1
|
Kotiya D, Leibold N, Verma N, Jicha GA, Goldstein LB, Despa F. Rapid, scalable assay of amylin-β amyloid co-aggregation in brain tissue and blood. J Biol Chem 2023; 299:104682. [PMID: 37030503 PMCID: PMC10192925 DOI: 10.1016/j.jbc.2023.104682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/10/2023] Open
Abstract
Islet amyloid polypeptide (amylin) secreted from the pancreas crosses from the blood to the brain parenchyma and forms cerebral mixed amylin-β amyloid (Aβ) plaques in persons with Alzheimer's disease (AD). Cerebral amylin-Aβ plaques are found in both sporadic and early-onset familial AD; however, the role of amylin-Aβ co-aggregation in potential mechanisms underlying this association remains unknown, in part due to lack of assays for detection of these complexes. Here, we report the development of an ELISA to detect amylin-Aβ hetero-oligomers in brain tissue and blood. The amylin-Aβ ELISA relies on a monoclonal anti-Aβ mid-domain antibody (detection) and a polyclonal anti-amylin antibody (capture) designed to recognize an epitope that is distinct from the high affinity amylin-Aβ binding sites. The utility of this assay is supported by the analysis of molecular amylin-Aβ codeposition in postmortem brain tissue obtained from persons with and without AD pathology. By using transgenic AD-model rats, we show that this new assay can detect circulating amylin-Aβ hetero-oligomers in the blood and is sensitive to their dissociation to monomers. This is important because therapeutic strategies to block amylin-Aβ co-aggregation could reduce or delay the development and progression of AD.
Collapse
Affiliation(s)
- Deepak Kotiya
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA; The Research Center for Healthy Metabolism, University of Kentucky, Lexington, Kentucky, USA
| | - Noah Leibold
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA; The Research Center for Healthy Metabolism, University of Kentucky, Lexington, Kentucky, USA
| | - Nirmal Verma
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA; The Research Center for Healthy Metabolism, University of Kentucky, Lexington, Kentucky, USA
| | - Gregory A Jicha
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA; Department of Neurology, University of Kentucky, Lexington, Kentucky, USA
| | - Larry B Goldstein
- Department of Neurology, University of Kentucky, Lexington, Kentucky, USA
| | - Florin Despa
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA; The Research Center for Healthy Metabolism, University of Kentucky, Lexington, Kentucky, USA; Department of Neurology, University of Kentucky, Lexington, Kentucky, USA.
| |
Collapse
|
2
|
Kashyap J, Kumari N, Ponnusamy K, Tyagi RK. Hereditary Vitamin D-Resistant Rickets (HVDRR) associated SNP variants of vitamin D receptor exhibit malfunctioning at multiple levels. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194891. [PMID: 36396100 DOI: 10.1016/j.bbagrm.2022.194891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/11/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022]
Abstract
Vitamin D receptor (VDR) is a member of the nuclear receptor superfamily. It is a primary regulator of calcium and phosphate homeostasis required for skeleton and bone mineralization. Vitamin D in active form 1α,25 dihydroxyvitamin-D3 mediates its cellular functions by binding to VDR. Active VDR forms heterodimers with partner RXR (retinoid X receptor) to execute its physiological actions. HVDRR (Hereditary Vitamin D-Resistant Rickets) is a rare genetic disorder that occurs because of generalized resistance to the 1α,25(OH)2D3. HVDRR is caused by the polymorphic variations in VDR gene leading to defective intestinal calcium absorption and mineralization of newly forming bones. Using point and deletion SNPs of VDR we have studied several HVDRR-associated SNP variants for their subcellular dynamics, transcriptional functions, 'genome bookmarking', heterodimeric interactions with RXR, and receptor stability. We previously reported that VDR is a 'mitotic bookmarking factor' that remains constitutively associated with the mitotic chromatin to inherit 'transcriptional memory', however the mechanistic details remained unclear. We document that 'genome bookmarking' property by VDR is critically impaired by naturally occurring HVDRR-associated point and deletion variants found in patients. Furthermore, these HVDRR-associated SNP variants of VDR were found to be compromised in transcriptional function, nuclear translocation, protein stability and intermolecular interactions with its heterodimeric partner RXR. Intriguingly, majority of these disease-allied functional defects failed to be rescued by RXR. Our findings suggest that the HVDRR-associated SNP variations influence the normal functioning of the receptor, and this derived understanding may help in the management of disease with precisely designed small molecule modulators.
