1
|
Naghshbandieh A, Naghshbandieh A, Barfi E, Abkhooie L. Assessment of the level of apoptosis in differentiated pseudo-neuronal cells derived from neural stem cells under the influence of various inducers. AMERICAN JOURNAL OF STEM CELLS 2024; 13:250-270. [PMID: 39850017 PMCID: PMC11751472 DOI: 10.62347/bptg6174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/23/2024] [Indexed: 01/25/2025]
Abstract
Development and maintenance of the nervous system are governed by a scheduled cell death mechanism known as apoptosis. Very much how neurons survive and function depends on the degree of death in differentiating pseudo-neuronal cells produced from neural stem cells. Different inducers can affect the degree of death in these cells: hormones, medicines, growth factors, and others. Developing inventive therapies for neurodegenerative illnesses depends on a knowledge of how these inducers impact mortality in differentiated pseudo-neuronal cells. Using flow cytometry, Western blotting, and fluorescence microscopy among other techniques, the degree of death in many pseudo-neuronal cells is evaluated. Flow cytometry generates dead cell counts from measurements of cell size, granularity, and DNA content. Whereas fluorescence microscopy visualizes dead cells using fluorescent dyes or antibodies, Western blotting detects caspases and Bcl-2 family proteins. This review attempts to offer a thorough investigation of present studies on death in differentiated pseudo-neuronal cells produced from neural stem cells under the effect of different inducers. Through investigating how these inducers influence death, the review aims to provide information that might direct the next studies and support treatment plans for neurodegenerative diseases. With an eye toward inducers like retinoic acid, selegiline, cytokines, valproic acid, and small compounds, we examined research to evaluate death rates. The findings offer important new perspectives on the molecular processes guiding death in these cells. There is still a complete lack of understanding of how different factors affect the molecular processes that lead to death, so understanding these processes can contribute to new therapeutic approaches to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Adele Naghshbandieh
- Department of Anatomical Sciences, School of Medical Sciences, Tarbiat Modares UniversityTehran, Iran
| | - Atefe Naghshbandieh
- Department of Pharmaceutical Biotechnology and Department of Pharmaceutical and Bimolecular Science, University of MilanMilan, Italy
| | - Elahe Barfi
- Razi Herbal Medicines Research Center, Lorestan University of Medical SciencesKhorramabad, Iran
| | - Leila Abkhooie
- Razi Herbal Medicines Research Center, Lorestan University of Medical SciencesKhorramabad, Iran
- Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical SciencesKhorramabad, Iran
| |
Collapse
|
2
|
Mazini F, Abdollahifar MA, Niknejad H, Manzari-Tavakoli A, Zhaleh M, Asadi-Golshan R, Ghanbari A. Retinoic acid loaded with chitosan nanoparticles improves spermatogenesis in scrotal hyperthermia in mice. Clin Exp Reprod Med 2023; 50:230-243. [PMID: 37995751 PMCID: PMC10711251 DOI: 10.5653/cerm.2023.06149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/22/2023] [Accepted: 07/03/2023] [Indexed: 11/25/2023] Open
Abstract
OBJECTIVE High temperatures can trigger cellular oxidative stress and disrupt spermatogenesis, potentially leading to male infertility. We investigated the effects of retinoic acid (RA), chitosan nanoparticles (CHNPs), and retinoic acid loaded with chitosan nanoparticles (RACHNPs) on spermatogenesis in mice induced by scrotal hyperthermia (Hyp). METHODS Thirty mice (weighing 25 to 30 g) were divided into five experimental groups of six mice each. The groups were as follows: control, Hyp induced by a water bath (43 °C for 30 minutes/day for 5 weeks), Hyp+RA (2 mg/kg/day), Hyp+CHNPs (2 mg/kg/72 hours), and Hyp+RACHNPs (4 mg/kg/72 hours). The mice were treated for 35 days. After the experimental treatments, the animals were euthanized. Sperm samples were collected for analysis of sperm parameters, and blood serum was isolated for testosterone measurement. Testis samples were also collected for histopathology assessment, reactive oxygen species (ROS) evaluation, and RNA extraction, which was done to compare the expression levels of the bax, bcl2, p53, Fas, and FasL genes among groups. Additionally, immunohistochemical staining was performed. RESULTS Treatment with RACHNPs significantly increased stereological parameters such as testicular volume, seminiferous tubule length, and testicular cell count. Additionally, it increased testosterone concentration and improved sperm parameters. We observed significant decreases in ROS production and caspase-3 immunostaining in the RACHNP group. Moreover, the expression levels of bax, p53, Fas, and FasL significantly decreased in the groups treated with RACHNPs and RA. CONCLUSION RACHNPs can be considered a potent antioxidative and antiapoptotic agent for therapeutic strategies in reproductive and regenerative medicine.
Collapse
Affiliation(s)
- Fatemeh Mazini
- Department of Anatomical Science, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad-Amin Abdollahifar
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asma Manzari-Tavakoli
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mohsen Zhaleh
- Department of Anatomical Science, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Asadi-Golshan
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Ghanbari
- Department of Anatomical Science, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
3
|
Nakanishi S, Kinoshita K, Kurauchi Y, Seki T, Kimura Y, Suzuki M, Suzuki K, Koyama H, Kagechika H, Katsuki H. Acyclic retinoid peretinoin reduces hemorrhage-associated brain injury in vitro and in vivo. Eur J Pharmacol 2023; 954:175899. [PMID: 37392831 DOI: 10.1016/j.ejphar.2023.175899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/03/2023]
Abstract
Peretinoin is an acyclic retinoid that stimulates retinoic acid receptors (NR1Bs) and produces therapeutic effects on hepatocellular cancer. We have previously shown that NR1B agonists such as Am80 and all trans-retinoic acid suppress pathogenic events in intracerebral hemorrhage. The present study addressed the actions of peretinoin and Am80 against cytotoxicity of a blood protease thrombin on cortico-striatal slice cultures obtained from neonatal rat brains. Application of 100 U/ml thrombin to the slice cultures for 72 h caused cell death in the cortical region and tissue shrinkage in the striatal region. Peretinoin (50 μM) and Am80 (1 μM) counteracted these cytotoxic effects of thrombin, and the effect of peretinoin and Am80 was blocked by LE540, an NR1B antagonist. A broad-spectrum kinase inhibitor K252a (3 μM) attenuated the cytoprotective effect of peretinoin in the cortical region, whereas a specific protein kinase A inhibitor KT5720 (1 μM) attenuated the protective effect of peretinoin in the cortical and the striatal regions. On the other hand, nuclear factor-κB (NF-κB) inhibitors such as pyrrolidine dithiocarbamate (50 μM) and Bay11-7082 (10 μM) prevented thrombin-induced shrinkage of the striatal region. Peretinoin and Am80 as well as Bay11-7082 blocked thrombin-induced nuclear translocation of NF-κB in striatal microglia and loss of striatal neurons. We also found that daily administration of peretinoin reduced histopathological injury and alleviated motor deficits in a mouse model of intracerebral hemorrhage. These results indicate that NR1B agonists including peretinoin may serve as a therapeutic option for hemorrhagic brain injury.
