1
|
Lei Y, Lin H, Chen Y, Wan B, Ao C, Liu J, Wang W. Epigenetic regulation of physiological resilience to ammonia nitrogen stress in the Pacific whiteleg shrimp Penaeus vannamei: Evidence from genome-wide DNA methylation dynamics. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 55:101510. [PMID: 40220697 DOI: 10.1016/j.cbd.2025.101510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/04/2025] [Accepted: 04/05/2025] [Indexed: 04/14/2025]
Abstract
Although DNA methylation has emerged as an essential epigenetic mechanism modulating organismal responses to abiotic stresses, its involvement in the physiological resilience of marine invertebrates like shrimp to ammonia nitrogen toxicity remains enigmatic. Here, we performed the first comprehensive dissection of genome-wide DNA methylation dynamics in the Pacific whiteleg shrimp Penaeus vannamei exposed to ammonia nitrogen, based on whole-genome bisulfite sequencing and transcriptome analyses. In the genome of P. vannamei, three DNA methyltransferases (DNMT1, DNMT2 and DNMT3a), one DNA demethylase (TET2) and four methyl-CpG binding proteins (MBD2, MBD4, Kaiso, and UHRF1) were present. About 1.68-1.87 % of cytosine nucleotides were methylated, and higher percentages of cytosines in the CpG context (5.23 %-6.34 %) was methylated compared with the CHG and CHH contexts. Methylated cytosines were mostly enriched in the coding DNA sequence, and methylation peaks occurred near the transcription end sites. Following ammonia exposure, 4203 differentially expressed genes (DEGs) and 1100 differentially methylated genes (DMGs) were identified. The DMGs accounted for 4.4 % of the total gene reservoir in P. vannamei genome, and 212 shared genes were found between the DEGs and DMGs. Genes exhibiting significant methylation and expression changes were enriched in various pathways including the FoxO signaling pathway, autophagy and endocytosis. Among them was a group of genes related to energy metabolism, antioxidation response and detoxification metabolism, highlighting involvement of DNA methylation in fine-tuning these crucial physiological processes. These findings provide new insights into the regulatory roles of DNA methylation in the physiological resilience of marine invertebrates to aquatic stressors.
Collapse
Affiliation(s)
- Yiguo Lei
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
| | - Hanliang Lin
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yunhua Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Boquan Wan
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chunmei Ao
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jianyong Liu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
| | - Wei Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China.
| |
Collapse
|
2
|
Sun Z, Kou C, Gao Z, Guo X, Han B, Feng Y, Ding Q, Bai W. Association between the copy number variations of Methyl-CpG binding domain family and schizophrenia. Gene 2024; 930:148836. [PMID: 39127413 DOI: 10.1016/j.gene.2024.148836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/17/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Schizophrenia is recognized as one of the most severe psychiatric disorders, with its pathogenesis likely involving genetic, epigenetic, developmental, and environmental factors. Members of the Methyl-CpG Binding Domain (MBD) Family play a crucial role in the regulation of genomic DNA methylation, and studies have implicated the association between MBD family and neurodevelopmental disorders. Copy number variations (CNVs) are a significant genetic basis for human genomic variation, also playing a critical role in the genetic processes of schizophrenia. Therefore, we aimed to evaluate the susceptibility of MBD family CNVs to schizophrenia by exploring and validating them in two separate populations using CNVplex™ and qPCR methods, and to explore the relationship between MBD family CNVs and clinical phenotypes in the overall population using chi-square tests and Fisher's exact tests. Results suggest that an increase in MBD1 gene copy number and a deficiency in MBD2 gene copy number may be associated with the risk of schizophrenia. The deficiency in MBD2 gene copy number may increase the risk of delusion of reference and delusion of persecutory in the overall sample, as well as in males. This research provides preliminary evidence supporting the association between MBD family CNVs and schizophrenia, highlighting the potential role of the MBD family in the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Zhouyang Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, Jilin Province, 130021, China
| | - Changgui Kou
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, Jilin Province, 130021, China
| | - Zibo Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, Jilin Province, 130021, China
| | - Xinru Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, Jilin Province, 130021, China
| | - Beibei Han
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, Jilin Province, 130021, China
| | - Yuan Feng
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, Jilin Province, 130021, China
| | - Qianlu Ding
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, Jilin Province, 130021, China
| | - Wei Bai
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, Jilin Province, 130021, China.
| |
Collapse
|
3
|
Lax E, Do Carmo S, Enuka Y, Sapozhnikov DM, Welikovitch LA, Mahmood N, Rabbani SA, Wang L, Britt JP, Hancock WW, Yarden Y, Szyf M. Methyl-CpG binding domain 2 (Mbd2) is an epigenetic regulator of autism-risk genes and cognition. Transl Psychiatry 2023; 13:259. [PMID: 37443311 PMCID: PMC10344909 DOI: 10.1038/s41398-023-02561-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
The Methyl-CpG-Binding Domain Protein family has been implicated in neurodevelopmental disorders. The Methyl-CpG-binding domain 2 (Mbd2) binds methylated DNA and was shown to play an important role in cancer and immunity. Some evidence linked this protein to neurodevelopment. However, its exact role in neurodevelopment and brain function is mostly unknown. Here we show that Mbd2-deficiency in mice (Mbd2-/-) results in deficits in cognitive, social and emotional functions. Mbd2 binds regulatory DNA regions of neuronal genes in the hippocampus and loss of Mbd2 alters the expression of hundreds of genes with a robust down-regulation of neuronal gene pathways. Further, a genome-wide DNA methylation analysis found an altered DNA methylation pattern in regulatory DNA regions of neuronal genes in Mbd2-/- mice. Differentially expressed genes significantly overlap with gene-expression changes observed in brains of Autism Spectrum Disorder (ASD) individuals. Notably, downregulated genes are significantly enriched for human ortholog ASD risk genes. Observed hippocampal morphological abnormalities were similar to those found in individuals with ASD and ASD rodent models. Hippocampal Mbd2 knockdown partially recapitulates the behavioral phenotypes observed in Mbd2-/- mice. These findings suggest that Mbd2 is a novel epigenetic regulator of genes that are associated with ASD in humans. Mbd2 loss causes behavioral alterations that resemble those found in ASD individuals.
Collapse
Affiliation(s)
- Elad Lax
- Department of Molecular Biology, Ariel University, Ariel, Israel.
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.
| | - Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Yehoshua Enuka
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Daniel M Sapozhnikov
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Lindsay A Welikovitch
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Niaz Mahmood
- Department of Medicine, McGill University Health Center, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Shafaat A Rabbani
- Department of Medicine, McGill University Health Center, Montreal, QC, Canada
| | - Liqing Wang
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, and Biesecker Center for Pediatric Liver Diseases, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan P Britt
- Department of Psychology, McGill University, Montreal, QC, Canada
| | - Wayne W Hancock
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, and Biesecker Center for Pediatric Liver Diseases, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| |
Collapse
|
4
|
Gupta S, Dutta S, Hui SP. Regenerative Potential of Injured Spinal Cord in the Light of Epigenetic Regulation and Modulation. Cells 2023; 12:1694. [PMID: 37443728 PMCID: PMC10341208 DOI: 10.3390/cells12131694] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023] Open
Abstract
A spinal cord injury is a form of physical harm imposed on the spinal cord that causes disability and, in many cases, leads to permanent mammalian paralysis, which causes a disastrous global issue. Because of its non-regenerative aspect, restoring the spinal cord's role remains one of the most daunting tasks. By comparison, the remarkable regenerative ability of some regeneration-competent species, such as some Urodeles (Axolotl), Xenopus, and some teleost fishes, enables maximum functional recovery, even after complete spinal cord transection. During the last two decades of intensive research, significant progress has been made in understanding both regenerative cells' origins and the molecular signaling mechanisms underlying the regeneration and reconstruction of damaged spinal cords in regenerating organisms and mammals, respectively. Epigenetic control has gradually moved into the center stage of this research field, which has been helped by comprehensive work demonstrating that DNA methylation, histone modifications, and microRNAs are important for the regeneration of the spinal cord. In this review, we concentrate primarily on providing a comparison of the epigenetic mechanisms in spinal cord injuries between non-regenerating and regenerating species. In addition, we further discuss the epigenetic mediators that underlie the development of a regeneration-permissive environment following injury in regeneration-competent animals and how such mediators may be implicated in optimizing treatment outcomes for spinal cord injurie in higher-order mammals. Finally, we briefly discuss the role of extracellular vesicles (EVs) in the context of spinal cord injury and their potential as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Samudra Gupta
- S.N. Pradhan Centre for Neurosciences, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India;
| | - Suman Dutta
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK;
| | - Subhra Prakash Hui
- S.N. Pradhan Centre for Neurosciences, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India;
| |
Collapse
|
5
|
Cordani R, Tobaldini E, Rodrigues GD, Giambersio D, Veneruso M, Chiarella L, Disma N, De Grandis E, Toschi-Dias E, Furlan L, Carandina A, Prato G, Nobili L, Montano N. Cardiac autonomic control in Rett syndrome: Insights from heart rate variability analysis. Front Neurosci 2023; 17:1048278. [PMID: 37021139 PMCID: PMC10067665 DOI: 10.3389/fnins.2023.1048278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/17/2023] [Indexed: 03/22/2023] Open
Abstract
Rett syndrome (RTT) is a rare and severe neurological disorder mainly affecting females, usually linked to methyl-CpG-binding protein 2 (MECP2) gene mutations. Manifestations of RTT typically include loss of purposeful hand skills, gait and motor abnormalities, loss of spoken language, stereotypic hand movements, epilepsy, and autonomic dysfunction. Patients with RTT have a higher incidence of sudden death than the general population. Literature data indicate an uncoupling between measures of breathing and heart rate control that could offer insight into the mechanisms that lead to greater vulnerability to sudden death. Understanding the neural mechanisms of autonomic dysfunction and its correlation with sudden death is essential for patient care. Experimental evidence for increased sympathetic or reduced vagal modulation to the heart has spurred efforts to develop quantitative markers of cardiac autonomic profile. Heart rate variability (HRV) has emerged as a valuable non-invasive test to estimate the modulation of sympathetic and parasympathetic branches of the autonomic nervous system (ANS) to the heart. This review aims to provide an overview of the current knowledge on autonomic dysfunction and, in particular, to assess whether HRV parameters can help unravel patterns of cardiac autonomic dysregulation in patients with RTT. Literature data show reduced global HRV (total spectral power and R-R mean) and a shifted sympatho-vagal balance toward sympathetic predominance and vagal withdrawal in patients with RTT compared to controls. In addition, correlations between HRV and genotype and phenotype features or neurochemical changes were investigated. The data reported in this review suggest an important impairment in sympatho-vagal balance, supporting possible future research scenarios, targeting ANS.