Collapse
Affiliation(s)
- Jyoti Kashyap
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Neha Kumari
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | | | - Rakesh K Tyagi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India; Special Centre for Systems Medicine (Concurrent Faculty), Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
3
|
Chen W, Shi Y, Li G, Huang C, Zhuang Y, Shu B, Cao X, Li Z, Hu G, Liu P, Guo X. Preparation of the peroxisome proliferator-activated receptor α polyclonal antibody: Its application in fatty liver hemorrhagic syndrome. Int J Biol Macromol 2021; 182:179-186. [PMID: 33838185 DOI: 10.1016/j.ijbiomac.2021.04.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/15/2021] [Accepted: 04/03/2021] [Indexed: 01/13/2023]
Abstract
Peroxisome proliferator-activated receptor α (PPARα) play a key role in the regulation of metabolic homeostasis, inflammation, cellular growth, and differentiation. To further explore the potential role of PPARα in the energy homeostasis of fatty liver hemorrhagic syndrome (FLHS), we reported the prokaryotic expression and purification of chicken PPARα subunit protein, and successfully prepared a polyclonal antibody against PPARα recombinant protein. The 987 bp PPARα subunit genes were cloned into the pEASY-T3 clone vector. Then the plasmid PCR products encoding 329 amino acids were ligated to pEASY-Blunt E2 vector and transformed into BL21 to induce expression. The recombinant PPARα subunit protein, containing His-tag, was purified by affinity column chromatography using Ni-NTA affinity column. Rabbit antiserum was generated by using the concentration of recombinant PPARα subunit protein as the antigen. The results of western blotting showed that the antiserum can specifically recognize chicken endogenous PPARα protein. Immunohistochemistry and immunofluorescence showed that the PPARα mainly existed in the nucleus of hepatocytes, renal epithelial cells and hypothalamic endocrine nerve cells. More importantly, western blotting and real-time quantitative PCR indicated that FLHS significantly decreased the expression of PPARα.
Collapse
Affiliation(s)
- Wei Chen
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yan Shi
- School of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Cheng Huang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Bo Shu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xianhong Cao
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Zhengqing Li
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
4
|
Kumar S, Vijayan R, Dash AK, Gourinath S, Tyagi RK. Nuclear receptor SHP dampens transcription function and abrogates mitotic chromatin association of PXR and ERα via intermolecular interactions. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194683. [PMID: 33444783 DOI: 10.1016/j.bbagrm.2020.194683] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 11/29/2020] [Accepted: 12/29/2020] [Indexed: 01/07/2023]
Abstract
Mitosis is a cellular process that produces two identical progenies. Genome-wide transcription is believed to be silenced during mitosis. However, some transcription factors have been reported to associate with the mitotic chromatin to uphold a role in 'gene-bookmarking'. Here, we investigated the dynamic role of nuclear receptor SHP during cell cycle, and observed intermolecular interactions with PXR and ERα. This was reflected in altered subcellular localization, transcription function and mitotic chromatin behavior of these receptors. Subsequently, by in silico and live cell imaging approaches we identified the minimal domain(s) and crucial amino-acid residues required for such receptor-receptor interactions. It was apparent that both PXR/ERα interact with SHP to translocate cytoplasmic RFP-tagged SHP into the nucleus. In addition, during mitosis SHP interacted with some of the key nuclear receptors, altering partners, as well as, its own relationship with mitotic chromatin. SHP displaced a major fraction of PXR and ERα from the mitotic chromatin while promoted its own weak association reflected in its binding. Since SHP lacks DBD this association is attributed to receptor-receptor interactions rather than SHP-DNA interactions. The abrogation of PXR and ERα from the mitotic chromatin by SHP implies potential implications in regulation of gene bookmarking events in cellular development. Overall, it is concluded that intermolecular interactions between SHP and partner PXR/ERα result in attenuation of target promoter activities. It is proposed that SHP may act as an indirect physiological regulator and functions in a hog-tie manner by displacing the interacting transcription factor from gene regulatory sites.
Collapse
Affiliation(s)
- Sudhir Kumar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | | | - Amit K Dash
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Samudrala Gourinath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rakesh K Tyagi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
5
|
Singh SK, Yende AS, Ponnusamy K, Tyagi RK. A comprehensive evaluation of anti-diabetic drugs on nuclear receptor PXR platform. Toxicol In Vitro 2019; 60:347-358. [PMID: 31233785 DOI: 10.1016/j.tiv.2019.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 06/09/2019] [Accepted: 06/20/2019] [Indexed: 10/26/2022]
Abstract
Pregnane & Xenobiotic Receptor (PXR), one of the members of nuclear receptor superfamily, acts as a 'master-regulator' of drug metabolism and disposition machinery (DMD). Activation of PXR enables detoxification and elimination of toxic xenobiotics/endobiotics, and defends our body against chemical insults. On the contrary, PXR activation also imposes a serious concern for drug-drug interactions (DDIs). Such DDIs could either decrease the efficacy or lead to accumulation of co-administered drugs at toxic level. Therefore, it is desirable that during drug development process the small drug molecules are screened on PXR-platform prior to their clinical trial and prevent late stage failures. In view of this, we have selected a group of anti-diabetic drug molecules to examine if the success and potential failure of small molecule modulators can be pre-assessed and judiciously correlated on PXR platform. For this purpose, we have examined the PXR activation potential of the selected anti-diabetic drugs. Subsequent to screening of these anti-diabetic drugs, we elaborated the study further with rosiglitazone and pioglitazone (thiazolidinediones, TZDs) which are oral anti-diabetic formulations and have been in controversy owing to their association with cardiotoxicity and bladder cancer respectively. Our study revealed that some of the selected anti-diabetic drugs possess PXR activation potential, implying that these can up-regulate the expression of CYP3A4, UGT1A1, MDR1 and thereby can be predicted to inflict undesirable consequences.