Collapse
Affiliation(s)
- Sakino Nakanishi
- Department of Chemico-Pharmacological Sciences, School of Pharmacy and Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Keita Kinoshita
- Department of Chemico-Pharmacological Sciences, School of Pharmacy and Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuki Kurauchi
- Department of Chemico-Pharmacological Sciences, School of Pharmacy and Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takahiro Seki
- Department of Pharmacology, School of Pharmacy, Himeji-Dokkyo University, Hyogo, Japan
| | - Yasuyuki Kimura
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Masaaki Suzuki
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Keiichi Suzuki
- Field of Biological Molecular Sciences, United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Hiroko Koyama
- Field of Biological Molecular Sciences, United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan; Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Hiroyuki Kagechika
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, School of Pharmacy and Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
4
|
Kholodenko IV, Yarygin KN. Suppressive Effect of Chemically Induced Hypoxia on Glioblastoma Cell Proliferation. Bull Exp Biol Med 2023; 175:530-534. [PMID: 37768451 DOI: 10.1007/s10517-023-05900-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Indexed: 09/29/2023]
Abstract
Glioblastoma is a tumor characterized by pronounced hypoxia. Hypoxia produces diverse effects on tumor cells, and the results of experimental studies available so far are contradictory. In vitro hypoxia can be modeled in two ways: by reducing the level of atmospheric oxygen (physically induced hypoxia) or by using hypoxia-inducing chemicals such as cobalt chloride (II) (CoCl2) (chemically induced hypoxia). In the present work, we analyzed the effect of CoCl2 on the viability, proliferation, and apoptosis of cells of three glioblastoma cell lines: 1321N1, T98g, and U373 MG. It was shown that CoCl2 induced a dose-dependent decrease in cell viability and proliferation, and at high concentrations (200 and 400 μM) stimulated cell death. CoCl2 had no effect on the cytotoxic activity of doxorubicin in two cell lines T98g and U373 MG, and enhanced the effect of the chemotherapeutic agent on the 1321N1 cell line, though no synergistic cytotoxic effect of the two agents was observed.
Collapse
Affiliation(s)
- I V Kholodenko
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia.
| | - K N Yarygin
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
5
|
Guo CJ, Cao XL, Zhang YF, Yue KY, Han J, Yan H, Han H, Zheng MH. Exosome-mediated inhibition of microRNA-449a promotes the amplification of mouse retinal progenitor cells and enhances their transplantation in retinal degeneration mouse models. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:763-778. [PMID: 36937621 PMCID: PMC10020531 DOI: 10.1016/j.omtn.2023.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
Inherited and age-related retinal degenerations are the commonest causes of blindness without effective treatments. Retinal progenitor cells (RPCs), which have the multipotency to differentiate into various retinal cell types, are regarded as a promising source of cell transplantation therapy for retinal degenerative diseases. However, the self-limited expansion of RPCs causes difficulty in cell source supply and restrict its clinical treatment. In this work, we found that inhibition of microRNA-449a (miR-449a) in RPCs can promote proliferation and inhibit apoptosis of RPCs, partially through upregulating Notch signaling. Further optimization of transduction miR-449a inhibitor into RPCs by endothelial cell-derived exosomes can promote the survival of RPCs transplanted in vivo and reduce cell apoptosis in retinal degeneration mouse models. In summary, these studies have shown that exosome-miR-449a inhibitor can effectively promote the expansion of RPCs in vitro and enhance transplanted RPCs survival in vivo, which might provide a novel intervention strategy for retinal degenerations in the future.
Collapse
Affiliation(s)
- Chen Jun Guo
- Department of Ophthalmology, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, Shaanxi, China
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Xiu Li Cao
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Yu Fei Zhang
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Kang Yi Yue
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, Shaanxi, China
| | - Hong Yan
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated Guangren Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an 710004, Shaanxi, China
| | - Hua Han
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
- Corresponding author: Hua Han, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Chang-Le Xi Street #169, Xi’an 710032, China.
| | - Min Hua Zheng
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
- Corresponding author: Min-Hua Zheng, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi’an 710032, China.
| |
Collapse
|
6
|
Minibody-Based and scFv-Based Antibody Fragment-Drug Conjugates Selectively Eliminate GD2-Positive Tumor Cells. Int J Mol Sci 2023; 24:ijms24021239. [PMID: 36674755 PMCID: PMC9860947 DOI: 10.3390/ijms24021239] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Ganglioside GD2 is a well-established target expressed on multiple solid tumors, many of which are characterized by low treatment efficiency. Antibody-drug conjugates (ADCs) have demonstrated marked success in a number of solid tumors, and GD2-directed drug conjugates may also hold strong therapeutic potential. In a recent study, we showed that ADCs based on the approved antibody dinutuximab and the drugs monomethyl auristatin E (MMAE) or F (MMAF) manifested potent and selective cytotoxicity in a panel of tumor cell lines and strongly inhibited solid tumor growth in GD2-positive mouse cancer models. Here, we employed two different GD2-binding moieties-minibodies and scFv fragments that carry variable antibody domains identical to those of dinutuximab, and site-directly conjugated them to MMAE or MMAF by thiol-maleimide chemistry with drug-to-antibody ratios (DAR) of 2 and 1, respectively. Specific binding of the antibody fragment-drug conjugates (FDCs) to GD2 was confirmed in direct ELISA, flow cytometry, and confocal microscopy. Selective cytotoxic and cytostatic effects of the conjugates were observed in GD2-positive but not GD2-negative neuroblastoma and melanoma cell lines. Minibody-based FDCs demonstrated more pronounced cytotoxic effects and stronger antigen binding compared to scFv-based FDCs. The developed molecules may offer considerable practical benefit, since antibody fragment-drug conjugates are capable of enhancing therapeutic efficacy of ADCs by improving their pharmacokinetic characteristics and reducing side effects.