Collapse
Affiliation(s)
- Ramona Cordani
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Unit for Research & Innovation in Anesthesia, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Eleonora Tobaldini
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Donatella Giambersio
- Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari “Aldo Moro”, Bari, Italy
| | - Marco Veneruso
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Lorenzo Chiarella
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Nicola Disma
- Unit for Research & Innovation in Anesthesia, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Elisa De Grandis
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Edgar Toschi-Dias
- Health Psychology Program, Methodist University of São Paulo, São Paulo, Brazil
- Psychology, Development and Public Policy Program, Catholic University of Santos, São Paulo, Brazil
| | - Ludovico Furlan
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Angelica Carandina
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giulia Prato
- Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Lino Nobili
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Lino Nobili,
| | - Nicola Montano
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
- *Correspondence: Nicola Montano,
| |
Collapse
|
6
|
Tang FL, Zhang XG, Ke PY, Liu J, Zhang ZJ, Hu DM, Gu J, Zhang H, Guo HK, Zang QW, Huang R, Ma YL, Kwan P. MBD5 regulates NMDA receptor expression and seizures by inhibiting Stat1 transcription. Neurobiol Dis 2023; 181:106103. [PMID: 36997128 DOI: 10.1016/j.nbd.2023.106103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/21/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Epilepsy is considered to result from an imbalance between excitation and inhibition of the central nervous system. Pathogenic mutations in the methyl-CpG binding domain protein 5 gene (MBD5) are known to cause epilepsy. However, the function and mechanism of MBD5 in epilepsy remain elusive. Here, we found that MBD5 was mainly localized in the pyramidal cells and granular cells of mouse hippocampus, and its expression was increased in the brain tissues of mouse models of epilepsy. Exogenous overexpression of MBD5 inhibited the transcription of the signal transducer and activator of transcription 1 gene (Stat1), resulting in increased expression of N-methyl-d-aspartate receptor (NMDAR) subunit 1 (GluN1), 2A (GluN2A) and 2B (GluN2B), leading to aggravation of the epileptic behaviour phenotype in mice. The epileptic behavioural phenotype was alleviated by overexpression of STAT1 which reduced the expression of NMDARs, and by the NMDAR antagonist memantine. These results indicate that MBD5 accumulation affects seizures through STAT1-mediated inhibition of NMDAR expression in mice. Collectively, our findings suggest that the MBD5-STAT1-NMDAR pathway may be a new pathway that regulates the epileptic behavioural phenotype and may represent a new treatment target.
Collapse
|
7
|
Ng KM, Ding Q, Tse YL, Chou OHI, Lai WH, Au KW, Lau YM, Ji Y, Siu CW, Tang CSM, Colman A, Tsang SY, Tse HF. Isogenic Human-Induced Pluripotent Stem-Cell-Derived Cardiomyocytes Reveal Activation of Wnt Signaling Pathways Underlying Intrinsic Cardiac Abnormalities in Rett Syndrome. Int J Mol Sci 2022; 23:ijms232415609. [PMID: 36555252 PMCID: PMC9779632 DOI: 10.3390/ijms232415609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder caused by MeCP2 mutations. Nonetheless, the pathophysiological roles of MeCP2 mutations in the etiology of intrinsic cardiac abnormality and sudden death remain unclear. In this study, we performed a detailed functional studies (calcium and electrophysiological analysis) and RNA-sequencing-based transcriptome analysis of a pair of isogenic RTT female patient-specific induced pluripotent stem-cell-derived cardiomyocytes (iPSC-CMs) that expressed either MeCP2wildtype or MeCP2mutant allele and iPSC-CMs from a non-affected female control. The observations were further confirmed by additional experiments, including Wnt signaling inhibitor treatment, siRNA-based gene silencing, and ion channel blockade. Compared with MeCP2wildtype and control iPSC-CMs, MeCP2mutant iPSC-CMs exhibited prolonged action potential and increased frequency of spontaneous early after polarization. RNA sequencing analysis revealed up-regulation of various Wnt family genes in MeCP2mutant iPSC-CMs. Treatment of MeCP2mutant iPSC-CMs with a Wnt inhibitor XAV939 significantly decreased the β-catenin protein level and CACN1AC expression and ameliorated their abnormal electrophysiological properties. In summary, our data provide novel insight into the contribution of activation of the Wnt/β-catenin signaling cascade to the cardiac abnormalities associated with MeCP2 mutations in RTT.
Collapse
Affiliation(s)
- Kwong-Man Ng
- Cardiology Division, Department of Medicine, Li Ka-Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Center for Translational Stem Cell Biology, Hong Kong SAR, China
| | - Qianqian Ding
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yiu-Lam Tse
- Cardiology Division, Department of Medicine, Li Ka-Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Oscar Hou-In Chou
- Cardiology Division, Department of Medicine, Li Ka-Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wing-Hon Lai
- Cardiology Division, Department of Medicine, Li Ka-Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ka-Wing Au
- Cardiology Division, Department of Medicine, Li Ka-Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yee-Man Lau
- Cardiology Division, Department of Medicine, Li Ka-Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yue Ji
- Department of Surgery, Li Ka-Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chung-Wah Siu
- Cardiology Division, Department of Medicine, Li Ka-Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Clara Sze-Man Tang
- Department of Surgery, Li Ka-Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong SAR, China
| | - Alan Colman
- Harvard Department of Stem Cells and Regenerative Biology, Cambridge, MA 02138, USA
| | - Suk-Ying Tsang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Institute for Tissue Engineering and Regenerative Medicine (iTERM), The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hung-Fat Tse
- Center for Translational Stem Cell Biology, Hong Kong SAR, China
- Hong Kong-Guangdong Stem Cell and Regenerative Medicine Research Centre, The University of Hong Kong and Guangzhou Institutes of Biomedicine and Health, Hong Kong SAR, China
- Heart and Vascular Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
- Correspondence:
| |
Collapse
|
8
|
Fabio RA, Chiarini L, Canegallo V. Pain in Rett syndrome: a pilot study and a single case study on the assessment of pain and the construction of a suitable measuring scale. Orphanet J Rare Dis 2022; 17:356. [PMID: 36104823 PMCID: PMC9476284 DOI: 10.1186/s13023-022-02519-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Rett Syndrome (RTT) is a severe, neurodevelopmental disorder mainly caused by mutations in the MECP2 gene, affecting around 1 in 10,000 female births. Severe physical, language, and social impairments impose a wide range of limitations in the quality of life of the patients with RTT. Comorbidities of patients with RTT are varied and cause a lot of pain, but communicating this suffering is difficult for these patients due to their problems, such as apraxia that does not allow them to express pain in a timely manner, and their difficulties with expressive language that also do not permit them to communicate. Two studies, a pilot study and a single case study, investigate the manifestation of pain of patients with RTT and propose a suitable scale to measure it. AIMS OF THIS STUDY The first aim was to describe pain situations of RTT by collecting information by parents; the second aim was to test and compare existing questionnaires for non-communicating disorders on pain such as Pain assessment in advanced demenzia (PAINAD), the Critical care pain observation tool (CPOT) and the Non-communicating Children's Pain Checklist-Revised (NCCPC-R) to assess which of them is best related to the pain behavior of patients with RTT. The third aim was to identify the specific verbal and non-verbal behaviors that characterize pain in girls with Rett syndrome, discriminating them from non-pain behaviors. METHOD Nineteen participants, eighteen girls with RTT and one girl with RTT with 27 manifestations of pain were video-recorded both in pain and base-line conditions. Two independent observers codified the 90 video-recording (36 and 54) to describe their behavioral characteristics. RESULTS The two studies showed that the most significant pain behaviors expressed by girls with respect to the baseline condition, at the facial level were a wrinkled forehead, wide eyes, grinding, banging teeth, complaining, making sounds, crying and screaming, and the most common manifestations of the body were tremors, forward and backward movement of the torso, tension in the upper limbs, increased movement of the lower limbs and a sprawling movement affecting the whole body. CONCLUSION The results of the two studies helped to create an easy-to-apply scale that healthcare professionals can use to assess pain in patients with Rett's syndrome. This scale used PAINAD as its basic structure, with some changes in the items related to the behavior of patients with RTT.
Collapse
Affiliation(s)
- Rosa Angela Fabio
- Department of Economy, University of Messina, via Dei Verdi, 75, 98123 Messina, Italy
| | - Liliana Chiarini
- Department of Economy, University of Messina, via Dei Verdi, 75, 98123 Messina, Italy
- CARI, (Airett Center Innovation and Research), Vicolo Volto S. Luca, 16, 37100 Verona, Italy
| | - Virginia Canegallo
- Vita-Salute San Raffaele University, Via Olgettina, 58, 20132 Milano, MI Italy
| |
Collapse
|
9
|
Verma A, Sinha A, Datta D. Modulation of DNA/RNA Methylation by Small-Molecule Modulators and Their Implications in Cancer. Subcell Biochem 2022; 100:557-579. [PMID: 36301506 DOI: 10.1007/978-3-031-07634-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chromatin is an organized complex of DNA, histone proteins, and RNA. Chromatin modifications include DNA methylation, RNA methylation, and histone acetylation and methylation. The methylation of chromatin complexes predominantly alters the regulation of gene expression, and its deregulation is associated with several human diseases including cancer. Cancer is a disease characterized by dynamic changes in the genetic and epigenetic architecture of a cell. Altered DNA methylation by DNA methyltransferases (DNMTs) and m6A RNA methylation facilitate tumor initiation and progression and thus serve as critical targets for cancer therapy. Small-molecule modulators of these epigenetic targets are at the hotspots of current cancer drug discovery research. Indeed, recent studies have led to the discovery of several chemical modulators against these targets, some of which have already gained approval for cancer therapy while others are undergoing clinical trials. In this chapter, we will focus on the role of small-molecule modulators in regulating DNA/RNA methylation and their implications in cancer.