Collapse
Affiliation(s)
- Shashi Kala Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ashutosh S Yende
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | | | - Rakesh K Tyagi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
6
|
Stable cellular models of nuclear receptor PXR for high-throughput evaluation of small molecules. Toxicol In Vitro 2018; 52:222-234. [PMID: 29933105 DOI: 10.1016/j.tiv.2018.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/28/2018] [Accepted: 06/18/2018] [Indexed: 12/11/2022]
Abstract
Pregnane & Xenobiotic Receptor (PXR) is one of the 48 members of the ligand-modulated transcription factors belonging to nuclear receptor superfamily. Though PXR is now well-established as a 'xenosensor', regulating the central detoxification and drug metabolizing machinery, it has also emerged as a key player in several metabolic disorders. This makes PXR attractive to both, researchers and pharmaceutical industry since clinical success of small drug molecules can be pre-evaluated on PXR platform. At the early stages of drug discovery, cell-based assays are used for high-throughput screening of small molecules. The future success or failure of a drug can be predicted by this approach saving expensive resources and time. In view of this, we have developed human liver cell line-based, dual-level screening and validation protocol on PXR platform having application to assess small molecules. We have generated two different stably transfected cell lines, (i) a stable promoter-reporter cell line (HepXREM) expressing PXR and a commonly used CYP3A4 promoter-reporter i.e. XREM-luciferase; and (ii) two stable cell lines integrated with proximal PXR-promoter-reporter (Hepx-1096/+43 and Hepx-497/+43). Employing HepXREM, Hepx-1096/+43 and Hepx-497/+43 stable cell lines > 25 anti-cancer herbal drug ingredients were screened for examining their modulatory effects on a) PXR transcriptional activity and, b) PXR-promoter activity. In conclusion, the present report provides a convenient and economical, dual-level screening system to facilitate the identification of superior therapeutic small molecules.
Collapse
|
7
|
Magaye R, Gu Y, Wang Y, Su H, Zhou Q, Mao G, Shi H, Yue X, Zou B, Xu J, Zhao J. In vitro and in vivo evaluation of the toxicities induced by metallic nickel nano and fine particles. J Mol Histol 2016. [PMID: 27010930 DOI: 10.1007/s10735‐016‐9671‐6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Nickel nanoparticles (Ni NPs) have been applied in various fields along with the rapid development of nanotechnology. However, the potential adverse health effects of the Ni NPs are unclear. To investigate the cyto- and genotoxicity and compare the differences between the Ni NPs and the nickel fine particles (Ni FPs), Sprague-Dawley (SD) rats and A549 cells were treated with different doses of Ni NPs or FPs. Intra-tracheal instillation of Ni NPs and FPs caused acute toxicity in the lungs, liver and kidneys of the SD rats. Even though the histology of the lungs showed hyperplastic changes and the protein expression of HO-1 and Nrf2 detected by western blot showed lung burden overload, no significant increase was observed to the expression level of oncoprotein C-myc. The results from cell titer-Glo assay and comet assay indicated that Ni NPs were more potent in causing cell toxicity and genotoxicity in vitro than Ni FPs. In addition, Ni NPs increased the expression of C-myc in vitro, but these increases may not have been due to oxidative stress since no significant dose-dependent changes were seen in HO-1 and Nrf2 expressions. Although Ni NPs have the potential to cause DNA damage in A549 cells in vitro, the molecular mechanisms that led to these changes and their tumorigenic potential is still debatable. In short, Ni NPs were more potent in causing cell toxicity and genotoxicity in vitro than Ni FPs, and intra-tracheal instillation of Ni NPs and FPs caused toxicity in organs of the SD rats, while it showed similar to the effects for both particle types. These results suggested that both Ni NPs and FPs have the potential to be harmful to human health, and Ni NPs may have higher cyto- and genotoxic effects than Ni FPs under the same treatment dose.