Collapse
|
7
|
Kholodenko IV, Gisina AM, Manukyan GV, Majouga AG, Svirshchevskaya EV, Kholodenko RV, Yarygin KN. Resistance of Human Liver Mesenchymal Stem Cells to FAS-Induced Cell Death. Curr Issues Mol Biol 2022; 44:3428-3443. [PMID: 36005132 PMCID: PMC9406952 DOI: 10.3390/cimb44080236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/05/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have a pronounced therapeutic potential in various pathological conditions. Though therapeutic effects of MSC transplantation have been studied for a long time, the underlying mechanisms are still not clear. It has been shown that transplanted MSCs are rapidly eliminated, presumably by apoptosis. As the mechanisms of MSC apoptosis are not fully understood, in the present work we analyzed MSC sensitivity to Fas-induced apoptosis using MSCs isolated from the biopsies of liver fibrosis patients (L-MSCs). The level of cell death was analyzed by flow cytometry in the propidium iodide test. The luminescent ATP assay was used to measure cellular ATP levels; and the mitochondrial membrane potential was assessed using the potential-dependent dye JC-1. We found that human L-MSCs were resistant to Fas-induced cell death over a wide range of FasL and anti-Fas mAb concentrations. At the same time, intrinsic death signal inducers CoCl2 and staurosporine caused apoptosis of L-MSCs in a dose-dependent manner. Despite the absence of Fas-induced cell death treatment of L-MSCs with low concentrations of FasL or anti-Fas mAb resulted in a cellular ATP level decrease, while high concentrations of the inducers caused a decline of the mitochondrial membrane potential. Pre-incubation of L-MSCs with the pro-inflammatory cytokine TNF-α did not promote L-MSC cell death. Our data indicate that human L-MSCs have increased resistance to receptor-mediated cell death even under inflammatory conditions.
Collapse
Affiliation(s)
- Irina V. Kholodenko
- Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.M.G.); (K.N.Y.)
- Correspondence: ; Tel.: +7-(905)7765062; Fax: +7-(499)2450857
| | - Alisa M. Gisina
- Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.M.G.); (K.N.Y.)
| | - Garik V. Manukyan
- Petrovsky Russian Research Center of Surgery, 119991 Moscow, Russia;
| | - Alexander G. Majouga
- Faculty of Chemical and Pharmaceutical Technologies and Biomedical Products, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia;
| | - Elena V. Svirshchevskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (R.V.K.)
| | - Roman V. Kholodenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (R.V.K.)
| | - Konstantin N. Yarygin
- Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.M.G.); (K.N.Y.)
| |
Collapse
|
8
|
Comparison of the Response to the CXCR4 Antagonist AMD3100 during the Development of Retinal Organoids Derived from ES Cells and Zebrafish Retina. Int J Mol Sci 2022; 23:ijms23137088. [PMID: 35806093 PMCID: PMC9266567 DOI: 10.3390/ijms23137088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/10/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Retinal organoids generated from human embryonic stem cells or iPSCs recreate the key structural and functional features of mammalian retinal tissue in vitro. However, the differences in the development of retinal organoids and normal retina in vivo are not well defined. Thus, in the present study, we analyzed the development of retinal organoids and zebrafish retina after inhibition of CXCR4, a key role in neurogenesis and optic nerve development, with the antagonist AMD3100. Our data indicated that CXCR4 was mainly expressed in ganglion cells in retinal organoids and was rarely expressed in amacrine or photoreceptor cells. AMD3100 treatment reduced the retinal organoid generation ratio, impaired differentiation, and induced morphological changes. Ganglion cells, amacrine cells, and photoreceptors were decreased and abnormal locations were observed in organoids treated with AMD3100. Neuronal axon outgrowth was also damaged in retinal organoids. Similarly, a decrease of ganglion cells, amacrine cells, and photoreceptors and the distribution of neural outgrowth was induced by AMD3100 treatment in zebrafish retina. However, abnormal photoreceptor ensembles induced by AMD3100 treatment in the organoids were not detected in zebrafish retina. Therefore, our study suggests that although retinal organoids might provide a reliable model for reproducing a retinal developmental model, there is a difference between the organoids and the retina in vivo.
Collapse
|
9
|
Kim BJ, Scott DA. RERE deficiency causes retinal and optic nerve atrophy through degeneration of retinal cells. Dev Dyn 2021; 250:1398-1409. [PMID: 33742727 DOI: 10.1002/dvdy.330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 03/15/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The arginine-glutamic acid dipeptide repeats gene (RERE) encodes a nuclear receptor coregulator that modulates gene expression through its interaction with transcriptional machinery. In humans, RERE deficiency causes neurodevelopmental disorder with or without structural defects of the brain, eye, heart, and kidney (NEDBEH). Ophthalmological defects are seen in approximately one third of individuals with NEDBEH and in RERE-deficient mice which can serve as a useful animal model. RESULTS In mice, RERE is expressed in a subset of retinal ganglion cells (RGC), the lens epithelium, and the ciliary body during the embryonic period. RERE expression expands into the outer nuclear layer and the inner nuclear layer during the postnatal period. RERE-deficient mice have retinal and optic nerve atrophy. We show that RERE deficiency causes progressive loss of retinal cells and apoptosis of retinal cells in the ganglion cell layer as early as E17.5. The number of RGCs is also reduced in RERE-deficient embryos and mice. CONCLUSIONS We conclude that RERE is required to control the apoptosis of retinal cells in the developing retina, and that RERE deficiency results in the retina atrophy through degeneration of the retinal cells and optic nerve atrophy through the loss of RGCs.
