proteins, and endocytosis is clathrin dependent. The vast majority of internalized GPI-anchored protein is efficiently recycled, while the processes by which transmembrane domain (TMD) proteins are internalized and sorted are unknown. We demonstrate that internalization of invariant surface glycoprotein (ISG)65, a trypanosome TMD protein, involves ubiquitylation and also requires clathrin. We find a hierarchical requirement for cytoplasmic lysine residues in internalization and turnover, and a single position-specific lysine is sufficient for degradation, surface removal and attachment of oligoubiquitin chains. Ubiquitylation is context dependent as provision of additional lysine residues by C-terminal fusion of neuronal precursor cell-expressed developmentally downregulated protein (NEDD)8 fails to support ubiquitylation. Attachment of NEDD8 leads to degradation by a second ubiquitin-independent pathway. Moreover, degradation of ubiquitylated or NEDDylated substrate takes place in an acidic compartment and is proteosome independent. Significantly, in non-opisthokont lineages, Rsp5p or c-Cbl, the E3 ubiquitin ligases acting on endocytic cargo, are absent but Uba1 class genes are present and are required for cell viability and ISG65 ubiquitylation. Hence, ubiquitylation is an evolutionarily conserved mechanism for internalization of surface proteins, but aspects of the machinery differ substantially between the major eukaryotic lineages.
Collapse
Affiliation(s)
- Wei-Lian Chung
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|
49
|
Jäggi F, Cabrita MA, Perl AKT, Christofori G. Modulation of endocrine pancreas development but not beta-cell carcinogenesis by Sprouty4. Mol Cancer Res 2008; 6:468-82. [PMID: 18337453 DOI: 10.1158/1541-7786.mcr-07-0255] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sprouty (Spry) proteins modulate signal transduction pathways elicited by receptor tyrosine kinases (RTK). Depending on cell type and the particular RTK, Spry proteins exert dual functions: They can either repress RTK-mediated signaling pathways, mainly by interfering with the Ras/Raf/mitogen-activated protein kinase pathway or sustaining RTK signal transduction, for example by sequestering the E3 ubiquitin-ligase c-Cbl and thus preventing ubiquitylation, internalization, and degradation of RTKs. Here, by the inducible expression of murine Spry4 in pancreatic beta cells, we have assessed the functional role of Spry proteins in the development of pancreatic islets of Langerhans in normal mice and in the Rip1Tag2 transgenic mouse model of beta-cell carcinogenesis. beta cell-specific expression of mSpry4 provokes a significant reduction in islet size, an increased number of alpha cells per islet area, and impaired islet cell type segregation. Functional analysis of islet cell differentiation in cultured PANC-1 cells shows that mSpry4 represses adhesion and migration of differentiating pancreatic endocrine cells, most likely by affecting the subcellular localization of the protein tyrosine phosphatase PTP1B. In contrast, transgenic expression of mSpry4 during beta-cell carcinogenesis does not significantly affect tumor outgrowth and progression to tumor malignancy. Rather, tumor cells seem to escape mSpry4 transgene expression.
Collapse
Affiliation(s)
- Fabienne Jäggi
- Institute of Biochemistry and Genetics, Department of Clinical Biological Sciences, Center of Biomedicine, University of Basel, Basel, Switzerland
| | | | | | | |
Collapse
|
50
|
Dufour C, Guenou H, Kaabeche K, Bouvard D, Sanjay A, Marie PJ. FGFR2-Cbl interaction in lipid rafts triggers attenuation of PI3K/Akt signaling and osteoblast survival. Bone 2008; 42:1032-9. [PMID: 18374639 DOI: 10.1016/j.bone.2008.02.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 01/28/2008] [Accepted: 02/05/2008] [Indexed: 01/09/2023]
Abstract
Fibroblast growth factor receptor (FGFR) signaling plays an important role in skeletogenesis. The molecular mechanisms triggered by activated FGFR in bone forming cells are however not fully understood. In this study, we identify a role for phosphatidylinositol 3-kinase (PI3K) signaling in cell apoptosis induced by FGFR2 activation in osteoblasts. We show that FGFR2 activation leads to decrease PI3K protein levels, resulting in attenuation of PI3K signaling in human osteoblasts. Biochemical and molecular analyses revealed that the attenuated PI3K signaling induced by FGFR2 activation is due to increased Cbl-PI3K molecular interaction mediated by the Cbl Y731 residue, which results in increased PI3K ubiquitination and proteasome degradation. Biochemical and immunocytochemical analyses showed that FGFR2 and Cbl interact in raft micro-domains at the plasma membrane. FGFR2 activation increases FGFR2 and Cbl recruitment in micro-domains, resulting in increased molecular interactions. Consistently, functional analyses showed that the attenuation of PI3K/Akt signaling triggered by FGFR2 activation results in increased osteoblast apoptosis. These results identify a functional molecular mechanism by which activated FGFR2 recruits Cbl in raft micro-domains to trigger PI3K ubiquitination and proteasome degradation, and reveal a novel role for PI3K/Akt attenuation in the control of osteoblast survival by FGFR2 signaling.
Collapse
|