Collapse
Affiliation(s)
- Ruth Magaye
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Yuanliang Gu
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Yafei Wang
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Hong Su
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Qi Zhou
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Guochuan Mao
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Hongbo Shi
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Xia Yue
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Baobo Zou
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Jin Xu
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Jinshun Zhao
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China.
| |
Collapse
|
8
|
Magaye R, Gu Y, Wang Y, Su H, Zhou Q, Mao G, Shi H, Yue X, Zou B, Xu J, Zhao J. In vitro and in vivo evaluation of the toxicities induced by metallic nickel nano and fine particles. J Mol Histol 2016; 47:273-86. [PMID: 27010930 DOI: 10.1007/s10735-016-9671-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/11/2016] [Indexed: 11/27/2022]
Abstract
Nickel nanoparticles (Ni NPs) have been applied in various fields along with the rapid development of nanotechnology. However, the potential adverse health effects of the Ni NPs are unclear. To investigate the cyto- and genotoxicity and compare the differences between the Ni NPs and the nickel fine particles (Ni FPs), Sprague-Dawley (SD) rats and A549 cells were treated with different doses of Ni NPs or FPs. Intra-tracheal instillation of Ni NPs and FPs caused acute toxicity in the lungs, liver and kidneys of the SD rats. Even though the histology of the lungs showed hyperplastic changes and the protein expression of HO-1 and Nrf2 detected by western blot showed lung burden overload, no significant increase was observed to the expression level of oncoprotein C-myc. The results from cell titer-Glo assay and comet assay indicated that Ni NPs were more potent in causing cell toxicity and genotoxicity in vitro than Ni FPs. In addition, Ni NPs increased the expression of C-myc in vitro, but these increases may not have been due to oxidative stress since no significant dose-dependent changes were seen in HO-1 and Nrf2 expressions. Although Ni NPs have the potential to cause DNA damage in A549 cells in vitro, the molecular mechanisms that led to these changes and their tumorigenic potential is still debatable. In short, Ni NPs were more potent in causing cell toxicity and genotoxicity in vitro than Ni FPs, and intra-tracheal instillation of Ni NPs and FPs caused toxicity in organs of the SD rats, while it showed similar to the effects for both particle types. These results suggested that both Ni NPs and FPs have the potential to be harmful to human health, and Ni NPs may have higher cyto- and genotoxic effects than Ni FPs under the same treatment dose.
Collapse
Affiliation(s)
- Ruth Magaye
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Yuanliang Gu
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Yafei Wang
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Hong Su
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Qi Zhou
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Guochuan Mao
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Hongbo Shi
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Xia Yue
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Baobo Zou
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Jin Xu
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China
| | - Jinshun Zhao
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medicine School of Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, China.
| |
Collapse
|
9
|
Kotiya D, Rana M, Subbarao N, Puri N, Tyagi RK. Transcription regulation of nuclear receptor PXR: Role of SUMO-1 modification and NDSM in receptor function. Mol Cell Endocrinol 2016; 420:194-207. [PMID: 26549688 DOI: 10.1016/j.mce.2015.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 11/01/2015] [Accepted: 11/01/2015] [Indexed: 01/13/2023]
Abstract
Pregnane & Xenobiotic Receptor (PXR) is one of the 48 members of the nuclear receptor superfamily of ligand-modulated transcription factors. PXR plays an important role in metabolism and elimination of diverse noxious endobiotics and xenobiotics. Like in case of some nuclear receptors its function may also be differentially altered, positively or negatively, by various post-translational modifications. In this context, regulation of PXR function by SUMOylation is the subject of present investigation. Here, we report that human PXR is modified by SUMO-1 resulting in its enhanced transcriptional activity. RT-PCR analysis showed that PXR SUMOylation in presence of rifampicin also enhances the endogenous expression levels of key PXR-regulated genes like CYP3A4, CYP2C9, MDR1 and UGT1A1. In addition, mammalian two-hybrid assay exhibited enhanced interaction between PXR and co-activator SRC-1. EMSA results revealed that SUMOylation has no influence on the DNA binding ability of PXR. In silico analysis suggested that PXR protein contains four putative SUMOylation sites, centered at K108, K129, K160 and K170. In addition to this, we identified the presence of NDSM (Negative charge amino acid Dependent SUMOylation Motif) in PXR. Substitution of all its four putative lysine residues along with NDSM abolished the effect of SUMO-1-mediated transactivation function of PXR. Furthermore, we show that interaction between PXR and E2-conjugation enzyme UBCh9, an important step for implementation of SUMOylation event, was reduced in case of NDSM mutant PXRD115A. Overall, our results suggest that SUMOylation at specific sites on PXR protein are involved in enhancement of transcription function of this receptor.