Collapse
Affiliation(s)
- Bum Jun Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Daryl A Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
10
|
Zhao L, Son JS, Wang B, Tian Q, Chen Y, Liu X, de Avila JM, Zhu MJ, Du M. Retinoic acid signalling in fibro/adipogenic progenitors robustly enhances muscle regeneration. EBioMedicine 2020; 60:103020. [PMID: 32980698 PMCID: PMC7519288 DOI: 10.1016/j.ebiom.2020.103020] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND During muscle regeneration, excessive formation of adipogenic and fibrogenic tissues, from their respective fibro/adipogenic progenitors (FAPs), impairs functional recovery. Intrinsic mechanisms controlling the proliferation and differentiation of FAPs remain largely unexplored. METHODS Here, we investigated the role of retinoic acid (RA) signalling in regulating FAPs and the subsequent effects on muscle restoration from a cardiotoxin-induced injury. Blockage of retinoic acid receptor (RAR) signalling was achieved through dominant negative retinoic acid receptor α (RARα403) expression specific in PDGFRα+ FAPs in vivo and by BMS493 treatment in vitro. Effects of RAR-signalling on FAP cellularity and muscle regeneration were also investigated in a high-fat diet-induced obese mice model. FINDINGS Supplementation of RA increased the proliferation of FAPs during the early stages of regeneration while suppressing FAP differentiation and promoting apoptosis during the remodelling stage. Loss of RAR-signalling caused ectopic adipogenic differentiation of FAPs and impaired muscle regeneration. Furthermore, obesity disrupted the cellular transition of FAPs and attenuated muscle regeneration. Supplementation of RA to obese mice not only rescued impaired muscle fibre regeneration, but also inhibited infiltration of fat and fibrotic tissues during muscle repair. These beneficial effects were abolished after blocking RAR-signalling in FAPs of obese mice. INTERPRETATION These data suggest that RAR-signalling in FAPs is a critical therapeutic target for suppressing differentiation of FAPs and facilitating the regeneration of muscle and other tissues. FUNDING This study was supported by grants from the National Institutes of Health (R01-HD067449 and R21-AG049976) to M.D.
Collapse
Affiliation(s)
- Liang Zhao
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, and School of Molecular Bioscience, Washington State University, Pullman, WA
| | - Jun Seok Son
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, and School of Molecular Bioscience, Washington State University, Pullman, WA
| | - Bo Wang
- State key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China, 100193
| | - Qiyu Tian
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, and School of Molecular Bioscience, Washington State University, Pullman, WA
| | - Yanting Chen
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, and School of Molecular Bioscience, Washington State University, Pullman, WA
| | - Xiangdong Liu
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, and School of Molecular Bioscience, Washington State University, Pullman, WA
| | - Jeanene M de Avila
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, and School of Molecular Bioscience, Washington State University, Pullman, WA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA
| | - Min Du
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, and School of Molecular Bioscience, Washington State University, Pullman, WA.
| |
Collapse
|
11
|
Chen Y, Li H, Ding T, Li J, Zhang Y, Wang J, Yang X, Chong T, Long Y, Li X, Gao F, Lyu X. Lnc-M2 controls M2 macrophage differentiation via the PKA/CREB pathway. Mol Immunol 2020; 124:142-152. [PMID: 32563859 DOI: 10.1016/j.molimm.2020.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/31/2020] [Accepted: 06/03/2020] [Indexed: 12/18/2022]
Abstract
Long noncoding RNAs (lncRNAs) play an indispensable role in the process of M1 macrophage via regulating the development of macrophages and their responses to bacterial pathogens and viral infections. However, there are few studies on the lncRNA-mediated functions and regulatory mechanisms of M2 macrophage polarization. In this study, we found a number of differentially expressed lncRNAs between human monocyte derived M0 and M2 macrophages according to array analysis and quantitative polymerase chain reaction (qPCR) validation. The lncRNA RP11-389C8.2 (we named lnc-M2 in this study) was observed to be highly expressed in M2 macrophages. In Situ Localization and Quantification Analysis showed that lnc-M2 was expressed in the nucleus and cytosolic compartments of M2 macrophages. Notably, lnc-M2 knockdown enhanced the phagocytic ability of M2 macrophages. Ulteriorly, the results of RNA-Protein interaction experiments indicated that protein kinase A (PKA) was a lnc-M2 associated RNA-binding protein (RBP). Western blot showed that phosphorylated cAMP response element binding protein (p-CREB), a well-known key downstream transcription factor of PKA, was lowly phosphorylated in lnc-M2-silencing M2 macrophages. Furthermore, we found that transcriptional factor Signal Transducer And Activator Of Transcription 3 (STAT3) promoted lnc-M2 transcription along with the up-regulation of epigenetic histone modification markers at the lnc-M2 promoter locus, indicating that STAT3 activated lnc-M2 and eventually facilitated the process of M2 macrophage differentiation via the PKA/CREB pathway. Collectively, our date provide evidence that the transcription factor STAT3 can promote the transcription of lnc-M2 and facilitated the process of M2 macrophage differentiation via the PKA/CREB pathway. This study highlights a novel mechanism underlying the M2 macrophage differentiation.