Collapse
Affiliation(s)
- Ayushi Verma
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI), Lucknow, India
| | - Abhipsa Sinha
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI), Lucknow, India
| | - Dipak Datta
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI), Lucknow, India.
| |
Collapse
|
10
|
Ge Y, Zhang R, Feng Y, Lu J, Li H. Mbd2 deficiency alleviates retinal cell apoptosisvia the miR-345-5p/Atf1 axis in high glucoseinjury and streptozotocin-induced diabetic mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:1201-1214. [PMID: 34853720 PMCID: PMC8605293 DOI: 10.1016/j.omtn.2021.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 08/23/2021] [Accepted: 10/29/2021] [Indexed: 12/21/2022]
Abstract
DNA methylation is considered to play an important role in the development of diabetic retinopathy. Here, our goal was to investigate the precise role of methyl-CpG binding domain protein 2 (Mbd2) in the apoptosis of retinal ganglion cells (RGCs) in the early diabetic retina. Mbd2 was significantly upregulated after high glucose (HG) treatment and played a proapoptotic role in RGCs during HG-induced apoptosis. Combining ChIP and gene microarray datasets, the results showed that Mbd2 possessed potential binding sites for miR-345-5p, thereby elevating the expression levels of miR-345-5p via the enhancement of promoter demethylation. Activating transcription factor 1 (Atf1) played an anti-apoptotic role during the process of apoptosis in RGCs and acted as the target gene for miR-345-5p. Furthermore, the number of surviving RGCs in the diabetic retina was increased in Mbd2-knockout mice when compared with wild-type mice and the visual function became better accordingly. Collectively, our data demonstrated that the HG-induced overexpression of Mbd2 in the retina was partly responsible for the apoptosis of retinal neuronal cells through the miR-345-5p/Atf1 axis. Therefore, the targeting of Mbd2 might represent a novel therapeutic strategy for the treatment of neurodegeneration in the early diabetic retina.
Collapse
Affiliation(s)
- Yanni Ge
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Ran Zhang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Yuqing Feng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Jinfang Lu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Huiling Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| |
Collapse
|
11
|
DNA Methylation in Huntington's Disease. Int J Mol Sci 2021; 22:ijms222312736. [PMID: 34884540 PMCID: PMC8657460 DOI: 10.3390/ijms222312736] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Methylation of cytosine in CpG dinucleotides is the major DNA modification in mammalian cells that is a key component of stable epigenetic marks. This modification, which on the one hand is reversible, while on the other hand, can be maintained through successive rounds of replication plays roles in gene regulation, genome maintenance, transgenerational epigenetic inheritance, and imprinting. Disturbed DNA methylation contributes to a wide array of human diseases from single-gene disorders to sporadic metabolic diseases or cancer. DNA methylation was also shown to affect several neurodegenerative disorders, including Huntington's disease (HD), a fatal, monogenic inherited disease. HD is caused by a polyglutamine repeat expansion in the Huntingtin protein that brings about a multifaceted pathogenesis affecting several cellular processes. Research of the last decade found complex, genome-wide DNA methylation changes in HD pathogenesis that modulate transcriptional activity and genome stability. This article reviews current evidence that sheds light on the role of DNA methylation in HD.
Collapse
|
12
|
Gillotin S, Sahni V, Lepko T, Hanspal MA, Swartz JE, Alexopoulou Z, Marshall FH. Targeting impaired adult hippocampal neurogenesis in ageing by leveraging intrinsic mechanisms regulating Neural Stem Cell activity. Ageing Res Rev 2021; 71:101447. [PMID: 34403830 DOI: 10.1016/j.arr.2021.101447] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/14/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023]
Abstract
Deficits in adult neurogenesis may contribute to the aetiology of many neurodevelopmental, psychiatric and neurodegenerative diseases. Genetic ablation of neurogenesis provides proof of concept that adult neurogenesis is required to sustain complex and dynamic cognitive functions, such as learning and memory, mostly by providing a high degree of plasticity to neuronal circuits. In addition, adult neurogenesis is reactive to external stimuli and the environment making it particularly susceptible to impairment and consequently contributing to comorbidity. In the human brain, the dentate gyrus of the hippocampus is the main active source of neural stem cells that generate granule neurons throughout life. The regulation and preservation of the pool of neural stem cells is central to ensure continuous and healthy adult hippocampal neurogenesis (AHN). Recent advances in genetic and metabolic profiling alongside development of more predictive animal models have contributed to the development of new concepts and the emergence of molecular mechanisms that could pave the way to the implementation of new therapeutic strategies to treat neurological diseases. In this review, we discuss emerging molecular mechanisms underlying AHN that could be embraced in drug discovery to generate novel concepts and targets to treat diseases of ageing including neurodegeneration. To support this, we review cellular and molecular mechanisms that have recently been identified to assess how AHN is sustained throughout life and how AHN is associated with diseases. We also provide an outlook on strategies for developing correlated biomarkers that may accelerate the translation of pre-clinical and clinical data and review clinical trials for which modulation of AHN is part of the therapeutic strategy.
Collapse
|
13
|
Gowri V, Monteiro A. Inheritance of Acquired Traits in Insects and Other Animals and the Epigenetic Mechanisms That Break the Weismann Barrier. J Dev Biol 2021; 9:41. [PMID: 34698204 PMCID: PMC8544363 DOI: 10.3390/jdb9040041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/21/2021] [Accepted: 10/01/2021] [Indexed: 01/29/2023] Open
Abstract
The credibility of the Weismann barrier has come into question. Several studies in various animal systems, from mice to worms, have shown that novel environmental stimuli can generate an altered developmental or behavioral trait that can be transmitted to offspring of the following generation. Recently, insects have become ideal models to study the inheritance of acquired traits. This is because insects can be reared in high numbers at low cost, they have short generation times and produce abundant offspring. Numerous studies have shown that an insect can modify its phenotype in response to a novel stimulus to aid its survival, and also that this modified phenotypic trait can be inherited by its offspring. Epigenetic mechanisms are likely at play but, most studies do not address the mechanisms that underlie the inheritance of acquired traits in insects. Here we first review general epigenetic mechanisms such as DNA methylation, histone acetylation and small noncoding RNAs that have been implicated in the transmission of acquired traits in animals, then we focus on the few insect studies in which these mechanisms have been investigated.
Collapse
Affiliation(s)
- V. Gowri
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore;
| | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore;
- Science Division, Yale-NUS College, Singapore 138609, Singapore
| |
Collapse
|
14
|
|
15
|
Ahlfors JE, Azimi A, El-Ayoubi R, Velumian A, Vonderwalde I, Boscher C, Mihai O, Mani S, Samoilova M, Khazaei M, Fehlings MG, Morshead CM. Examining the fundamental biology of a novel population of directly reprogrammed human neural precursor cells. Stem Cell Res Ther 2019; 10:166. [PMID: 31196173 PMCID: PMC6567617 DOI: 10.1186/s13287-019-1255-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cell reprogramming is a promising avenue for cell-based therapies as it allows for the generation of multipotent, unipotent, or mature somatic cells without going through a pluripotent state. While the use of autologous cells is considered ideal, key challenges for their clinical translation include the ability to reproducibly generate sufficient quantities of cells within a therapeutically relevant time window. METHODS We performed transfection of three distinct human somatic starting populations of cells with a non-integrating synthetic plasmid expressing Musashi 1 (MSI1), Neurogenin 2 (NGN2), and Methyl-CpG-Binding Domain 2 (MBD2). The resulting directly reprogrammed neural precursor cells (drNPCs) were examined in vitro using RT-qPCR, karyotype analysis, immunohistochemistry, and FACS at early and late time post-transfection. Electrophysiology (patch clamp) was performed on drNPC-derived neurons to determine their capacity to generate action potentials. In vivo characterization was performed following transplantation of drNPCs into two animal models (Shiverer and SCID/Beige mice), and the numbers, location, and differentiation profile of the transplanted cells were examined using immunohistochemistry. RESULTS Human somatic cells can be directly reprogrammed within two weeks to neural precursor cells (drNPCs) by transient exposure to Msi1, Ngn2, and MBD2 using non-viral constructs. The drNPCs generate all three neural cell types (astrocytes, oligodendrocytes, and neurons) and can be passaged in vitro to generate large numbers of cells within four weeks. drNPCs can respond to in vivo differentiation and migration cues as demonstrated by their migration to the olfactory bulb and contribution to neurogenesis in vivo. Differentiation profiles of transplanted cells onto the corpus callosum of myelin-deficient mice reveal the production of oligodendrocytes and astrocytes. CONCLUSIONS Human drNPCs can be efficiently and rapidly produced from donor somatic cells and possess all the important characteristics of native neural multipotent cells including differentiation into neurons, astrocytes, and oligodendrocytes, and in vivo neurogenesis and myelination.