Collapse
Affiliation(s)
- Deepak Kotiya
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Manjul Rana
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - N Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Niti Puri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rakesh K Tyagi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
10
|
Gao L, He Y, Tang J, Yin J, Huang Z, Liu F, Ouyang D, Chen X, Zhang W, Liu Z, Zhou H. Genetic Variants of Pregnane X Receptor (PXR) and CYP2B6 Affect the Induction of Bupropion Hydroxylation by Sodium Ferulate. PLoS One 2013; 8:e62489. [PMID: 23840296 PMCID: PMC3686783 DOI: 10.1371/journal.pone.0062489] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 03/22/2013] [Indexed: 11/19/2022] Open
Abstract
UNLABELLED This study investigated the effects of pregnane X receptor (PXR/NR1I2) and CYP2B6 genetic variants on sodium ferulate (SF)-mediated induction of bupropion hydroxylation. The pharmacokinetics of bupropion and hydroxybupropion were evaluated after an oral dose of bupropion (150 mg) administered with and without SF pretreatment for 14 days in 33 healthy subjects. The area under the time-concentration curve (AUC) ratio of AUC_hyd (AUC(0-∞) of hydroxybupropion)/AUC_bup (AUC(0-∞) of bupropion) represents the CYP2B6 hydroxylation activity, which was significantly lower in CYP2B6*6 carriers (NR1I2 TGT noncarriers or carriers) than in noncarriers in both the basal and SF-induced states (p-value<0.05). AUC ratio and AUC_hyd of NR1I2 -24113AA variant were markedly lower than GA and GG genotypes (7.5±2.1 versus 14.5±3.3 and 20.6±1.1, and 8873±1431 versus 14,504±2218 and 17,586±1046) in the induced states. However, -24020(-)/(-) variant didn't show significant difference in the induction of CYP2B6 hydroxylation activity by SF compared with other -24020[GAGAAG]/(-) genotypes. NR1I2 TGT haplotype (-25385T+g.7635G+g.8055T) carriers exhibited a significantly decreased AUC ratio, compared with TGT noncarriers, in the basal states (7.6±1.0 versus 9.7±1.0), while this result wasn't observed in CYP2B6*6 noncarriers. Moreover, individuals with complete mutation-type [CYP2B6*6/*6+NR1I2 TGT+ -24113AA+ -24020 (-)/(-)] showed even lower percent difference of AUC ratio (8.7±1.2 versus 39.5±8.2) than those with complete wild-type. In conclusion, it is suggested that NR1I2 variants decrease the bupropion hydroxylation induced by SF treatment, particularly in CYP2B6*6 carriers. TRIAL REGISTRATION ChiCTR.org ChiCTR-TRC-11001285.
Collapse
Affiliation(s)
- Lichen Gao
- Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China
- Department of Pharmacy, Changsha Central Hospital, Changsha, Hunan, China
| | - Yijing He
- Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China
- Institute for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jie Tang
- Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China
| | - Jiye Yin
- Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China
| | - Zhengyu Huang
- Department of Pharmacy, Changsha Central Hospital, Changsha, Hunan, China
| | - Fangqun Liu
- Department of Pharmacy, Changsha Central Hospital, Changsha, Hunan, China
| | - Dongsheng Ouyang
- Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China
| | - Xiaoping Chen
- Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China
| | - Wei Zhang
- Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China
| | - Zhaoqian Liu
- Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China
| | - Honghao Zhou
- Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China
- * E-mail:
| |
Collapse
|
11
|
Sun J, Tu M, Han B, Xue X, Zhang Y, Wei J, Chen J, Lu Z, An Y, Cai B, Lv N, Jiang K, Miao Y, Gao W. Generation and characterization of rabbit polyclonal antibodies against Vasohibin-2 for determination of its intracellular localization. Int J Oncol 2013; 43:255-61. [PMID: 23615928 DOI: 10.3892/ijo.2013.1919] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 04/02/2013] [Indexed: 11/06/2022] Open
Abstract
Vasohibin-2 was recently identified as an important pro-angiogenesis factor in solid tumor and intracellular localization of its variants is important for elucidating the downstream mechanism(s) of its effects. Currently there are no reported antibodies affordable for intracellular localization. The aim of this study was to generate and characterize polyclonal antibodies against Vasohibin-2 and to determine the intracellular localization of Vasohibin-2. In this study, two polypeptides were synthesized and one prokaryotic Vasohibin-2 recombinant protein was custom-made. New Zealand rabbits were immunized with the polypeptide mixture and prokaryotic recombinant protein, respectively. The purified antibodies from the antiserum were validated by ELISA, western blotting (WB), immunofluorescence (IF), immunohistochemistry (IHC) and immunoprecipitation (IP). In order to determine intracellular localization, the cytoplasmic and nuclear proteins of the human liver cancer cell line HepG2 were isolated for the detection of Vasohibin-2 by western blotting. Vasohibin-2 cDNA, coding for 311 and 355 amino acid residues, fused with or without a DDK/V5 tag at the c-terminus, respectively, was cloned into the Lv-CMV-EGFP vector. Lentiviruses were successfully packaged. Vasohibin-2-overexpressing HepG2-VASH2 (355 amino acid residues) and HepG2-VASH2-V5 (311 amino acid residues fused with V5 tag at the c-terminus) human liver cancer cell lines were established. Approximately 1-2x106 HepG2, HepG2-VASH2 and HepG2-VASH2-V5 cells were injected subcutaneously into the flanks of BALB/c nude mice. Xenograft tumors were harvested for immunohistochemistry. HepG2 cells were transiently transfected with the Lv-CMV-EGFP vectors containing Vasohibin-2 cDNA (coding for 311/355 amino acid residues with a DDK tag at the c-terminal), followed by anti-DDK immunofluorescence. The antibodies obtained were able to detect human VASH2 successfully as applied in western blotting, IF, IHC and IP. Results from IF, IHC and WB (post cytoplasmic/nuclear protein isolation) showed a quite different intracellular localization of VASH2 protein. The VASH2 (with 355 amino acid residues) was located in the cytoplasm while VASH2 (with 311 amino acid residues) was located in the nucleus. The former was found to be a relatively low abundance protein. We successfully generated three rabbit anti-human Vasohibin-2 polyclonal antibodies which can be used for western blotting, IF, IP and IHC. These antibodies will provide a convenient tool for further studies on Vasohibin-2. This is the first study to report differences in the intracellular localization of the VASH2 protein and, hence, a new research direction on the study of VASH2.