Collapse
Affiliation(s)
- Yuxiang Chen
- Shenzhen Key Laboratory of Viral Oncology, Center for Clinical Research and Innovation (CCRI), Shenzhen Hospital, Southern Medical University, Shenzhen, China; Department of Dermatology, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Hanzhao Li
- Shenzhen Key Laboratory of Viral Oncology, Center for Clinical Research and Innovation (CCRI), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Tengteng Ding
- Shenzhen Key Laboratory of Viral Oncology, Center for Clinical Research and Innovation (CCRI), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jinbang Li
- Department of Pathology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Yuanbin Zhang
- Shenzhen Key Laboratory of Viral Oncology, Center for Clinical Research and Innovation (CCRI), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jianguo Wang
- Shenzhen Key Laboratory of Viral Oncology, Center for Clinical Research and Innovation (CCRI), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xu Yang
- Shenzhen Key Laboratory of Viral Oncology, Center for Clinical Research and Innovation (CCRI), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Tuotuo Chong
- Shenzhen Key Laboratory of Viral Oncology, Center for Clinical Research and Innovation (CCRI), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yufei Long
- Shenzhen Key Laboratory of Viral Oncology, Center for Clinical Research and Innovation (CCRI), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xin Li
- Shenzhen Key Laboratory of Viral Oncology, Center for Clinical Research and Innovation (CCRI), Shenzhen Hospital, Southern Medical University, Shenzhen, China.
| | - Fei Gao
- Department of Physiology and Biomedical Engineering and Gastroenterology Research Unit, Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA.
| | - Xiaoming Lyu
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
12
|
V Kholodenko I, V Kalinovsky D, V Svirshchevskaya E, I Doronin I, V Konovalova M, V Kibardin A, V Shamanskaya T, S Larin S, M Deyev S, V Kholodenko R. Multimerization through Pegylation Improves Pharmacokinetic Properties of scFv Fragments of GD2-Specific Antibodies. Molecules 2019; 24:molecules24213835. [PMID: 31653037 PMCID: PMC6864547 DOI: 10.3390/molecules24213835] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
Antigen-binding fragments of antibodies specific to the tumor-associated ganglioside GD2 are well poised to play a substantial role in modern GD2-targeted cancer therapies, however, rapid elimination from the body and reduced affinity compared to full-length antibodies limit their therapeutic potential. In this study, scFv fragments of GD2-specific antibodies 14.18 were produced in a mammalian expression system that specifically bind to ganglioside GD2, followed by site-directed pegylation to generate mono-, di-, and tetra-scFv fragments. Fractionated pegylated dimers and tetramers of scFv fragments showed significant increase of the binding to GD2 which was not accompanied by cross-reactivity with other gangliosides. Pegylated multimeric di-scFvs and tetra-scFvs exhibited cytotoxic effects in GD2-positive tumor cells, while their circulation time in blood significantly increased compared with monomeric antibody fragments. We also demonstrated a more efficient tumor uptake of the multimers in a syngeneic GD2-positive mouse cancer model. The findings of this study provide the rationale for improving therapeutic characteristics of GD2-specific antibody fragments by multimerization and propose a strategy to generate such molecules. On the basis of multimeric antibody fragments, bispecific antibodies and conjugates with cytotoxic drugs or radioactive isotopes may be developed that will possess improved pharmacokinetic and pharmacodynamic properties.
Collapse
Affiliation(s)
- Irina V Kholodenko
- Orekhovich Institute of Biomedical Chemistry, 10, Pogodinskaya St., Moscow 119121, Russia.
| | - Daniel V Kalinovsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia.
| | - Elena V Svirshchevskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia.
| | - Igor I Doronin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia.
- Real Target LLC, Miklukho-Maklaya St., 16/10, Moscow 117997, Russia.
| | - Maria V Konovalova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia.
| | - Alexey V Kibardin
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, 1, Samory Mashela St., Moscow 117997, Russia.
| | - Tatyana V Shamanskaya
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, 1, Samory Mashela St., Moscow 117997, Russia.
| | - Sergey S Larin
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, 1, Samory Mashela St., Moscow 117997, Russia.
| | - Sergey M Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia.
- Sechenov First Moscow State Medical University, 8-2, Trubetskaya St., Moscow 119992, Russia.
| | - Roman V Kholodenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia.
- Real Target LLC, Miklukho-Maklaya St., 16/10, Moscow 117997, Russia.
| |
Collapse
|
13
|
Conserva MR, Anelli L, Zagaria A, Specchia G, Albano F. The Pleiotropic Role of Retinoic Acid/Retinoic Acid Receptors Signaling: From Vitamin A Metabolism to Gene Rearrangements in Acute Promyelocytic Leukemia. Int J Mol Sci 2019; 20:ijms20122921. [PMID: 31207999 PMCID: PMC6627493 DOI: 10.3390/ijms20122921] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 12/18/2022] Open
Abstract
The family of retinoic acid receptors (RARs: RARα, -β, and -γ) has remarkable pleiotropy characteristics, since the retinoic acid/RARs pathway is involved in numerous biological processes not only during embryonic development, but also in the postnatal phase and during adulthood. In this review, we trace the roles of RA/RARs signaling in the immune system (where this pathway has both an immunosuppressive role or is involved in the inflammatory response), in hematopoiesis (enhancing hematopoietic stem cell self-renewal, progenitor cells differentiation or maintaining the bone marrow microenvironment homeostasis), and in bone remodeling (where this pathway seems to have controversial effects on bone formation or osteoclast activation). Moreover, in this review is shown the involvement of RAR genes in multiple chromosomal rearrangements generating different fusion genes in hematological neoplasms, with a particular focus on acute promyelocytic leukemia and its variant subtypes. The effect of different RARs fusion proteins on leukemic transformation, on patients’ outcome, and on therapy response is also discussed.
Collapse
Affiliation(s)
- Maria Rosa Conserva
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Luisa Anelli
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Antonella Zagaria
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Giorgina Specchia
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| |
Collapse
|
14
|
Doronin II, Kholodenko IV, Zubareva AA, Yarygin KN, Deev SM, Kholodenko RV. Involvement of Actin Filaments in the Cytotoxic Effect of GD2-Specific Antibodies. Bull Exp Biol Med 2019; 166:541-547. [PMID: 30783840 DOI: 10.1007/s10517-019-04389-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Indexed: 11/27/2022]
Abstract
Induction of direct cell death is one of the mechanisms of the antitumor effect of GD2-specific antibodies used for the therapy of high-risk neuroblastoma. The mechanisms of the cytotoxic signal triggered by antibody binding to GD2 ganglioside on the surface of the tumor cell remain insufficiently studied. Using inhibitor analysis we demonstrated that actin microfilaments are involved in the cell death induced by GD2-specific antibodies. Specifically, a strong antagonistic influence of cytochalasin D on the cytotoxic effect induced by GD2-specific antibodies was demonstrated in GD2+ tumor cell lines, which was expressed in at least 20% increase in cell survival and a significant decrease of the fraction of cells with fragmented DNA.