Collapse
Affiliation(s)
| | - Ashkan Azimi
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario M5S 1A8 Canada
- Division of Anatomy, Department of Surgery, University of Toronto, Ontario, M5S 1A8 Canada
| | | | - Alexander Velumian
- Division of Neurosurgery, Department of Surgery, University of Toronto, Ontario, M5T 1P5 Canada
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8 Canada
| | - Ilan Vonderwalde
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9 Canada
| | | | - Oana Mihai
- New World Laboratories, Laval, Quebec, H7V 5B7 Canada
| | - Sarathi Mani
- New World Laboratories, Laval, Quebec, H7V 5B7 Canada
| | - Marina Samoilova
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8 Canada
| | - Mohamad Khazaei
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8 Canada
| | - Michael G. Fehlings
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario M5S 1A8 Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Ontario, M5T 1P5 Canada
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8 Canada
| | - Cindi M Morshead
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario M5S 1A8 Canada
- Division of Anatomy, Department of Surgery, University of Toronto, Ontario, M5S 1A8 Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9 Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S3E1 Canada
| |
Collapse
|
16
|
Argyrousi EK, de Nijs L, Lagatta DC, Schlütter A, Weidner MT, Zöller J, van Goethem NP, Joca SR, van den Hove DL, Prickaerts J. Effects of DNA methyltransferase inhibition on pattern separation performance in mice. Neurobiol Learn Mem 2019; 159:6-15. [DOI: 10.1016/j.nlm.2019.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 01/27/2019] [Accepted: 02/02/2019] [Indexed: 10/27/2022]
|
17
|
Hedrich CM. Mechanistic aspects of epigenetic dysregulation in SLE. Clin Immunol 2018; 196:3-11. [DOI: 10.1016/j.clim.2018.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/05/2018] [Accepted: 02/05/2018] [Indexed: 12/12/2022]
|
18
|
Abstract
Purpose of Review Systemic lupus erythematosus is a severe autoimmune/inflammatory condition of unknown pathophysiology. Though genetic predisposition is essential for disease expression, risk alleles in single genes are usually insufficient to confer disease. Epigenetic dysregulation has been suggested as the missing link between genetic risk and the development of clinically evident disease. Recent Findings Over the past decade, epigenetic events moved into the focus of research targeting the molecular pathophysiology of SLE. Epigenetic alteration can be the net result of preceding infections, medication, diet, and/or other environmental influences. While altered DNA methylation and histone modifications had already been established as pathomechanisms, DNA hydroxymethylation was more recently identified as an activating epigenetic mark. Summary Defective epigenetic control contributes to uncontrolled cytokine and co-receptor expression, resulting in immune activation and tissue damage in SLE. Epigenetic alterations promise potential as disease biomarkers and/or future therapeutic targets in SLE and other autoimmune/inflammatory conditions.
Collapse
Affiliation(s)
- Christian Michael Hedrich
- Division of Paediatric Rheumatology and Immunology, Children's Hospital Dresden, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany. .,Department of Women᾿s & Children᾿s Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK. .,Department of Paediatric Rheumatology, Alder Hey Children᾿s NHS Foundation Trust Hospital, East Prescott Road, Liverpool, L14 5AB, UK.
| |
Collapse
|
19
|
Sharma K, Singh J, Frost EE, Pillai PP. MeCP2 in central nervous system glial cells: current updates. Acta Neurobiol Exp (Wars) 2018. [DOI: 10.21307/ane-2018-007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Abstract
The role of DNA methylation in brain development is an intense area of research because the brain has particularly high levels of CpG and mutations in many of the proteins involved in the establishment, maintenance, interpretation, and removal of DNA methylation impact brain development and/or function. These include DNA methyltransferase (DNMT), Ten-Eleven Translocation (TET), and Methyl-CpG binding proteins (MBPs). Recent advances in sequencing breadth and depth as well the detection of different forms of methylation have greatly expanded our understanding of the diversity of DNA methylation in the brain. The contributions of DNA methylation and associated proteins to embryonic and adult neurogenesis will be examined. Particular attention will be given to the impact on adult hippocampal neurogenesis (AHN), which is a key mechanism contributing to brain plasticity, learning, memory and mood regulation. DNA methylation influences multiple aspects of neurogenesis from stem cell maintenance and proliferation, fate specification, neuronal differentiation and maturation, and synaptogenesis. In addition, DNA methylation during neurogenesis has been shown to be responsive to many extrinsic signals, both under normal conditions and during disease and injury. Finally, crosstalk between DNA methylation, Methyl-DNA binding domain (MBD) proteins such as MeCP2 and MBD1 and histone modifying complexes is used as an example to illustrate the extensive interconnection between these epigenetic regulatory systems.
Collapse
Affiliation(s)
- Emily M Jobe
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA.,Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Xinyu Zhao
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA.,Waisman Center, University of Wisconsin-Madison, Madison, WI, USA.,Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
21
|
Sheikh MA, Malik YS, Zhu X. RA-Induced Transcriptional Silencing of Checkpoint Kinase-2 through Promoter Methylation by Dnmt3b Is Required for Neuronal Differentiation of P19 Cells. J Mol Biol 2017; 429:2463-2473. [PMID: 28712951 DOI: 10.1016/j.jmb.2017.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/16/2017] [Accepted: 07/07/2017] [Indexed: 10/19/2022]
Abstract
In a previous study, we identified several novel targets of Dnmt3b using a chromatin library from retinoic acid (RA)-treated P19 cells. The present study describes the regulation of expression and function of checkpoint kinase (Chk2), which was one of the target genes of Dnmt3b. Chromatin immunoprecipitation followed by quantitative PCR analysis showed that recruitment of Dnmt3b on Chk2 promoter is induced following RA treatment of P19 cells. Both bisulfite genomic sequence and COBRA analyses showed that the methylation level of Chk2 promoter is progressively increased during RA-induced neuronal differentiation of P19 cells. Concomitantly, both mRNA and protein expression of Chk2 are reduced as determined by real-time PCR and Western blot analysis, respectively. Suppression of Dnmt3b expression by lentiviral-mediated shRNA resulted in increased expression and reduced methylation of Chk2, which clearly showed that Dnmt3b is responsible for transcriptional silencing of Chk2 gene in RA-treated P19 cells. Neuronal differentiation of P19 cells was inhibited upon enforced Chk2 expression in P19 cells, which showed that the decrease in endogenous expression of Chk2 is essential for normal differentiation. Ectopic Chk2 expression also negatively regulated cell cycle arrest and apoptosis following RA treatment, which could also contribute to impaired neuronal differentiation. Together, this study described the regulation of Chk2 expression through promoter methylation and also presented a novel role of Chk2 during neuronal differentiation, which is independent of its previously known function in DNA damage response.
Collapse
Affiliation(s)
- Muhammad Abid Sheikh
- Institute of Cytology and Genetics, Northeast Normal University, Changchun, China; Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Yousra Saeed Malik
- Institute of Cytology and Genetics, Northeast Normal University, Changchun, China
| | - Xiaojuan Zhu
- Institute of Cytology and Genetics, Northeast Normal University, Changchun, China.
| |
Collapse
|
22
|
Epigenetic dysregulation of protocadherins in human disease. Semin Cell Dev Biol 2017; 69:172-182. [PMID: 28694114 DOI: 10.1016/j.semcdb.2017.07.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 12/12/2022]
Abstract
Protocadherins (Pcdhs) are a group of cell-cell adhesion molecules that are highly expressed in the nervous system and have a major function in dendrite development and neural circuit formation. However, the role protocadherins play in human health and disease remains unclear. Several recent studies have associated epigenetic dysregulation of protocadherins with possible implications for disease pathogenesis. In this review, we briefly recap the various epigenetic mechanisms regulating protocadherin genes, particularly the clustered Pcdhs. We further outline research describing altered epigenetic regulation of protocadherins in neurological and psychiatric disorders, as well as in cancer and during aging. We additionally present preliminary data on DNA methylation dynamics of clustered protocadherins during fetal brain development, as well as the epigenetic differences distinguishing adult neuronal and glial cells. A deeper understanding of the role of protocadherins in disease is crucial for designing novel diagnostic tools and therapies targeting brain disorders.
Collapse
|
23
|
Elevated methylation and decreased serum concentrations of BDNF in patients in levomethadone compared to diamorphine maintenance treatment. Eur Arch Psychiatry Clin Neurosci 2017; 267:33-40. [PMID: 26801497 DOI: 10.1007/s00406-016-0668-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/11/2016] [Indexed: 12/21/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) appears to play a crucial role in the reward response to drugs such as heroin. The primary objective of the present study was to examine epigenetic changes and serum levels of BDNF in patients undergoing different opiate-based maintenance treatments. We compared patients receiving treatment with either levomethadone (n = 55) or diamorphine (n = 28) with a healthy control group (n = 51). When comparing all subjects (patients and controls), BDNF serum levels showed a negative correlation with the BDNF IV promoter methylation rate (r = -0.177, p = 0.048). Furthermore, BDNF serum levels negatively correlated with Beck's Depression Inventory measurements (r = -0.177, p < 0.001). Patients receiving diamorphine maintenance treatment showed slightly decreased BDNF serum levels compared to healthy controls, whereas patients on levomethadone maintenance treatment with or without heroine co-use showed a pronounced decrease (analysis of covariance: control vs. levomethadone with and without heroine co-use: p < 0.0001, diamorphine vs. levomethadone with heroine co-use: p = 0.043, diamorphine vs. levomethadone without heroine co-use: p < 0.0001). According to these findings, methylation of the BDNF IV promoter showed the highest level in patients receiving levomethadone without heroine co-use (linear mixed model: control vs. levomethadone group without heroine co-use: p = 0.008, with heroin co-use: p = 0.050, diamorphine vs. levomethadone group with heroine co-use: p = 0.077 and without heroine co-use: p = 0.015.). For the first time, we show an epigenetic mechanism that may provide an explanation for mood destabilization in levomethadone maintenance treatment.