Collapse
Affiliation(s)
- Jie Sun
- Laboratory of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Cross-talk between androgen receptor and pregnane and xenobiotic receptor reveals existence of a novel modulatory action of anti-androgenic drugs. Biochem Pharmacol 2010; 80:964-76. [DOI: 10.1016/j.bcp.2010.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 06/04/2010] [Accepted: 06/09/2010] [Indexed: 12/15/2022]
|
13
|
Pondugula SR, Tong AA, Wu J, Cui J, Chen T. Protein phosphatase 2Cbetal regulates human pregnane X receptor-mediated CYP3A4 gene expression in HepG2 liver carcinoma cells. Drug Metab Dispos 2010; 38:1411-6. [PMID: 20538721 PMCID: PMC2939471 DOI: 10.1124/dmd.110.032128] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 06/09/2010] [Indexed: 01/18/2023] Open
Abstract
The human pregnane X receptor (hPXR) regulates the expression of CYP3A4, which plays a vital role in hepatic drug metabolism and has considerably reduced expression levels in proliferating hepatocytes. We have recently shown that cyclin-dependent kinase 2 (CDK2) negatively regulates hPXR-mediated CYP3A4 gene expression. CDK2 can be dephosphorylated and inactivated by protein phosphatase type 2C beta isoform long (PP2Cbetal), a unique phosphatase that was originally cloned from human liver. In this study, we sought to determine whether PP2Cbetal is involved in regulating hPXR's transactivation activity and whether PP2Cbetal affects CDK2 regulation of this activity in HepG2 liver carcinoma cells. In transactivation assays, transiently coexpressed PP2Cbetal significantly enhanced the hPXR-mediated CYP3A4 promoter activity and decreased the inhibitory effect of CDK2 on hPXR transactivation activity. In addition, shRNA-mediated down-regulation of endogenous PP2Cbetal promoted cell proliferation, inhibited the interaction of hPXR with steroid receptor coactivator-1, and attenuated the hPXR transcriptional activity. The levels of PP2Cbetal did not affect hPXR expression. Our results show for the first time that PP2Cbetal is essential for hPXR activity and can positively regulate this activity by counteracting the inhibitory effect of CDK2. Our results implicate a novel and important role for PP2Cbetal in regulating hPXR activity and CYP3A4 expression by inhibiting or desensitizing signaling pathways that negatively regulate the function of pregnane X receptor in liver cells and are consistent with the notion that both the activity of hPXR and the expression of CYP3A4 are regulated in a cell cycle-dependent and cell proliferation-dependent manner.
Collapse
Affiliation(s)
- Satyanarayana R Pondugula
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | | | | | | | | |
Collapse
|
14
|
Pondugula SR, Dong H, Chen T. Phosphorylation and protein-protein interactions in PXR-mediated CYP3A repression. Expert Opin Drug Metab Toxicol 2009; 5:861-73. [PMID: 19505191 PMCID: PMC2719259 DOI: 10.1517/17425250903012360] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The expression of drug-metabolizing enzymes CYPs is controlled by pregnane X receptor (PXR), and, therefore, understanding how PXR modulates CYP expression is important to minimize adverse drug interactions, one type of preventable adverse drug reaction. OBJECTIVE We review the mechanisms of PXR-mediated repression of CYP expression. METHODS We discuss the clinical implications of CYP repression and the role of signal cross-talks, including protein-protein interactions and phosphorylation of PXR and coregulators, in inhibiting PXR and repressing CYP expression. RESULTS/CONCLUSION Kinases such as cyclin-dependent kinase 2, protein kinase A, PKC and 70 kDa form of ribosomal protein S6 kinase repress CYP expression by phosphorylating and inhibiting PXR. Growth factor signaling represses CYP expression by phosphorylating and inhibiting forkhead in rhabdomyosarcoma, a co-activator of PXR. During inflammation, NF-kappaB represses both PXR and CYP expression through protein-protein interactions with the PXR pathway.