Collapse
Affiliation(s)
- I I Doronin
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Real Target Company, Moscow, Russia
| | - I V Kholodenko
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - A A Zubareva
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - K N Yarygin
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - S M Deev
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - R V Kholodenko
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
15
|
Acyl-CoA thioesterase 7 is involved in cell cycle progression via regulation of PKCζ-p53-p21 signaling pathway. Cell Death Dis 2017; 8:e2793. [PMID: 28518146 PMCID: PMC5584527 DOI: 10.1038/cddis.2017.202] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 03/14/2017] [Accepted: 04/06/2017] [Indexed: 11/08/2022]
Abstract
Acyl-CoA thioesterase 7 (ACOT7) is a major isoform of the ACOT family that catalyzes hydrolysis of fatty acyl-CoAs to free fatty acids and CoA-SH. However, canonical and non-canonical functions of ACOT7 remain to be discovered. In this study, for the first time, ACOT7 was shown to be responsive to genotoxic stresses such as ionizing radiation (IR) and the anti-cancer drug doxorubicin in time- and dose-dependent manners. ACOT7 knockdown induced cytostasis via activation of the p53-p21 signaling pathway without a DNA damage response. PKCζ was specifically involved in ACOT7 depletion-mediated cell cycle arrest as an upstream molecule of the p53-p21 signaling pathway in MCF7 human breast carcinoma and A549 human lung carcinoma cells. Of the other members of the ACOT family, including ACOT1, 4, 8, 9, 11, 12, and 13 that were expressed in human, ACOT4, 8, and 12 were responsive to genotoxic stresses. However, none of those had a role in cytostasis via activation of the PKCζ-p53-p21 signaling pathway. Analysis of the ACOT7 prognostic value revealed that low ACOT7 levels prolonged overall survival periods in breast and lung cancer patients. Furthermore, ACOT7 mRNA levels were higher in lung cancer patient tissues compared to normal tissues. We also observed a synergistic effect of ACOT7 depletion in combination with either IR or doxorubicin on cell proliferation in breast and lung cancer cells. Together, our data suggest that a low level of ACOT7 may be involved, at least in part, in the prevention of human breast and lung cancer development via regulation of cell cycle progression.
Collapse
|
16
|
Abstract
It has long been established that the transcriptional activity of retinoic acid (RA) is mediated by members of the nuclear receptor family of ligand-activated transcription factors termed RA receptors (RARs). More recent observations have established that RA also activates an additional nuclear receptor, PPARβ/δ. Partitioning RA between RARs and PPARβ/δ is governed by different intracellular lipid-binding proteins: cellular RA binding protein 2 (CRABP2) delivers RA to nuclear RARs and a fatty acid binding protein (FABP5) delivers the hormone from the cytosol to nuclear PPARβ/δ. Consequently, RA signals through RARs in CRABP2-expressing cells, but activates PPARβ/δ in cells that express a high level of FABP5. RA elicits different and sometimes opposing responses in cells that express different FABP5/CRABP2 ratios because PPARβ/δ and RARs regulate the expression of distinct sets of genes. An overview of the observations that led to the discovery of this non-classical activity of RA are presented here, along with a discussion of evidence demonstrating the involvement of the dual transcriptional activities of RA in regulating energy homeostasis, insulin responses, and adipocyte and neuron differentiation.
Collapse
|
17
|
Jin W, Xu YP, Yang AH, Xing YQ. In vitro induction and differentiation of umbilical cord mesenchymal stem cells into neuron-like cells by all-trans retinoic acid. Int J Ophthalmol 2015; 8:250-6. [PMID: 25938036 DOI: 10.3980/j.issn.2222-3959.2015.02.07] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 11/06/2014] [Indexed: 12/29/2022] Open
Abstract
AIM To determine the optimal concentration for inducing the differentiation of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) into neuron-like cells, although it is understood that all-trans retinoic acid (ATRA) regulates cell proliferation in the nervous system by modulating the balance between mitosis and apoptosis. METHODS The abilities of ATRA to promote apoptosis as well as neural differentiation were assessed in cultured hUC-MSCs by morphological observation, MTT assay, annexin V-FITC/PI flow cytometry and immunocytochemistry. RESULTS The data showed that low concentrations of ATRA (0.5 µmol, 0.25 µmol) had no effect on the number of cells. However, treatment with 1.0 µmol or 2.0 µmol ATRA induced a 24.16% and 52.67% reduction in cell number, respectively, compared with vehicle-treated cultures. Further, 4.0 µmol ATRA had a potent effect on cell number, with almost no adherent cells recovered after 24h. We further showed that 0.5 µmol ATRA caused these cells to express characteristic markers of neuronal progenitor cells. CONCLUSION Taken together, we conclude that ATRA has a dose-dependent influence on the neural differentiation and apoptosis of hUC-MSCs. These findings have implications on the use of ATRA-differentiated hUC-MSCs for the study of neural degeneration diseases.
Collapse
Affiliation(s)
- Wei Jin
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Yao-Peng Xu
- Department of Urology, Wuhan General Hospital of Guangzhou Military Command, Wuhan 430072, Hubei Province, China
| | - An-Huai Yang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Yi-Qiao Xing
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| |
Collapse
|
18
|
Vesprini ND, Dawson TF, Yuan Y, Bruce D, Spencer GE. Retinoic acid affects calcium signaling in adult molluscan neurons. J Neurophysiol 2014; 113:172-81. [PMID: 25343782 DOI: 10.1152/jn.00458.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Retinoic acid, the active metabolite of vitamin A, is important for nervous system development, regeneration, as well as cognitive functions of the adult central nervous system. These central nervous system functions are all highly dependent on neuronal activity. Retinoic acid has previously been shown to induce changes in the firing properties and action potential waveforms of adult molluscan neurons in a dose- and isomer-dependent manner. In this study, we aimed to determine the cellular pathways by which retinoic acid might exert such effects, by testing the involvement of pathways previously shown to be affected by retinoic acid. We demonstrated that the ability of all-trans retinoic acid (atRA) to induce electrophysiological changes in cultured molluscan neurons was not prevented by inhibitors of protein synthesis, protein kinase A or phospholipase C. However, we showed that atRA was capable of rapidly reducing intracellular calcium levels in the same dose- and isomer-dependent manner as shown previously for changes in neuronal firing. Moreover, we also demonstrated that the transmembrane ion flux through voltage-gated calcium channels was rapidly modulated by retinoic acid. In particular, the peak current density was reduced and the inactivation rate was increased in the presence of atRA, over a similar time course as the changes in cell firing and reductions in intracellular calcium. These studies provide further evidence for the ability of atRA to induce rapid effects in mature neurons.