Collapse
|
24
|
Ehrhart F, Coort SLM, Cirillo E, Smeets E, Evelo CT, Curfs LMG. Rett syndrome - biological pathways leading from MECP2 to disorder phenotypes. Orphanet J Rare Dis 2016; 11:158. [PMID: 27884167 PMCID: PMC5123333 DOI: 10.1186/s13023-016-0545-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/17/2016] [Indexed: 02/07/2023] Open
Abstract
Rett syndrome (RTT) is a rare disease but still one of the most abundant causes for intellectual disability in females. Typical symptoms are onset at month 6-18 after normal pre- and postnatal development, loss of acquired skills and severe intellectual disability. The type and severity of symptoms are individually highly different. A single mutation in one gene, coding for methyl-CpG-binding protein 2 (MECP2), is responsible for the disease. The most important action of MECP2 is regulating epigenetic imprinting and chromatin condensation, but MECP2 influences many different biological pathways on multiple levels although the molecular pathways from gene to phenotype are currently not fully understood. In this review the known changes in metabolite levels, gene expression and biological pathways in RTT are summarized, discussed how they are leading to some characteristic RTT phenotypes and therefore the gaps of knowledge are identified. Namely, which phenotypes have currently no mechanistic explanation leading back to MECP2 related pathways? As a result of this review the visualization of the biologic pathways showing MECP2 up- and downstream regulation was developed and published on WikiPathways which will serve as template for future omics data driven research. This pathway driven approach may serve as a use case for other rare diseases, too.
Collapse
Affiliation(s)
- Friederike Ehrhart
- Governor Kremers Centre - Rett Expertise Centre, Maastricht University Medical Center, Maastricht, The Netherlands. .,Department of Bioinformatics, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.
| | - Susan L M Coort
- Department of Bioinformatics, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Elisa Cirillo
- Department of Bioinformatics, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Eric Smeets
- Governor Kremers Centre - Rett Expertise Centre, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Chris T Evelo
- Governor Kremers Centre - Rett Expertise Centre, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Bioinformatics, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Leopold M G Curfs
- Governor Kremers Centre - Rett Expertise Centre, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
25
|
|
26
|
Early-life experience, epigenetics, and the developing brain. Neuropsychopharmacology 2015; 40:141-53. [PMID: 24917200 PMCID: PMC4262891 DOI: 10.1038/npp.2014.140] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/03/2014] [Accepted: 06/05/2014] [Indexed: 02/07/2023]
Abstract
Development is a dynamic process that involves interplay between genes and the environment. In mammals, the quality of the postnatal environment is shaped by parent-offspring interactions that promote growth and survival and can lead to divergent developmental trajectories with implications for later-life neurobiological and behavioral characteristics. Emerging evidence suggests that epigenetic factors (ie, DNA methylation, posttranslational histone modifications, and small non-coding RNAs) may have a critical role in these parental care effects. Although this evidence is drawn primarily from rodent studies, there is increasing support for these effects in humans. Through these molecular mechanisms, variation in risk of psychopathology may emerge, particularly as a consequence of early-life neglect and abuse. Here we will highlight evidence of dynamic epigenetic changes in the developing brain in response to variation in the quality of postnatal parent-offspring interactions. The recruitment of epigenetic pathways for the biological embedding of early-life experience may also have transgenerational consequences and we will describe and contrast two routes through which this transmission can occur: experience dependent vs germline inheritance. Finally, we will speculate regarding the future directions of epigenetic research and how it can help us gain a better understanding of the developmental origins of psychiatric dysfunction.
Collapse
|
27
|
Mau T, Yung R. Potential of epigenetic therapies in non-cancerous conditions. Front Genet 2014; 5:438. [PMID: 25566322 PMCID: PMC4271720 DOI: 10.3389/fgene.2014.00438] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 11/25/2014] [Indexed: 12/20/2022] Open
Abstract
There has been an explosion of knowledge in the epigenetics field in the past 20 years. The first epigenetic therapies have arrived in the clinic for cancer treatments. In contrast, much of the promise of epigenetic therapies for non-cancerous conditions remains in the laboratories. The current review will focus on the recent progress that has been made in understanding the pathogenic role of epigenetics in immune and inflammatory conditions, and how the knowledge may provide much needed new therapeutic targets for many autoimmune diseases. Dietary factors are increasingly recognized as potential modifiers of epigenetic marks that can influence health and diseases across generations. The current epigenomics revolution will almost certainly complement the explosion of personal genetics medicine to help guide treatment decisions and disease risk stratification.
Collapse
Affiliation(s)
- Theresa Mau
- Division of Geriatric and Palliative Medicine, Department of Internal Medicine, University of Michigan Ann Arbor, MI, USA
| | - Raymond Yung
- Division of Geriatric and Palliative Medicine, Department of Internal Medicine, University of Michigan Ann Arbor, MI, USA ; Department of Veterans Affairs Ann Arbor Health System, Geriatric Research, Education and Clinical Care Center Ann Arbor, MI, USA
| |
Collapse
|
28
|
Fabio RA, Colombo B, Russo S, Cogliati F, Masciadri M, Foglia S, Antonietti A, Tavian D. Recent insights into genotype-phenotype relationships in patients with Rett syndrome using a fine grain scale. RESEARCH IN DEVELOPMENTAL DISABILITIES 2014; 35:2976-2986. [PMID: 25124696 DOI: 10.1016/j.ridd.2014.07.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/09/2014] [Accepted: 07/14/2014] [Indexed: 06/03/2023]
Abstract
Mutations in MECP2 gene cause Rett syndrome (RTT), a neurodevelopmental disorder affecting around 1 in 10,000 female births. The clinical picture of RTT appears quite heterogeneous for each single feature. Mutations in MECP2 gene have been associated with the onset of RTT. The most known gene function consists of transcriptional repression of specific target genes, mainly by the binding of its methyl binding domain (MBD) to methylated CpG nucleotides and recruiting co-repressors and histone deacetylase binding to DNA by its transcription repressor domain (TRD). This study aimed at evaluating a cohort of 114 Rett syndrome (RTT) patients with a detailed scale measuring the different kinds of impairments produced by the syndrome. The sample included relatively large subsets of the most frequent mutations, so that genotype-phenotype correlations could be tested. Results revealed that frequent missense mutations showed a specific profile in different areas of impairment. The R306C mutation, considered as producing mild impairment, was associated to a moderate phenotype in which behavioural characteristics were mainly affected. A notable difference emerged by comparing mutations truncating the protein before and after the nuclear localization signal; such a difference concerned prevalently the motor-functional and autonomy skills of the patients, affecting the management of everyday activities.
Collapse
Affiliation(s)
- Rosa Angela Fabio
- Department of Cognitive Science, Education and Cultural Studies, University of Messina, via Concezione 8, 98122 Messina, Italy.
| | - Barbara Colombo
- Department of Psychology, Catholic University of the Sacred Heart, Largo Gemelli 1, 20123 Milano, Italy
| | - Silvia Russo
- Cytogenetics and Molecular Genetics Laboratory, Istituto Auxologico Italiano, via Ariosto 13, 20145 Milano, Italy
| | - Francesca Cogliati
- Cytogenetics and Molecular Genetics Laboratory, Istituto Auxologico Italiano, via Ariosto 13, 20145 Milano, Italy
| | - Maura Masciadri
- Cytogenetics and Molecular Genetics Laboratory, Istituto Auxologico Italiano, via Ariosto 13, 20145 Milano, Italy
| | - Silvia Foglia
- Department of Psychology, Catholic University of the Sacred Heart, Largo Gemelli 1, 20123 Milano, Italy
| | - Alessandro Antonietti
- Department of Psychology, Catholic University of the Sacred Heart, Largo Gemelli 1, 20123 Milano, Italy
| | - Daniela Tavian
- Department of Psychology, Catholic University of the Sacred Heart, Largo Gemelli 1, 20123 Milano, Italy; Laboratory of Cellular Biochemistry and Molecular Biology-CRIBENS, Catholic University of the Sacred Heart, Piazza Buonarroti 30, 20145 Milano, Italy
| |
Collapse
|
29
|
Weissman J, Naidu S, Bjornsson HT. Abnormalities of the DNA methylation mark and its machinery: an emerging cause of neurologic dysfunction. Semin Neurol 2014; 34:249-57. [PMID: 25192503 PMCID: PMC4512289 DOI: 10.1055/s-0034-1386763] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recently, Mendelian disorders of the DNA methylation machinery have been described which demonstrate the complex roles of epigenetics in neurodevelopment and disease. For example, defects of DNMT1, the maintenance methyltransferase, lead to adult-onset progressive neurologic disorders, whereas defects of the de novo methyltransferases DNMT3A and DNMT3B lead to nonprogressive neurodevelopmental conditions. Furthermore, patients with DNMT3A deficiency demonstrate overgrowth, a feature common to disorders of histone machinery and imprinting disorders, highlighting the interconnectedness of the many epigenetic layers. Disorders of the DNA methylation machinery include both the aforementioned "writers" and also the "readers" of the methyl mark, such as MeCP2, the cause of Rett syndrome. Any dosage disruption, either haploinsufficiency or overexpression of DNA methylation machinery leads to widespread gene expression changes in trans, disrupting expression of a subset of target genes that contribute to individual disease phenotypes. In contrast, classical imprinting disorders such as Angelman syndrome have been thought generally to cause epigenetic dysregulation in cis. However, the recent description of multilocus methylation disorders challenges this generalization. Here, in addition to summarizing recent developments in identifying the pathogenesis of these diseases, we highlight clinical considerations and some unexpected therapeutic opportunities, such as topoisomerase inhibitors for classical imprinting disorders.
Collapse
Affiliation(s)
- Jacqueline Weissman
- Kennedy Krieger Institute, Baltimore, Maryland
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sakkubai Naidu
- Kennedy Krieger Institute, Baltimore, Maryland
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hans T. Bjornsson
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
30
|
Genetic association study between methyl-CpG-binding domain genes and schizophrenia among Chinese family trios. Psychiatr Genet 2014; 24:221-4. [PMID: 24849540 DOI: 10.1097/ypg.0000000000000042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This study investigates the genetic association between methyl-CpG-binding domain (MBD) gene polymorphisms and schizophrenia. A total of 200 family trios consisting of fathers, mothers, and affected offspring with schizophrenia were recruited as our participants. Four tag SNPs on MBD1 (rs125555, rs140689, rs140687, and rs140686), three tag SNPs on MBD2 (rs3876254, rs7614, and rs1145317), and three tag SNPs on MBD3 (rs7252741, rs4807934, and rs4807122) genes were tested using the PCR-based ligase detection reaction (PCR-LDR). The transmission disequilibrium test showed that rs1145317 on the MBD2 gene was significantly overtransmitted from parents to schizophrenic offspring (P=0.026). The haplotype-based haplotype relative risk test revealed that the haplotype rs7614-rs1145317 (A-G) was associated with schizophrenia (P=0.029). Our finding suggests that the MBD2 gene may be a susceptibility gene for schizophrenia.