Collapse
Affiliation(s)
- Satyanarayana R Pondugula
- St. Jude Children's Research Hospital, Department of Chemical Biology and Therapeutics, 262 Danny Thomas Place, Mail Stop 1000, Memphis, TN 38105, USA
| | | | | |
Collapse
|
15
|
Pondugula SR, Brimer-Cline C, Wu J, Schuetz EG, Tyagi RK, Chen T. A phosphomimetic mutation at threonine-57 abolishes transactivation activity and alters nuclear localization pattern of human pregnane x receptor. Drug Metab Dispos 2009; 37:719-30. [PMID: 19171678 PMCID: PMC2680541 DOI: 10.1124/dmd.108.024695] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 01/22/2009] [Indexed: 01/31/2023] Open
Abstract
The pregnane X receptor (PXR) plays crucial roles in multiple physiological processes. However, the signaling mechanisms responsible are not well defined; it is most likely that multiple functions of PXR are modulated by its phosphorylation. Therefore, we sought to determine whether mutation at a highly conserved Thr(57) affects human PXR (hPXR) function. Site-directed mutagenesis was performed to generate phosphorylation-deficient (hPXR(T57A)) and phosphomimetic (hPXR(T57D)) mutants. Gene reporter, Western blotting, immunocytochemistry, mammalian two-hybrid, and electrophoretic mobility shift assays were used to study cytochrome P450 3A4 (CYP3A4) promoter activation, protein levels, localization, cofactor interaction, and CYP3A4 promoter binding of the hPXR mutants, respectively. hPXR(T57D), but not hPXR(T57A), lost its transcriptional activity. Neither mutation altered hPXR's protein levels and interaction with steroid receptor coactivator-1. hPXR and hPXR(T57A) exhibited a homogenous nuclear distribution, whereas hPXR(T57D) exhibited a distinctive punctate nuclear localization pattern similar to that of hPXR mutants with impaired function that colocalize with silencing mediator of retinoid and thyroid receptors (SMRT), although silencing of SMRT did not rescue the altered function of hPXR(T57D). However, hPXR(T57D), but not hPXR(T57A), impaired hPXR's ability to bind to the CYP3A4 promoter, consistent with the mutant's transactivation function. Furthermore, the 70-kDa form of ribosomal protein S6 kinase (p70 S6K) phosphorylated hPXR in vitro and inhibited its transcriptional activity, whereas hPXR(T57A) partially resisted the inhibitory effect of p70 S6K. Our studies identify a functionally significant phosphomimetic mutant (hPXR(T57D)) and show p70 S6K phosphorylation and regulation of hPXR transactivation to support the notion that phosphorylation plays important roles in regulating hPXR function.
Collapse
Affiliation(s)
- Satyanarayana R Pondugula
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1000, Memphis, TN 38105, USA
| | | | | | | | | | | |
Collapse
|
16
|
Lin W, Wu J, Dong H, Bouck D, Zeng FY, Chen T. Cyclin-dependent kinase 2 negatively regulates human pregnane X receptor-mediated CYP3A4 gene expression in HepG2 liver carcinoma cells. J Biol Chem 2008; 283:30650-7. [PMID: 18784074 DOI: 10.1074/jbc.m806132200] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The human pregnane X receptor (hPXR) regulates the expression of critical drug metabolism enzymes. One of such enzymes, cytochrome P450 3A4 (CYP3A4), plays critical roles in drug metabolism in hepatocytes that are either quiescent or passing through the cell cycle. It has been well established that the expression of P450, such as CYP3A4, is markedly reduced during liver development or regeneration. Numerous studies have implicated cellular signaling pathways in modulating the functions of nuclear receptors, including hPXR. Here we report that inhibition of cyclin-dependent kinases (Cdks) by kenpaullone and roscovitine (two small molecule inhibitors of Cdks that we identified in a screen for compounds that activate hPXR) leads to activation of hPXR-mediated CYP3A4 gene expression in HepG2 human liver carcinoma cells. Consistent with this finding, activation of Cdk2 attenuates the activation of CYP3A4 gene expression. In vitro kinase assays revealed that Cdk2 directly phosphorylates hPXR. A phosphomimetic mutation of a putative Cdk phosphorylation site, Ser(350), significantly impairs the function of hPXR, whereas a phosphorylation-deficient mutation confers resistance to Cdk2. Using HepG2 that has been stably transfected with hPXR and the CYP3A4-luciferase reporter, enriched in different phases of the cell cycle, we found that hPXR-mediated CYP3A4 expression is greatly reduced in the S phase. Our results indicate for the first time that Cdk2 negatively regulates the activity of hPXR, and suggest an important role for Cdk2 in regulating hPXR activity and CYP3A4 expression in hepatocytes passing through the cell cycle, such as those in fetal or regenerating adult liver.