Collapse
Affiliation(s)
- Nicholas D Vesprini
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Taylor F Dawson
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Ye Yuan
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Doug Bruce
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Gaynor E Spencer
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
19
|
Vishnyakova PA, Doronin II, Kholodenko IV, Ryazantsev DY, Molotkovskaya IM, Kholodenko RV. Caspases participation in cell death induced by the GD2-specific antibodies. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2014. [DOI: 10.1134/s1068162014030157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Doronin II, Vishnyakova PA, Kholodenko IV, Ponomarev ED, Ryazantsev DY, Molotkovskaya IM, Kholodenko RV. Ganglioside GD2 in reception and transduction of cell death signal in tumor cells. BMC Cancer 2014; 14:295. [PMID: 24773917 PMCID: PMC4021548 DOI: 10.1186/1471-2407-14-295] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 04/22/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Ganglioside GD2 is expressed on plasma membranes of various types of malignant cells. One of the most promising approaches for cancer immunotherapy is the treatment with monoclonal antibodies recognizing tumor-associated markers such as ganglioside GD2. It is considered that major mechanisms of anticancer activity of anti-GD2 antibodies are complement-dependent cytotoxicity and/or antibody-mediated cellular cytotoxicity. At the same time, several studies suggested that anti-GD2 antibodies are capable of direct induction of cell death of number of tumor cell lines, but it has not been investigated in details. In this study we investigated the functional role of ganglioside GD2 in the induction of cell death of multiple tumor cell lines by using GD2-specific monoclonal antibodies. METHODS Expression of GD2 on different tumor cell lines was analyzed by flow cytometry using anti-GD2 antibodies. By using HPTLC followed by densitometric analysis we measured the amount of ganglioside GD2 in total ganglioside fractions isolated from tumor cell lines. An MTT assay was performed to assess viability of GD2-positive and -negative tumor cell lines treated with anti-GD2 mAbs. Cross-reactivity of anti-GD2 mAbs with other gangliosides or other surface molecules was investigated by ELISA and flow cytometry. Inhibition of GD2 expression was achieved by using of inhibitor for ganglioside synthesis PDMP and/or siRNA for GM2/GD2 and GD3 synthases. RESULTS Anti-GD2 mAbs effectively induced non-classical cell death that combined features of both apoptosis and necrosis in GD2-positive tumor cells and did not affect GD2-negative tumors. Anti-GD2 mAbs directly induced cell death, which included alteration of mitochondrial membrane potential, induction of apoptotic volume decrease and cell membrane permeability. This cytotoxic effect was mediated exclusively by specific binding of anti-GD2 antibodies with ganglioside GD2 but not with other molecules. Moreover, the level of GD2 expression correlated with susceptibility of tumor cell lines to cytotoxic effect of anti-GD2 antibodies. CONCLUSIONS Results of this study demonstrate that anti-GD2 antibodies not only passively bind to the surface of tumor cells but also directly induce rapid cell death after the incubation with GD2-positive tumor cells. These results suggest a new role of GD2 as a receptor that actively transduces death signal in malignant cells.
Collapse
Affiliation(s)
- Igor I Doronin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, Moscow 117997, Russia
| | - Polina A Vishnyakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, Moscow 117997, Russia
| | - Irina V Kholodenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, Moscow 117997, Russia
- Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, 10, Pogodinskaya St., Moscow 119121, Russia
| | - Eugene D Ponomarev
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong, China
| | - Dmitry Y Ryazantsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, Moscow 117997, Russia
| | - Irina M Molotkovskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, Moscow 117997, Russia
| | - Roman V Kholodenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, Moscow 117997, Russia
| |
Collapse
|
21
|
El Haddad M, Jean E, Turki A, Hugon G, Vernus B, Bonnieu A, Passerieux E, Hamade A, Mercier J, Laoudj-Chenivesse D, Carnac G. Glutathione peroxidase 3, a new retinoid target gene, is crucial for human skeletal muscle precursor cell survival. J Cell Sci 2012; 125:6147-56. [PMID: 23132926 DOI: 10.1242/jcs.115220] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Protection of satellite cells from cytotoxic damages is crucial to ensure efficient adult skeletal muscle regeneration and to improve therapeutic efficacy of cell transplantation in degenerative skeletal muscle diseases. It is therefore important to identify and characterize molecules and their target genes that control the viability of muscle stem cells. Recently, we demonstrated that high aldehyde dehydrogenase activity is associated with increased viability of human myoblasts. In addition to its detoxifying activity, aldehyde dehydrogenase can also catalyze the irreversible oxidation of vitamin A to retinoic acid; therefore, we examined whether retinoic acid is important for myoblast viability. We showed that when exposed to oxidative stress induced by hydrogen peroxide, adherent human myoblasts entered apoptosis and lost their capacity for adhesion. Pre-treatment with retinoic acid reduced the cytotoxic damage ex vivo and enhanced myoblast survival in transplantation assays. The effects of retinoic acid were maintained in dystrophic myoblasts derived from facioscapulohumeral patients. RT-qPCR analysis of antioxidant gene expression revealed glutathione peroxidase 3 (Gpx3), a gene encoding an antioxidant enzyme, as a potential retinoic acid target gene in human myoblasts. Knockdown of Gpx3 using short interfering RNA induced elevation in reactive oxygen species and cell death. The anti-cytotoxic effects of retinoic acid were impaired in GPx3-inactivated myoblasts, which indicates that GPx3 regulates the antioxidative effects of retinoic acid. Therefore, retinoid status and GPx3 levels may have important implications for the viability of human muscle stem cells.