Collapse
|
31
|
Kasprzyk L, Defossez PA, Miotto B. [Epigenetic regulation in neuronal differentiation and brain function]. Biol Aujourdhui 2013; 207:1-17. [PMID: 23694721 DOI: 10.1051/jbio/2013001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Indexed: 11/15/2022]
Abstract
DNA methylation compacts chromatin structure and represses gene transcription. It is important for numerous cellular processes, including embryonic development, X-chromosome inactivation, suppression of transposable elements, and cellular differentiation. In addition, environmental cues, including drugs, pollutants, trauma or early-life social environment, alter DNA methylation patterns in different organs. For instance, studies have unravelled a complex and dynamic interplay between environment, DNA methylation and neuron function during development and in the adult. This crosstalk is hypothesized as an essential molecular event underlying the effects of long-term memory, drug addiction, and several psychotic and behavioural disorders. In this review, we give a summary of this exciting field of research and highlight the molecular functions of DNA methylation and of proteins interacting with methylated DNA.
Collapse
Affiliation(s)
- Laetitia Kasprzyk
- Unité d'Épigénétique et Destin Cellulaire, CNRS UMR7216, Université Paris Diderot 35, rue Hélène Brion, 75205 Paris Cedex 13, France
| | | | | |
Collapse
|
32
|
Zhu X, Li F, Yang B, Liang J, Qin H, Xu J. Effects of ultraviolet B exposure on DNA methylation in patients with systemic lupus erythematosus. Exp Ther Med 2013; 5:1219-1225. [PMID: 23596493 PMCID: PMC3628076 DOI: 10.3892/etm.2013.960] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 01/14/2013] [Indexed: 11/11/2022] Open
Abstract
The aim of this study was to investigate the effects of ultraviolet B (UVB) exposure on DNA methylation in patients with systemic lupus erythematosus (SLE) and its significance in the pathogenesis of SLE. T cells from 35 SLE patients and 21 healthy individuals were cultured and irradiated with UVB. The global DNA methylation profiles of the T cells obtained from the patients and controls following irradiation with UVB were assessed using specific monoclonal antibodies for 5-methylcytosine and analyzed quantitatively through flow cytometry. Real-time reverse transcription-polymerase chain reaction (RT-PCR) was used to analyze the levels of DNA methyltransferase 1 (DNMT1) and methyl CpG binding domain protein 2 (MBD2) in T cells from the patients and controls following UVB irradiation. Significant global DNA hypomethylation was observed in the SLE patients compared with the controls (P<0.01). The SLE patients also had significantly lower levels of DNMT1 mRNA expression (P<0.01) and significantly higher levels of MBD2 mRNA compared with the controls (P<0.01). DNA methylation was decreased following UVB irradiation at two different dosages and the DNA methylation levels of the patients with active SLE were more sensitive to UVB. The level of DNMT1 mRNA was decreased following UVB irradiation at the higher dosage in the patients with active SLE, but no significant difference was observed in MBD2 mRNA expression. UVB exposure is able to inhibit DNA methylation and DNMT1 mRNA expression, which is subsequently involved in the epigenetic mechanism of SLE. The process by which DNA hypomethylation occurs in patients with SLE is complicated and the multiple factors that are involved in DNA methylation and demethylation events require further study.
Collapse
Affiliation(s)
- Xiaohua Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | | | | | | | | | | |
Collapse
|
33
|
Sheikh MA, Malik YS, Yu H, Lai M, Wang X, Zhu X. Epigenetic regulation of Dpp6 expression by Dnmt3b and its novel role in the inhibition of RA induced neuronal differentiation of P19 cells. PLoS One 2013; 8:e55826. [PMID: 23409053 PMCID: PMC3567024 DOI: 10.1371/journal.pone.0055826] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 01/02/2013] [Indexed: 12/05/2022] Open
Abstract
DNA methylation is an important mechanism of gene silencing in mammals catalyzed by a group of DNA methyltransferases including Dnmt1, Dnmt3a, and Dnmt3b which are required for the establishment of genomic methylation patterns during development and differentiation. In this report, we studied the role of DNA methyltransferases during retinoic acid induced neuronal differentiation of P19 cells. We observed an increase in the mRNA and protein level of Dnmt3b, whereas the expression of Dnmt1 and Dnmt3a was decreased after RA treatment of P19 cells which indicated that Dnmt3b is more important during neuronal differentiation of P19 cells. Dnmt3b enriched chromatin library from RA treated P19 cells identified dipeptidyl peptidase 6 (Dpp6) gene as a novel target of Dnmt3b. Further, quantitative ChIP analysis showed that the amount of Dnmt3b recruited on Dpp6 promoter was equal in both RA treated as well as untreated p19 cells. Bisulfite genomic sequencing, COBRA, and methylation specific PCR analysis revealed that Dpp6 promoter was heavily methylated in both RA treated and untreated P19 cells. Dnmt3b was responsible for transcriptional silencing of Dpp6 gene as depletion of Dnmt3b resulted in increased mRNA and protein expression of Dpp6. Consequently, the average methylation of Dpp6 gene promoter was reduced to half in Dnmt3b knockdown cells. In the absence of Dnmt3b, Dnmt3a was associated with Dpp6 gene promoter and regulated its expression and methylation in P19 cells. RA induced neuronal differentiation was inhibited upon ectopic expression of Dpp6 in P19 cells. Taken together, the present study described epigenetic silencing of Dpp6 expression by DNA methylation and established that its ectopic expression can act as negative signal during RA induced neuronal differentiation of P19 cells.
Collapse
Affiliation(s)
- Muhammad Abid Sheikh
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Yousra Saeed Malik
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Huali Yu
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Mingming Lai
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Xingzhi Wang
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Xiaojuan Zhu
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| |
Collapse
|
34
|
Ujvari B, Pearse AM, Peck S, Harmsen C, Taylor R, Pyecroft S, Madsen T, Papenfuss AT, Belov K. Evolution of a contagious cancer: epigenetic variation in Devil Facial Tumour Disease. Proc Biol Sci 2012; 280:20121720. [PMID: 23135679 DOI: 10.1098/rspb.2012.1720] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The emergence of Devil Facial Tumour Disease (DFTD), a highly contagious cancer, is driving Tasmanian devils (Sarcophilus harrisii) to extinction. The cancer is a genetically and chromosomally stable clonal cell line which is transmitted by biting during social interactions. In the present study, we explore the Devil Facial Tumour (DFT) epigenome and the genes involved in DNA methylation homeostasis. We show that tumour cells have similar levels of methylation to peripheral nerves, the tissue from which DFTD originated. We did not observe any strain or region-specific epimutations. However, we revealed a significant increase in hypomethylation in DFT samples over time (p < 0.0001). We propose that loss of methylation is not because of a maintenance deficiency, as an upregulation of DNA methyltransferase 1 gene was observed in tumours compared with nerves (p < 0.005). Instead, we believe that loss of methylation is owing to active demethylation, supported by the temporal increase in MBD2 and MBD4 (p < 0.001). The implications of these changes on disease phenotypes need to be explored. Our work shows that DFTD should not be treated as a static entity, but rather as an evolving parasite with epigenetic plasticity. Understanding the role of epimutations in the evolution of this parasitic cancer will provide unique insights into the role of epigenetic plasticity in cancer evolution and progression in traditional cancers that arise and die with their hosts.
Collapse
Affiliation(s)
- Beata Ujvari
- Faculty of Veterinary Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Monk C, Spicer J, Champagne FA. Linking prenatal maternal adversity to developmental outcomes in infants: the role of epigenetic pathways. Dev Psychopathol 2012; 24:1361-76. [PMID: 23062303 PMCID: PMC3730125 DOI: 10.1017/s0954579412000764] [Citation(s) in RCA: 273] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Prenatal exposure to maternal stress, anxiety, and depression can have lasting effects on infant development with risk of psychopathology. Although the impact of prenatal maternal distress has been well documented, the potential mechanisms through which maternal psychosocial variables shape development have yet to be fully elucidated. Advances in molecular biology have highlighted the role of epigenetic mechanisms in regulating gene activity, neurobiology, and behavior and the potential role of environmentally induced epigenetic variation in linking early life exposures to long-term biobehavioral outcomes. In this article, we discuss evidence illustrating the association between maternal prenatal distress and both fetal and infant developmental trajectories and the potential role of epigenetic mechanisms in mediating these effects. Postnatal experiences may have a critical moderating influence on prenatal effects, and we review findings illustrating prenatal-postnatal interplay and the developmental and epigenetic consequences of postnatal mother-infant interactions. The in utero environment is regulated by placental function and there is emerging evidence that the placenta is highly susceptible to maternal distress and a target of epigenetic dysregulation. Integrating studies of prenatal exposures, placental function, and postnatal maternal care with the exploration of epigenetic mechanisms may provide novel insights into the pathophysiology induced by maternal distress.