Collapse
Affiliation(s)
- Wenwei Lin
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | |
Collapse
|
17
|
Kumar S, Chaturvedi NK, Kumar S, Tyagi RK. Agonist-mediated docking of androgen receptor onto the mitotic chromatin platform discriminates intrinsic mode of action of prostate cancer drugs. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1783:59-73. [PMID: 18070607 DOI: 10.1016/j.bbamcr.2007.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 10/02/2007] [Accepted: 11/05/2007] [Indexed: 11/26/2022]
Abstract
This study documents the analysis of a hitherto unreported dynamic behavior of androgen receptor (AR), a member of the nuclear receptor superfamily. Employing GFP-tagged AR, we observed agonist-mediated docking of AR onto the mitotic chromatin during all the stages of mitosis. When bound to therapeutic drugs with intrinsically absolute or partial agonistic properties, AR concomitantly associated with the mitotic chromatin. Conversely, pure antagonists known to bind and subsequently translocate unliganded AR from cytoplasm to nuclear compartment did not provoke such association. The agonist-mediated docking of AR could not be competed with other transcription factors that constitutively preoccupied the chromosomal docking sites. Amongst the previously reported proteins, AR is first example of a transcription factor whose response on mitotic chromatin platform can be modulated in a ligand-specific manner. However, data from live cell imaging revealed that co-activators of agonist-activated receptor that are recruited into "nuclear foci" of interphase chromatin are dislodged from the mitotic chromatin during cell division. This implies that in absence of critical co-activators, AR transverses mitotic phase in transcriptionally silenced state. Finally, our results indicate that ligand-mediated dynamic relationship of nuclear receptors with mitotic chromatin can be effectively exploited to study, analyze and authenticate therapeutic ligands.
Collapse
Affiliation(s)
- Sanjay Kumar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | | | |
Collapse
|
18
|
Stanley LA, Horsburgh BC, Ross J, Scheer N, Wolf CR. PXR and CAR: nuclear receptors which play a pivotal role in drug disposition and chemical toxicity. Drug Metab Rev 2006; 38:515-97. [PMID: 16877263 DOI: 10.1080/03602530600786232] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Xenobiotic metabolism and detoxification is regulated by receptors (e.g., PXR, CAR) whose characterization has contributed significantly to our understanding of drug responses in humans. Technologies facilitating the screening of compounds for receptor interactions provide valuable tools applicable in drug development. Most use in vitro systems or mice humanized for receptors in vivo. In vitro assays are limited by the reporter systems and cell lines chosen and are uninformative about effects in vivo. Humanized mouse models provide novel, exciting ways of understanding the functions of these genes. This article evaluates these technologies and current knowledge on PXR/CAR-mediated regulation of gene expression.
Collapse
Affiliation(s)
- Lesley A Stanley
- Consultant in Investigative Toxicology, St. Andrews, Fife, United Kingdom
| | | | | | | | | |
Collapse
|
19
|
Saradhi M, Sengupta A, Mukhopadhyay G, Tyagi RK. Pregnane and Xenobiotic Receptor (PXR/SXR) resides predominantly in the nuclear compartment of the interphase cell and associates with the condensed chromosomes during mitosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1746:85-94. [PMID: 16297466 DOI: 10.1016/j.bbamcr.2005.10.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2004] [Revised: 09/29/2005] [Accepted: 10/07/2005] [Indexed: 10/25/2022]
Abstract
Pregnane and Xenobiotic Receptor (PXR) is a transcription factor that is activated by a diverse range of xenobiotics and endogenous metabolites including steroids, bile acids and about 50% of the prescription drugs. In specific cell types (e.g. liver and intestine) it serves as a 'xenosensor' by regulating expression of a network of genes involved in xenobiotic clearance from the body. PXR expression in several cancerous tissues and its regulated expression of multi-drug resistance proteins highlight its significance in prognosis of malignancies. The view that subcellular localization and ligand induced movements of transcription factors is one of the major phenomena in regulating transcriptional activity, we used a green fluorescent protein tagged PXR chimera to study its dynamic behaviour in living cells. Under all experimental conditions, PXR was observed to be a predominantly nuclear protein maintaining a dynamic equilibrium between the nuclear and cytoplasmic compartments of the interphase cells. Interestingly, for the first time, a member of the nuclear receptor superfamily, PXR, has been observed to be associated with condensed chromosomes during all the mitotic stages of cell division. The significance of PXR association with mitotic chromosomes is discussed.
Collapse
Affiliation(s)
- Mallampati Saradhi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi - 110067, India
| | | | | | | |
Collapse
|