Collapse
Affiliation(s)
- Marina El Haddad
- Inserm U1046, Université Montpellier 1, 34295 Montpellier, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Donev R, Thome J. Inflammation: good or bad for ADHD? ACTA ACUST UNITED AC 2010; 2:257-66. [PMID: 21432611 DOI: 10.1007/s12402-010-0038-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 10/11/2010] [Indexed: 12/19/2022]
Abstract
Attention deficit hyperactivity disorder (ADHD) is characterised by the typical behavioural core symptoms of inattentiveness, hyperactivity and impulsiveness. ADHD is a usually chronic health conditions, mostly diagnosed in childhood, creating a significant challenge for youth, their families and professionals who treat it. This disorder requires long-term treatments, including psychotherapeutic and pharmacological interventions, which in some cases may lead to adverse effects. Understanding the mechanism by which ADHD risk factors affect the biochemical processes in the human brain and consequentially the behaviour will help to identify novel targets for the development of therapeutics with less adverse results and better efficacy including higher responder rates. Although inflammatory responses in the brain have been recognised for years as critical in neurodegeneration and behaviour in a number of neurological and psychiatric disorders, their role for the development, treatment and prevention of ADHD has been so far largely overlooked, although historically, ADHD symptoms were initially observed in patients who survived an ONJ infection, i.e. inflammation. In this review, we discuss the interrelationship between different ADHD risk factors and inflammation with respect to the triggered molecular mechanisms and the contribution they are likely to have to this disorder. This paper provides a rationale for future studies on ADHD with an intent to inspiring the development of new agents for a more efficient management of this disorder.
Collapse
Affiliation(s)
- Rossen Donev
- Academic Unit of Psychiatry, The School of Medicine, University of Wales Swansea, Institute of Life Science, UK
| | | |
Collapse
|
23
|
Abstract
The vitamin A metabolite all-trans-retinoic acid (RA) regulates multiple biological processes by virtue of its ability to regulate gene expression. It thus plays critical roles in embryonic development and is involved in regulating growth, remodeling, and metabolic responses in adult tissues. RA can also suppress carcinoma cell growth and is currently used in treatment of some cancers. Growth inhibition by RA may be exerted by induction of differentiation, cell cycle arrest, or apoptosis, or by a combination of these activities. Paradoxically, in the context of some cells, RA not only fails to inhibit growth but, instead, enhances proliferation and survival. This review focuses on the involvement of RA in regulating apoptotic responses. It includes brief overviews of transcriptional signaling by RA and of apoptotic pathways, and then addresses available information on the mechanisms by which RA induces apoptosis or, conversely, inhibits cell death and enhances survival.
Collapse
Affiliation(s)
- Noa Noy
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4965, USA.
| |
Collapse
|
24
|
Kuzmin D, Gogvadze E, Kholodenko R, Grzela DP, Mityaev M, Vinogradova T, Kopantzev E, Malakhova G, Suntsova M, Sokov D, Ivics Z, Buzdin A. Novel strong tissue specific promoter for gene expression in human germ cells. BMC Biotechnol 2010; 10:58. [PMID: 20716342 PMCID: PMC2929213 DOI: 10.1186/1472-6750-10-58] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 08/17/2010] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Tissue specific promoters may be utilized for a variety of applications, including programmed gene expression in cell types, tissues and organs of interest, for developing different cell culture models or for use in gene therapy. We report a novel, tissue-specific promoter that was identified and engineered from the native upstream regulatory region of the human gene NDUFV1 containing an endogenous retroviral sequence. RESULTS Among seven established human cell lines and five primary cultures, this modified NDUFV1 upstream sequence (mNUS) was active only in human undifferentiated germ-derived cells (lines Tera-1 and EP2102), where it demonstrated high promoter activity (approximately twice greater than that of the SV40 early promoter, and comparable to the routinely used cytomegaloviral promoter). To investigate the potential applicability of the mNUS promoter for biotechnological needs, a construct carrying a recombinant cytosine deaminase (RCD) suicide gene under the control of mNUS was tested in cell lines of different tissue origin. High cytotoxic effect of RCD with a cell-death rate approximately 60% was observed only in germ-derived cells (Tera-1), whereas no effect was seen in a somatic, kidney-derived control cell line (HEK293). In further experiments, we tested mNUS-driven expression of a hyperactive Sleeping Beauty transposase (SB100X). The mNUS-SB100X construct mediated stable transgene insertions exclusively in germ-derived cells, thereby providing further evidence of tissue-specificity of the mNUS promoter. CONCLUSIONS We conclude that mNUS may be used as an efficient promoter for tissue-specific gene expression in human germ-derived cells in many applications. Our data also suggest that the 91 bp-long sequence located exactly upstream NDUFV1 transcriptional start site plays a crucial role in the activity of this gene promoter in vitro in the majority of tested cell types (10/12), and an important role--in the rest two cell lines.
Collapse
Affiliation(s)
- Denis Kuzmin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Leung YM. Voltage-gated K+ channel modulators as neuroprotective agents. Life Sci 2010; 86:775-80. [PMID: 20385147 DOI: 10.1016/j.lfs.2010.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 03/18/2010] [Accepted: 04/01/2010] [Indexed: 01/11/2023]
Abstract
A manifestation in neurodegeneration is apoptosis of neurons. Neurons undergoing apoptosis may lose a substantial amount of cytosolic K+ through a number of pathways including K+ efflux via voltage-gated K+ (Kv) channels. The consequent drop in cytosolic [K+] relieves inhibition of an array of pro-apoptotic enzymes such as caspases and nucleases. Blocking Kv channels has been known to prevent neuronal apoptosis by preventing K+ efflux. Some neural diseases such as epilepsy are caused by neuronal hyperexcitability, which eventually may lead to neuronal apoptosis. Reduction in activities of A-type Kv channels and Kv7 subfamily members is amongst the etiological causes of neuronal hyperexcitation; enhancing the opening of these channels may offer opportunities of remedy. This review discusses the potential uses of Kv channel modulators as neuroprotective drugs.
Collapse
Affiliation(s)
- Yuk-Man Leung
- Graduate Institute of Neural and Cognitive Sciences, China Medical University, Taichung, Taiwan, ROC.
| |
Collapse
|