Collapse
Affiliation(s)
- Catherine Monk
- Columbia University, Departments of Psychiatry and Obstetrics & Gynecology, 1150 St. Nicholas Avenue, Suite 1-121, New York, NY 10032
| | - Julie Spicer
- Columbia University, Departments of Psychiatry and Obstetrics & Gynecology, 1150 St. Nicholas Avenue, Suite 1-121, New York, NY 10032
| | - Frances A. Champagne
- Columbia University, Department of Psychology, 1190 Amsterdam Avenue, Room 406 Schermerhorn Hall, New York NY 10027
| |
Collapse
|
36
|
Du Y, Liu B, Guo F, Xu G, Ding Y, Liu Y, Sun X, Xu G. The essential role of Mbd5 in the regulation of somatic growth and glucose homeostasis in mice. PLoS One 2012; 7:e47358. [PMID: 23077600 PMCID: PMC3471830 DOI: 10.1371/journal.pone.0047358] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 09/11/2012] [Indexed: 12/16/2022] Open
Abstract
Methyl-CpG binding domain protein 5 (MBD5) belongs to the MBD family proteins, which play central roles in transcriptional regulation and development. The significance of MBD5 function is highlighted by recent studies implicating it as a candidate gene involved in human 2q23.1 microdeletion syndrome. To investigate the physiological role of Mbd5, we generated knockout mice. The Mbd5-deficient mice showed growth retardation, wasting and pre-weaning lethality. The observed growth retardation was associated with the impairment of GH/IGF-1 axis in Mbd5-null pups. Conditional knockout of Mbd5 in the brain resulted in the similar phenotypes as whole body deletion, indicating that Mbd5 functions in the nervous system to regulate postnatal growth. Moreover, the mutant mice also displayed enhanced glucose tolerance and elevated insulin sensitivity as a result of increased insulin signaling, ultimately resulting in disturbed glucose homeostasis and hypoglycemia. These results indicate Mbd5 as an essential factor for mouse postnatal growth and maintenance of glucose homeostasis.
Collapse
Affiliation(s)
- Yarui Du
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Bo Liu
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Fan Guo
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Guifang Xu
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Yuqiang Ding
- Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Yong Liu
- Institute of Nutrition Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Xin Sun
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Guoliang Xu
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
- * E-mail:
| |
Collapse
|
37
|
Jobe EM, McQuate AL, Zhao X. Crosstalk among Epigenetic Pathways Regulates Neurogenesis. Front Neurosci 2012; 6:59. [PMID: 22586361 PMCID: PMC3347638 DOI: 10.3389/fnins.2012.00059] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/04/2012] [Indexed: 12/20/2022] Open
Abstract
The process of neurogenesis includes neural stem cell proliferation, fate specification, young neuron migration, neuronal maturation, and functional integration into existing circuits. Although neurogenesis occurs largely during embryonic development, low levels but functionally important neurogenesis persists in restricted regions of the postnatal brain, including the subgranular zone of the dentate gyrus in the hippocampus and the subventricular zone of the lateral ventricles. This review will cover both embryonic and adult neurogenesis with an emphasis on the latter. Of the many endogenous mediators of postnatal neurogenesis, epigenetic pathways, such as mediators of DNA methylation, chromatin remodeling systems, and non-coding RNA modulators, appear to play an integral role. Mounting evidence shows that such epigenetic factors form regulatory networks, which govern each step of postnatal neurogenesis. In this review, we explore the emerging roles of epigenetic mechanisms particularly microRNAs, element-1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF), polycomb proteins, and methyl-CpG bindings proteins, in regulating the entire process of postnatal and adult neurogenesis. We further summarize recent data regarding how the crosstalk among these different epigenetic proteins forms the critical regulatory network that regulates neuronal development. We finally discuss how crosstalk between these pathways may serve to translate environmental cues into control of the neurogenic process.
Collapse
Affiliation(s)
- Emily M Jobe
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison Madison, WI, USA
| | | | | |
Collapse
|
38
|
Sui L, Wang Y, Ju LH, Chen M. Epigenetic regulation of reelin and brain-derived neurotrophic factor genes in long-term potentiation in rat medial prefrontal cortex. Neurobiol Learn Mem 2012; 97:425-40. [DOI: 10.1016/j.nlm.2012.03.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 03/13/2012] [Accepted: 03/15/2012] [Indexed: 01/05/2023]
|
39
|
Champagne FA. Interplay between social experiences and the genome: epigenetic consequences for behavior. ADVANCES IN GENETICS 2012; 77:33-57. [PMID: 22902125 DOI: 10.1016/b978-0-12-387687-4.00002-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Social experiences can have a persistent effect on biological processes leading to phenotypic diversity. Variation in gene regulation has emerged as a mechanism through which the interplay between DNA and environments leads to the biological encoding of these experiences. Epigenetic modifications-molecular pathways through which transcription is altered without altering the underlying DNA sequence-play a critical role in the normal process of development and are being increasingly explored as a mechanism linking environmental experiences to long-term biobehavioral outcomes. In this review, evidence implicating epigenetic factors, such as DNA methylation and histone modifications, in the link between social experiences occurring during the postnatal period and in adulthood and altered neuroendocrine and behavioral outcomes will be highlighted. In addition, the role of epigenetic mechanisms in shaping variation in social behavior and the implications of epigenetics for our understanding of the transmission of traits across generations will be discussed.
Collapse
|
40
|
Normal Japanese individuals harbor polymorphisms in the p14 ARF /INK4 locus promoters and/or other gene introns. — Variation in nucleotide sequences in each individual. Genes Genomics 2011. [DOI: 10.1007/s13258-011-0085-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
41
|
Abstract
Early-life adversity can affect brain development and behavior. Emerging evidence from studies on both humans and rodents suggests that epigenetic mechanisms may play a critical role in shaping our biology in response to the quality of the environment. This article highlights the research findings suggesting that prenatal maternal stress, postnatal maternal care, and infant neglect/abuse can lead to epigenetic variation, which may have long-term effects on stress responsivity, neuronal plasticity, and behavior.
Collapse
Affiliation(s)
- Kathryn M A Gudsnuk
- Department of Psychology, Columbia University, Room 406 Schermerhorn Hall, 1190 Amsterdam Avenue, New York, NY 10027, USA
| | | |
Collapse
|
42
|
Ohsaka Y, Nishino H. Polymorphisms in promoter sequences of MDM2, p53, and p16 genes in normal Japanese individuals. Genet Mol Biol 2011; 33:615-26. [PMID: 21637567 PMCID: PMC3036159 DOI: 10.1590/s1415-47572010000400004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 07/02/2010] [Indexed: 02/11/2023] Open
Abstract
Research has been conducted to identify sequence polymorphisms of gene promoter regions in patients and control subjects, including normal individuals, and to determine the influence of these polymorphisms on transcriptional regulation in cells that express wild-type or mutant p53. In this study we isolated genomic DNA from whole blood of healthy Japanese individuals and sequenced the promoter regions of the MDM2, p53, and p16(INK4a) genes. We identified polymorphisms comprising 3 nucleotide substitutions at exon 1 and intron 1 regions of the MDM2 gene and 1 nucleotide insertion at a poly(C) nucleotide position in the p53 gene. The Japanese individuals also exhibited p16(INK4a) polymorphisms at several positions, including position -191. Reporter gene analysis by using luciferase revealed that the polymorphisms of MDM2, p53, and p16(INK4a) differentially altered luciferase activities in several cell lines, including the Colo320DM, U251, and T98G cell lines expressing mutant p53. Our results indicate that the promoter sequences of these genes differ among normal Japanese individuals and that polymorphisms can alter gene transcription activity.
Collapse
Affiliation(s)
- Yasuhito Ohsaka
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto Japan
| | | |
Collapse
|
43
|
Abstract
The non-genomic transmission of maternal behavior from one generation to the next illustrates the pervasive influence of maternal care on offspring development and the high degree of plasticity within the developing maternal brain. Investigations of the mechanisms through which these maternal effects are achieved have demonstrated environmentally-induced changes in gene expression associated with epigenetic modifications within the promoter region of target genes. These findings raise challenging questions regarding the pathways linking experience to behavioral variation and the broader ecological/evolutionary implications of the dynamic changes in neuroendocrine function that emerge. This review will highlight studies in laboratory rodents which demonstrate plasticity in the maternal brain and the role of maternally-induced changes in DNA methylation in establishing the link between variations in maternal care and consequent developmental outcomes. The persistence of maternal effects across generations and the trade-offs in reproduction that are evident in female offspring who experience high vs. low levels of maternal care contribute to our understanding of the divergent strategies that are triggered by the quality of early-life experiences. Evolving concepts of inheritance and the interplay between genes and the environment may advance our understanding of the origins of individual differences in phenotype.
Collapse
Affiliation(s)
- Frances A Champagne
- Department of Psychology, Columbia University, 1190 Amsterdam Avenue, Room 406, Schermerhorn Hall, New York, NY 10027, USA.
| |
Collapse
|
44
|
Curley JP, Jensen CL, Mashoodh R, Champagne FA. Social influences on neurobiology and behavior: epigenetic effects during development. Psychoneuroendocrinology 2011; 36:352-71. [PMID: 20650569 PMCID: PMC2980807 DOI: 10.1016/j.psyneuen.2010.06.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Revised: 06/10/2010] [Accepted: 06/14/2010] [Indexed: 02/04/2023]
Abstract
The quality of the social environment can have profound influences on the development and activity of neural systems with implications for numerous behavioral and physiological responses, including the expression of emotionality. Though social experiences occurring early in development may be particularly influential on the developing brain, there is continued plasticity within these neural circuits amongst juveniles and into early adulthood. In this review, we explore the evidence derived from studies in rodents which illustrates the social modulation during development of neural systems, with a particular emphasis on those systems in which a long-term effect is observed. One possible explanation for the persistence of dynamic changes in these systems in response to the environment is the involvement of epigenetic mechanisms, and here we discuss recent studies which support the role of these mechanisms in mediating the link between social experiences, gene expression, neurobiological changes, and behavioral variation. This literature raises critical questions about the interaction between neural systems, the concordance between neural and behavioral changes, sexual dimorphism in effects, the importance of considering individual differences in response to the social environment, and the potential of an epigenetic perspective in advancing our understanding of the pathways leading to variations in mental health.
Collapse
Affiliation(s)
- J P Curley
- Columbia University, Department of Psychology, 1190 Amsterdam Avenue, New York, NY 10027, USA
| | | | | | | |
Collapse
|
45
|
Nugent BM, Schwarz JM, McCarthy MM. Hormonally mediated epigenetic changes to steroid receptors in the developing brain: implications for sexual differentiation. Horm Behav 2011; 59:338-44. [PMID: 20800064 PMCID: PMC3011040 DOI: 10.1016/j.yhbeh.2010.08.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 08/12/2010] [Accepted: 08/19/2010] [Indexed: 01/22/2023]
Abstract
The establishment of sex-specific neural morphology, which underlies sex-specific behaviors, occurs during a perinatal sensitive window in which brief exposure to gonadal steroid hormones produces permanent masculinization of the brain. In the rodent, estradiol derived from testicular androgens is a principal organizational hormone. The mechanism by which transient estradiol exposure induces permanent differences in neuronal anatomy has been widely investigated, but remains elusive. Epigenetic changes, such as DNA methylation, allow environmental influences to alter long-term gene expression patterns and therefore may be a potential mediator of estradiol-induced organization of the neonatal brain. Here we review data that demonstrate sex and estradiol-induced differences in DNA methylation on the estrogen receptor α (ERα), estrogen receptor β (ERβ), and progesterone receptor (PR) promoters in sexually dimorphic brain regions across development. Contrary to the overarching view of DNA methylation as a permanent modification directly tied to gene expression, these data demonstrate that methylation patterns on steroid hormone receptors change across the life span and do not necessarily predict expression. Although further exploration into the mechanism and significance of estradiol-induced alterations in DNA methylation patterns in the neonatal brain is necessary, these results provide preliminary evidence that epigenetic alterations can occur in response to early hormone exposure and may mediate estradiol-induced organization of sex differences in the neonatal brain.
Collapse
Affiliation(s)
- Bridget M Nugent
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA.
| | | | | |
Collapse
|
46
|
Bountra C, Oppermann U, Heightman TD. Animal models of epigenetic regulation in neuropsychiatric disorders. Curr Top Behav Neurosci 2011; 7:281-322. [PMID: 21225415 DOI: 10.1007/7854_2010_104] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Epigenetics describes the phenomenon of heritable changes in gene regulation that are governed by non-Mendelian processes, primarily through biochemical modifications to chromatin structure that occur during cell development and differentiation. Numerous lines of evidence link abnormal levels of chromatin modifications (either to DNA, histones, or both) in patients with a wide variety of diseases including cancer, psychiatry, neurodegeneration, metabolic and inflammatory disorders. Drugs that target the proteins controlling chromatin modifications can modulate the expression of clusters of genes, potentially offering higher therapeutic efficacy than classical agents with single target pharmacologies that are susceptible to biochemical pathway degeneracy. Here, we summarize recent research linking epigenetic dysregulation with diseases in neurosciences, the application of relevant animal models, and the potential for small molecule modulator development to facilitate target discovery, validation and translation into clinical treatments.
Collapse
Affiliation(s)
- Chas Bountra
- Structural Genomics Consortium, University of Oxford, Oxford, OX3 7DQ, UK,
| | | | | |
Collapse
|
47
|
Liu CC, Ou TT, Wu CC, Li RN, Lin YC, Lin CH, Tsai WC, Liu HW, Yen JH. Global DNA methylation, DNMT1, and MBD2 in patients with systemic lupus erythematosus. Lupus 2010; 20:131-6. [DOI: 10.1177/0961203310381517] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To investigate the associations of DNA methylation levels and mRNA expressions of DNA cytosine-5-methyltransferase 1 (DNMT1) and methyl CpG-binding domain 2 (MBD2) with systemic lupus erythematosus (SLE), 108 patients with SLE and 97 healthy controls were enrolled in this study. DNA and total RNA were extracted from the peripheral blood mononuclear cells of the SLE patients and the controls. The global methylation levels of DNA were measured in 63 patients with SLE and 68 healthy controls by the ELISA method. DNMT1 and MBD2 mRNA were also detected in 108 SLE patients and 97 controls using the quantitative real-time polymerase chain reaction method. The global methylation level of DNA was significantly decreased in the SLE patients in comparison with that in the controls ( p < 0.001, 95% CI = 0.1573–0.5052). The patients with SLE have higher expressions of DNMT1 and MBD2 mRNA than the controls ( p < 0.001, 95% CI = −0.0049 – −0.0019 and p = 0.001, 95% CI = −0.0119 – −0.0029, respectively). We also found that there were no significant differences in the methylation level and the expression of DNMT1 and MBD2 mRNA between the active and the inactive SLE patients. A positive correlation was also found between DNMT1 and MBD2 mRNA expressions in the SLE patients ( p < 0.001). This study demonstrated that the patients with SLE had a significantly lower level of DNA methylation than the controls. The expression of both DNMT1 and MBD2 mRNA was significantly increased in the SLE patients compared with the controls. This study also showed a positive correlation between DNMT1 and MBD2 mRNA levels in the patients with SLE.
Collapse
Affiliation(s)
- CC Liu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Taiwan
| | - TT Ou
- >Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Taiwan
| | - CC Wu
- >Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Taiwan
| | - RN Li
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Taiwan
| | - YC Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Taiwan
| | - CH Lin
- >Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Taiwan
| | - WC Tsai
- >Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Taiwan
| | - HW Liu
- >Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Taiwan
| | - JH Yen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Taiwan
- >Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Taiwan
- Center of Excellence for Environmental Medicine, Kaohsiung Medical University, Taiwan
| |
Collapse
|
48
|
Liu CC, Fang TJ, Ou TT, Wu CC, Li RN, Lin YC, Lin CH, Tsai WC, Liu HW, Yen JH. Global DNA methylation, DNMT1, and MBD2 in patients with rheumatoid arthritis. Immunol Lett 2010; 135:96-9. [PMID: 20937307 DOI: 10.1016/j.imlet.2010.10.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Revised: 10/01/2010] [Accepted: 10/03/2010] [Indexed: 01/01/2023]
Abstract
OBJECTIVES To investigate the associations of DNA methylation levels and mRNA expressions of DNA cytosine-5-methyltransferase 1 (DNMT1) and methyl CpG-binding domain 2 (MBD2) with rheumatoid arthritis (RA). METHODS The global methylation status of DNA was measured in 65 patients with RA and 64 healthy controls by the ELISA method. DNMT1 and MBD2 mRNA were also detected in 177 RA patients and 95 controls using the quantitative real-time polymerase chain reaction method. RESULTS The global methylation of DNA was significantly decreased in the RA patients compared to the controls (p=0.005, 95% CI=0.0835-0.4503). The patients with RA had higher expressions of DNMT1 and MBD2 mRNA than the controls (p<0.001, 95% CI=-0.0024 to -0.0053 and p<0.001, 95% CI=-0.0079 to -0.0167, respectively). We also found that the MBD2 mRNA level was not related to the disease activity of RA. However, the expression of DNMT1 mRNA tended to be associated with the disease activity of RA (p=0.08). The levels of DNA methylation and DNMT1 mRNA were significantly decreased in the patients with anti-CCP antibody compared with those without (p=0.005, 95% CI=-0.7333 to -0.1373 and p=0.003, 95% CI=-0.0071 to -0.0022, respectively). The differences in the methylation level and expressions of DNMT1 and MBD2 were not significant between the patients treated with and without anti-TNFα biological agents (Enbrel or Humira). CONCLUSION This study demonstrated that the RA patients have a significantly lower level of DNA methylation than the controls. Moreover, RA patients have higher expressions of DNMT1 and MBD2 mRNA. The anti-TNFα biological agents do not seem to affect DNA methylation and mRNA expressions of DNMT1 and MBD2 in RA patients.
Collapse
Affiliation(s)
- Ching-Ching Liu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ohsaka Y, Yogosawa S, Nakanishi R, Sakai T, Nishino H. Polymorphisms in promoter sequences of the p15 ( INK4B ) and PTEN genes of normal Japanese individuals. Biochem Genet 2010; 48:970-86. [PMID: 20862607 DOI: 10.1007/s10528-010-9379-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 08/25/2010] [Indexed: 01/07/2023]
Abstract
Gene promoter regions of p15(INK4B), a cyclin-dependent kinase inhibitor, and phosphatase and tensin homolog (PTEN), a dual-function protein and lipid phosphatase, interact with regulatory factors for gene transcription and methylation. Normal individuals exhibit sequence polymorphisms in these regulatory genes. We isolated genomic DNA from whole blood of healthy Japanese individuals and sequenced promoter regions of the p15 ( INK4B ) and PTEN genes. We also examined the influence of polymorphisms on promoter activity in several cell lines. We identified polymorphisms at positions -699, -394, and -242 and an insertion at position -320 in the p15 ( INK4B ) gene and a polymorphism at position -1142 in the PTEN gene. Reporter gene analysis revealed that these polymorphisms influenced transcriptional regulation in their cell lines. Our results indicate for the first time that promoter sequences of the p15 ( INK4B ) and PTEN genes differ among normal Japanese individuals and that promoter polymorphisms can influence gene transcription.
Collapse
Affiliation(s)
- Yasuhito Ohsaka
- Department of Pharmacology, Chiba Institute of Science, Choshi, Chiba, Japan.
| | | | | | | | | |
Collapse
|
50
|
Abstract
The critical role of social interactions in driving phenotypic variation has long been inferred from the association between early social deprivation and adverse neurodevelopmental outcomes. Recent evidence has implicated molecular pathways involved in the regulation of gene expression as one possible route through which these long-term outcomes are achieved. These epigenetic effects, though not exclusive to social experiences, may be a mechanism through which the quality of the social environment becomes embedded at a biological level. Moreover, there is increasing evidence for the transgenerational impact of these early experiences mediated through changes in social and reproductive behavior exhibited in adulthood. In this review, recent studies which highlight the epigenetic effects of parent-offspring, peer and adult social interactions both with and across generations will be discussed and the implications of this research for understanding the developmental origins of individual differences in brain and behavior will be explored.
Collapse
Affiliation(s)
- Frances A Champagne
- Department of Psychology, Columbia University, Room 406, Schermerhorn Hall, 1190 Amsterdam Avenue, New York, NY 10027, USA.
| |
Collapse
|